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Advanced Computational Methods for Monte Carlo Calculations

Abstract

Advanced Computational Methods for Monte Carlo Calculations
Prof. Forrest Brown

This course is intended for graduate students who already have a basic understanding of Monte
Carlo methods. It focuses on advanced topics that may be needed for thesis research, for
developing new state-of-the-art methods, or for working with modern production Monte Carlo
codes. Topics to be covered include:

— Linear Boltzmann transport equation & integral form

— Optimal random sampling from piecewise-linear PDFs

— Parallel & vector Monte Carlo algorithms

— Green's functions, the fission matrix, and linear integral operators
— Adjoint-weighted integrals & sensitivity analysis

— Precision & roundoff considerations, IEEE-floating point

— Bit operations & random number generators

— Detailed workings of delta-tracking & 3D CSG

Thorough knowledge of some programming language is required (e.g., C++, Fortran-2003, peril,
python). A previous course in transport theory is recommended. Students are assumed to be
familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for
Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website)

Meet: 3 hours/week
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Lecture Topics

Transport Theory & Physics

AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11 Adjoints & Green's Functions

AMC-12 Fission Matrix Method for MC Criticality Problems
AMC-13 Continuously Varying Materials & Tallies

Random Numbers & Sampling

AMC-20 Random Number Generators & RNG Testing

AMC-21 Random Sampling — Beyond the Basics

AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts

Code Development

AMC-30 Monte Carlo Codes — Basic Algorithm & Structure
AMC-31 Code Development — How to Time & Test
AMC-32 Vector & Parallel Monte Carlo

AMC-33 Optimizing Monte Carlo Calculations
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This is the transport theory section of the recent edition of the Handbook of Nuclear Engineering. With 116 pages, it
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References AMC-01 -

References — Monte Carlo

« Available in the Reference Collection at mcnp.lanl.gov
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Advanced Computational Methods for Monte Carlo Calculations

This course is intended for graduate students and professionals who already have a basic
understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for

thesis research, for developing new state-of-the-art methods, or for working with modern
production Monte Carlo codes.

Thorough knowledge of some programming language is required (e.g., C++, C, Fortran-2003, perl,
python, Matlab). A previous course in transport theory is recommended. Students are assumed to
be familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for

Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website).
Meet 3 hours/week.

Lecture Topics:

Transport Theory & Physics
AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11  Adjoints & Green's Functions
AMC-12  Fission Matrix Method for MC Criticality Problems
AMC-13  Continuously Varying Materials & Tallies

Random Numbers & Sampling
AMC-20 Random Number Generators & RNG Testing
AMC-21  Random Sampling — Beyond the Basics
AMC-22  Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts

Code Development
AMC-30 Monte Carlo Codes — Basic Algorithm & Structure
AMC-31 Code Development — How to Time & Test
AMC-32 Vector & Parallel Monte Carlo
AMC-33  Optimizing Monte Carlo Calculations
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NE-515-006 Information

 Focus — advanced Monte Carlo methods
— Transport theory
— Random sampling
— Coding issues

Target audience is (1) graduate students who may need to write their own MC codes as part of their research &
(2) professionals who need to know the underlying theory & sampling methods that arise in mature,
production-level MC codes.

This is not a beginning course in MC methods. Students are assumed to be familiar with the basics of MC
methods, as in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for Nuclear Systems", LA-UR-16-
29043, in the Reference Collection at the mcnp.lanl.gov website)

Production MC codes such as MCNP are not used or required. There is no discussion of using MCNP or
preparing MCNP input for application problems.

Some computer programming is required. Any language is OK (Preferred: C++, C, Fortran-2003, python, perl;
Acceptable: Matlab)

- Office hours, discussion, help
— Wednesdays — about 1 hour before/after classes
— Email — anytime, 7:00-4:00 - fborown®@lanl.gov, other times — fborown@q.com
— Other office hours by request

- Grading
— There are a few homework assignments. These will be discussed in class & not graded
— Attendence at most classes is expected
— A project is required & graded. One of the following:
A MC code or calculations that directly support your research. Send a 1-paragraph description.
Write a 3D, multigroup, mesh-based MC code. Specific features & tests will be discussed.
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UNM NE-515-006, Spring 2018

Schedule

— Lecture topics will vary among transport, sampling, & codes. Depending on class interests,
additional topics are possible.

— Rough schedule is:

117
1/24

1/31
27

2/14
2/21
2/28
37

314
3/21
3/28
4/4

4/11
4/18
4/25
5/2

AMC-10
AMC-30
AMC-31
AMC-20
AMC-21
AMC-22
AMC-23
AMC-11
AMC-12
break

AMC-33
AMC-32
AMC-13

AMC-02 -

Linear Boltzmann Transport Equation & Integral Form
Monte Carlo Codes — Basic Algorithm & Structure

Code Development — How to Time & Test

Random Number Generators & RNG Testing

Random Sampling — Beyond the Basics

Optimal Random Sampling from Piecewise-Linear PDFs
Permutations, Sets of N-from-M, & Counting-sorts
Adjoints & Green's Functions

Fission Matrix Method for MC Criticality Problems

Optimizing Monte Carlo Calculations
Vector & Parallel Monte Carlo
Continuously Varying Materials & Tallies

Project presentations &/or discussion
Project presentations &/or discussion
Project presentations &/or discussion
Project presentations &/or discussion




The Linear Boltzmann Transport Equation AMC-10 - 1

Advanced

Computational The Linear Boltzmann

Methods for

Monte Carlo Transport Equation

Calculations

Forrest B. Brown

m NUCLEAR
O+ ENGINEERING National Laboratory Professor, UNM-NE

Senior R&D Scientist, Monte Carlo, LANL

“7Los Alamos

NATIONAL LABORATORY
- ~ E5T.1943 ~ -




Outline

Introduction

Assumptions

Linear Boltzmann Transport Equation

Integral Form & Basis for Monte Carlo Simulation

Monte Carlo Eigenvalue Problems



The Linear Boltzmann Transport Equation AMC-10 - 3

Introduction



The Linear Boltzmann Transport Equation AMC-10 - 4

Introduction

 Monte Carlo methods (MC) can be used to simulate the transport
of radiation through matter
— These lectures will focus on neutral particles (e.g., neutrons & photons)

— It will also be assumed that we are solving linear problems, where the
material properties and geometry are fixed during the MC simulation

« The fundamental equation being solved is the linear Boltzmann
transport equation (LBTE)
— We will focus on interpreting & using the LBTE, not deriving it

* Reading
1. Bell & Glasstone, Nuclear Reactor Theory, pp 1-20, 21-27, 35-37
2. Ganapol, Analytical Benchmarks for Nuclear Engineering
Applications, pp 1-14
3. Cacuci, Handbook of Nuclear Engineering, Chapter 5 (Prinja &
Larsen), pp 430-464
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Introduction

« The LBTE provides a continuum description of the behavior of
radiation particles in matter

— For a given radiation source, the solution of the LBTE gives the angular
flux, y(r,E,N,t), a continuous function (or field)

— Y(r,E,N,t) represents the average behavior of a very, very large number
of particles (in nature, typically 104 — 1018 particles/cm3)

— Physical results are obtained by integrating y(r,E,,t) with some
response function:

fission rate = fff drdEdQ dt Z(r,E) - y(r,E,02,t)

V,E,0,t
« LBTE describes continuum, but MC simulates discrete particles

 MC simulates the behavior of individual particles
— To obtain a solution to the LBTE, must simulate very many particles
— Average behavior of the particles gives yY(r,E,2,t) (with uncertainty)
— In the limit of many particles, MC average results approach y(r,E,,t)
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Introduction

« The LBTE is an integro-differential equation
« MC methods compute integrals (or averages)

* General approach in what follows:
— Examine the LBTE, including what every term represents
— Convert the LBTE integro-differential equation into an integral form

— Examine the integral LBTE to see the fundamental basis for the MC
solution

— Consider time-independent steady state cases — k-eigenvalue &
a-eigenvalue forms of the LBTE

— In some later lectures...
- Start over, defining & using a Green's function approach
* Introduce the adjoint transport equation



Monte Carlo
Simulation

&
Assumptions



The Linear Boltzmann Transport Equation

Monte Carlo Simulation of Radiation Transport

- Goal: Simulate nature,
particles moving through physical objects

Collision

Simulate absorption:

Flight - absorb, or

* reduce weight
Random sampling using
2+ & exponential PDF: Random sampling
 Free-flight distance using nuclear data:

to next collision, s « Collision isotope

- Reaction type
Ray-tracing in 3D - Exit E' & Q'
computational geometry - Secondary particles

During analysis of both flights & collisions,
tally information about distances, collisions, etc.
to use later in statistical analysis for results
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Assumptions for LBTE & MC Simulation

Assume:
— Neutrons & photons are particles, not waves
— Particles move in a straight line between collisions (neutrons, photons)
— Collisions occur instantaneously, at a point in space
— Ignore neutron-neutron collisions

— Particle speeds are small enough to neglect relativistic effects
— Particle speeds are high enough to neglect quantum effects

— Particle collisions do not change the properties of a material
(ie, no feedback, no material heating, no depletion)

— Material properties are fixed for the duration of the simulation
(geometry, densities, temperatures, material compositions, .....)

Why?
— Want to solve the linear Boltzmann transport equation
— Want to apply the superposition principle

— Want the Central Limit Theorem to apply for computing statistics

- Statisticians love the term “lID” - Independent, Identically Distributed

(Any or all of the above assumptions can be relaxed, with careful analysis & extra computing cost.)
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Transport Equation
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Linear Boltzmann Transport Equation

- Time-dependent linear Boltzmann transport equation for neutrons, with
prompt fission source & external source

- (q cH ) External source Scattering
r,e, ’t - ~ ol Y 2 N 7/ ’
v v = = QFEQY + [[wFE.QHI(E >EQ Q)dQdE
Multiplication
X(r,E) J.J.VZF(F,E,)\V(F,E,,Q,,t)dé,dE,
4m
Leakage Collisions
~[ Q-V + 2, (F.E) | w(T.EQ)
18"’“’8'5’9’” - Q+ [StM-y - [L+T]w
v t Gains Losses

- This equation can be solved directly by Monte Carlo, assuming:
— Each neutron history is an lID trial (independent, identically distributed)
— All neutrons must see same probability densities in all of phase space
— Usual method: geometry & materials fixed over solution interval At
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The LBTE is a Balance Equation

t=cos(6)
0 AQ e dQ =sin0d0d¢
AE o 5 — —dud¢
0——
// Ar S @ ,*”\\ |
v r

s
e Contributions to the Total Neutron Balance during At

Number in ArAQAE at t+ At = Numberin ArAQAE at t
+ Number gained during At
- Number lost during At

Note: for this discussion, we will assume all neutrons are prompt

12



The Linear Boltzmann Transport Equation

K-%w(FEQY = Q+ [S+Mly — [L+T]y

Number in ArAQAE at t+At

AQAEJa’r n(r,Q,E,HAt)

v

Number in ArAQAE at t

AQAE [dr n(r.Q.E.1)
V

w(F,E, Qt)=vn(F E, Qt)
n(f,E,Qt):%y/(F,E, Qt)
on(F,E, Qt) 10y(F,E, Qt)
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v %w(,EQD = Q + [S+Ml-v — [L+T]-vw

e Source term, Q

— Accounts for particles added from some external source,
not from scatter or fission within system

— May be an internal source — point, line, volume source
» Particles added to ArAQAE during At

AQAEAt [dr Q(r, Q, E, t)

— May be an incoming boundary source
» Particles added to ArAQAE on boundary during At

AQAEAt [dr Q(r, Q, E, t) d(r-rg)
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%% w(f,EQYD = Q+ [S+M]-y — [L+T]-v

Number gained in ArAQAE
from scattering during At

o0

15

= AQAEAt[dr[dE’ [ dQf (Q e QE > E)X (nE )y (r,Q E' 1)

V 0 A \

\

J

I

/

Probability of scatter from Q',E' to Q,E

« Joint pdf for E,Q exiting collision

« For some types of scatter, may be
factored as f,(u) fe(E|u)

« Angular dependence of scattering
from E'\Q' to E,QQ depends on
the cosine of the scattering angle
Q'-Q, not the individual directions

|

\

number scattering
at Q'E'
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%% w(f,EQYD = Q+ [S+M]-y — [L+T]-v

Number gained in
ArAQAE from
fission during At

= AQAEA dr%(E)]odE’ [AQV(E')E, (rnE Jy(r.Q E 1)

V 471- dr ‘ |

/ '
Probability of neutrons being fissions due to
produced in AQAE during At neutrons at E',Q'

x = pdf for energy E of fission
neutrons produced average number of
neutrons per fission

1/4n = isotropic emission in Q




%o Yaw(rhEQY) = Q+ [S+Ml-y — [L+T]-vw

4
J(r,Q,E,t) = Q Y(r,Q,E,t)
Number lost through

surface dA of V = AQAE[N {ﬁs OJ(F,Q,E,t)dAH
Number lost through entire
surface of ArAQAE during At
= AQAEAt [ ddfi 0 J (1, Q,E.t)= AQAEA! [drV o J (r, Q. E 1)
A 4
= AQAEAt[dr Qe Vy (r,Q,E.1)
v

note: Application of divergence theorem
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%% w(,EQYD = Q+ [S+M]-y — [L+T]-v

Number lost through absorption  _
in ArAQAE during At ‘AQAEAtJd’”Za(’”’E)W(’”Q’E’t)

4
Number sc_attering out of AQAE during A!
=[dr|[[ f E— E')dEdQ [E (1, E )y (r,Q,E.t) AQAEA!
V Y

"1

Number in ArAQAE lost to absorption & scatter-out during At

—AQAEAtIdr[ ( )+Z( )}l//(r,Q,E,t)

= AQAEA![drE, (n,E )y (r,Q,E 1)
V



- %w(f,EQL) = Q + [S+M]-y — [L+T] v

At —0

Neutron balance equation in V:

dr-

N &—

10
Vot

AQ —0
AE —0

——+Qe V+Z(r E) l//(r,Q,E,t)—Q(r,Q,E,t)

~[dE' [ dQE (rQ s QuE — E)y (.. E.1)-

o)

dE" [ dQUV(E')E, (nE' )y (r,Q ' t)

A




- %w(f,EQL) = Q + [S+M]-y — [L+T] v

Implies the Time Dependent Neutron Transport Equation:

K

lé+QOV+Z(1’ E) l//(r,Q,E,t):

_jdE dQs (r.Q e QE' - E)y (r,Q ' t)+

%’j)gdg R g e el et
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Linear Boltzmann Transport Equation

- Time-dependent linear Boltzmann transport equation for neutrons,

with prompt fission source & external source
External source Scattering

TNEESD - QREQY + [[uFESDILFE > EQ-0)d0dE
Multiplication
F,E rE O N/ ’
X(47'c ) JJVZF(r’E )W(FaE ,€2 ,t)dQ dE
Leakage Collisions
TWEEAY Q+ [S+M].y - [L+T]-y
Y ot Gains Losses

- This equation can be solved directly by Monte Carlo, assuming:

— Each neutron history is an IID trial (independent, identically
distributed)

— All neutrons must see same probability densities in all of phase space

— Usual method: geometry & materials fixed over solution interval At



Integral Transport Equation
&
Basis for MC Simulation



The Linear Boltzmann Transport Equation AMC-10 - 23

Monte Carlo & Transport Equation

« Derive integral equation, in kernel form
— Start with integro-differential equation

— Use integrating factor .
eXP[_J‘ZT(F—Ré,E)dR'}, where RQ =7 —T

— Define E=Ef2

Collision density:  ¥(%,E)=X.(F,E)- y(F,E)

[F-1
Transport kernel: T(F’—)F,E)=2T(F,E)-exp|:— j . (r ' +5Q E)ds:| (gi v
0

> (f,E’ > E) o XEEWVE, F,E)
> (F,E’) 4r-%. (F,E’)

Collision kernel:  c@E’ S E,7) =
— Then
¥(T,E) = [ [ E)-CE — E,F)dE’ + Q(F’,E’)] T(F — T, E)dF’

Reference: D.C. Irving, "The Adjoint Boltzmann Equation and Its Simulation by Monte Carlo"
Nuclear Engineering & Design 15, 273-292 (1971)



Monte Carlo & Transport Equation

Basis for the Monte Carlo Solution Method

¥(i,E) = U‘I‘(F’,E’)-C(E’ - E,F)dE’ + Q(f’,E')]-T(f’ ¥, E)dr’
Let p=(F,E) and R(p’ - p)=C(E’ »>E,¥)-T(F’ = T,E)
Expand ¥ into components, k, having 0,1,2,... collisions

¥(p) = i‘l’k(p), with ¥, (p)= j Q(r’,E)- T(r’ — ¥,E)d¥’

By definition,
¥i(p) = [ ¥,.(p")-R(p" - p)dp’

Markovian: collision k depends only on the results of collision k-1,
and not on any prior collisions k-2, k-3, ...
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Histories

» After repeated substitution for W,
¥, (p) = [ ¥,4(p")-R(p’ - p)dip’
= j...jTo(po) -‘R(p, = py)-R(p, = p,)---R(p,_, — p)dp,---dp,_,

* A "history" is a sequence of states (pg, P+, P2> P35 -----)
— P2

History 1
History 2

\ o~
P P P4

* For estimates in a given region, tally the occurrences for
each collision of each "history” within a region




Monte Carlo & Transport Equation

Monte Carlo approach:

¥i(p) = II ¥,(Po)-R(pPy = P1)-R(P; = P;)--.R(Pi_y = P)AP,...dPy_;
sample sample sample

5 sample
Po P1 P2 P

* For 1 trial, generate a sequence of states (py, P1; P2, P3, ---) bY:

— Randomly sample from PDF for source: Wo( pPo)
— Randomly sample from PDF for k" transition: R( p,.; = p«)
— Repeat sampling transitions until termination

 Repeat for M trials (histories)

* Generate estimates of results by averaging over states for M

histories: N
A = [A(p)-¥(p)dp = M-Z(ZA(pk,m)]
/ m=1\ k=1 \
Histories Events

In problem In history
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Fixed-source Monte Carlo Calculation

Random Walk for a particle

ﬁ

Track through geometry,
- select collision site randomly

- tallies

Collision physics analysis,
- Select new E,Q randomly
- tallies

Secondary

Particle Histories

History 1
Source Random
- select r,E, Q Walk
History 2
Source Random
- select ,E, Q Walk
History 3
Source Random
- select ,E, Q Walk

Random R?I\rl‘dlim b R?I\r;dltl)(m |_>
Walk a a
Ran_dom Random
Walk Walk
Random
Walk Random
Random Random L»"| Walk :
Walk Walk
Random femp| Random L>
Walk Walk
Random Random I‘b Random |} >
Walk Walk Walk




Monte Carlo
Eigenvalue Problems
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Time-dependent Transport

%aw(r,aEt,Q,t) = Q+ [S+M]-y — [L+T]-y

- Monte Carlo solution (over At, with fixed geometry & materials)
— Simulate time-dependent transport for a neutron history
— If fission occurs, bank any secondary neutrons.
— When original particle is finished, simulate secondaries till done.
— Tallies for time bins, energy bins, cells, ...

E,Q,t)
Vv

- Attime t, the overall neutron level is  N(t) = _m w(r, drdEdQ

r,E,Q

- Alpha & T (reactor period, T = 1/a) can be defined by:

N(t) = N,e*
o = d InN(t) InN(t)-InN,
B t—t,

This is the "dynamic alpha", NOT an eigenvalue !
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Alpha Eigenvalue Equations

 For problems which are separable in space & time, it may be
advantageous to solve a static eigenvalue problem, rather than a fully

time-dependent problem

« Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Q,t) =0
3. Separability: Y(r,E,Q,t) = ¥ (r,E,Q) e,

« Substituting ¥ into the time-dependent transport equation yields

[L +T+ %] ¥ _(f,E,Q) =[S+M]¥,

— This is a static equation, an eigenvalue problem for a and ¥,

without time-dependence
— a is often called the time-eigenvalue or time-absorption

— a -eigenvalue problems can be solved by Monte Carlo methods
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K. Eigenvalue Equation

«  For problems with fission multiplication, another approach is to create a
static eigenvalue problem from the time-dependent transport equation
(the asymptotic or steady-state solution)

- Introduce K, a scaling factor on the multiplication (v)

« Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Q,t)=0
3. oy/ot =0: v = v/Ky

- Setting oy/ot =0 and introducing the K. eigenvalue gives

[L+T]¥, (F,E,Q) = S+Ki|\n ¥,

— Steady-state equation, a static eigenvalue problem for K and y,

- K.+ = effective multiplication factor

— Critical: K=1, subcritical: k<1, supercritical: k >1

— K.+ & Y, should never be used to model time-dependent problems.
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Comments on K and a Equations

 Criticality
Supercritical: a>0 or Keis > 1
Critical: a=0 or Ko = 1
Subcritical: a<0 or Keis < 1

« K Vs. a eigenvalue equations
— ¥ (r,E,Q) # W (r,E,Q), except for a critical system

— a eigenvalue & W, eigenfunction used for time-dependent problems
— K eigenvalue & ¥, eigenfunction used for reactor design & analysis

— Although a= (K, -1)/A, where A = lifetime,
there is no direct relationship between ¥, (r,E,Q) and ¥ (r,E,Q)

+ K. eigenvalue problems can be solved directly using Monte Carlo

* o eigenvalue problems are solved by Monte Carlo indirectly
using a series of K4 calculations



Comments on K and a Equations

Kequation [L+T]W, [S + 1kM] WP,

a equation [L+T+ a/v] ¥, [S + M]W¥P,

The factor 1/k changes the relative level of the fission source

The factor a/v changes the absorption & neutron spectrum
— For a > 0, more absorption at low E =» harder spectrum
— Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30 MeV

a calculation: 1.68 MeV

For separable problems, ¥(r,E,Q,t)= ¥_(r,E,Q) e"

No similar equation for k, since not used for time-dependence



K-eigenvalue equation

(L+T)¥ = S¥ + - MY

where

L = leakage operator S = scatter-in operator

T = collision operator M = fission multiplication
operator

 Rearrange
(L+T-S)¥ = LMY
-1
— _1
¥ =x

=» This eigenvalue equation will be solved by power iteration

P - (n) Fe", n=0,1,2,.. iteration
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Power lteration

Diffusion Theory or
Discrete-ordinates Transport

Initial guess for K and ¥
K 4, P0)

Outer iteration —
Repeat until K1) & ¥ (™*1) converge

Solve for P+1)

L+T-S)¥"™)=_1L

Inner iterations - sweep over space
or space/angle to solve for P(+1)

Update K 4"+
K(n) 1 MlP(n-H)

(n+1) _
K 1. My™

Done. Print results

Monte Carlo

Initial guess for K and ¥
Ko, $O

Outer iteration —
Repeat until K" & ¥ (1) converge

Solve for Pn+1)

(L+T-S)¢™) =_L

Follow particle histories to solve for ¥ (n+1)

During histories, save fission sites to use
for source in next iteration

During histories, make tallies for K ("*1)

Done, clear tallies.
Continue iterating, accumulate tallies

- 35
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Monte Carlo Eigenvalue calculation

Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4
Guess Kes : Kes? Kes®) Ko
: Random : Random :
: Ly Rancom Wailk | 0] Wak [
Source p| Random T-:
- selectr,E, Q = Walk . Random Random
: : Walk :
" Walk .
: : Random | - -
. Walk . . Random .
Source : .| Random T : L e | : A Walk =
“selectrE,0 [P Walk - _]R andom Li=pl Random Jj~ .
: - - Walk :
. Walk .
- Random :I i Random 'E
. . Walk : Walk .
Source . Random | : .
- select 1,E, 0 - » Walk h Random R%:‘,ldlci)(m Random u
_ Pl wak | a Pl wak |
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Source Source Source Source Source

Iterate (cycle) until converged, then more to accumulate tallies
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a-Eigenvalue Calculations (Alpha search)

* Eigenvalue equation with both K« & a
— ais a fixed number, not a variable or eigenvalue

— Find the k-eigenvalue as function of a, K(a)

[L+T+E]‘PQ(F,E,§) s+ M|w
\'"/

eff

e Note: Ifa<O

— Real absorption plus time absorption could be negative
— Move a/v to right side to prevent negative absorption,
— -a/v term on right side is treated as a delta-function scatter

— Select a fixed value for a

— Solve the K-eigenvalue equations, with fixed time-absorption a/v
— Select a different a and solve for a new Keff

— Repeat, searching for value of a which results in Keff =1
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K- and a-Eigenvalue Calculations

- K-eigenvalue solution

Loop for Power Iteration for K

. Loop over neutrons in cycle
. . neutron history
. oo Monte Carlo

e a-eigenvalue solution

Loop for a search iterations

. Loop for Power Iteration for K

. . Loop over neutrons in cycle
. . . neutron history

. . see Monte Carlo

=*» Find K(a), then search for a that gives K(a)=1
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Questions ?
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Adjoints & Green's Functions

Outline

 Introduction
— Forward & Adjoint Transport Equations
— Superposition Principle
— Green's functions & transport

 Forward & Adjoint LBTE

— Integral equation for the neutron source
— Integral equation for the adjoint source

— Comments on forward vs adjoint

— Relationship between forward & adjoint

* Green's Function Approach
— Forward & adjoint Green's functions
— K-eigenvalue form
— Reciprocity
— Discussion



Introduction
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Introduction — Forward & Adjoint Transport

|
» Given a source, the forward LBTE gives the response at all points
in the problem phase space

— Forward LBTE describes where the particles will go

» Given a response, the adjoint LBTE gives the source at all points
in the problem phase space that would produce the response

— Adjoint LBTE describes where the particles came from

— The adjoint LBTE essentially follows particles backwards (in Q,E,t) from
the response to the source

— For fixed-source problems, the response is a particular tally

— For eigenvalue problems, the response is the forward fundamental
mode solution (ie, the fission neutron distribution)

— The adjoint solution is often called the importance
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Introduction — Superposition Principle

A B

“)

« Consider 2 sources, A & B, and one detector
point C

— Denote the flux response at point C by ¢

— If source A is on & source B is off,

« Solve the LBTE to get the flux response at point C
due to the source at point A, ¢ ¢

* Pc = Pasc

— If source A is off & source B is on,

« Solve the LBTE to get the flux response at point C
due to the source at point A, ¢g5c

* ¢c = Ppsc

— If source A is on & source B is on,

* Pc = Pasc T Psac

» Linearity of LBTE permits adding the response
from different sources to get the total source
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Introduction - Green's Functions & Transport Theory

/54\A Sy, = S,-G(A>B)
®

B
- G(A> B)

— Green's function, "here-to-there" function
— Probability that source at point A produces source at point B

- Transport theory - Peierl's equation for multiplying system

[ dr-s(r)-G(F > )

all v

_ 1
S(r) = — -
keff

— G(r' > r) gives the fission source at r (in a single generation)

due to a fission neutron born at r'

— This use of a Green's function is considered "obvious",
but it is based on rigorous math (ie, integral operator theory)



Forward & Adjoint
LBTE
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Time-independent, Including Fission

.
 Time-independent forward LBTE
Q-V¥(7,EQ)
+3.(F,E)¥(F,E,Q)
—[[dE’ A 24(F.E - E Qe &) W(T,E.Q)
= S(F,E,Q)

Short form:

For fixed-source problem,
S is an internal or volume source
For eigenvalue problem,

,\ E A ~
S(T,E,Q) = 1 ¥ [[dE Y v, (F.E) w(F E.Q)
41

 Time-independent adjoint LBTE
~Q-V¥1(F,E,Q)
+3-(F,E)¥!(F,E,Q)
—[[dE’d 2y(FE—-E, -Qely) ¥H(F.E.Q)
= S'(F,E,Q)

Short form: L'w!(F,E,Q) = ST(F,E,Q)

For fixed-source problem,

S' is an specific tally response
For eigenvalue problem,

. . E’ o
ST(7,EQ) = - vee (7.5 [ 0E 0 KE) i e @)
4t
Reverse Q to -Q
Interchange E' and E

Interchange vX. and y/4n
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Adjoint = Importance

 Why are adjoint solutions needed?

— In quantum theory, operators that produce measurable results are Hermitian (or
self-adjoint). Complete sets of orthogonal eigenfunctions exist.

— In 1-speed transport theory or 1-group diffusion theory
» The operators are self-adjoint (kernels are symmetric)
 The LBTE has a complete set of orthogonal eigenfunctions
« Forward & adjoint eigenfunctions are the same

— For energy-dependent transport & multigroup diffusion
» The operators are not self-adjoint (kernels are not symmetric)

« Eigenfunctions for the forward LBTE are not orthogonal & are different from the
adjoint eigenfunctions

« However, the forward & adjoint eigenfunctions are biorthogonal,
J,t, =0if p#q

— First-order perturbation theory: Ap = <ytAxy >/<yYtFy >
« Change in parameter weighted by importance

— Reactor kinetics: Ag=<yYT vy >I<ytFy >
* Importance weighting Ber=<yt B yY>/<yTFy>
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MC Simulation

 MC simulation gives the solution to the forward LBTE

 For some special cases, the MC simulation can be run backwards

— 1-speed problems
— Multigroup problems (transpose the scattering matrix)

* For general, energy-dependent problems, the MC simulation
cannot be run backwards to get the adjoint LBTE solution

— Some reactions can't be sampled backwards
 scattering with correlated E',n exit parameters
« some inelastic scatters
» etc.



Green's Functions
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Forward Equations

» Define the net loss operator in the LBTE as
L-W¥(F,E,Q)=Q V¥(F,EQ)+XZ.(F,E)¥(F,E Q)
— [[dE’alY 54(FE - ELY-0) W(T.E,Q)

 The Green’s function is the solution to the LBTE for a point source
L-G(i,,E,,Q, > F,EQ)=8(f—%)-8(E-E,)-8(Q-Q,),
— By convention, G(r,,E,,Q,2r1,E,Q) is used, rather than G(r,E,Q)

« The LBTE solution for an arbitrary source can then be written as

n

W(7,E.Q) = [[[ dF, dE, dQ, S(F.E,,Q,)- G(B,Ep.Qy — T.EQ)



Backward Equations

» Define the net loss operator in the LBTE as
L ¥i(F,EQ)=-Q-V¥'(F,E Q)+ X (F,E)‘PT(F E,Q)
~ [[dE’dlY 54(FE > E,-( - Q) W (F.E.QY)

 The Green’s function is the solution to the LBTE for a point source

n

+ o A I N R
L"-G' (¢ ,E,,Q, = T,E,Q)=8(F-TF)-8E-E,) d(Q—-€,)
— By convention, Gt (r,,E,,Q,>1,E,Q) is used, rather than G (r,E,Q)
« The LBTE solution for an arbitrary source can then be written as

WI(7,E.Q) = [[[di dE,dQ, S'(5.EQ,) G (,EyQ, — FEQ)
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k-eigenvalue Equations

« Transport equation, k-eigenvalue form

L-W(r,EQ)=1. X:E) -S(T) S(F) = j dE’dQY’ vE(F,E’) W(F,E,Q)
T

Solution using Green's function

W(F,E.Q) =1 [[[ dF, dE, dQ, XiE) S(%)-G(T E,,Q, — T,E Q)

« Adjoint transport equation, k-eigenvalue form

R E
W FEQ) =3 vE(RE)S'(F)  S'()=[[aEraly KEL wir )

Solution using Green's function

WI(F,EQ) =1 [[[ dF dE, dQ, -vE(%.E,)-S'(F) -G (.E,,Q, > TEQ)
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Reciprocity

« G and GT are not symmetric, can't reverse ry,E;,Q, and r,E,Q

* Reciprocity for direct & adjoint Green’s function
G'(%,E.,Q »FEQ) = G(F,EQ—T,E,Q, )

— Because of irreversible energy dependence, neither G nor Gt is
symmetric in initial and final arguments.

« Apply reciprocity to the adjoint Green's function solution
WI(F,EQ) =1 [[| dF dE, dQ, -VE(%.E,)-S'(F) - G(F.E.Q —>F,.E,, Q)
« Compare with forward

W(F,E.Q) =1 [[[ dF, dE, dQ, xff) -S(5)-G(%,Ey,Qy — T,E,Q)
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Discussion

 Forward & backward solutions

W(F,E.Q) =1 [[[dF, dE, dO, Xﬁ]io) -S(5)-G(%,Ey,Qy — T,E,Q)

« Why does this matter?
MC simulation computes G( ry,E;,Q,=>r,E,Q) directly

Can pick starting points r,,E;,Q,, then
record tallies at r,E,Q) with appropriate weighting functions
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Discussion

« Why does this matter ?

— Green's function approach enables the use of the very rich
mathematical tools from linear operator theory

— Linear operator theory can be used to examine the existence &
completeness of eigenfunction expansions

— Green's function approach enables development of different Monte
Carlo approaches

— Next lecture on the fission matrix method is an example

— Variance reduction methods attempt to influence the endpoints r,E,Q
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Fission Matrix Method for Monte Carlo Criticality Problems

Abstract

Fission Matrix Method for Monte Carlo Criticality Problems
Forrest Brown

The theory underlying the fission matrix method is derived using a rigorous Green’s function
approach. The method is then used to investigate fundamental properties of the transport
equation for a continuous-energy physics treatment. We provide evidence that an infinite set of
discrete real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that
the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined.

We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined
so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to
the transpose of the forward matrix. While the energy-dependent transport equation is strictly
biorthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for
a variety of continuous-energy problems.
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Outline

* Introduction
— Higher eigenmodes
— Green's functions & transport
— Motivation

« Theoretical Basis of the Fission Matrix
— Integral equation for the neutron source
— Integral equation for the adjoint source
— Comments of forward vs adjoint

 Forward & Adjoint Fission Matrix Equations
— Forward fission matrix equations
— Adjoint fission matrix equations
— Relationship between forward & adjoint

* Fission Matrix Eigenmodes & Eigenvalue Spectrum
— Higher mode analysis
— Spectrum convergence with mesh refinement
— Real vs Complex eigenvalues
— Near-orthogonality of eigenfunctions

e Conclusions & Future Work
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Introduction
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Higher Eigenmodes

Vibrating strings:

- Higher modes add "tone",
but die away quickly

- Fundamental mode persists

- Feedback, instability, nonlinear
effects, ..., may excite higher modes

e

etc.

AMC-12 - 5
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Fission Matrix Method for Monte Carlo Criticality Problems

Introduction - Green's Functions & Transport Theory

/sé\; S, = S,-F(A>B)

. F(A>B) B
— Green's function, "here-to-there" function
— Probability that source at point A produces source at point B

- Transport theory - Peierl's equation for multiplying system

[ dF-s(r)-F( —T)

all v

_ 1
S(r) = — -
keff

— Discretize space into blocks, or mesh regions

— Compute F(r’-> r) with Monte Carlo
— Solve matrix eigenvalue problem for sources:

—_ _ —

S=1.FS

keff
— Can also solve for higher modes
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Introduction — Who Cares?

 Knowledge of fundamental & all higher modes
— “Crown Jewels” of analysis — explains everything

« Reactor theory & mathematical foundations
— Existence of higher modes
— Eigenvalue spectrum — discrete ? real ?
— Forward & adjoint modes
— Assessment of spatial refinement

 Fundamental reactor physics analysis
— Higher modes for stabiility analysis of Xenon & void oscillations
— Slow-transient analysis
— Startup, probability of initiation

« Source convergence testing & acceleration
— May provide robust, reliable, automated convergence test
— Acceleration of source convergence



Theoretical Basis
of the
Fission Matrix
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Integral Equation for the Neutron Source (1)

AMC-12 - 9

« Transport equation, k-eigenvalue form

M- W(F,E,Q) = 1. X:E) .S(F)

M = net loss operator
M-¥(F,E,Q)= Q- V¥(F,EQ)+ = (f,E)¥(F,EQ)
— [[dE’dlY 54(7.E' - EY - Q) W(T,E.Q)

S(r) = fission neutron source

n

S(F)= [[dE’dlY vE(F.E)) W(7.E.Q)

X(E) = emission spectrum,
following analysis is same if replaced by

[[dE" A 3(E — E) vE(F.E) W(FE Q)

EF _ :
X&) [[dE dlY vz (F.E) W(F.E.Q)
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Integral Equation for the Neutron Source (2)

* Define Green’s function & integral transport equation

n

M' G(%:EO!QO — F!E!é) — 6(F_i‘(»))S(E_ EO).S(Q_QO)’

W(F,E.Q)=1- || dF dE, a0, Xfto) -S(%,)-G(%,E,, Q2 — T,E,Q)

« Multiply by vic(r,E), integrate over E, Q
* Define energy-angle averaged Source & Green’s function

H(E — )= | || dEdQ dE, dQ, - vEL(F.E). st) .G(%, E,,Q, — F,EQ)

S(F) = j dE’dQY - vE.(F,E)- W(F,E,Q)

()= [ 5 -S(5) HG - F)

H(r,—>r) can be tallied directly in MC simulation
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Integral Equation for the Adjoint Neutron Source (1)

« Adjoint transport equation, k-eigenvalue form

LA > (r,E .
ME (7 E,Q) = 1. Y2 0E) o1y
4T
Mt = adjoint to operator M

MW (FEQ)= —Q V¥ (F,E Q)+ 2. (F,E)¥(F,EQ)
— [[dE’dlY - 24(F.E - E,Q - &) W (F.E,LY)
ST (r) = adjoint fission neutron source
F)=[[dEddy- XE) g o)
4m

Bell & Glasstone & others have shown that forward & adjoint K eigenvalues are the
same, Ki=K, so will just use K in the following analysis.

-1
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Integral Equation for the Adjoint Neutron Source (2)

« Adjoint Green’s function & integral transport equation

M- G (§,E,,.Q, = T,EQ)=8(F—F)-8(E-E,)- 8(Q- ;)

n

Wi(F,EQ) = [[[df dE, dQ, -vE.(§.E,)-S'(F) G (§.E,.Q, — F.EQ)

* Multiply by x(E), integrate over E, Q
* Define energy-angle averaged adjoint Source & Green’s function

n

H'(%, — )= [ [|[ dEd dE, dQ, -i—?-vZF(FO,EO)-GT(FO,EO,QO —T,EQ)

St(F) = j j dE’ dQY’- Xft) WP E,Q)

T . - -
S'(F) =1 ] d& - S'(}) - H'(G — )
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Forward & Adjoint Integral Equations for Source

* Reciprocity for direct & adjoint Green’s function
G'(%,E,,Q, —>TFEQ) = G(F,EQ—T,E,Q, )

Because of irreversible energy dependence, neither G nor Gt is
symmetric in initial and final arguments. Same is true for H and Ht

H'(f =>7) = HFf = T) H(G—T) # H(F—>F),
H'(F —>7) # H(F>7F)

« Using reciprocity, comparing H and HT gives

S(F) = | d§-S(f) - HE — )

S'(F)= | d-S(f)-HF —> )

« S and ST are bi-orthogonal

(K, —K,)- [dF-S,(F)-S}(F) = 0
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K-eigenvalue Form of Transport Equation

 Structure & properties M- ¥ (F,E,Q) = %-@ -S(T)
— 60* years ago:
A single, non-negative, real, fundamental
eigenfunction & eigenvalue exist
— 50* years ago:
For 1-speed or 1-group: A complete set of self-adjoint,
real eigenfunctions & discrete eigenvalues exists

— Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

— Nothing else proven, always assumed that higher-mode solutions exist

* In the present work based on the Fission Matrix:

— We provide evidence that higher modes exist, are real, have discrete
eigenvalues, and are very nearly self-adjoint (for reactor-like problems)

— Approach is similar to Birkhoff’s original proof for fundamental mode

— This has never been done before using continuous-energy Monte Carlo



Forward & Adjoint
Fission Matrix
Equations
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Forward Fission Matrix Equations (1)

« Segment the physical problem into N disjoint spatial regions
— Initial regions (r,) for fission neutron source emission
— Final regions (r) for production of a next-generation fission neutron

* Integrate the forward integral fission source equation overr, & r
— Initial: ry €V, Final: r €V,

N
SI:%°ZFI,J'SJ
J=1

) Hi 7)) s,= [ s)ar

reV hHev, J eV,

Exact equations for integral source S,
N = # spatial regions, F =N x N matrix, nonsymmetric
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Forward Fission Matrix Equations (2)

* F,, = next-generation fission neutrons produced in region I,
for each average fission neutron starting in region J
(J=2>1)

* In the equation for F,
— S(ry)/S, is a local weighting function within region J
— As V,2> 0:
« S(ry) 2 S,/V,
* Discretization errors 2> 0
- Can accumulate tallies of F| ; even if not converged

* F,, tallies:
— Previous F-matrix work: tally during neutron random walks

— Present F-matrix work: tally only point-to-point,
using fission-bank in master proc (~free)

» Eliminates excessive communications for parallel
 Provides more consistency, F, ; nonzero only in elements with actual sites
* Analog-like treatment, better for preserving overall balance
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Adjoint Fission Matrix Equations

« Segment the physical problem into N disjoint spatial regions
— Initial regions: r, € V,, Final regions: r €V,

* Integrate the adjoint integral fission source equation overry & r
N
_ 1. T . Qf
— K Z F |,J S J
J=1

Fiy= [ df | df ST —>T) st,= | s'(7)dr

reyv, HEV, eV,

-ﬂ
oﬂl

Exact equations for adjoint integral source ST,
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Relationship Between Forward & Adjoint Fission Matrix

next-generation fission neutrons produced in region |,
for each average fission neutron starting in regionJ (J->I)

° Fl,J —

- Compare F; & F1,;,, interchange integration order for FT,
S(k)

Ry = J- dr J dp - H(p—T) Same form, but
bV ’ different spatial
. . S'(r I, weighting functions
Fiy= | df [ dF - sff)' H(E, — T)
Khev, reV, |
* If the spatial discretization is fine enough that
S(r. . T(F .
(k) ~1 for eV, and S(r)z1 forreV
S,/V, Si/V

then
* Discretization errors from neglecting weights = 0

« Can accumulate tallies of F| ; even if not converged
* For fine spatial mesh, F' = transpose of F

Ft = FT
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Monte Carlo Estimation of Fission Matrix

Monte Carlo K-effective Calculation ma 3 oeni fommene ] omne [osens
1. Start with fission source & k-eff guess ' : ’ ’
2. Repeat until converged:
« Simulate neutrons in cycle
« Save fission sites for next cycle :
- Calculate k-eff, renormalize source ~eo—i—@—; : : :
3. Continue iterating & tally results

Source Source Source Source Source

Source particle generation
. P g —Y Neutron
‘ Monte Carlo random walk

For Fission Matrix calculation
During standard k-eff calculation, at the end of each cycle:

- Estimate F, tallies from start & end points in fission bank (~ free)

« Accumulate F,, tallies, over all cycles (even inactive cycles)
After Monte Carlo completed:

- Normalize F,, accumulators, divide by total sources in J regions

* Find eigenvalues/vectors of F matrix (power iteration, with deflation)



Fission Matrix — Sparse Structure

* For a spatial mesh with N regions, F matrixis N x N
— 100x100x100 mesh =» Fis 106 x 106 =» 8 TB memory
— In the past, memory storage was always the major limitation for F

matrix

« Compressed row storage scheme

— Don’t store near-zero elements, general sparsity
— Reduced F matrix storage, no approximation

— Can easily do 100x100x100 mesh on 8 GB Mac

2D PWR - 15x15x1 mesh N=225
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2D PWR - 30x30x1 mesh, N=900
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Fission Matrix — Sparse Storage

- Compressed Row Storage Scheme (CRS)
— General sparsity, no approximations or assumptions
— N=N,x N,x N, mesh cells
— (is, Js Ks) > (ir, jr k1) =P J->1 J= s + (js-1)Ny + (ks-1)N,N,
I = iy + (jr-1)N, + (ki-1)N,N,
— Only the nonzero F(l,J) entries are stored.
— MC tallies: If element exists —add to it; if not —insert it

— L(I) array entries point to the start of a list of J indices and
corresponding nonzero F(l,J) tallies

7 L2 L3 ° ° ° L%
Jg J, J; J, J. J; I, Jg T,

J9
F, F, F, F, F, F, F, Fg F, ... F,

— Highly optimized tally coding, typically requires less than 1 second at
the end of each batch in the Monte Carlo simulation.
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Example — Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector

type(fission _matrix), intent(in) :: fmat ! sparse fission matrix
real (R8), intent(in) :: x(:) ! vector in
real (R8), intent(out) :: y(:) ! vector out, result
integer(I8) :: k, i
real (R8) s t
!SOMP PARALLEL DO PRIVATE( t, k ) ¢ different thread for each row
do i =1, fmat%n
t = 0.04+00
do k = fmat%L(i), fmat%L(i+l)-1 €& k is location of J,R row data
t =t + fmat3R(k) * x(fmat3Jd(k))
enddo
y(i) =t
enddo

!SOMP END PARALLEL DO



Fission Matrix Eigenmodes
&
Eigenvalue Spectrum
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K-eigenvalue Form of Transport Equation

« Structure & properties M-P(r,E Q)= XE), S(r)
— 60* years ago:
A single, non-negative, real, fundamental
eigenfunction & eigenvalue exist (Birkhoff)
— 50* years ago:
For 1-speed or 1-group: A complete set of self-adjoint, real
eigenfunctions & discrete eigenvalues exists (Lehner & Wing, Sahni)

— Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

— Nothing else proven, always assumed that higher-mode solutions exist

|-
AN
4

* In the present work based on the Fission Matrix:

— We provide evidence that higher modes exist, are real, have discrete
real eigenvalues, and are very nearly self-adjoint (for reactor-like problems)

— Approach is similar to Birkhoff’ s original proof for fundamental mode

— This has never been done before using continuous-energy Monte Carlo
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Higher Eigenmode Analysis with the Fission Matrix

 Run Monte Carlo, get fission matrix,
then solve for eigenvalues & eigenfunctions:

— Matlab, if full-storage F matrix can fit in memory
— Power iteration with deflation, preserves sparse format
— Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format

—

S,=#F-S, ko > k| > k| ... >|kyl

Sh = -F'-S! n=0,1,..N
(k, —k,)-(S,-S!) =0

— F is nonsymmetric
— §,, is aright eigenvector of F, St _is a left eigenvector of F

— S, and ST_ are biorthogonal
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Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

2.1% enrichment
2.6% enrichment

48 1/4 fuel assemblies:
— 12,738 fuel pins with cladding

— 1206 1/4 water tubes for
control rods or detectors

Each assembly:
_ Explicit fuel pins & rod channels A,
— 17x17 lattice

— Enrichments: 2.1%, 2.6%, 3.1%

Dominance ratio ~ .98

Calculations used whole-core model,
symmetric quarter-core shown at right

ENDF/B-VII data, continuous-energy
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Fission Matrix Analysis of PWR Model

 Next 2 slides:

— Spatial mesh for fission matrix:

8 x8 x 1 mesh per assembly
« 120 x 120 x 1 overall mesh
* 14,400 spatial regions

— Eigenvalues & eigenfunctions from Matlab:

» For this specific fission matrix size of 14,400 x 14,400
* Fission matrix has 207 M elements = 1.6 GB

« Use Matlab to get all 14,400 eigenvalues & eigenvectors
— Expensive, time-consuming — requires honsymmetic eigensolver
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PWR - Eigenmodes for 120x120x1 Spatial Mesh

mode 0, eigenvalue = 1.29480 mode 1, eigenvalue = 1.27657 mode 2, eigenvalue = 1.27664 mode 3, eigenvalue = 1.25476
120 0 I
— -
100 |
| |
80 .
60
o : n K
L . n
"’ ' 0 1.29480
I
1 I ]
20 40 60 80 100 120
1 1.27664
mode 4, eigenvalue = 1.24847 mode 5, eigenvalue = 1.24075 mode 6, eigenvalue = 1.22160 mode 7, eigenvalue = 1.22141
120 . - 120 120 1 7 5 7
]
b, i ¥ L
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| X []
40 e 40 40 . 40 ’ . ’
‘ ’ 5 1.24075
20 20 20 e 20
H .’ : t
20 40 60 80 100 120 20 40 60 80 100 120 20 :10 60 80 100 120 20 40 60 80 100 120 6 1 L] 221 60
mode 8, eigenvalue = 1.19745 mode 10, eigenvalue = 1.18825 mode 11, eigenvalue = 1.18305 7 1 - 221 41
120 120 120
(IS 1% 12 0% 1ok ’ -
g ik ” 8 1.19745
100 ’* 100 l“ 'l 100 u
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Fission Matrix Analysis of PWR Model

* Following 2 slides:
— Vary the spatial discretization
— Find eigenvalue spectrum for each discretization

— Examine eigenvalue spectrum vs number of spatial regions
* Nregions = N eigenvalues
 For small N, fewer eigenvalues to represent problem, inaccurate

— As N increases, spectrum extends & converges smoothly
* No anomalies, no oscillations

* Provides measure of adequate mesh refinement
for fission matrix accuracy
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Eigenvalue Spectra with Varying Meshes

10" [

10°

107}

3600
107 | 14400 ;
10:o° 18 }gz 16 15

Real( k;)

T T T T T

N = number of mesh regions

( Fission matrix size=NxN)

10°

32
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Spectrum Convergence from Mesh Refinement

13

1.25

1.2

1.15

1AF

1.051

R e

I~

Mesh size

# Mesh Regions Ko
5x5 = 25 1.29444
10x10 = 100 1.29453
15x15 = 225 1.29469
30x30 = 900 1.29477
60x60 = 3600 1.29479
120x120 =14400 1.29480

For fine-enough spatial mesh,
eigenvalue spectrum converges
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Are the Eigenvalues Real or Complex ?

|Real( K:):

-~

5 M neutrons/cycle
500K neutrons/cycle

The appearance of complex
eigenvalues appears to be strictly
an artifact of Monte Carlo
statistical noise

When more neutrons/cycle are
used to decrease statistical noise,
complex components diminish or
vanish

The first few 100s or 1000s of
discrete eigenvalues are real, and
presumably all would be with
sufficiently large neutrons/cycle

120 by 120 Spectrum, Varying Neutrons/cycle

34
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PWR2D - Eigenvalues

Fission Matrix
30 x 30 mesh

%
%
s
X
\ 772 Eigenvalues
LY *Kn_real_part
)

2500 M neutrons
\ *Kn_imag_part

\ K, — real part
06 K, — imaginary part

600

[=2
—

L
&
o
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PWR2D - Imaginary Part of Eigenvalues

36

.006

i_5 M _neutrons

i_ 250 M _neutrons
.004 *i_2500_M_neutrons
.002

-.002

-.004

Mode number, 0 ... 771 —
-.006

Fission Matrix
30 x 30 mesh

772 Eigenvalues

5 M neutrons
250 M neutrons
2500 M neutrons

K, — imaginary part
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PWR - Inner Products of Forward Eigenmodes

Inner products of
151 forward eigenfunctions f dr Yo, (NP (1)

= 0pm Uf fission kernel
is self adjoint/symmetric

Strictly, eigenfunctions of the transport equation are bi-orthogonal.
As shown above, forward eigenfunctions are very nearly orthogonal.
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PWR2D - Forward & Adjoint Source Eigenmodes

 Fundamental eigenmode Forward Adjoint

r -
F k|

— Forward shows spatial detail,

much like thermal flux " e ' [ \

L Tkl

g

— Adjoint is smoother, | HSI T
much like fast flux ‘ ‘

e @ h a
 Inner products of modes: St S and S S
forward mode number — forward mode number —

< adjoint mode number
«— forward mode number
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Forward & Adjoint Source Eigenmodes

2D PWR problem - 2,500 M neutrons,
tally mesh 120x120x1, matrix NxXN N=14,400

Forward source modes

Adjoint source modes

Of=1) 1511210,

0 1 2 3 4 5
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Calculation of Forward Flux Modes

« Forward flux modes

— Calculated by running fixed source calculations
using forward fission source eigenfunctions

) BS v X (7, E
Ky 4
 Source for mode n is sampled in an analog manner

— Point within mesh cell is resampled until within fissionable material

— Flag is added for sign of particle weight

— Fission is treated as absorption (NONU card)

)Sn(f’) n=0,..N

&

Sl

=

2
|

« Track-length flux mesh tally module FMESH used
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Forward Flux Modes for 2D PWR

Source modes from fission matrix

- 500 cycles, 500k batch size
- 50x50x1 mesh, 2500x2500 fission matrix

Fixed source calculations

- 500k histories per mode, minutes

Thermal flux modes (0 - 0.625 eV) Fast flux modes (0.625 eV - 20 MeV)

G

e
» o

aer, | -
. ]
R

4
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PWR — with Perturbations

- Insert SS304 Control Rods in each assembly in quadrant of core

Original Perturbed

Original Perturbed

Fission Source
Eigenmodes
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PWR - Convergence Acceleration Using Fission Matrix

- Fission matrix can be used to accelerate convergence of the
MCNP neutron source distribution during inactive cycles

- Requires only fundamental forward mode
- Very impressive convergence improvement

/ accelerated using F matrix

1
0.995|
0.99
k 0.085F ..’
eff : . MC
o0sl - standard v
MC
0.975}
9o 10 20 30 40 50 60
Cycle
14.7 [
© MC
< _FM e.ved|]
14.6 e, Standard e.vec
H 145} MC- -
Sre .. el
WS N e e,
14.2 accelerated using F matrix
"0 10 20 30 40 50 60
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Advanced Test Reactor

Serpentine Arrangement of Highly Enrichment Water-Moderated
Uranium-Aluminide Fuel Plates Reflected by Beryllium

121

| ‘\

, - .l ( . - \ 2 ’
Core zfleclor lank — ) “——Radius 100 =
IR 64 29375
OR 63.58 D mensicng in cm
N

F flux trap Fue eements

Figure 20 An XY View at x=(1y=(l of the Benchmark Mocel. s

S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-
Aluminide Fuel Plates Reflected by Beryllium”, HEU-MET-THERM-022, Idaho National Laboratory (September
2005).
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ATR - Eigenmodes (100x100 spatial mesh)
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Conclusions

&
Future Work
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Conclusions

* Derived theory underlying fission matrix method
— Rigorous Green’s function approach, no approximations

— Specific conditions on spatial resolution required for fission
matrix accuracy

— If spatial resolution fine enough, adjoint fission matrix identical
to transpose of forward fission matrix

« Applied to realistic continuous-energy MC analysis of typical
reactor models. Numerical evidence that:

— Infinite set of discrete, real-valued eigenvalues & eigenfunctions
exist for the integral fission neutron source & adjoint

— As spatial resolution is refined, eigenvalue spectrum converges
smoothly

— While forward & adjoint are biorthogonal, forward modes are
very nearly self-adjoint (for reactor-like problems)
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Conclusions

- Fission matrix capability has been added to MCNP (R&D for now)
- Tested on variety of real problems (3D, continuous-energy)

- Can obtain fundamental & higher eigenmodes

— Empirical evidence for: existence of higher modes,
real, discrete eigenvalues,

very nearly orthogonal eigenmodes
(for reactor-like problems)

— Higher eigenmodes are important for

BWR void stability, higher-order perturbation theory,
Xenon oscillations, quasi-static transient analysis,
control rod worth, correlation effects on statistics,
accident behavior, etc., etc., etc.

- Can provide very effective acceleration of source convergence
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Future Work

Capabilities discussed in this talk are NOT in MCNP6.2 —
targeted for release in later update

Use fission matrix to accelerate source convergence
— Already demonstrated; very effective; needs work to automate

Use fission matrix for automatic, on-the-fly determination of
source convergence

— Automate the determination of “inactive cycles”

Use fission matrix to assess problem coverage
— Need more neutrons/cycle to get adequate tallies?

Higher modes can be used to reduce/eliminate cycle-to-cycle
correlation bias in statistics

— Replicas & ensemble statistics may be better, for exascale computers

Apply higher-mode analysis to reactor physics problems
— Xenon & void stability, slow transients, etc.
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Questions ?
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Abstract

Continuously Varying Material Properties and Tallies
For Monte Carlo Calculations

Forrest B. Brown (LANL), David P. Griesheimer, & William R. Martin (U. Mich)

Monte Carlo methods for particle transport are highly regarded for their continuous treatment
of particle energy and angular dependence, and for their very general geometric representations.
However, all of the production Monte Carlo codes available today make use of a zero-th order
approximation for representing material densities and cell flux tallies, i.e., constant over a
geometric cell. Recent work has shown that both of these limitations can be overcome, so that
continuously varying spatial representations can be extended to material properties and tallies.

In the present work, we provide derivations of the new random sampling methods and
mathematical procedures and then demonstrate the feasibility of these new methods in a 1-D
Monte Carlo code. We have used this code first to verify that the continuous representation was
implemented correctly, and then to investigate a number of deep penetration problems and
eigenvalue problems to examine the benefits of a continuous representation.

The theory and numerical results described herein demonstrate conclusively that it is now
feasible to implement Monte Carlo codes with continuously varying particle energy and angular
dependence, continuously varying material properties, and continuously varying tallies. The
continuous representation can greatly reduce modeling difficulties, can significantly reduce the
number of cells required for accurate results, and for complex problems may even reduce the
computation time.
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Outline

AMC-13 - 3

Introduction

Varying Material Properties

— Stepwise Approximation

— Woodcock Tracking

— Direct Numerical Sampling

— Piecewise Legendre Expansion

Continuous Tallies
— Stepwise Approach
— Piecewise Legendre Expansion

Numerical Examples
— Fixed Source Example
— Criticality Example

— Timing & Complexity

Conclusions



Continuously Varying Materials & Tallies

Introduction

 Monte Carlo codes such as MCNP5 are continuous in
— Particle properties: position, direction, & energy
— Collision physics: energy & angle

 Monte Carlo codes permit very general 3D geometries
& cross-section data representations

« BUT, Monte Carlo codes use zero-th order representations
of tallies and material properties:
— Material properties are assumed constant within each cell
— Tally bins provide average scores within each cell

We should be able to do better than that !

This work demonstrates that we can.
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Varying Material Properties

For many problems of interest, 2, varies within a cell

« Charged particle transport

— Continuous slowing down along
the flight path due to interactions
with electron field in material

— 2t increases along the flight path

Z1(s)

Flight distance, s

 Atmospheric transport >(h)
— Air density varies with altitude

Altitude, h

* Depleted reactor
— Fuel & poison distribution varies 3810
due to burnup

Radius in control rod, r
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Varying Material Properties

Conventional techniques for handling varying material properties:

« Stepwise approximation
— Subdivide geometry Z+(s)
— Constant material properties
within each step

Flight distance, s

« Woodcock tracking
— Also called delta tracking, fast tracking, pseudo-collision method, hole
tracking, ...

— Involves biased sampling the flight distance using a larger 2,
followed by rejection sampling to assure a fair game
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Woodcock Tracking

z*

* Introduce Z for a "delta"” collision
— Let I*=3X(s)+ Z4(s) = constant, Z1(s)

h T5(s)20
where Z5(s) Flight distance, s

2s(s) = cross-section for "delta" collision -
no change in E, (u,v,w), or wgt

2* 2 2:(s)

— 2+(s) I £* = probability of a "real” collision
— 25(s) / Z* = probability of a "delta™ collision

- Basic idea: Sample flight distance using Z*,

move the particle to the collision point,
then reject collision point if §> 2.(s)/Z*

 Using Z* rather than Z;(s) gives an interaction probability per unit
distance that is too large, hence a flight distance that is too short.
Rejection scheme compensates for this.
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Limitations on Conventional Techniques

« Stepwise approximation
— How many steps? How small?
— Accuracy vs number of steps
— Need to perform convergence studies: results vs stepsize
— Tedious to set up
— More cells --> increases time for tracking & boundary crossing

« Woodcock tracking
— Inefficient if X* >> X, (s) for most values of s
— Can't use pathlength estimators for tallies

Alternatives ?

Direct numerical sampling method
(Brown & Martin, Gatlinburg M&C Topical, 2003)
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Sampling the flight distance in varying media

« Random sampling of particle free-flight distance in media where
the cross-sections are constant during the particle flights, solve
for s:

= _S[Z(x) -exp[—2x]dx

« Random sampling of particle free-flight distance in media where
the cross-sections vary during the particle flights, solve for s:

C = j 2(x)- exp[—j 2(x")dx")dx
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Sampling the flight distance in varying media

« Optical depth along flight path

XTS5
s)= | Zp(x")dx’ ¥ (x) is finite, Z{(x) 2 0
X
Note that
ote tha dT(S)zET(x+S), Ogﬂgoo
ds ds

« To explicitly allow for the case of no collision,

Pyc = probability of no collision Pyc=¢e *&)

* Probability density function (pdf) for the flight distance s:

f(S)ZPNC'S(S=<>O) + (I—PNC).lﬂe—T(S)
G ds

Where G=] —dg‘” ¢ Ods=1-¢ T = |- Py,
S
0
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Sampling the flight distance in varying media

« Random sampling of the Monte Carlo free-flight path requires
solving the following equation for s, the flight path:

e= | fods
0
or

E= Pyc-H(sgo) + (1—PNC).l.(1_e—T(S))

G
« Common case: 2;independent of x
W)=y, SL=3r, Pc=0, G=1, f(5)= 3¢
With solution: e In(1- &)

S
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Sampling the flight distance in varying media

Direct Numerical Sampling for the free-flight distance:

Step [1]
If §<Pyc Then: No collision, set s=«, exit
Otherwise: Do Steps 2 & 3
Step [2]
Define %= T(s)

A

sample T bysolving &= é]‘ ¢t dt, with 0< % < 1(co)

0
That is, sample from a truncated exponential PDF:

In(1- &-G)
S,

Solve fors: %= 1(s)= f Xr(x+s")ds’

0
Analytic solution if possible, otherwise use Newton iteration

1=

Step [3]
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Sampling the flight distance in varying media

Newton iteration to numerically solve for s:

so =1/ 21 (xg)

n=20

Iterate:
n=n+1
g=1-1(s,_1)

g'=dglds=—-2p(xg+s,_1)
Sh :Sn—l_g/g,
Stop if s, — s,_1| <€

Notes:
— Because g'<0, g(s) is monotone & there can be only one root
— For cases where 2;>0, Newton iteration guaranteed to converge
— If Z+(x)=0 or very small, g' may be 0, leading to numerical difficulties
— Remedied by combining Newton iteration with bisection if g' near zero
— Typically only 1-5 iterations needed to converge s to within 106
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Verification of Direct Numerical Sampling

« Monte Carlo transport of particles through a 1-D slab of thickness 2 units.
« Consider only transmission through the slab, ignoring scattering.

« Table (1) shows 7 different forms of spatial variation in the cross-section
which were used for the test problem.

« Figures (1) through (7) show the cross-section variation over the
thickness of the slab (labelled "sig"), the pdf at position x=0 for the cross-
section variation in each test case (labelled "pdf"), and the results of
using the direct numerical sampling procedure to perform 1,000,000
samples of the free-flight distance for each case (labelled "sampled").

 The sampled results were binned in 100 bins of width 0.02.

* In Figures (1)-(7), it can be seen that the distributions of sampled results
for the free-flight distance agree completely with the exact pdf’ s in all
cases, verifying that the sampling method is correct.
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Table 1. Cross-section Variation for Test Cases

Case | Cross-section Variation Numerical Representation
forrange 0<x <2
1 | Constant 2(x)=1
2 | Linearly Decreasing 2(x)=2—-x
3 |Linearly Increasing 2(x)=x
4 | Exponentially Decreasing | X(x)=exp(—3x)
5 |Exponentially Increasing | X(x)=0.1-exp(2x)
6 |Sharp Gaussian ) Y1 2
2(x)=—F==¢exp|—| —
7 |Broad Gaussian - 2
2 x—1
2(x)=—F—=—=¢exp|—| —




Figure 1.
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Figure 2. Test Case -2
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Figure 3. Test Case -3
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Figure 4. Test Case -4

4. Exponential Decrease
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Figure 5. Test Case -5

AMC-13 - 20
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Figure 6. Test Case -6

6. Sharp Gaussian

18

16 -

14 |

12 -

10 1

+ sampled




Continuously Varying Materials & Tallies 22

Figure 7. Test Case -7

7. Broad Gaussian
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Compare: Direct Numerical, Delta-tracking, & Substepping

Multiple collisions were followed
Transmission through the slab was computed for each test case

For delta-tracking, the actual value of the maximum cross-section
over the interval was used, rather than an arbitrary guess.

For the substepping method, equal-thickness subdivisions of the
slab were used, with the number of subdivisions determined by
trial and error to be the minimum required to match the accuracy
of the other two methods

1,000,000 histories were followed for each method in each of the
test cases. Results are given in Table (2).

Accuracy of all 3 methods is comparable, given that sufficient
substeps are used for the substepping method. The number of
collisions and the transmission at the right slab boundary are the
same within statistics.
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Compare: Direct Numerical, Delta-tracking, & Substepping

Table 2
Function Evaluations
Method Collisions | Transmission per Collision
1. Constant Cross-section
Substep 865001 0.1350 2.16
Delta-tracking 865362 0.1354 1.00
Direct 864513 0.1355 1.00
2. Linearly Decreasing
Substep 865189 0.1348 29.90
Delta-tracking 865362 0.1346 1.48
Direct 865145 0.1349 2.95
3. Linearly Increasing
Substep 864742 0.1353 29.92
Delta-tracking 864754 0.1352 2.77
Direct 864998 0.1350 4.38
4. Exponentially Decreasing
Substep 282293 0.7177 107.08
Delta-tracking 283236 0.7168 5.37
Direct 282881 0.7171 3.78
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Compare: Direct Numerical, Delta-tracking, & Substepping

5. Exponentially Increasing
Substep 931436 0.0686 33.20
Delta-tracking 931279 0.0687 7.55
Direct 931884 0.0681 4.94
6. Sharp Gaussian
Substep 864591 0.1354 41.17
Delta-tracking 864494 0.1355 20.53
Direct 864518 0.1355 4.06
7. Broad Gaussian
Substep 745446 0.2546 27.84
Delta-tracking 745301 0.2547 1.18
Direct 744956 0.2550 3.26

* Function Evaluations per Collision:
— average number of flights per collision for the substepping method
— average number of pseudocollisions (delta + real) for each real collision for the delta-tracking method
— average number of Newton iterations per collision for the direct numerical method.

- Both delta-tracking and the direct method are significantly more effective than substepping

» Delta-tracking and the direct method are roughly comparable, with delta-tracking being faster
when there is little variation in the cross-section and the direct method being faster when there
is more variation in the cross-section.

« Direct method should be viewed as an alternative to delta-tracking if there are large variations
in cross-section.
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Varying Material Properties

 Represent material density by high-order, orthogonal polynomial
expansion within each cell

— Legendre polynomial representation for material density in cell

N
p(x)= 22n2+1 “ay - By [ﬁ(x_ Xmin )~ 1]
n=0

a, = éXTp(x)Pn [ﬁ(x— Xmin ) — l]dx
*min

« Sample the free-flight distance to next interaction using a direct
numerical sampling scheme (Brown & Martin)

Z XTSs ,
s PO s g 20 s

Po Po H

— Use Newton iteration to solve nonlinear equation for flight path
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Continuously Varying Tallies

« Conventional Monte Carlo codes tally integral results

— Tallies summed into bins
— Zero-th order quantities within each bin
— Stepwise approximation to results

(x) d(x)

\ 4
v

X X

Standard Tally = o 5 Bin Histogram Tally = o

— Unfortunately, by dividing the tally into bins we increase the variance of
the estimate because relatively few histories score in an individual bin.
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Continuously Varying Tallies

* An alternative to the histogram tally is the Functional Expansion

Tally (FET).
— Tally the zeroth spatial moment of flux in each cell, AND higher
moments with respect to some set of basis functions

— Moments can then be used for a functional expansion of the flux
distribution within the tally region

 FET, Higher order tallies

— Represent results by high-order, orthogonal polynomial expansion
within each cell

— Make tallies for expansion coefficients
— Legendre polynomial representation for continuous tallies

N
O(x)= Y 22 b, By [ (x— xppin)— 1]
n=0

b, = éXT D(x)P, |2 (x— Xypin )~ 1]dx
*min
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Continuously Varying Tallies

« Make tallies for the Legendre coefficients at each collision or
flight:

b, = éXTXCI)(x)Pn |2 (3= xpin )~ 1]dx

*min

[
« At collisions, tally %Pn [é(x— Xmin ) — 1] for n=1..N

. 1 , , _
+ At flights, tally wet-- | B -2 (%" Xppin)— 1]dx” for n=1,N

X

« Reconstruct ®(x) and oy?(x) from tallied coefficients
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Continuously Varying Tallies

 FETs will have some amount of statistical uncertainty

 FET uncertainty in any expansion coefficient can be estimated
with the sample variance statistic:

) 2(2 t//n(x,-)) —%(&,,)2

g N(N-1)

 Itis also possible to derive a pointwise estimate of the variance in
the functional approximation itself.

”(@——ZZG k, k,w,(x) v, (x)

nOmO \

Sample covariance between
coefficients &, and a,,
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Numerical Examples

 Demonstration Monte Carlo code
— 1D slab geometry
— Piecewise Legendre expansion for material properties in each cell
— Piecewise Legendre expansion for pathlength tallies within each cell
— 5th order Legendre expansions, trivial to go higher

 Examples
— A: Fixed source, beam into slab
— B: Criticality, reflected reactor

 Procedure
— Calculations with continuous materials + continuous tallies
— Calculations with stepwise approximations: 2,4, 8, 16, 32
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Varying Materials & Tallies - Example A

e Beam source into slab

— Vacuum boundaries
— Density in slab varies from 0 at edges to 10 at center

~ ¥,=1.00,%,=0.99, X, = 0.01

Y
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Varying Density - Problem A

1.20E+01 : l
==density-continuous
== density-2-step
= density-4-step
——————————— AT T density-8-step
A == density-16-step

q d|ensity—32—step

1.00E+01 +-----------

8.00E+00 +-------—---—-

6.00E+00 +-------—----]-5 ﬁ _________

Density

4.00E+00 +-------- A 1‘\\ —————————

2.00E+00 +--= A -

0.00E+00

Figure 1. Density variation for Problem A: Continuous density and various stepwise
approximations
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Continuous Tallies - Problem A

3.50E+00

3.00E+00

2.50E+00

p 3171 U111 SO, —

Flux

1.SOE+0Q f-oereressvoveers oo

== phi-32-step

== phi-continuous
== pnhi-2-step

=== phi-4-step

phi-8-step
= nhi-16-step

) 1= Y1) O >

110 1§ SUUNEOSSRRMSRUUNS: SUUSRMSSSSRSUS: ST

0.00E+00

0 0.5 1 1.5
X

Figure 3. Flux results for Problem A: Beam into slab with linearlv-varying density,

continuous tally and various stepwise approximations

34
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Varying Materials & Tallies - Example B

« Eigenvalue calculation - depleted core with reflector
— Density varies quadratically in core: .25 at center, 2.25 at edges

— Constant density in reflector, 1.0
— Core: 2:=2.00, 2.=0125, 2,=1.025, 2-=0.85 v=24

— Reflector: %;=0.25, 2,=0.24, x,=0.01

-2 -1.75 1.75 2
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Varying Density - Problem B

2.50E+00
2.00E+00 ,j\ /'L
=—=density-continuous i
| \1 —density-4-step ”l
\‘ density-8-step ;
. density-32-step ]
1.50E+00 \r j
> X | 4
£ \ 7
5 \ /
3 | \ /
\ 7/ IL
1.00E+00 +— ‘-\i —17
¥
\\ ’/
\ 4
AN ) 4
~ V 4 |
5.00E-01 »T L—;
“‘\ J,"
0.00E+00
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X

‘igure 2. Density variation fi - : adratic variation for center
Figure 2. Density variation for Problem B: Quadratic variation for center
fissionable region and various stepwise approximations



Continuously Varying Materials & Tallies 37

Continuous Tallies - Problem B

2.50E-01
- e s =~
2.00E-01 : t
£ A
;'( ‘\
1.50E-01 / : \
i \
: / )
™ =—=phi-continuous \_
1.00E-01 ! — phi-4-step ‘
/ —phi-8-step \
/ phi-32-step \
500E'02 -f b
0.00E+00
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X

Figure 4. Flux results for Problem B: Quadratic density variation, continuous
tallies and various stepwise approximations
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Continuous Materials & Tallies

* Timings for Problem B

Continuous (3 cells) 102 sec
4-step (12 cells) 117 sec
8-step (24 cells) 130 sec
32-step (96 cells) 283 sec

Continuous tallies require more work, but fewer cells.
Can give computational advantage for some problems.

« Conclusions

— It is now practical to extend Monte Carlo codes to use
continuously varying material properties & tallies

— 5th order Legendre polynomials within each cell look promising
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Continuous 2D Tallies - Reactor Fuel Pin Cell

* For testing the 2-D FET was implemented in MCNP4c.

 Benchmark tests were conducted on a simulated PWR fuel pin to
calculate the spatial distribution of thermal flux in the x-y plane.

 The FET results were compared with results from an MCNP5 mesh

tally calculation.

Fuel OD: 1.206 cm

Pitch: 1.875 cm

Clad Thickness: 0.06 cm
Gap Thickness: 0.008 cm
Fuel Enrichment: 1%
Eigenvalue: 1.026
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Continuous 2D Tallies - Reactor Fuel Pin Cell

12%
11.5
11
10.5

Figure 2a. 9x9 Legendre expansion tally Figure 2b. MCNP5 20x20 mesh tally for
for thermal neutron flux across the fuel pin thermal neutron flux across the fuel pin
obtained in a 2 million history simulation. obtained in a 2 million history simulation.

DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte
Carlo Simulations," PHYSOR-2004, Chicago, IL (2004)
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Continuous 2D Tallies - 1/4 Fuel Assembly

* In order to test the method on a more realistic problem a PWR-
type quarter assembly was modeled.

* For testing the 2-D FET was implemented in MCNP4c.

* A separate 2-D Legendre expansion was used for each individual

pin-cell.
20000000
|© ‘ Q Q Q O ‘ Q - 15A8c;f a|16_x164fuel fls?emdbly2
0000000 " burnable poison pins
:C> O Q O O O O O : II:lthglhl:E:\;‘?:hment: 2%
|© O ‘ Q Q Q Q Q - E_ugrnablle Poisonolgensity: 0.30 g/cc
IOOQOO‘OO — Eigenvalue: 1.17
20000000

00000000
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Conclusions

It is now practical to extend Monte Carlo codes to use
continuously varying material properties & tallies

— Continuous materials can be modeled with delta-tracking or direct
numerical tracking

— Flux expansion tallies have many benefits over traditional histogram
tallies

« Can obtain a functional form for the tally distribution directly from the
Monte Carlo, with no post-processing or curve fitting required.

« Can provide a more accurate approximation than a histogram tally,
without requiring significantly more work per history.

* FET estimators are easy to implement in existing Monte Carlo codes

 Future work:

— Practical implementation in production Monte Carlo codes
+ See Griesheimer & Martin PHYSOR-2004 paper for 2D extension
*  Will be added to MCNP5 mesh tallies in near future

— Investigate methods for reactor depletion
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Introduction

The key to Monte Carlo methods is the notion of random sampling.

 The problem can be stated this way:
Given a probability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

X —>

 Random sampling distinguishes Monte Carlo from other methods

« When Monte Carlo is used to solve the Boltzmann transport equation:

— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, .....)
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Monte Carlo & Random Sampling

Categories of random sampling

 Random number generator = uniform PDF on (0,1)
« Sampling from analytic PDFs  =» normal, exponential, Maxwellian, ...
« Sampling from tabulated PDFs =» angular PDFs, spectrum, ...

For Monte Carlo codes...

« Random numbers, ¢, are produced by the RN generator on (0,1)

« Non-uniform random variates are produced from the ¢’ s by:
— Direct inversion
— Rejection methods
— Transformations
— Composition (mixtures)
— Sums, products, ratios, ...
— Table lookup + interpolation
— Lots (!) of other tricks

« Typically < 5-10% of total CPU time
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Random Number Generators

AMC-20 -

"Randomness is a negative property; it is the absence of any pattern.”
Richard W. Hamming, 1991

« Numbers are not random; a sequence of numbers can be.

 Truly random sequences are generally not desired on a computer.

* RNG
— Function which generates a sequence of numbers which appear to

« All other random sampling is performed using this basic RNG
* Note that the probability of something occurring also varies in (0,1)

have been randomly sampled from a uniform distribution on (0,1)

Repeatable (deterministic)
Pass statistical tests for randomness

Typical usage in codes: r = rang()
Also called "pseudo-random number generators"

between 0 & 1 .....

f(x)

1

0
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RNGs — Some Comments......

From “An Essay on Random Number Generators for Monte Carlo Codes”, F. Brown:

Numbers are not random, they are just numbers.

An algorithm for producing "random numbers" is not random, it is a fully prescribed sequence of operations to be
performed.

When we talk about "random numbers" on a computer, what we really mean is "a sequence of numbers that appears
to be uniformly distributed". Similarly, a "random number generator" is an algorithm for producing a sequence of
numbers that appears to be uniformly distributed.

We can't determine whether a single number was produced "randomly". We can, however, subject a sequence (or
stream) of numbers to a set of statistical tests. We then compare the outcome of these tests to the known theoretical
results that would be produced if a truly random, uniformly distributed sequence of numbers was subjected to the
same tests. If our algorithm-produced sequence yields the same results as a theoretical truly random sequence for all
of the tests, we declare that our algorithm-produced sequence is "random". What we mean is that the algorithm-
produced sequence is indistinguishable from a truly random sequence.

In considering a random number generator for Monte Carlo codes, we are fully aware that algorithm-produced
sequences are deterministic, not truly random. However, if a sequence of algorithm-produced random numbers is
indistinguishable from a truly random sequence, then we may confidently use it in Monte Carlo simulations.

An important theme of the preceding discussion is that we cannot prove that a sequence is random, nor that a given
random number generator produces a random sequence. All we can do is subject the algorithm-produced sequences
to a set of statistical tests and compare to theoretical results for truly random sequences. If an algorithm-produced
sequence fails any of the tests, then we can declare that the random number generator is bad. Hence, given a
comprehensive set of statistical tests, we can identify bad generators, but cannot prove that a generator is good.
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RNGs for Particle Transport MC — Needed Properties

* Quality - depends on what it is to be used for:
— Cryptography
» Every bit in every integer in a sequence must be random & unpredictable

— Particle transport

« We convert a random sequence of integers into a sequence of floating-point (real) numbers. Not
concerned about the last few least-significant bits

Reproducibility
— For any combination of the number of processors, MPI tasks, threads, or spatial
domains (for domain decomposition):
« Want same results (ie, RN usage for each particle)
« The order in which particles are processed should not affect results
» Every particle created must be given a unique RN seed

Skip-Ahead
— For parallel calculations, must be a fast way to skip-ahead in the RN sequence

State
— The RNG state-space or storage per particle must be small

Robust
— Must never, ever fail !!!



Linear Congruential RNGs (LCGs)

Most production-level Monte Carlo codes for particle transport use
linear congruential random number generators (LCGs):

Si;1 = S;°g + ¢ mod2m

S,=seed, g = multiplier, c =adder, 2™ = modulus

« Simple, fast, robust, over 60 years of heavy-duty use
 Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

* Not the "best” RNGs, but good enough - RN's are used in
unpredictable ways during particle simulation

 To achieve reproducibility for vector or parallel calculation, there
must be a fast, direct method for skipping ahead (or back) in the
random sequence
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Simple LCG - Example #1
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[ g-S. + C ] mod p,

[ 47-S, + 1 ] mod 100

( 0)
(1)
(2)
( 3)
( 4)
( 3)
(6)
(

(

1
(47x1
(47x48
(47x57
(47x80
(47x61
(47x68
(47x97
(47x60
(47x21
(47x88
(47x37
(47x40
(47x81
(47x8
(47x77
(47x20
(47x41
(47x28
(47x17
(47x0
(47x1
(47x48

++++++++++F++++F A+ +++

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

with g=47, C=1, S,=1, P=100

48
2257
2680
3761
2868
3197
4560
2821

088
4137
1740
1881
3808

377
3620

941
1928
1317

800

48
2257

mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod
mod

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

48
57
80
61
68
97
60
21
88
37
40
81

77
20
41
28
17

48
57

10
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Simple LCGs - Examples #2 & #3

Example #2: Ses1 = [ 5SS, + 1 ] mod 100,
s(0) =1
s(1l) = (51 + 1) mod 100 = 6 mod 100 = 6
s(2) = (56 + 1) mod 100 = 31 mod 100 = 31
s( 3) = (531 + 1) mod 100 = 156 mod 100 = 56
s( 4) = (5x56 + 1) mod 100 = 281 mod 100 = 81
s( 5) = (5x81 + 1) mod 100 = 406 mod 100 = 6
s( 6) = (56 + 1) mod 100 = 31 mod 100 = 31
etc

Example #3: Sgs1 = [ 5SS, + 0 ] mod 100,
s(0) =1
s(1l) = (5x1 ) mod 100 = 5 mod 100 = 5
s( 2) = (5%5 ) mod 100 = 25 mod 100 = 25
s( 3} = (5x25) mod 100 = 125 mod 100 = 25
s( 4) = (5x25) mod 100 = 125 mod 100 = 25

etc.
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Choosing Parameters for LCGs

Sk+1 < [gesk+c] modp
« Modulus (p):
—choose p=2N
— simplifies "mod p"— discard all but the N least significant bits
— simﬁlifies division by p— shift the "point" left by N bits

— N should be as large as possible, N> 35 is best.
— Usually, choose N to be number of bits in largest positive integer.

- Generator (Q), Initial Seed (sg), & Increment (c) :

— choose g & ¢ to maximize the period

12

— large g is best to reduce serial correlation
— obviously, g=1 or g=0 are bad | See Knuth, Vol 2

— For ¢ =0 (multiplicative PRNG):

choosing (1) gmod8=3o0r5
22} So = odd

results in: period = 2N2,  the maximum possible period.

— For ¢ >0 (mixed PRNG):
choosing (1) c relatively prime to p
2) (g-1) to be a multiple of every prime factor of p
3) (g-1) to be a multiple of 4 if p is a multiple of 4

results in: period =2N,  the maximum possible period.
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RNG Example (very old)

AMC-20 - 13

Example -- CYBER-205 RANF
Sks1 < [g+Sk+C] modp

FORTRAN

common /q8ranfc/ seed

r = ranf ()

Note: (1)0<r<1

(2) scalar timing ~320 ns / prn
(3) to vectorize — "unroll" or "replicate", vector timing ~30 ns / m

How long will the PRNs last ?

Sharp EL-515s
CYBER-205,
CRAY-1,
CYBER-205,
CYBER-205,
CRAY-XMP/48,
CRAY-2,
ETA-10,
cray-c90,

scalar

vector
2-pipe vector
4-pipe vector
vector x 4
vector x 4
vector x 8
vector x 16

META
LOD s_descr, s
EX g, 84000335758957
EX e, 65489
MPYL g, S, S
STO s_descr, s
PACK e, s, T

ADDN r, r T

*load the seed
*generator

*exponent, 2**-47

*mult, keep last 47 bits
*store new seed

*insert exponent

*normalized result

time to generate ALL 2*° RNs

1Myr

4 :’nos
15 days
12 days

6 days

3 days
30 hr
13 hr

4 hr
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LCGs — Last Few Bits

Aside ...

For the multiplicative congruential method,
why is the period limited to a maximum of 2N-2 22

Ske1 < 9GSk mod p, spodd, gmod8=3o0rd

« All s,'s are odd, g is odd
=  g-sy will always be odd, reduces period by a factor of two.

« For g mod 8 = 3, trailing bits of g are (...011)
g*sg= (...011)+(....11) = (...71)
g*sk= (...011)+(....01) = (...01)

= next-to-last bit of s, will not change, reduces period by a factor of two.

or

« For g mod 8 = 5, trailing bits of g are (...101)
g*sk = (...101)=(...1x1) = (...1x1)
g*sx = (...101)+(...0x1) = (...0x1)

or

= third-to-last bit of s will not change, reduces period by a factor of two.



Typical Linear Congruential RNGs

* Multiplicative congruential method - Lehmer

S, = gS,,+c mod 2M, 0 < S, < 2M, integer
& =S, /2m, 0<¢g <1, real
 Typical parameters
2m Period g c

RACER (KAPL) 247 245 84,000,335,758,957 0
RCP (BAPL) 248 248 2°+1 59,482,192,516,946
MORSE (ORNL) 247 245 515 0
MCNP (LANL) 248 246 519 0
VIM (ANL) 248 246 519 0
RANF (CRAY) 248 246 44,485,709,377,909 0
G. Marsaglia 232 232 69069 1
MCNPS5 (LANL) 263 263 (7 options) 10r0

MCNP6 (LANL) 263 263 (7 options) 10r0
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MCNPS5 & MCNP6 RNG

S,:1=9S, +c mod 2m
— See Knuth for rules for selecting g,c,m so that period is maximized &
correlation minimized

— 7 different LCGs are available -- chosen based on the spectral test, Knuth's
tests, & Marsaglia's DIEHARD tests

— LCG(g,c, m):
* Traditional MCNP, period = 246 = 7x104
#1 - LCG( 5", 0, 48)
« L'Ecuyer 63-bit Mixed LCGs, period = 263 =9x1018

#2 - LCG(9219741426499971445, 1, 63)
#3 - LCG(2806196910506780709, 1, 63)
#4 - LCG( 3249286849523012805, 1, 63)
« L'Ecuyer 63-bit Multiplicative LCGs, period = 261 =2x1018
#5 - LCG( 3512401965023503517, 0, 63)
#6 - LCG(2444805353187672469, 0, 63 )
#7 - LCG( 1987591058829310733, 0, 63 )

[L’ Ecuyer, Math. Comp., 68, 249-260 (1999)]
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Using RNGs in Particle Transport MC Codes

* Naive use, in many older codes & student codes

o— > @ > >
RNs for RNs for RNs for

particle 1 particle 2 particle 3

— Problem: Can't start Particle-2 until Particle-1 is finished, etc.
Can't do parallel processing of different particles

« MCNP, VIM, RACER, MC21, & many other production codes
— Partition RN sequence into equal-length subsequences, one for each

particle . 9 -
0000000000000 000000 0000000000000 000000O0C0O0CCFCCCCFCVCFCFCFCVCCVYYOYNRYYVNINYTY
° > L —— ° >
RNs for RNs for RNs for
particle 1 particle 2 particle 3

— Can process all particles in parallel
— Length of each subsequence is called the stride
— Must have a fast way to skip-ahead in the RN sequence
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Using RNGs in Particle Transport MC Codes

AMC-20 -

* Histories vs particles

— With splitting &/or secondary particle creation,
the number of particles in a given history is

not known in advance
Source I—}

Random
Walk

Random
Walk

~

— Need to partition RN sequence by history,
not by particle

‘0 ‘G

Random
Walk

D N . M
Q? ?@“ 2 6 o“ 6?""6 ?"‘(‘
—_— — —p—p —>—>—> - ,—> > >
0000000000 0000000 000000000000000
@ > o C >
RNs for RNs for RNs for
history 1 history 2 history 3

— With this scheme, can process histories in parallel,
but not particles in same history

— Must have a predictable scheme for banking/unbanking particles in a

given history (e.g., LIFO)

18



Random Number Generators & Testing AMC-20 - 19

Reproducibility

Reproducibility of a Particle History
- use separate, distinct random sequence for each particle

- starting seeds for separate particles are separated by "stride"

stride
- -
' EENNENENNEN NN N N N N N N N N B I B N N
A A A A
seeds fclr particle k seeds fcl>r particle k+1

- stride should be large enough to prevent overlap (for most histories)

— 1000 is common for reactor analysis problems

- splitting & variance reduction not needed for in-core physics
- reduces total random number usage

— 4,297 is the "old" default for MCNP & VIM
— 152,917 is the default for MCNP & VIM

- prepared for lots of splitting & variance reduction
- potential for lots of secondary particles
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Reproducibility & Parallel Calculation

Parallel processing

£
- take "super-stride" in random sequence -—
for particles on each processor ooyt
Irtlcle-
processor stride / psaeeds
-t '
. . . i i o s e e
A M )
particles for processor i particles for processor i+1
Eigenvalue Problems
particle
. . S
- batches of particles, Séausasssssne
distributed among parallel processors / seeds
processor
- -
 seeds for each | it
parhcles
batch stride
—— e
|||||| ".l-uul"ll-uul"|lnun“||nnuo"|l- luu"|luuu“|luunn|I||-uul|l||-uul"|l.-
A M A

processors for batch m processors for batch m+1



RNG Coding — Some Details

* Real arithmetic
— |IEEE Standard for Floating Point Arithmetic (IEE-754-2008)

— 32-bit reals

» 24 bits of precision, ~7 decimal digits, max exponent ~38

* Never use for general engineering/scientific calculations
— 64-bit reals

» 53 bits of precision, ~16 decimal digits, max exponent ~308
— Arithmetic

» Least-significant bits discarded
« For mixed ops, such as a*x+b, intermediate results may retain more bits

 Integer arithmetic
— 32-bit integers — Fortran integer, C++ int
— 64-bit integers — Fortran integer(8), C++ long or ‘long long’
— C++ allows unsigned integers, Fortran does not
— If overflow in arithmetic, least significant bits are retained

— For (long a)*(long b), rightmost 64-bits are kept
— Bits in an integer are conventionally numbered right-to-left
63 6261 ...3 2 1 0




RNG Coding — Some Details

« RNGs generate integer sequences

— Integers converted to reals (fractions) for use in MC codes

— By convention, RNGs should not return exactly 0.0 or 1.0,
0.0 < rang() < 1.0

* |t should be safe to do this: log( rang() )
« Or this: 1./ rang()
« This should return an integer in [0,N-1]: floor( N*rang() )

— Mixed LCGs include 0 in the integer sequence
* Must return smallest positive real number if that occurs

 Why use 63-bit RNGs, instead of 64-bit ?

— In Fortran, all integers are signed — there are no unsigned types
« Largest positive integer is 263 -1, 63 bits

» Could of course use tricks to get around this limitation, but then portability
to different compilers becomes a serious issue

— Prefer to use an RNG that can be written in either Fortran or C++
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RNG Coding — Some Details

* Multiplying & adding 63-bit integers
— Below, RN_MASK is a 64-bit integer, 0 followed by 63 1s: 0111...111
— C++ using 'unsigned longd'

RN SEED = ( RN MULT * RN SEED + RN ADD ) & RN MASK ;

| ) | ) | )
1 I I

multiply 2 ULs, OK to add & Boolean AND with mask,
retain least-significant retain 64-bits retain only 63-bits
64-bits

— Fortran, using 8-byte integers (signed)

RN SEED = iand( RN MULT * RN SEED, RN MASK )
RN SEED = iand( RN_SEED + RN _ADD, RN MASK )

Need to mask-off sign bit after each op



RNG Coding — Some Details

« How do you convert a 63-bit integer to a real with 53-bit precision?

— Naive implementation

RN_MULT = pow( 2.0, -63);
rang = RN_SEED * RN_MULT ;

— Problem:
« RN_SEED isinrange [0, 263-1]
« For the highest 512 integers in the range, the above approach
results in rang==1.0. [ie, roundoff due to finite precision to exactly 1.0]

— Correct approach:

RN_MULT = pow( 2.0, -53 ) ;

i53 = RN_SEED >> 10 Il shift right 10 bits, to get 53-bits
if(1i53 ) i53++; Il guard against 0

rang = i53 * RN_MULT ; Il exact conversion to real
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RNG Coding — Some Details

 MCNP RNG (#2, 63-bit, simplified) numbered right-to-left,

Note: bits are conventionally

bit-0 = rightmost,
bit-63 = leftmost

unsigned long RN _SEED, 1I53;

// multiplier & adder
unsigned long RN MULT = 9219741426499971445UL;

unsigned long RN_ADD = 1UL;

// mask to retain bits 0-62, O for bit 63

unsigned long RN MASK = (1lUL<<63) — 1lUL;

// shift right 10 bits, retain most significant 53 bits
int RN _SHIFT = 10;

// multiplier to convert 53-bit int to double, 2.0**(-53)
double RN NORM = 1.0 / (double) (1lUL<<53);

// new 63-bit integer seed

RN SEED = ( RN MULT * RN SEED + RN ADD ) & RN_MASK;
// convert to double, 53-bit precision

I53 = RN_SEED >> RN_SHIFT;

if( ! I53 ) 1I53++; // guards against O
return (double) ( I53 * RN_NORM );



Skip-ahead for LCGs

 To skip ahead k steps in the RN sequence:
S,=gS,,+c mod2m
=gkS, + c(gk1)/(g-1) mod 2m

* Negative skip k equivalent to positive skip [period-k]

« Can skip from any seed to any other
— Initial seed = it seed for jth particle on mt" processor in kt" generation
— Particle i - particle j
— Batch i = batch j

* Need a fast way to compute gkmod2™ & c(gk-1)/(g-1) mod2™ in
O(m) steps, rather than O(k) steps

Reference: F.B. Brown, “Random Number Generation with Arbitrary Strides”,
Trans. Am. Nucl. Soc. (Dec 1994)



Random Number Generators - Skip Ahead

To skip ahead k steps in the random sequence, [initial seed] = [k"' seed]
Sk = g'Sk.q+cC mod2™
= g*(g*Sko+c) +c mod 2™
=  ¢(....9(g(gSg+c)+C)+C) .....) +Cc mod 2™
gc+Sy + ce(g€'+g"?+....+g+1) mod2™
gk+Sy + c-(g“1)/(g-1) mod2m

« Periodic sequence:
negative skip k, equivalent to positive skip (period - kp,)

« Can skip from any seed directly to any other:
initial seed =» " seed for #/ particle on m" processor in n” batch
particle i =» particle j
batch /i =» batch j

« All arithmetic must be performed mod 2™, without truncation or roundoff

Sk G()S; + C(k)  mod2m



Random Number Generators - Skip Ahead

Define G(k) = g mod 2™
m =32 or 48 (typical), based on the size of a computer word
2M < k < +2M, based on desired "stride"

Denote the j bit of k by kg, so that
K = 2m-1 k[m_1] + 2m-2 k[m_2] + ceees + 21 k[1] + 20 k[O]
Substituting into G(k) yields

[
Gk =g “mod 2" = g"° mod 2™
m-1 ]
- H (gz )km mod 2™
j=0

Efficient algorithms for evaluating G(k) can be formulated using only m steps



Random Number Generators - Skip Ahead

Enumerating a few terms of G(k) makes the algorithm obvious

G(k) = (g‘)‘[m .(gz)‘m .(94)([21 .(gs)‘m ...(gzm_])k[m-n mod 2™

Note that k=0 or kp=1, so that each term (g")‘lil evaluates to either 1 or g"

Algorithm G:

G « 1, h « g, i « k+2™ mod2™
while i>0
if i=odd: G « Gh mod2™
h « h? mod 2™
i« Li/’2]

Remarks
- Algorithm G terminates after m steps, rather than k steps

- Negative strides are trivial, due to periodicity: G(-s) = G(2™M-s)
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Random Number Generators - Skip Ahead

k

Define C(k) = C(gg_—_ll) mod 2™

- c-(1+g+gz+g3+...+gk'1) mod 2™

The series for C(k) can be evaluated recursively, similar to G(k), in m steps:

Algorithm C:

C«0, fec, heg, ie k+2™ mod2™

while i>0
if i=odd: C « Ch+f mod2™
f « f(h+1) mod2™
h « h? mod 2™
i « Lis2]

+ Since most of the common random number generators use ¢ =0,
Algorithm C is generally not required.

« Algorithm C can be included with Algorithm A, at very little extra cost
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Random Number Generators - Skip Ahead - Example

R. N. Generator for 32-bit machines (sparc2, rs6000, indigo, .....)
S « 69069-s + 1 mod 2%
static unsigned long seed_c=1
static double norms=(1 J4294967296 );
Random Number Generator=» double cranf_( void ) {
unsi ned Iong g=69069, c=1;
*seed_c + c;

return ((double) seed_c * norm );

Routine for Arbitrary Skips = void cranfjlump_( unsigned long  *seed,
double *jump,
unsigned long *newseed ) {

unsigned long j, gen=1, inc=0, g=69069, c=1;
if( ‘jump<0) j= jump + 4294967296.;

else | = *jJump;
Co for( ; j; P>=1){
mpute:
Pl if( j&1 ){
gen =g~* inc  =inc*g +¢;
] gen =gen’g;
inc = c(g*-1)/(g-1) }
C *=g+1;
) g =g
*newseed = gen* (*seed) + inc;



Random Number Generators - Skip Ahead - Example

Fortran, 48-bit generator: g=5'9, c=0, m=48 (VIM & MCNP)
C, 32-bit generator: g=69069, c=1, m=32 (from Marsaglia)
Sparc2 rs6000/350
C, 32-bit
random number 1.0 us 7 us
skip forward, average for +1...10° 7.4 us 10 ps
skip backward, average for -1...-10° 4.0 us 20 ps
Fortran, 48-bit
random number 3.6 us 2.3 us
skip forward, +152,917 163 us 78 us
skip backward, -152,917 458 ps 215 ps
skip forward, average for +1...10° 160 ps 75
skip backward, average for -1...-10° 695 ps 232 us
skip forward, +1,1562,917 189 us 90 us
skip forward, +1,152,917, brute force 4.1 sec 2.6 sec
skip backward, -1,152,917 456 us 210 us
skip backward, -1,152,917, brute force 8 year 5 year



Random Number Generators - Skip Ahead

Algorithms for direct skip-ahead in the random sequence are
simple, fast, convenient, ....., for modern Monte Carlo codes

- Arbitrary positive or negative strides can be taken,
without precomputing or hardwiring specific constants

« Direct skip-ahead simplifies the initialization of
random numbers for each particle, especially for parallel processing

- Algorithms described are currently used in:
parallel VIM — ANL — Sun, rs6000, SP1, .....
RACER — KAPL — Cray, Meiko CS1 & CS2, Sun, SGi, .....

KENO-Va — CSN (Spain) — Convex-C3440
MCNP5 --- LANL --- all machines
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Advanced

Computational Random Number Generator

Methods for

Monte Carlo TeSti n g

Calculations

Forrest B. Brown

m NUCLEAR
O+ ENGINEERING National Laboratory Professor, UNM-NE

Senior R&D Scientist, Monte Carlo, LANL

“7Los Alamos

NATIONAL LABORATORY
- ~ E5T.1943 ~ -
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Random Number Generation & Testing

Knuth statistical tests

Marsaglia's DIEHARD test suite

Spectral test

Performance test

Results

F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”,
Trans. Am. Nucl. Soc. [also, LA-UR-02-3782] (November, 2002)

Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators",
LANL report on testing MCNP5 RN generators,
work performed in 2002 for original MCNP5 version, LA-UR-11-04858 (2011)



MCNPS RNG: History

« MCNP & related precursor codes
— 40+ years of intense use
— Many different computers & compilers
— Modern versions are parallel: MPI + threads

— History based: Consecutive RNs used for primary particle,
then for each of it’s secondaries in turn, etc.

— RN generator is small fraction of total computing time (~ 5%)

« Traditional MCNP RN Algorithm
— Linear congruential, multiplicative

S,.1=9S, mod 24, ¢g=5"1

— 48-bit integer arithmetic, carried out in 24-bit pieces

— Stride for new histories: 152,917

— Skip-ahead: crude, brute-force

— Period / stride = 460 x 106 histories

— Similar RN generators in RACER, RCP, MORSE, KENO, VIM



MCNP5 RNG: Requirements

« Algorithm
— Robust, well-proven
— Long period: > 10° particles x stride 152,917 =104 RNs
— >10° parallel streams
— High-precision is not needed, low-order bits not important
— Must have fast skip-ahead procedure

— Reasonable theoretical basis, no correlation within or between
histories

« Coding
— Robust !  Must never fail.
— Rapid initialization for each history
— Minimal amount of state information

— Fast, but portable — must be exactly reproducible on any
computer/compiler



MCNPS5 RNG: Algorithm

* Linear congruential generator (LCG)

S,.1=9S, +c mod 2™,
Period = 2™ (for ¢c>0) or 2™2 (for c=0)

Traditional MCNP: m=48, c=0 Period=10"4, 48-bit integers
MCNP5: m=63, c=1 Period=10"9, 63-bit integers

How to pick g and ¢ ???

« RN Sequence & Particle Histories

1 2 3 etc.

— Stride for new history: 152,917



MCNPS5 RNG: Coding

* RN Generation in MCNP-5
— RN module, entirely replaces all previous coding for RN generation

— Fortran-90, using INTEGER(I8) internally,
where I8=selected_int_kind(18)

— All parameters, variables, & RN generator state are PRIVATE,
accessible only via “accessor” routines

— Includes “new” skip-ahead algorithm for fast initialization of histories,
greatly simplifies RN generation for parallel calculations

— Portable, standard, thread-safe
— Built-in unit test, compile check, and run-time test

— Developed on PC, tested on SGl, IBM, Sun, Compaq, Mac, alpha
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Extended generators : 63-bit LCGs

» Selection of multiplier, increment and modulus

S,.1 =518 +0 mod 2% (MCNP4)

yt a4 U
523, 525 1 263

« Multiplicative LCG(g, 0, 2F)
g *3mod38, S,=odd mm) Period : 262

* Mixed LCG(g, c, 2P)
g 1mod4,c=odd BB Period : 2f

« MCNPS5 - Extension of multiplier
— 519 = 45-bit integer in the binary representation
— 59 seems to be slightly small in 63-bit environment.
— Odd powers of 5 satisfy both conditions above.
— Try these: (5'9,0,263), (523,0,263), (52°,0,263),
(519,1,263), (523,1,263), (525,1,263)



L’Ecuyer’s 63-bit LCGs

* L’Ecuyer suggested 63-bit LCGs with good lattice structures.
Math. Comp., 68, 249-260 (1999)

— Good multipliers were chosen based on the spectral test.

— Multiplicative LCGs
« LCG(3512401965023503517, 0, 253)
« LCG(2444805353187672469, 0, 2°3)
« LCG(1987591058829310733, 0, 2°3)

— Mixed LCGs
« LCG(9219741426499971445, 1, 293)
« LCG(2806196910506780709, 1, 263)
« LCG(3249286849523012805, 1, 263)



Tests for RNGs

* 13 different LCGs were tested:
— Traditional MCNP RNG, (59, 0, 243)
— 6 - Extended 63-bit LCGs
— 6 - L’Ecuyer’s 63-bit LCGs

 Theoretical tests :

— Analyze the RNG algorithm of based on number theory and the theory
of statistics.

— Theoretical tests depend on the type of RNG. (LCG, Shift register,
Lagged Fibonacci, etc.)

— For LCGs, the Spectral test is used

 Empirical tests :
— Analyze the uniformity, patterns, etc. of RNs generated by RNGs.
— Standard tests - reviewed by D. Knuth, SPRNG test routines
— DIEHARD tests - Bit level tests by G. Marsaglia, more stringent

— Physical tests - RNGs are used in a practical application. The exact
solutions for the tests are known. (not performed in this work)



Spectral test

 LCGs have regular patterns (lattice structures) when overlapping
t-tuples of a random number sequence are plotted in a hypercube.

(Marsaglia, 1968).

« all the #-tuples are covered with families of parallel (¢-1)-
dimensional hyperplanes.

* The spectral test determines the maximum distance between
adjacent parallel hyperplanes.
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lllustration of the spectral test
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Measures for Spectral Test Criterion & Ranking

* u value proposed by Knuth
— Represent the effectiveness of a multiplier.

Knuth’s criterion

n(m,g) for 2<t<6 Result

w(m,g) > 1 Pass with flying colors
0.1 < w(m,g) < 1 Pass

pn{(m,g) < 0.1 Fail

« S value
— Normalized maximum distance.

. Maximum distance between adjacent parallel
d, (m) d(mg): jacentp

hyperplanes.
d.(mg) d.(m) : Lower bound ond.(m g) .

S

— The closer to 1 the S value is, the better the RNG is.
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Spectral test for extended LCGs

AMC-20 -

Dimension(t) 2 3 4 5 6 7 8

LCG(51°,0,263)

w(m,g) 1.7321 | 2.1068 | 2.7781 1.4379 | 0.0825 | 2.0043 | 5.9276

S,(m,g) 0.6910 | 0.7085 | 0.7284 | 0.6266 | 0.3888 | 0.6573 | 0.7414
LCG(523,0,263)

w(m,g) 0.0028 | 1.9145 | 2.4655 | 5.4858 | 0.3327 | 0.2895 | 6.6286

S(m,g) 0.0280 | 0.6863 | 0.7070 | 0.8190 | 0.4906 | 0.4986 | 0.7518
LCG(525,0,263)

w(m,g) 0.3206 | 1.8083 | 0.0450 | 3.0128 | 0.3270 | 3.1053 | 0.4400

S,(m,g) 0.2973 | 0.6733 | 0.2598 | 0.7265 | 0.4892 | 0.6998 | 0.5356
LCG(5'9,1,263)

w(m,g) 1.7321 | 2.9253 | 2.4193 | 0.3595 | 0.0206 | 0.5011 1.6439

S(m,g) 0.6910 | 0.7904 | 0.7036 | 0.4749 | 0.3086 | 0.5392 | 0.6316
LCG(523,1,263)

w(m,g) 0.0007 | 2.8511 2.5256 | 3.1271 | 4.5931 1.8131 4.2919

S(m,g) 0.0140 | 0.7837 | 0.7112 | 0.7319 | 0.7598 | 0.6480 | 0.7121
LCG(5%5,1,263)

w(m,g) 0.0801 | 3.4624 | 1.3077 | 1.0853 | 1.4452 | 0.7763 | 1.3524

S,(m,g) 0.1486 | 0.8361 | 0.6033 | 0.5923 | 0.6266 | 0.5740 | 0.6163
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Spectral test for L’Ecuyer’s 63-bit LCGs

AMC-20 -

Dimension(t) 2 3 4 5 6 7 8

LCG(3512401965023503517,0,263)

W (m,g) 2.9062 | 2.9016 | 3.1105 | 4.0825 | 5.3992 | 6.7498 | 7.2874

S(m,g) 0.8951 | 0.7883 | 0.7493 | 0.7701 | 0.7806 | 0.7818 | 0.7608
LCG(2444805353187672469,0,263)

w(m,g) 2.2588 | 2.4430 | 6.4021 | 2.9364 | 3.0414 | 5.4274 | 4.6180

S,(m,g) 0.7891 | 0.7443 | 0.8974 | 0.7228 | 0.7094 | 0.7579 | 0.7186
LCG(1987591058829310733,0,263)

w(m,g) 2.4898 | 3.4724 | 1.7071 | 2.5687 | 2.1243 | 2.0222 | 4.1014

S(m,g) 0.8285 | 0.8369 | 0.6449 | 0.7037 | 0.6682 | 0.6582 | 0.7080
LCG(9219741426499971445,1,253)

w(m,g) 2.8509 | 2.8046 | 3.5726 | 3.8380 | 3.8295 | 6.4241 6.8114

S,(m,g) 0.8865 | 0.7794 | 0.7757 | 0.7625 | 0.7371 | 0.7763 | 0.7544
LCG(2806196910506780709,1,263)

w(m,g) 1.9599 | 4.0204 | 4.4591 | 3.1152 | 3.0728 | 3.0111 3.7947

S,(m,g) 0.7350 | 0.8788 | 0.8199 | 0.7314 | 0.7106 | 0.6967 | 0.7012
LCG(3249286849523012805,1,263)

W (m,g) 2.4594 | 2.4281 | 3.7081 | 2.8333 | 3.7633 | 3.0844 | 1.9471

S.(m,g) 0.8234 | 0.7428 | 0.7829 | 0.7176 | 0.7350 | 0.6991 0.6451
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Results of spectral test

 Results for the traditional MCNP RNG

Dimension(t) 2 3 4 5 6 7 8
w(m,g) 3.0233 | 0.1970 | 1.8870 | 0.9483 | 1.8597 | 0.8802 | 1.2931
S(m,g) 0.9129 | 0.3216 | 0.6613 | 0.5765 | 0.6535 | 0.5844 | 0.6129

« All extended 63-bit LCGs fail with Knuth’s criterion.
« All L’Ecuyer’s 63-bit LCGs pass with flying colors.
« Comparison of minimum S values

RNG Minimum S (m,g)

LCG(5'9,0,248) 0.3216
LCG(3512401965023503517,0,263) 0.7493
LCG(2444805353187672469,0,253) 0.7094
LCG(1987591058829310733,0,253) 0.6449
LCG(9219741426499971445,1,263) 0.7371
LCG(2806196910506780709,1,263) 0.6967
LCG(3249286849523012805,1,263) 0.6451




Standard test suite in SPRNG

« SPRNG (Scalable Parallel Random Number Generators )
— Test programs are available. http://sprng.cs.fsu.edu

« Standard test suite (Knuth)
— Equidistribution
— Serial
— Gap
— Poker
— Coupon collector’s
— Permutation
— Runs-up
— Maximum-of-t
— Collision tests

* Choice of test parameters
— L’Ecuyer’s test suite : Comm. ACM 31 p.742 (1988)
— Vattulainen’s test suite : Comp. Phys. Comm. 86 p.209 (1995)
— Mascagni’s test suite : Submitted to Parallel Computing



Equidistribution test

* Check whether RNs are uniformly generated in [0, 1).
 Generate random integers in [0,d-1].
« Each integer must have the equal probability 1/d.

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, ...

d*x.
0,5 3,7 20 2 3,1, 4,.. Cumulative chi-square distribution
. 1.2
Count frequencies of 0 ~ d-1. 1
e ey 'y
25 | e !
o6 I
5 0 ®04 :
— |
o 15 | 0.2 I
> |
o 10 | 0! :
w I I 0 5 10 15 20
5 | I I Chi-square statistic
0 1 2 3 - S 6 7 s1 np;

Random integer



Criterion of “Pass or Failure”

All empirical tests score a statistic.

A goodness-of-fit test is performed on the test statistic and yield a
p-value. (Chi-square or Kolmogorov-Smirnov test)

If the p-value is close to 0 or 1, a RNG is suspected to fail.
Significance level : 0.01(1%)
Repeat each test 3 times.

If all 3 p-values are suspicious, then the RNG fails.
0.14

0.12

Probability
o 9O o
¥ & =

o
¥

,}‘/ =Significance level \J_,
0 2.5 S 7.5 10 125 15 17.5 20
Test Statistic

0.02 Area
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DIEHARD test suite

« DIEHARD test
— A battery of tests proposed by G. Marsaglia.
— Test all bits of random integers, not only the most significant bits.
— More stringent than standard Knuth tests.
— Default test parameters were used in this work.
— Test programs are available. http://stat.fsu.edu/~geo/diehard.html

* Included tests:
— Birthday spacings
— Overlapping 5-permutation
— Binary rank
— Bitstream
— Overlapping-pairs-sparse-occupancy (OPSO)
— Overlapping-quadruples-sparse-occupancy (OQSO)
— DNA
— Count-the-1's test on a stream of bytes
— Count-the-1's test for specific bytes
— Parking lot
— Minimum distance
— 3-D spheres
— Squeeze
— Overlapping sums
— Runs
— Craps



Overlapping-pairs-sparse-occupancy test (1)

« OPSO = Overlapping-Pairs-Sparse-Occupancy test
* Preparation of 32-bit integers

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, ...
2% % x
454158374, 2856527213, 2002411287, 4034027575, ...

Binary representation

11011000100011110100000100110,
10101010010000110010010101101101, ...

« Letter : a designated string of consecutive 10 bits
11011000100011110100000100110,

10101010010000110010010101101101, ...

\ J
Y
Letter : 210 = 1024 patterns (letters)




Overlapping-pairs-sparse-occupancy test (2)

« 2-letter words are formed from an alphabet of 1024 letters.
0000100110, 0101101101, 1100010111, 0000110111, ...

Decimal representation Cumulative normal distribution

38, 365, 791, 55, ... 07
1§ J

J\\

Y Y
2-letter word 2-letter word

S 05
« Count the number of )
missing words (=)).
0.0
* The number of missing GO0 e 0mR e AR
words should be very closely j 141909
normally distributed with z >0

mean 141,909,
standard deviation 290.



Overlapping-quadruples-sparse-occupancy test

« OQSO = Overlapping-Quadraples-Sparse-Occupancy test

Similar to the OPSO test.

Letter : a designated string of consecutive 5 bits
11011000100011110100000100110,

10101010010000110010010101101101, ...

H_I
Letter : 2° =32 letters

4-letter words are formed from an alphabet of 32 letters.
00110, 01101, 10111, 10111, ...

\ J
Y

4-letter word

The number of missing words should be very closely normally
distributed with mean 141909, standard deviation 295.



DNA test

« Similar to the OPSO and OQSO tests.
+ Letter : a designated string of consecutive 2 bits
11011000100011110100000100110,

10101010010000110010010101101101, ...

-
Letter : 22 =4 letters

* 10-letter words are formed from an alphabet of 4 letters.
10, 1, 11, 11, 11,1, 10, 0, 11, 10, ...

—_—

10-letter word

* The number of missing words should be very closely normally
distributed with mean 141909, standard deviation 399.



DIEHARD Test Suite

* Criterion for DIEHARD test
— If the p-value is close to 0 or 1, a RNG is suspected to fail.
— Significance level : 0.01(1%)

— A RNG fails the test if we get six or more p-values less than 0.01 or
more than 0.99.

 Results for standard & DIEHARD tests

— All 13 RNGs pass all standard tests with L’Ecuyer’s, Vattulainen’s and
Mascagni’s test parameters.

— Extended and L’Ecuyer’s 63-bit LCGs pass all the DIEHARD tests.

— The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the
DIEHARD test suite.
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Result of OPSO test for traditional MCNP RNG

AMC-20 -

Tested bits p-value Tested bits p-value
bits 23 to 32 0.0000 bits 11 to 20 0.7457
bits 22 to 31 0.0000 bits 10 to 19 0.0598
bits 21 to 30 0.0000 bits 910 18 0.1122

bits 20 to 29 0.0000 bits 8to 17 0.4597
bits 19 to 28 0.0001 bits 7to 16 0.0011

bits 18 to 27 0.6639 bits 6to 15 0.6319
bits 17 to 26 0.0445 bits 5to 14 0.7490
bits 16 to 25 0.0125 bits 41to 13 0.2914
bits 15 to 24 0.7683 bits 3to 12 0.1792
bits 14 to 23 0.9712 bits 2 to 11 0.3253
bits 13 to 22 0.1077 bits 1to 10 0.7277
bits 12 to 21 0.0717
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Result of OQSO test for traditional MCNP RNG

AMC-20 -

Tested bits p-value Tested bits p-value
bits 28 to 32 1.0000 bits 14 to 18 0.6487
bits 27 to 31 1.0000 bits 13 to 17 0.5575
bits 26 to 30 1.0000 bits 12 t0 16 0.1634
bits 25 to 29 1.0000 bits 11 to 15 0.6600
bits 24 to 28 1.0000 bits 10 to 14 0.2096
bits 23 to 27 1.0000 bits 9to 13 0.3759
bits 22 to 26 0.0000 bits 8to 12 0.9191
bits 21 to 25 0.0000 bits 7 to 11 0.8554
bits 20 to 24 0.0000 bits 6to 10 0.5535
bits 19 to 23 0.1906 bits 5to 9 0.4955
bits 18 to 22 0.0011 bits 4to 8 0.0868
bits 17 to 21 0.3823 bits 3to 7 0.1943
bits 16 to 20 0.8394 bits 2to 6 0.8554
bits 15 to 19 0.2518 bits 1to 5 0.7421
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Result of DNA test for traditional MCNP RNG

AMC-20 -

Tested bits p-value Tested bits p-value Tested bits p-value
bits 31 to 32 1.0000 bits 20 to 21 0.4937 bits 910 10 0.4550
bits 30 to 31 1.0000 bits 19 to 20 0.0613 bits 8to 9 0.4737
bits 29 to 30 1.0000 bits 18 to 19 0.2383 bits 7to 8 0.7834
bits 28 to 29 1.0000 bits 17 to 18 0.4831 bits 6to 7 0.4063
bits 27 to 28 1.0000 bits 16 to 17 0.0925 bits 5to 6 0.8959
bits 26 to 27 01777 bits 1510 16 0.0197 bits 4to 5 0.3438
bits 25 to 26 0.0000 bits 14 to 15 0.7377 bits 3to 4 0.3972
bits 24 to 25 0.0000 bits 13 to 14 0.7171 bits 2to 3 0.8986
bits 23 to 24 0.0000 bits 1210 13 0.0309 bits 1to 2 0.5407
bits 22 to 23 0.0000 bits 11 to 12 0.2803

bits 21 to 22 0.0000 bits 10 to 11 0.8440
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Comments on results for OPSO, OQSO, DNA

» Less significant (lower) bits of RNs fail the tests.

« These failures in less significant bits are caused by the shorter
period than the significant bits.

Drawback of LCGs with power-of-two modulus

The (r+1)-th most significant bit has period length
at most 2" times that of the most significant bit.

 However, these failures do not have a significant impact in the
practical use.
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Performance test

* Test program

intege}(é).:z i
integer(8), parameter :: NumGeneratedRNs = 1000000000

lreal (8) :: rang ! For MCNP4
real(8) :: RN_initial RN_last
real(8) :: dummy

lcall random ! For MCNP4
call RN_init_problem( new_standard_gen = 1 )

RN_initial = rangQ

do 1 = 2, NumGeneratedRNs-1

dummy = rang()
end do

RN_Tast = rang()



Results of performance test

« Comparison between MCNP4 and MCNP5
* Generate 1 billion RNs.

MCNP4 MCNP5 MCNP4/MCNP5

CPU (sec)
No optimization 290.0 97.1 3.0
(/optimization:0)

CPU (sec)

Local optimization 191.7 77.2 2.5
(/optimization:1)

CPU (sec)

Full optimization 188.4 78.1 2.4

(/optimization:4)

Platform : Windows 2000, Intel Pentium lll 1GHz
Compiler : Compaq Visual Fortran Ver.6.6



Summary

 The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in
the DIEHARD test suite.

 The 63-bit LCGs extended from the MCNP RNG fail the spectral
test.

* L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are
excellent judging from the spectral test.

 These 63-bit LCGs are implemented in the RNG package for
MCNP5

e The MCNP5 RNG is ~2.5 times faster than the MCNP4 RNG.
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own &
read these references:

— D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, 3rd
Edition, Addison-Wesley, Reading, MA (1998).

— L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986).

— J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res.
Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

— C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler,"” LA9721-MS, Los Alamos
National Laboratory, Los Alamos, NM (1983).

— H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA
(1954).

— F.B. Brown, “Random Number Generation with Arbitrary Strides”, Trans. Am. Nucl. Soc.
(Dec 1994)

— F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, Trans. Am. Nucl. Soc.
[also, LA-UR-02-3782] (November, 2002)

— Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators"”, LANL report on
testing MCNP5 RN generators, work performed in 2002 for original MCNPS5 version, LA-UR-
11-04858 (2011
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Random Sampling — Beyond the Basics

Introduction

The key to Monte Carlo methods is the notion of random sampling.

 The problem can be stated this way:
Given a probability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

X —>

 Random sampling distinguishes Monte Carlo from other methods

« When Monte Carlo is used to solve the Boltzmann transport equation:

— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, .....)



Random Sampling — Beyond the Basics

Monte Carlo & Random Sampling

Categories of random sampling

 Random number generator = uniform PDF on (0,1)
« Sampling from analytic PDFs  =» normal, exponential, Maxwellian, ...
« Sampling from tabulated PDFs =» angular PDFs, spectrum, ...

For Monte Carlo codes...

« Random numbers, ¢, are produced by the RN generator on (0,1)

« Non-uniform random variates are produced from the ¢’ s by:
— Direct inversion
— Rejection methods
— Transformations
— Composition (mixtures)
— Sums, products, ratios, ...
— Table lookup + interpolation
— Lots (!) of other tricks

« Typically < 5-10% of total CPU time
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Random Sampling - Basics

"Anyone who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

John Von Neuman, 1951



Random Sampling — Beyond the Basics

Introduction

Probability ?

What are the odds of .....

* Being audited by the IRS this year 100 to 1
* Losing your luggage on a U.S. flight 176 to 1
- Being dealt 4 aces on an opening poker hand 4164 to 1
* Being struck by lightning in your lifetime 9,100 to 1
- Being hit by a baseball at a major league game 300,000 to 1
* Drowning in your bathtub this year 685,000 to 1
* Winning the Powerball jackpot with 1 ticket 292,201,338 to 1

Yet we all still keep buying Powerball tickets, but don’ t worry too much about lightning...
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Simple Random Sampling (1)

 Suppose we have 2 items, A and B
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 75% = 0.75

— Po+Pg=1.0 1.0

« Random sampling - pick A or B Pg=.75

Generate a random number R

in the range (0,1) .25

I P,=.25
If R < .25 select A 0
Otherwise = select B

1

Cumulative
Probabilities
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Simple Random Sampling (2)

 Suppose we have 3 items, A, B, and C
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P = probability of randomly picking item C = 25% = 0.25

— Pp+Pg+Pc=1.0 1.0
I P.=.25
75

« Random sampling - pick AorBorC

Generate a random number R

in the range (0,1) .25
I P,=.25
If R < .25 - select A 0
Elself.25 <R < .75 -> select B
Otherwise -» select C T
Cumulative

Probabilities
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Simple Random Sampling (3)

« Random sampling - pick AorBorC
— P, = probability of randomly picking item A = 25% = 0.25
— Pg = probability of randomly picking item B = 50% = 0.50
— P = probability of randomly picking item C = 25% = 0.25

— P, +Pg+P:=1.0
50
o5 Discr.e.tg
1 I Probabilities
0
A B C
1.0
Generate a
random number R 73 Cumulative
in the range (0,1), | .20 Probabilities
Pick A, B, or C 25
0
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Probability Density Functions

« Continuous Probability Density
f(x) = probability density function (PDF)
f(x)>0

b
Probability{a <x <b} = [f(x)dx

(o]

Normalization: jf(x)dx =1

-0

* Discrete Probability Density

{f. }, k=1...,N, where f_=1f(x,)
f, =0
Probability{ x=x,} = f,

N
Normalization: ka — 1
k=1

f(x)

f(x)

X4

X3

- 10




Continuous

* Probability Density Function (PDF)
f(x) = probability density function (PDF)

Random Sampling — Beyond the Basics

PDF & CDF

X—

f(x)=>0 f(x)
b
Probability{a <x <b} = [f(x)dx
Normalization: Jf(x)dx = 1
« Cumulative Distribution Function (CDF)
F(x) = f(x)dx’ 1
0< F(x) <1
dF(x) | F(x)
dx
F(—<)=0, F(e)=1 0
Note: convention is to use f(x) for PDF, F(x) for CDF
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Discrete PDF & CDF
Discrete PDF’s

- Probability Density Function (PDF)

{fk }, where fk = f(Xk), k=1,...,N

fk=0
f(x)
N
ij=1 [
j=1 Xy X2 X3 XN x—o

- Cumulative Distribution Function (CDF) |

{Fx}, where F, = ij, k=1, ..., N-1
j=1 F(x)

and

Fo =0, 0

Fn=1

Note: convention is to use f; for PDF, F, for CDF
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

 The problem can be stated this way:
Given a probability density, f(x), produce a sequence of X's.
The X's should be distributed in the same manner as f(x).

Given f(x),
Randomly choose x

f(x)

X—

* The use of random sampling distinguishes Monte Carlo from other
methods

 When Monte Carlo is used to solve the integral Boltzmann transport
equation:
— Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, .....)
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Random Sampling

- Basic procedure for analytic random sampling
@ Convert PDF f(x) to CDF F(x)
® Generate RN ¢ on (0,1)
@ Solve forx: F(x)=¢

If this is repeated many time, the resulting PDF will approach f(x)

 Formally

— Solve for x: §=j f(y)dy

— Or: x = F-1(8)

- 14




Random Sampling — Beyond the Basics - 15

Y% % %% Direct Sampling Yk k%

Direct solution of x=F(¢)

X
Solve for x: &= f(y)dy :
-0o E SO L\\\\\\\\\\\\\\\\‘_\\

« Sampling procedure F (x \
— Generate § E
— Determine x suchthat F(x)=¢ ol N

X — X
 Advantages

— Straightforward mathematics & coding
— "High-level" approach

Disadvantages
— Often involves complicated functions
— In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)
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Discrete PDFs

« Sampling from Discrete PDF's - Conventional Procedure

1 Fn

Direct Solution of x' < F-(¢)

(1) Generate § F(x)
(2) Determine k suchthat F,, £ § <F,
(3) Return x'=x, 0

« Step (2) requires a table search
— Linear table searches require O(N) time - use when N small
— Binary table searches require O(InN) time - use when N large

— An alternative method — alias sampling — eliminates the table search
& requires O(1) time, independent of N

« For some discrete PDFs, F,’ s are not precomputed.
— Use linear search, with F, 's computed on-the-fly as needed
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Discrete Uniform PDF

« Example - Sampling from Discrete Uniform PDF

. . f(x)
 Discrete Uniform PDF

~f,=1/N, k=1,..,N 1/N
— Fe=k/N, F;=0, Fy=1

« Sampling procedure:
— Could use table search method, ....

— Easier, for this special case: 1 L ‘__l_-

A S N N NN

k1 + floor( N¢), F(x) N
0 X
floor(y) gives largest integer <y 1 2 3 N
— Fortran: k =1+ int ( N*rang() )
C: k =1 + floor( N*rang() )

— Note: must be surethat 1< k< N
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Discrete PDFs - Examples

« Example — Pick 1 Powerball number, uniform integer in [1,69]
k=int( 1+ 69*rang() )

Example - loaded die, faces show 2,2,3,4,5,5 — simulate 1 roll

pdf(1:6)
cdf(1:6)

[ 0./6., 2./6. ./6. . ./6. ./6.
[ 0./6., 2./6., 3./6., 4./6., 6./6., 6./6. ]
r = rang()
do j =1, 6
if( r < cdf(j) ) then

k = 3
exit - - - - .
endif This coding is a simple linear search to
enddo determine an integer k in the range [1,6]

: - _
{result is k} Search for the first occurrence of ¢ < cdf(j)

- 18
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Random Sampling -- Discrete PDFs

* Multigroup Scattering

— Scatter from group g to group g', where 1= g'<s G

g~ G
Ecgﬁk
k=1

« Selection of scattering nuclide for a collision

— K = number of nuclides in composition

- 19
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Y% % %% Direct Sampling Yk k%

Direct solution of x=F(¢)

X
Solve for x: &= f(y)dy :
-0 E SO L\\\\\\\\\\\\\\\\‘_\\

« Sampling procedure F (x \
— Generate § E
— Determine x suchthat F(x)=¢ ol N

X — X
 Advantages

— Straightforward mathematics & coding
— "High-level" approach

Disadvantages
— Often involves complicated functions
— In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)
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Continuous PDFs - Exponential

Examples - Sampling from an Exponential PDF

PDF: f(x)==-e*, x>0
CDF: F(X) = J.f(y)dy — J.Z . e—Zy dy — _e—Zy : —1— e—Zx
0 0

Direct sampling:
Solve forx: F(x)=¢

Solving &=1-e™* gives: X « —-In(1-&)/X
or
X « —InE/Z

Although (1-¢€) #¢&,
both {¢ and (1-§) are uniformly distributed on (0,1),
so that we can use either in the random sampling procedure.

i.e., the numbers are different, but the distributions are the same
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Continuous PDFs - Uniform

Example - Sampling from uniform PDF in range (a,b),

Histogram with 1 bin
1/(b-a)
£(%) PDF: f(x)=1/(b-a), as<x<b
=0 X<a, or x>b
a b
X > CDF: F(x) = (x-a)/(b-a), asx<b
Sampling scheme: F(x) = §  solve for x

(x-a)/(b-a) = §
X «— a + (b-a)¢

Note: Often implemented as:
f=¢
x «— (1f)a + fb
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Continuous PDFs — Linear (1)

Example - Sampling from an increasing linear PDF in range [0,1]

2
f(x) PDF: f(x) =2 x, Osx=1
CDF: F(x)=x2 0<xs<1
0 X > 1
Sampling scheme: F(x) = §  solve for x
x2=§
X «— sqrt(¢)

While not obvious, 2 alternative schemes for sampling x are:
X «— max(§;,g,)
X «— 1-abs(§—-5;)
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Continuous PDFs — Linear (2)

Example - Sampling from a decreasing linear PDF in range [0,1]
2
f(x) PDF: f(x) =2 - 2x, 0<xs<1

CDF: F(x)=2x-x?, 0<xs<1

X->

Sampling scheme: F(x) = §  solve for x
2x-x2=¢
x2-2x+1=1-§
(x-1)2=1-8
x—1= = sqrt(1-§)
Choose the minus sign for correct range in x:

X «— 1-sqrt(1-¢)
Or, since  and 1-§ have the same distribution:

X «— 1-sqrt( <)
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Continuous PDFs — Power Law on [0,1]

Example - Sampling from power law PDF in range [0,1],

Note: (n+1) is necessary, so thatj f(xNHdx =1
0

PDF: f(x)=(n+1)x", n>0, 0=x=<1

=0 x<0, or x>1
X X yn+1 X
CDF:  F(x)= [ f()dy=[(n+1)-y" dy=(n+1): =x", 0<x<l1
0 ) n+l|
Sampling scheme: F(x) = §  solve for x
xn+1 — §
X « §Un+1)
For power laws on [0,1]:
n=1:  f(x)=2x, F(x) = x2, X — V€
n=2: f(x) = 3x2, F(x) = x3, X — ¥

n=3: f(x) = 4x3, F(x) = x4, X «— 4§
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Direct Sampling —- Common PDFs

Probability Density Function Direct Sampling Method
Linear: f(x) = 2x, 0<x<1 X JE
Exponential: {(x) - e, 0 <X X « —logE
2D Isotropic: 1 _ U ¢ Cos2xE,
t®) - m p=(uv) vV « sin2ng,
3D Isotropic: | ue2E -1
f(ﬁ) T 4n’ Q = (U, v, W) Ve n1-u? cos2nk,
w e N 1-u’sin 2nE,
Maxwellian: _ 2 [XoxT x & T| - logg, - logE,cos27E
f(x)_TﬁTe ] 0<Xx ( 1 ~10gE, 23J
Watt —ab/4 _ w « a| - logk, - logE,,cos? Z&
Spectrum: f(x) =28 e VasithBi . 0<Xx ( , : 22 3)
ma’b X W+ %«L (25,-1) a’bw
Normal: 1 _l(x_—g)z Xe—WU+ O /—2|og§] cosZnE,Z
f(x) = S 2“e N o




Linear Transformations
&
Scaling



Random Sampling — Beyond the Basics

Continuous PDFs - Uniform

Example — Shifting & Scaling a 1-bin Histogram

’
f(x)
1/(b-a)
| |
0 1 X > a b
Shift Scale

PDF: f(x) =1 f(x) = 1/(b-a)
CDF: F(x) =x F(x) = (x-a)/(b-a)
Range: [0,1] [a,b]

Sampling: X<« & X — a + (b-a)¢
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Continuous PDFs - Linear

Example — Shifting & Scaling a unit linear PDF

2
f(x) /
2/(b-a)

/ —

0 1 x> a b
—
Shift Scale
PDF: f(x) = 2x f(x) = 2 (x-a)/(b-a)?
CDF: F(x) = x2 F(x) = [(x-a)/(b-a)]?
Range: [0,1] [a,b]

Sampling: X — V¢ X «— a + (b-a)¢



Composition
Methods



Random Sampling — Beyond the Basics

Composition Method

A complicated PDF ...

(x)

* ...Can be decomposed into a sum of simpler PDFs
f(x) = pafalx) + psfe(x) + pcfc(x)

where PatpPgtpPc =1

and each piece of the PDF is scaled s.t. area is 1

« Sampling then proceeds in 2 steps:
@ Discrete sampling from { p,, Pg, Pc } to select A, B, or C

@ Continuous sampling within the chosen PDF piece
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Composition Method

A PDF can be decomposed in many different ways . ..

f(x)

f(x)

(x)

f(x) = pafa(x) + pgfa(x) + pcfc(x)
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Continuous PDFs - Histogram

Example - Sampling from histogram with 2 bins

Ay = (X4-Xo) T, |
A2 - (X2'X1)'f2 B|n1 B|n2

Xo X4 X,

Py = Prob{ Xo<x<xy} = A/ (A+A,)
P, = Prob{ x; <x<x,} = A/ (A4+A,)
Pt py = 1

Two-step sampling procedure:
1. Select a bin, b:
If & < py, select b = bin 1

otherwise, select b = bin 2
2. Sample x within bin:

X — Xpq * 8" (Xp-Xp.q)
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Continuous PDFs - Histograms

Example - Sampling from Histogram PDF f,
f,

f(x) f.

Xo Xy X X3 X4 X5

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

* Discrete PDF: Pk = fi (X, =X1), k=1, ..., N, 2p, =1
— Generate &,
— Use table search to select k
* Uniform sampling within bin k
— Generate g,
— Then, X — Xgq * (Xe=X1)'S2
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Continuous PDFs — Linear

Example - Sampling from linear PDF in range [a,b],

1 bin
fy
f(x)
fa
a X S b
PDF: f(x) = f, + m (x-a), m = (f,-f,)/(b-a), as<x<b
CDF: F(x) = (m/2) x2 + (f,-ma) x + (ma?2 -f,a)
= Ax? + Bx + C
Sampling scheme: F(x) =&  solve for x

x = {-B + sqrt(B2-4A(C-5)} / 2A

= Awfully complicated, and sensitive to numerical roundoff

=» There must be a simpler scheme ( there is ...)

- 35
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Continuous PDFs — Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #1 f(x) Ty
Decompose the original PDF into the f,
sum of 2 PDFs, uniform + linear:
a X > b
f(x) = p, u(x) + p, I(x)
u(x) i uniform onasx=shbh, u(x) 1/(b-a)
p, ={min(f,f) (b-a)} / {.5(f,+f,) (b-a) }
a b

I(x) =linearona<x=<b,

I(x) 2/(b-a)
p, ={.5abs(fy,f,) (b-a)} / {.5(f,+f,) (b-a) } /\

Sampling scheme: if( & < p, )
x — a+ (b-a)g,
else
if( f,>f,) x < a + (b-a)sqrt(&,)
else X «— a + (b-a) (1-sqrt(<,))

- 36
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Continuous PDFs — Linear

Increasing linear PDF
2/(b-a)

f(x)

X->

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a)sqrt(¢)

Decreasing linear PDF

2/(b-a)

f(x)

X->

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a) (1 -sqgrt(g))
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Continuous PDFs — Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

f(x)

Composition method #2
Decompose the original PDF into the

sum of 2 PDFs, increasing + decreasing linear:

f(x) = pm M(x) + p; l(x)

mex) 22
m(x) = linear decreasingona < x < b, I\

Pm ={.5f,(b-a)} / {.5(f,+f) (b-a) }

= f, | (f +f @ b
= la (a b) I(X) 2/(b'a)
I(x) = linear increasing on a < x < b, /\
pp ={.5f,(b-a)} / {.5(f+f) (b-a) } a b
= fy, [ (fa*f,)

Sampling scheme: if( & < p; )
X «— a + (b-a) sqrt(g,)
else
x < a + (b-a) (1-sqrt(g;))

- 38
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Continuous PDFS - Piecewise Linear

X4 X5 Xg

X0 X X2 X3

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from linear PDF within bin

(fe+ 1)

« Discrete PDF: P = > - (X =X 1) k=1, .., N

— generate
— use table search or alias method to select K

« Linear sampling within bin K:

— generate § f,
— then, if g, < +fk R X ¢ X, —(xk—xk_l)JE_Z

otherwise XX+ (Xk—Xk_l)ng



Rejection
Methods
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Rejection Sampling

Von Neumann:

........ it seems objectionable to compute a
transcendental function of a random number. "

Select a bounding function, g(x), such that
« c2 g(x) >f(x) forallx
* g(x) is an easy-to-sample PDF

Sampling Procedure:
« sample x' from g(x): X «— G&,)

 test: & = cg(x') <f(x) f(x)

if true *+ accept x', done
if false + reject x', try again

Advantages

— Simple computer operations

Disadvantages

— “Low-level” approach, sometimes hard to understand

Cg (X)

AANANANAANANAANN

* reject

?
>
>

X—=

- 41
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Rejection Sampling - Examples

- Sample from a PDF A
f(x) = c-erf(x), 0=x=<5. 1
f
note: erf() = 1. () Tkeep
Do 0 >
xtry = 5.*rang() 0| | 5
) X=>
ftry = 1.*rang()
if( ftry <= erf(xtry) ) exit
Enddo
X = xtry
1 ject
« Select (x,y) points uniformly in a disk
Do
x = 2.*rang() - 1. ::
y = 2.*rang() — 1. ® keep
if( x**2 + y**2 < 1.0 ) exit
Enddo -1

-1 X > 1
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Direct vs. Rejection - 2D Direction Cosines

Example — 2D Isotropic

(@) =5, =V
Rejection (old vim)

SUBROUTINE AZIRN_VIM( S, C )
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
100 Rl=2.*RANF() - 1.
R1SQ=R1*R1
R2=RANF ()
R2SQ=R2*R2
RSQ=R1SQ+R2SQ
IF(1.-RSQ)100,105,105
105 S=2.*R1*R2/RSQ
C=(R2SQ-R1SQ) /RSQ
RETURN
END

Direct (racer, new vim)

subroutine azirn_new( s, ¢ )
implicit double precision (a-h,o0-2z)
parameter ( twopi = 2.%*3.14159265 )
phi = twopi*ranf()

¢ = cos(phi)

s = sin(phi)

return

end
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Isotropic Scatter — Sampling the Scattering Angle

« Consider isotropic scattering
— Any direction is equally likely
— Interpret as:

"pick a random point on a unit sphere,

then get direction-cosines”

M= cos 0

* Rejection method for scatter
angle sampling
— Pick x,y,z randomly in unit cube

— If x,y,z outside unit sphere,
reject and try again

— If x,y,z inside unit sphere,
scale so that x2+y2+z2 =1

— Get direction-cosines of angles, u,v,w

Direct method for scatter
angle sampling

f(fz):l, dQ _sin6-d6 d¢
4m 4r 2 21
fo,0)=SM0-d0 90 5 g 0<o<2m
2 21
271
sme
f(0) = | f(6,0)do =
0
L= Ccos6, du:—sme-de, —1<u<+1

f(u)=1(6

/'\

de| ~ sme 11
du| 'sine 2

=?» p is distributed uniformly in [-1,1]
-*» ¢ is distributed uniformly in [0,2n]

p <« 2§1'1
¢ — §2 2T
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Miscellaneous



Continuous PDFs —

Random Sampling — Beyond the Basics

Linear

(8)

We have seen that a simple, increasing linear PDF in the range

[0,1] can be sampled

2|

f(x)

X->

directly by inverting the CDF to obtain:

PDF: f(x) =2 x, 0sx=s1
CDF: F(x) =x?, 0<sx=s1
Sampling scheme:
F(x)=§  solve for x
X — sqrt(g)

While not obvious, some other schemes for sampling x are:

X =&,
r=g,
if( r>x ) x=r

X < max(§;, $;)

X «— 1-—abs(§ —

Why consider these other schemes?

Sqgrt() function used to be very expensive. The other
schemes involve only simple non-arithmetic
operations & were much faster.

Today, sqrt() operations & computers are very fast —
sqrt() is as fast as generating a 2"d RN. We usually go
with the more obvious direct method.

$2)

BUT, the older schemes are still commonly used in
production MC codes. Learn to recognize them.
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Stratified Sampling

—
If a specific number of samples, M, is needed from a single distribution:

« Naive approach — repeat the sampling procedure M times

E L‘\T“““““\‘\““\\\‘.\ ‘
1

- Stratified sampling approach

L4

— partition the sample space into M N
disjoint regions of equal probability EoT
F(x)

— produce 1 sample from each region

p_< 4}/"""""”””"
-

« Stratified sampling considerations
— F(x) must be known & easy to partition
— The number of partitions, M, must be known in advance
— Must be relatively easy to sample within each given partition
— Stratification improves the "coverage"

— Stratified sampling reduces variance, at little or no computing cost
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own &
read these references:

— D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical
Algorithms, 34 Edition, Addison-Wesley, Reading, MA (1998).

— L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986).

— J. von Neumann, "Various Techniques Used in Conjunction with Random
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

— C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler,” LA9721-MS,
Los Alamos National Laboratory, Los Alamos, NM (1983).

— H. Kahn, "Applications of Monte Carlo,” AECU-3259, Rand Corporation, Santa
Monica, CA (1954).

- 48
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Outline

* Introduction
 Piecewise-Linear PDFs

- Conventional Approach to Random Sampling
— Binary search in CDF
— Direct inversion of iin PDF

- Optimal Approach
— Alias sampling for CDF
— Composition method for bin PDF
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Introduction

« Continuous Probability Density Functions (PDFs) are frequently
approximated by tabulated piecewise-linear PDFs

f(x)

X4 Xo X3 X4 X5 Xg X; Xg  Xg
X =
— Bin widths can be chosen adaptively to minimize relative error

* This lecture addresses cases where the PDFs are
— Known at problem setup, prior to running any particle histories

— Small to moderate number of entries, so that preprocessing & some
extra storage is practical

— Sampled often-enough during particle histories that any preprocessing
time is unimportant

— Generally most useful for PDFs found in source sampling & collision
physics (exit energy & angle)
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Conventional Approach to
Random Sampling from a
Piecewise Linear PDF
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Piecewise Linear PDFs

Many PDFs are represented as tabulated piecewise linear
functions of E, yu, X, ...

— Probability Density
Function (PDF), f(x) f(x)

N points, N-1 bins

— Cumulative Distribution
Function (CDF), F(x)

F(x)

Quadratic shape within bins

Usually stored as linear arrays: X >
X(1.N) = [ Xy, X5, .oy Xy ]
f1.N) =[f, f5 ..., fy ]
FA.N) = [ F,, Fy, ..., Fy ]
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Conventional Sampling Technique

AMC-22 - 6

Data:

X(1..N) = [ x4, X5, ..., Xy ]
f(1..N) [ f,, fo, ..., fy 1]

FA.N) =[ F,, F,, ..., Fy1 < computed at problem setup

Two steps are required:

1. Randomly sample a bin, k

r=2¢
Search the CDF array to find the bin k containing r,
F. =r = F,, 1 = k = N-1

2. Sample x’ from the linear PDF within bin k
Linear PDF from (x,, f,) t0o (X1, f..y) =2 Quadratic CDF, F(x)

r =¢

Solve for x’: r=F(x’)
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Search Algorithms

- There is extensive literature on search algorithms

— D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting &
Searching

— Many other references - books & journals

- For general Monte Carlo codes with cross-section data, the
commonly-used methods are linear search &/or binary search

— Linear search takes O(N ) time, best when N~ 10 orless
— Binary search takes O( InN ) time, best when N ~ large
— Linear searches are easier to program, less prone to code errors

— For both linear & binary searches, need to consider
whattodoif x<x; or Xx>Xy (x outside table)

- Best to avoid this
- Error stop? Use endpoint? Extrapolate?
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Binary Search to Sample Bin

Given x and data table: N, table(1..N)
Find k such that: table, < target < table,,;, 1=k= N-1

int binar

int j
jfirst =
jlast =

for(;;)
if( jl
jmid =
if( *t
jfir
}
else {
jlas
}
}

return

y_search( int* n,
double* table,
double* target )

first, jlast, jmid; For use in random sampling, target is
0; an RN in (0,1) so that an error check
*n — 1; on out-of-range is not needed.

{

ast-jfirst == 1 ) break;
(jfirst+jlast)/2;

arget >= table[jmid] ) {

st = jmid;

\ Not obvious, but:
t = jmid; e Guaranteed to terminate

 Guaranteed resultin [1, N-1]

jfirst+1;
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Continuous PDFs — Linear

Example - Sampling from linear PDF bin k

fk+1
f(x) Note: normalized such that
fi 0.5% (fi+Fic 1) (Xiea1 =Xy ) =1
Xy X D X1
PDF: f(x) = fi + m (x-x,), M = (fier ) (X1 X)), X S XS Xyeag
CDF: F(x) = (m/2) x2 + (f.-mx,) x +(mx,2/2 - f.x,)

= A X2 + Bx + C

Sampling scheme: F(x) =&  solve for x
x ={ -B + sqrt(B?-4A[C-§] ) } / 2A

(always want +sqrt)

= Awfully complicated, and sensitive to numerical roundoff
=» There must be a simpler scheme ( there is ...)
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Conventional Sampling in Bin k

double linear_sample_std( int *n,
double x[],
double pdf[],
int *k ){

double x0,p0O, x1,pl, r,s, a,b,c,d;

pO=pdf[*k-1], pl=pdf[*k], =xO0=x[*k-1], =xl=x[*k];
r = 2.0/ ((pO+pl)*(x1-x0));
pO*:r; pl*:r;

(p1l-p0)/(x1-x0);

0.5*s;

= p0-s*x0;

.5*s*x0*x0 - p0*x0 - rang();

b*b - 4.*a*c;

(d<0.0) ? 0.0 : d; // sloppy, set negative roundoff to zero

o PR o PR o T o i IR/
i

return .5*(-b+sqrt(d))/a;
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Conventional Sampling

|=====> in problem setup, given x(N) & pdf(N), find cdf(N)

cdf(1l) = 0.0
do k=2,N

cdf(k) = cdf(k-1) + 0.5*(pdf(k)+pdf(k-1)) * (x(k)-x(k-1))
endo

!|=====> during particle histories

!---> random sample bin k
r = rang()
k = binary search( N, cdf, r )

!---> sample xsample within bin k
xsample = linear sample( N, x, pdf, k)
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Optimal Approach to
Random Sampling from a
Piecewise Linear PDF
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Outline

« Selecting the bin
— First try to hand-optimize the search coding
— Then look at a better algorithm — eliminate the search by alias method

« Sampling within the bin
— Examine an often-used composition method
— Examine a better composition method

* Final results
— Robust within bin sampling — immune to roundoff & faster
— No table search, due to alias method

— Constant time
* Using linear table search, t ~ O(N)
« Using binary table search, t ~ O(logN)
« Using alias method, t ~ O(1)

— Overall speedup ~ 10-100x or more

13
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Binary Search - Variations

Basic MCNP binary search

int binary search( int* n,
double* table,
double* target )

{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;
for(;;) {
if( jlast-jfirst == 1 ) break;
jmid = (jfirst+jlast)/2;
if( *target >= table[jmid] ) {
jfirst = jmid;
}
else {
jlast = jmid;
}
}
return jfirst+1l;
}
n=16 6.7 ns
MacBook Pro n=128 14.6 ns
3.5 GHz 17 n=1024 24.9 ns

2.1 Ghz LPDDR3

Basic binary search, with shift

int binary searchl( int* n,
double* table,
double* target )

{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;

for(;;) {
if( jlast-jfirst == 1 ) break;
jmid = (jfirst+jlast) >> 1;
if( *target >= table[jmid] ) {
jfirst = jmid;

}
else {
jlast = jmid;
}
}
return jfirst+1l;

n=16 5.4 ns
n=128 12.2 ns
n=1024 19.0 ns
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Binary Search - Variations

Basic binary search, with shift

int binary searchl( int* n,
double* table,
double* target )

int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;

for(;;) {
if( jlast-jfirst == 1 ) break;
jmid = (jfirst+jlast) >> 1;
if( *target >= table[jmid] ) {
jfirst = jmid;

}
else {
jlast = jmid;
}
}
return jfirst+1l;
}
n=16 5.4 ns
n=128 12.2 ns
B T n=1024 19.0 ns

2.1 Ghz LPDDR3

Basic binary search, with shift+merge

int binary search2( int* n,
double* table,
double* target )

int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;

for(;;) {

if( jlast-jfirst == 1 ) break;

jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid jfirst;
jlast = (jtest) ? jlast jmid;
}
return jfirst+1l;
}
n=16 5.3 ns
n=128 124 ns
n=1024 19.1 ns

15
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Binary Search - Variations

Basic binary search, with shift+merge

int binary search2( int* n,
double* table,
double* target )

{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;

for(;;) {

if( jlast-jfirst == 1 ) break;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

}

return jfirst+l;

n=16 5.3 ns

n=128 12.4 ns

n=1024 19.1 ns
MacBook Pro

3.5GHz 17
2.1 Ghz LPDDR3

Basic binary search, with goto

int binary search3( int* n,

double* table,
double* target )

int jfirst, jlast, jmid;

jfirst = 0;

jlast = *n — 1;

more:
if( jlast-jfirst == 1 ) goto done;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid jfirst;
jlast = (jtest) ? jlast : jmid;
goto more;

done:

return jfirst+l;

n=16 5.6 ns
n=128 12.2 ns
n=1024 19.1 ns
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Binary Search - Variations

Basic binary search, with shift+merge

int binary search2( int* n,
double* table,
double* target )

{
int jfirst, jlast, jmid;
jfirst = 0;
jlast = *n — 1;

for(;;) {
if( jlast-jfirst == 1 ) break;
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

}

return jfirst+l;

5.3 ns
12.4 ns
19.1 ns

n=16

n=128

n=1024
MacBook Pro

3.5GHz 17
2.1 Ghz LPDDR3

Basic binary search, with no if-tests

int binary search4( int* n,
double* table,
double* target )

{
int jfirst, jlast, jmid, k, m;
jfirst = 0;
jlast = *n — 1;
k = jlast — jfirst + 1;
m = 32 - leadz( &k );
for( k=0; k<m; k++ ) {
jmid = (jfirst+jlast) >> 1;
jtest = *target >= table[jmid];
jfirst = (jtest) ? jmid jfirst;
jlast = (jtest) ? jlast jmid;
}
return jfirst+l;
}
n=16 6.6 ns
n=128 11.7 ns
n=1024 17.9 ns
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Optimal Random Sampling from Piecewise Linear PDFs

 For randomly generated PDFs & randomly sampled targets

 Lookup time (nanosec) vs number of bins:

18

N bins = 2 4 8 16 32 64 128 256 512 1024
Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 724 | 1394 | 270.7
Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9
Binary, shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0
Binary, shift, merge 1.4 2.2 3.5 5.3 7.6 9.4 12.4 14.4 16.2 19.1
Binary, goto 1.3 2.2 34 5.6 7.3 9.2 12.2 14.1 15.7 19.1
Binary, no if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

300

200

100

MacBook Pro 0
3.5GHz 17
2.1 Ghz LPDDR3
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Alias Sampling

Sampling from Discrete PDF’s — Alias Method
Any discrete PDF can be converted into "Alias sampling® form
original PDF:  {f.}, k=1, ..., N

where fi = probability of selecting x = xy

aliased PDF; {9 i} k=1,..N

where % Ay = prob. of selecting X = x,
%- (l—qk) = prob. of selecting x = xik
Alias sampling procedure:
Selectgntfm_yforﬁ: ‘ §<—|_1+N§1_|
Select either k or its "alias"” i if §y<a., XX,

otherwise, X<« X
k

...{CONtinued on next page)



Optimal Random Sampling from Piecewise Linear PDFs 20

Alias Sampling

Sampling from Discrete PDF’s — Alias Method (continued)

Why bother with "alias sampling” ?

=» No table search needed, requires O(1) time

= Sampling time is constant & independent of size of PDF

=» Vectorizes completely & efficiently

= Fastest possible way to sample discrete PDFs

< Invented by Brown (who later found out Walker did it 3 yr earlier)

Creating the "aliased PDF" amounts to converting an N-way tree from

arbitrary branching probabilities with single outcomes
to
uniform branching probabilities with dual outcomes

(See FB Brown & RACER coding for the set up algorithm)

X4
q
discrete PDF Plantie aliased PDF 13 '
1 Xj(1)
1-q4
E: x2
Xo #.i ¥ gaee] 92
t Xi2)
1-q;
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Alias Sampling - Setup

void alias_setup( int* n,
double* prob,
double* aiq )

// set up aiq[] array for alias sampling,

// using FB Brown method, with l-based indexing for aiq()
double eps = le-10, onep=leO+eps, onem=leO-eps;

int is[*n], ig[*n], 3j, js, jg, 1ls, 1lg;

double p[*n];

// initial index lists of smaller/greater

ls = -1;

lg = -1;

for( j=0; j<*n; j++ ) {
plj] = (*n) * prob[j]
if( P[jl<onem ) is[++1s]
else if( p[j]l>onep ) ig[++1g]

..
~e we

}

// £ill the aiq[] array
for( j=0; j<*n; j++ ) aiq[j] = J;
lg = 0;
while( 1s>=0 ) {
js = is[ls--];
jg = ig[lg];
aiqg[js] = jg + p[js]; // aiq = (index of alias).(prob of non-alias)
pligl += p[js] - 1leO0;
if( p[jgl]<onmem ) is[++1s] = ig[lg];
if( p[jgl<onep ) 1lg++;

// change from O-based to l-based for aiq]]
for( j=0; j<*n; j++ ) aiq[j] += 1leO;
return;
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Alias Sampling - Sample

int alias sample( int* n,
double* aiq )

// use alias sampling,

// return index in range [1,n]
int bin, alias;

double r, q;

I
()

r -= bin;
q -= alias;

r = (*n)*rang(); bin
q aig[bin++]; alias

I
Q

if( r>q ) bin = alias;

return bin;
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Alias Sampling - Timing

CPU TIME PER SAMPLE, AMDAHL 470V/8 (MICROSECONDS)

O
wy

40

30

20

Linear search
USUAL METHOD, =

WITH DIRECT SEARCH-
(MAXIMUM TIME)

/march

XM USUAL METHOD,
WITH BINARY SEARCH

S PRESENT METHOD Alias Sampling

10

20 30 40 SO 60
LADDER LENGTH, N
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Continuous PDFs — Linear

Example - Sampling from linear PDF bin k

fk+1
f(x) Note: normalized such that
fi 0.5% (fi+Fic 1) (Xiea1 =Xy ) =1
Xy X D X1
PDF: f(x) = fi + m (x-x,), M = (fier ) (X1 X)), X S XS Xyeag
CDF: F(x) = (m/2) x2 + (f.-mx,) x +(mx,2/2 - f.x,)

= A X2 + Bx + C

Sampling scheme: F(x) =&  solve for x
x ={ -B + sqrt(B?-4A[C-§] ) } / 2A

(always want +sqrt)

= Awfully complicated, and sensitive to numerical roundoff
=» There must be a simpler scheme ( there is ...)
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Continuous PDFs — Linear

Example - Sampling from linear PDF in range [a,b], 1 bin
fy
Composition method #1 f(x)
Decompose the original PDF into the fa
sum of 2 PDFs, uniform + linear:
a X > b
f(x) = p, u(x) + p, I(x)
u(x) = uniform on as< x < b, u(x) 1/(b-a)
p, ={min(f,f,) (b-a)} / {.5(f,+f,) (b-a) } ‘ ‘
a b
I(x) =linearonas<x<bh, I(x) 2/(b-a)
P ={.5abs(fy-f,) (b-a) } / {.5(f,+f,) (b-a) } /\
a b

Sampling scheme: if( & < p, )
X — a + (b-a) &,
else
if( f,>f, ) x — a + (b-a)sqrt(§,)
else X «— a + (b-a)(1-sqrt(g,))
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Continuous PDFs — Linear

Increasing linear PDF

2/(b-a)

f(x)

X->

Random sampling can be done
with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a)sqrt(¢)

Decreasing linear PDF

2/(b-a)

f(x)

X>
Random sampling can be done

with a simple shifting & scaling
of the unit PDF:

X «— a + (b-a) (1 -sqgrt(g))
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Continuous PDFs — Linear

Example - Sampling from linear PDF in range [a,b], 1 bin

Composition method #2 f(x)

Decompose the original PDF into the
sum of 2 PDFs, increasing + decreasing linear:

f(x) = pm M(x) + p; 1(x)

m(x) = linear decreasingona<x<b, m(x) 2/(b-a)
Pm ={.5f,(b-a)} / {.5(f*,) (b-a) } I\
= f, | (f,+f,) a b
I(x) 2/(b-a)
I(x) = linear increasingonas<x=<b, /\
pp ={.5f,(b-a)} / {.5(f,;+f) (b-a) }
= f, [ (f,+f,) a b

Sampling scheme: if( & < p, )
x — a + (b-a)sqrt(g;)
else
X — a + (b-a) (1-sqri(3;))
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Composition Method for Sampling within Bin k

double linear sample new( int *n,
double x|[],
double pdf][],
int *k )

double r, p;

// next line could have been precomputed,
p = pdf[*k] / (pdf[*k-1] + pdf[*k]);

r = sqrt( rang() );

1.0-r;

if( rang() >p ) «r

return x[*k-1] + (x[*k]-x[*k-1])*r;

// num of points
// x[*n]
// pdf[*n]

// bin number,
// l-based

in place of pdf][]
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Continuous PDFs — Linear

Examples — Sampling from Piecewise Linear PDF fs

Xo X4 X2 X3 X4 X5 Xg
Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from linear PDF within bin
(f.+f, ) '
- Discrete PDF: P = ——5——- (4=%_)s  k=1,..N
— generate &

— use table search or alias method to select K
« Linear sampling within bin K:

— generate §

f
— then, if §,<fk:;k1 , Rex, - =X 1) JE

otherwise XX _+ (Xk—Xk_l)ng



Optimal Random Sampling from Piecewise Linear PDFs

Combined Alias & Linear PDF Sampling

Combined: alias sampling to select a bin, then
composition method for linear pdf sampling

double alias_sample linear pdf( int *npts,
double x[], // [npts]
double pdf[], // [npts]
double aiq[] ) // [npts-1]

// Note: below uses O-based indexing, C-style
int nbin, bin, alias;
double r, q;

nbin = *npts - 1;

// use alias sampling, get bin in range [0,nbin-1]

r = nbin*rang(); bin = r; r -= bin;
q = aiq[bin]; alias = q; q -= alias;
if( r>q ) bin = --alias;

// linear sampling within bin, composition method

r = sqrt( rang() );

if( rang()*(pdf[bin]+pdf[bin+l]) > pdf[bin+l] ) r = 1.0-r;
return x[bin] + (x[bin+l]-x[bin])*r;
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Comparison of Sampling Times

« Compare:
— Standard sampling, with linear search
— Standard sampling, with binary search
— Alias sampling, with composition method

« Sampling time (nanosec) vs Number of bins

Nbins= 2 4 8 16 32 64 | 128 | 256 | 512 | 1024
Stdsampling, | oo | 347 | 417 | 434 | 476 | 546 | 665 | 96.1 | 162.6 | 291.8
linear search
Stdsampling, | 359 | 414 | 46 | 487 | 521 | 551 | 581 | 6.7 | 65 | 69.1
binary search
Alias sampling | 20.5 | 20.7 | 21.1 | 20.7 | 20.5 | 20.6 | 205 | 20.4 | 20.6 | 20.7
Alias, combined| 17.6 | 17.4 | 17.5 | 17.4 | 173 | 17.4 | 17.4 | 17.3 | 17.4 | 17.6
300 . I
250 ==Std sampling, Lin-srch
200 -®=Std sampling, Bin-srch
150 ~=#=Alias samplin
100

MacBook Pro 50

3.5 GHz 17 .

2.1 Ghz LPDDR3

200

400

600

800

1000
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Summary

« Optimal sampling method for piecewise-linear PDF
— Alias sampling to select bin (eliminates the search)

— Composition method using increasing/decreasing linear sampling

* Final results
— Robust within bin sampling — immune to roundoff & faster
— No difficulties if x-points are identical
— Can mix delta functions into piecewise-linear PDF
— No table search, due to alias method

— Constant time
* Using linear table search, t ~ O(N)
« Using binary table search, t ~ O(logN)
» Using alias method, t ~ O(1)

— Overall speedup ~ 10-100x or more



Optimal Random Sampling from Piecewise Linear PDFs

References - Sampling

F.B. Brown, “Monte Carlo Techniques for Nuclear Systems — Theory
Lectures”, Lecture c-t-02 Random Sampling, LA-UR-16-29043 (2016)

D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical
Algorithms, 39 Edition, Addison-Wesley, Reading, MA (1998).

D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting & Searching,
3rd Edition, Addison-Wesley, Reading, MA (1998).

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY
(1986).

J. von Neumann, "Various Techniques Used in Conjunction with Random
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951).

C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-
MS, Los Alamos National Laboratory, Los Alamos, NM (1983).

H. Kahn, "Applications of Monte Carlo,” AECU-3259, Rand Corporation,
Santa Monica, CA (1954).



Optimal Random Sampling from Piecewise Linear PDFs

References — Alias Sampling

A.J. Walker, “An Efficient Method for Generating Discrete Random
Variables with Generalized Distributions”, ACM Trans. Math. Software,
Vol 3, No. 3, 253-256 (Sept, 1977)

R.A. Kronmal, A.V. Peterson Jr, “On the Alias Method for Generating
Random Variables from a Discrete Distribution”, The American
Statistician, Vol 33, No 4, 214-218 (Nov 1979)

F.B. Brown, W.R. Martin, D.A. Callahan, “A Discrete Sampling Method for

Vectorized Monte Carlo Calculations”, Trans. Am. Nucl. Soc. 38, 354
(1981)

M.D. Vose, “A Linear Algorithm for Generating Random Numbers with a
Given Distribution”, IEEE Trans. Software Engineering, Vol 17, No. 9
(Sept, 1991)

G. Marsaglia, "Generating Discrete Random Variables in a Computer,"
Comm. Assoc. of Computing Machinery, 6, 37-38 (1963)



Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 35




Optimal Random Sampling from Piecewise Linear PDFs AMC-22 - 36




Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 1

ot Permutations,
Methods for Sets of N-from-M, &
Monte Carlo Cou nti ng_Sorts

Calculations

Forrest B. Brown

I{M NUCLEAR
)" ENGINEERING National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

“7Los Alamos

NATIONAL LABORATORY
- ~ E5T.1943 ~ -




Permutations, Sets of N-from-M, Counting-sorts AMC-23 - 2

Outline

« Random Permutations

- Sampling N ltems from a Set of M ltems

— With Replacement

— Without Replacement

- Reordering the Fission Bank, without Sorting



Random
Permutations
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Random Permutations (1)

- Problem: Generate a random permutation of a set of N items

— N items: { Xq; X9y X35 =2ey Xy }

— Want a a random ordering of the N items,
without duplicate or missing entries

— Examples: shuffling cards; random order for presentations;. ..
- Basic algorithm

for J=1.. N

pick a random integer K in range [1,N]

swap x(J) and x(K)
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Random Permutations (2)

Matlab C

long J, K, N;
double x[], xtmp;

for J =1 : N for( J=0; J<N; J++ ) {

% Random integer in range [1l..N]
K =1+ floor( N*rand ); K =floor( N*rang() );

o\©

Swap x(J) & x(K)

xtmp = x(J); xtmp = x[J];
x(J) = x(K); x[J] = x[K];
x(K) = xtmp; X[K] = xtmp;

end }



Sampling
N-from-M
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Sampling N from M ltems (1)

* Problem: Given M items, randomly select N

- For N=M
— If duplicates are allowed, called "sampling with replacement”
— If duplicates are not allowed, called "sampling without replacement”

- For N> M
— Usually interpreted to mean:
(1) Make K copies of all M items, where K =floor(N/M)
(2) Sample the remainder (N - K*M) with or without replacement

Example: To sample 20 items from 6:

Copy all 6 items 3 times each,
then sample 2 items from 6

- While we may be picking from { x,, X,, X3, ..., Xy },
we only need consider the indices of selected items.

After picking the list of indices, gather the values.




Permutations, Sets of N-from-M, Counting-sorts

Sampling N from M ltems (2)

AMC-23 - 8

- Sampling "with" vs "without" replacement

— Easy way to understand - picking Powerball numbers, by drawing
labeled balls from bucket (pick 5 from 69, then 1 from 26)

- Sampling with replacement:
pick a ball, record the number, then put it back in the bucket

- Sampling without replacement:
pick a ball, record the number, don't put it back in the bucket

- Sampling with replacement could give: 5,5,5,5,5, 5

- Sampling without replacement gives 5 unique numbers, then another.

— Need sampling without replacement for picking Powerball numbers

 This type of sampling occurs in criticality calculations,
where N neutrons must be selected randomly from a
fission-neutron-bank that contains M neutrons

— We generally prefer to use sampling without replacement
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Sampling N from M Iltems, WITH REPLACEMENT (3)

- Example
Given:
Randomly select:

integer, parameter ::
integer, parameter ::

do J =1, N

K =1 + M*rang()

keep(J) = K

enddo

M=5,

N=3 items, with replacement

M=5
=3

{1,2,3,4,5}

! Given items

! How many to select

! Random pick from 1..M

Save the pick
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Sampling N from M Items (4)

- Example
Given: M=5, {1,2,3,4,5}
Randomly select: N=3 items, without replacement
integer, parameter :: M=5 ! Given items
integer, parameter :: N=3 ! How many to select
IX(1:M) =11, 2, 3, 4, 5 ] ! List of items
Mleft = M
do J =1, N
K =1 + Mleft*rang() ! Random pick from items left
keep(J) = K ! Save the pick
IX(K) = IX(Mleft) ! Replace pick by last item
Mleft = Mleft - 1 ! Fix count of unpicked items

enddo

10
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Sampling N from M ltems (5)

- Better algorithm - from Knuth, Volume 2, Section 3.4.2

- Example
Given: M=5, {1,2,3,4,5}
Randomly select: N=3 items, without replacement
integer, parameter :: M=5 ! Given items
integer, parameter :: N=3 ! How many to select
K=0 ! # selected so far
do J =1, M ! Note: M, not N
prob = real (N-K) / real (M-J+1) ! Prob of selecting
if( rang() < prob ) then
K=K+ 1
keep(K) = J ! Save it
endif

enddo
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Sampling N from M ltems (6)

- Example - randomly pick numbers for Powerball

Use sampling without replacement to pick 5 from 69
Then pick 1 from 26

[As of 2015]

Notes:

— Using the first algorithm for sampling without
replacement, the results are not ordered, so may get
[ 5/ 1/ 3/ 2/ 4/ 6 ]

— Using the Knuth algorithm, results are ordered, so would
get [ 1, 2, 3, 4, 5, 6 ]
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Sampling N from M ltems - Mods

- Modifications so that algorithm works for N<M, N=M, N>M
- Example

Given: M=5, {1,2,3,4,5}
Randomly select: N=3 items, without replacement
integer, parameter :: M=5 ! Given items
integer, parameter :: N=3 ! How many to select
K=0 ! # selected so far
do J =1, M ! Note: M, not N
prob = real (N-K) / real (M-J+1) ! Prob of selecting
knt = prob + rang()
do i=1,knt
K=K+ 1
keep(K) = J ! Save it
endif

enddo
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Sampling N from M Weighted Items (W/O Replacement)

 When the M items to be sampled (without replacement) each have
weights, only minor modifications are needed

« Algorithm below works for N<M, N=M, N>M

- Example
Given: M=5, {1,2, 3, 4, 5.}
W= { W1! W2! W3! W49 W5 }
Randomly select: N=3 items, without replacement
integer, parameter :: M=5 ! Given items
integer, parameter :: N=3 ! How many to select
K =0 ! # selected so far
wtot = sum (W)
wcum = 0 ! cumulative wgt, so far
do Jg=1, M ! Note: M, not N
prob = w(J) * real (N-K) / (wtot-wcum) ! Prob of selecting
wcum = wcum + w(J)
knt = prob + rang()
do i=1l,knt
K =K+ 1
keep(K) = J ! Save it
enddo

enddo
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Fission Bank Reordering

* During criticality calculations, neutrons created by fission during
a cycle are added to the "fission bank", and held as sources for

Permutations, Sets of N-from-M, Counting-sorts

(1)

the next cycle

— Due to parallel processing (threading &/or MPI), the order of the
neutrons in the fission bank is not predictable

— For reproducible results in criticality problems, the fission bank must
be reordered into a unique order prior to starting the next cycle

— For definiteness, we choose to order the fission bank according to the
"particle number"” nps. If there are more than 1 fission bank entries
with the same nps, retain the order of those.

* Fission bank example — showing just nps, xyz

original

N = b =2 W

XyZ...
XYZ...
XYZ...
XyZ...

Xyz

(a)
(b)

reordered

P OON=-2 =

Xyz...(a)
xyz...(b)
XyZ...
XyZ...
XyZ...

16
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Fission Bank Reordering (2)

« The fission bank reordering could be done by sorting, but that
would take O(N2?) or O( N logN ) time, and could be expensive

« A counting sort algorithm is most efficient for reordering the
fission bank, O(N) timing

— Sorts a collection of objects according to keys that are small integers
— Applies only to sorting integers
— Basic idea:

« count the number of objects that have each distinct key value

 use arithmetic on those counts to determine the positions of each key
value in the output sequence

— Running time is linear in the number of items and the difference between the
maximum and minimum key values

— Suitable for cases where the range of keys is not significantly greater than
the number of items
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Fission Bank Reordering (3)

« Algorithm described next does the reordering in O(N) time, & is the method
used in the RACER & MCNP codes

FB Brown & TM Sutton, "Reproducibility and Monte Carlo Eigenvalue
Calculations”, Trans Am Nuc Soc 65, 235 (1992)

Given initial vector of parent numbers in the bank, P (N)
L, =1
Ly, =L, + count[ P, ==J0], J=1, ..., N

So that (L,,;-L;) = number of progeny in bank for parent J

Then permutation vector Q(N) for reordering P(N) is

for J=1,N

Q; = Lpg
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Fission Bank Reordering (4)

!===> find permutation vector for reordering an array in increasing order
n = length of ix() & perm()
= integer vector, unchanged
= perm vector for reordering ix()
keymin = minval(ix(1l:n)) ! minimum ix()
= maxval (ix(1l:n)) ! maximum ix()
= keymax - keymin + 1 ! size of vector to span range of ix()
allocate( knt(nkeys) )

(=]
x
(]
<
0n
|

knt(l:nkeys) =0
do i=1,n
key = ix(i) - keymin + 1
knt (key) = knt(key) + 1 ! count the entries for each unique ix()
enddo
loc =1
do key=1,nkeys
km = knt (key)
knt (key) = loc ! convert to starting locs in permuted vect
loc = loc + km
enddo
do i=1,n
key = ix(i) - keymin + 1
loc = knt (key) ! get loc for the permuted entry
perm(loc) = i ! store index for permuted entry
knt (key) = knt(key) + 1 ! bump the base loc, in case duplicates
enddo

deallocate( knt )
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9000
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(9)
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Timing Studies vs Fission Bank Size

8000 +

7000 +

6000

— Old MCNP, with fission-bank sorting
- - Sorting overhead time, quadratic

— New MCNP, no sorting, linear reordering/

N

5000

4000

3000

Run Time (wall-clock seconds)

2000

///
/7
P
s
//&/ -
»
~~
1000 -

R +
0 2 4 6 8 10 12 14

neutrons/cycle (millions)

PWR2D Model

1/4-core, detailed
geometry, ENDF/B-VII

KCODE problem, first
5 cycles

Mac Pro, 3 GHz, 2
quad-core Xeon

Run with 8 threads

Times are wall-clock
seconds

Identical results for old
& new reordering
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Fission Bank Reordering (6)

* For older versions of mcnp

— Fission bank reordering was done using a simple-minded bubble-sort,
that scaled as O(N?)

— Timing was OK for 100s or 1000s of neutrons/cycle

— For millions of neutrons/cyce, the time for reordering was longer than it
took to run the neutron histories !

* For newer versions of mcnp (and racer)
— Counting-sort, timing is O(N)

— Time for reordering fission bank is not an issue

Note: Romano's papers compared his methods for treating the fission
bank with the older mcnp schemes. Not valid for newer schemes.

21
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Outline

 Perspective

* Building a Monte Carlo Code
— Basic building blocks
— Testing
— Data Structures
— Overall code organization

— Random walk for a history
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Perspective

 The lectures on computing & Monte Carlo codes are intended for
both future code developers and code users

* For future code developers
— Follow these guidelines until you’ re good enough to make your own

— Throw out your “Numerical Recipes” book - look at real codes & the
literature

— Learn both Fortran & C, and perl & python & bash scripting

* For code users

— A general idea of what the codes do & why helps in deciphering input
manuals & output results

— Need to be good at using editor & shell windows & command line, not
just point-and-click GUIs

— Never just accept the MC results - always question whether results are
reasonable & what you expect



Building a
Monte Carlo Code
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Basic building blocks

« Random number generator
— Use a known, well-tested RNG - MCNP routines

Random sampling routines
— See my notes, Devroye's book, Kahn's report, 3rd MC Sampler, ...

Geometry routines - locate, distance, neighbors, boundary
— For mesh geometry & very simple 3D, can do it yourself
— For general 3D, this is a career - borrow from real codes

Physics routines - access, search, interpolate, sample
— For 1-group or multigroup, do it yourself
— For general continuous-energy, borrow from real codes

Tally & statistics routines
— Usually straightforward, but review your statistics
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Testing a Monte Carlo Code

« Basic building blocks must be tested separately,
before putting into larger code
— RN generator
— Random sampling routines
— Distance calculations
— Table search routines
— Interpolation routines

 Whole code must be tested on as many problems as possible
where correct answers are known

— Analytical problems, with exact solutions

— Experiments, with measured results
« Be wary of experiment error bars & model uncertainties
» Calculate many experiments, never just one
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General Guidelines

* For any scientific & engineering programs,
always use “double-precision” for real numbers

Fortran: real(8) x
C/C++: double Xx;
Matlab: (default is double)

- Data types should be explicit for constants
Fortran: pi =3.14159265358979d+0
not pi =3.14159265358979

 Integer lengths - 32-bit vs 64-bit
Fortran: integer id integer(8):: id  integer(8):: id
C/C++: int id; long id; long long id;

Usually, Fortran integer & C int limited to: < 2,147,483,647
OK for simple demo codes; production codes usually need bigger ints

Matlab: uses real(8)
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Data Structures (1)

AMC-30 - 8

* Particle - minimum attribute set
struct particle {

Il particle identifier number

Il position

Il direction cosines, u?+ v+ w?=1

Il energy (or group number, integer)
Il weight

I/l RN seed - most codes don't do this!

Il current cell number
Il distance to collision
Il distance to cell boundary surface

long long id;

double X,Y,Z;

double u,v,w;

double e;

double wgt;

long long seed;
}

* For convenience & speed, often include derived info:
long cell;
double dcol;
double dsur;
long jsur;

long X)X, kX;

/| number/label of boundary surface
Il lattice cell index numbers
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Data Structures (2)

* Multigroup Cross-sections o Ot Os Oa VO o 99 >g’
— Vectors of 0’ s S S
— Matrix of group-to-group scatter '3 <
— Group 1 - highest energy range J
Group g 2

* Continuous-energy Cross-sections
— Complex format, 68 page description in MCNP Manual Vol-lli

— Microscopic o’ s given as ladder of (E,, o,) pairs or sets
» O, is the cross-section at energy E,

« For E, < E< Ey,,, linear interpolation [sometimes lin-log, log-lin, log-log]
E-E,
I=% _k
kel Tk

Gt(E) = (1_f)'6t,k + f'Gt,kH
— Data for scattering laws has varied, complex formats
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Overall Code Organization

Initialize problem
* read input, or hard-wired setup - geom, xsecs, options
e clear tally arrays for problem
* set RN seed for problem

Do n=1, nhistories

Initialize history
e clear tally arrays for history
* set RN seed for history

Source for history n
*set x,y,z, u,v,w, E, wgt, cell

Random walk for history n
* geometry, physics, tallies for history

Statistics
e add history tallies & tallies2 to problem tallies

end-of-history-loop

Compute overall results & statistics
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Random Walk for a History

Source - set x,y,z, u,v,w, E, wgt, cell

Do while wgt>0
* get material number & xsec data
e dist_collision from random sampling
e dist boundary from distance routines

dist = min( dist_collision, dist_boundary )
(x,y,2) = (x,y,z) + dist* (u,v,w)
* make pathlength tallies

if( dist_collision < dist_boundary )
* collision physics, get new u,v,w, E, wgt
* make collision tallies
* if particle terminated, exit loop
else
* boundary routine
e find neighbor cell
* make surface tallies
e if particle escapes, exitloop

* Russian roulette & splitting games
end-of-flight/collision-loop
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Introduction

* For a production-level code

— Correct results is #1
« Compare code results to experiments or analytic solutions
* Document the verification/validation results

— Run-time is #2

« If calculations take too long, users might not do them or might take
undesirable shortcuts...

* On today's computers, parallelism is required for decent performance

* For developing new algorithms, methods, & numerical schemes

— Generally done stand-alone, separate from large production code
— Developers need to test & time the old vs new approaches

— Impact on production code runtime depends on how often the new
coding is used, and also on the applications
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Timing
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How to Time

« Small sections of coding may take psec or nsec

— For such short times, system timing routines are not reliable for a
single execution of the coding

— Need to take an average execution time for many runs
« May need 1000s or Ms of repetitions for reliable timing
« Subtract the overhead for repeating the test
* Need to vary the inputs for the tests, perhaps randomly

— For threaded coding
* Timing should be in terms of wall-clock time, not cpu-time

— For single-thread coding
 Either cpu-time or wall-time is fine
e Ccpu-time is easier
* In MC, threading is by history, so any coding acting on only 1 history
(particle) should be timed for a single thread
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Fortran 2003 CPU Timing

call cpu_time (t)

To measure cpu time:

real(8) :: t, t1, t2
call cpu time( t1 )
do k=1,nrepeat

..... code being timed
enddo

call cpu time( t2 )

l===> time/trial
t = (t2 — tl)/nrepeat - t_overhead
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Fortran 2003 Wall-clock Timing

call system_clock( COUNT= count, COUNT_RATE= crate, COUNT_MAX= cmax )

count, crate, cmax: integers with the same KIND attribute

To measure elapsed wall-clock time:

integer(8) :: countl, count2, crate, cmax

call system clock( COUNT=countl )

..... code being timed
call system clock( COUNT=count2, &

& COUNT_RATE=crate, COUNT_ MAX=cmax )
t = (count2-countl) / real(crate,8)

! in case count rolls over:

if( t<0 ) t = t + cmax/real(crate,8)

Note for Intel Fortran-17, Macos 10.12 :
» Using integer(4): cmax/crate ~ 2.5 days, max interval
« Using integer(8): cmax/crate ~ 300K years, max interval
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Timing Example

nrepeat = 1000000 <--- should be large,

so total time is > a few seconds
!===> get overhead per trial
call cpu_time(tl)

s =0
do j=1,nrepeat

s = s + rang() <--- include overhead, & some extra
enddo (cheap) op so that compiler has
call cpu_time(t2) to do something & can't optimize
t overhead = (t2-tl) / nrepeat everything away

!===> timing for binary search
call cpu_time(tl)
do j=1,nrepeat

r = rang()

k = bsearch( npts, cdf, r )

enddo
call cpu_time(t2)
t = (t2-tl)/nrepeat - t_overhead

write(*,*) "bsearch:", t, "sec/trial"
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Timing & Scaling

 For many algorithms, the time/trial depends on the size of a
dataset
— Table searches
— Permutations
— Reordering data
— Sampling from a discrete PDF

« Timing tests need to be performed with different dataset sizes
— The "best" algorithm for small datasets may be bad for large datasets

— Plots of (timel/trial) vs (dataset size) are especially useful to identify
which algorithms are best for a range of likely dataset sizes
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Timing Example — with Scaling

subroutine time_bsearch( nrep,npts,cdf, tover)

integer,intent(in) :: nrepeat, npts
nrepeat = 1000000 real(8),intent(in) :: cdf(:), tover
integer :: j,k
l===> get timing overhead/trial fiziisiig‘in;' le'_, ﬁ;a:; search
call cpu_time(tl) call cpu_time(tl)
s =0 do j=1,nrep

do j=1,nrepeat r = rang()

k = bsearch( npts, cdf, r )
s = s + rang() enddo
enddo call cpu_time(t2)
. t = (t2-tl)/nrep - tover
call cpu_time(t2) write(*,*) "bsearch:", t, "sec/trial"
t_overhead = (t2-tl) / nrepeat end subroutine time bsearch
!===> timing for various table sizes subroutine make_data( n, x, pdf, cdf )
_ !===> randomly create piecewise linear PDF
n_ndata = 10 integer,intent(in) ::
ndata = [ 2, 4, 8, 16, 32, & real(8),intent(out) :: x(:), pdf(:), cdf(:)
& 64, 128, 256, 512, 1024 ] integer :: k
do k=1,n
x(k) = k
dO k=1,n_ndata pdf(k) = rang()
n = ndata(k) enddo
write(*,*) "Test tablesize =",n ggféi; : 0.0
call make data( n, x, pdf, cdf ) x1=x (k-1) ; x2=x (k) ;
pl=pdf (k-1); p2=pdf(k)
call time bsearch( nrepeat, n, & cdf (k) = edf(k-1) + 0.5%(p2+pl)*(x2-x1)
- dd
& cdf, t_overhead) Rt

pdf(l:n) = pdf(l:n) / cdf(n)
cdf(1l:n) = cdf(l:n) / cdf(n)
enddo end subroutine make_data



Timing Example — 6 Variations on Table Searches

Code Development — How to Time & Test

AMC-31 -

 For randomly generated PDFs & randomly sampled targets

 Lookup time (nanosec) vs number of bins:

10

3.5GHz I7
2.1 Ghz LPDDR3

N bins = 2 4 8 16 32 64 128 256 512 1024
Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 72.4 139.4 | 270.7
Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9
Binary, shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0
Binary, shift, merge 1.4 2.2 3.5 53 7.6 9.4 12.4 14.4 16.2 19.1
Binary, goto 1.3 2.2 3.4 5.6 7.3 9.2 12.2 14.1 15.7 19.1
Binary, no if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

300

200

100

MacBook Pro 0
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Testing
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Introduction

* General ways to test new algorithms

— Compare 2 or 3 different approaches
» For searching, may want to compare results using linear & binary searches
» For sampling, may want to compare rejection & direct, old vs new, . . . ..

— For random sampling algorithms, common approaches are

» Use very many histogram bins (1000s) for sampled results, compare to
original PDF on same bin structure

« Compute moments of sampled results & compare to analytic moments
m, =sum( x; /N, m, =sum( x? )/n, etc.

— Need to repeat the sampling or searching algorithm very, very many
times, varying the tables or probabilities, both size & shape

« Sometimes, need to pay particular attention to end-cases
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 Compare different methods & check

nrepeat

10000000

!===> pick different table sizes
n_ntable = 10

ntable

[ 2, 4, 8, 16,

do k=1,n ntable
n = ntable (k)

do k=1,nrepeat
!---> generate a random PDF
call make_random pdf( n, pdf )

!-—-> search different ways (with same

r = rang()

i = linear_search( n,cdf,
j = binary_ search( n,cdf,
!-——=> check

if( 1 /=3 ) stop
if( r < pdf (i) ) stop
if( r > pdf(i+l) ) stop

enddo
enddo

32,

63, 64, 65, 128, 256 ]

r)
r )
'%%x*%%** error 1

*x%x*x*%* error 2
'*%%x%** error 2

RN)

kkkk*x/
kkkk*k/
kkkk*k/!

13



Code Development — How to Time & Test

Example — Sampling, Histogram Bins

AMC-31 -

|
* Histogram binning

nbins = 1000
xmax = ... Max value for range
xmin = ... Min value for range

!1-—-> fill reference array with exact pdf at bin midpoints
call fill with exact pdf( nbins, x_exact )

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

X = sample pdf ()

bin = 1 + nbins*(x-xmin)/(xmax-xmin)

x_sample(bin) = x_sample(bin) + 1
enddo

x_sample = x_sample / nrepeat

!---> compare x_exact(:) to x_sample(:)

14



Code Development — How to Time & Test AMC-31 - 15

Example — Sampling, Moments

« Compute moments of exact PDF & sampled PDF

nmom = 10

!1-—-> fill reference array with mements of exact pdf
call fill with_exact_moments( nmom, moments_exact )

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

x = sample pdf ()

!---> compute sample moments

do j=1,nmom

moments sample(j) = moments sample(j) + x**j

enddo
enddo
moments sample = moments_ sample / nrepeat

!~--> compare moments exact(:) to moments sample(:) ...
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Assessing Test Results

* Plots of exact vs sampled results

« Compute goodness-of-fit parameters
— RMS difference, max difference, etc.
— Could compute statistics on sampled results

 For moment checking

— Could compute statistics on sampled moments
— RMS differences, etc.

 For modern unit-testing, need to decide on definite pass/fail
criteria
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Final Comments

 Timing & testing takes a lot of time & effort
— Sometimes more time than the algorithm development
— It's work, not fun
— Necessary - if not done, the new method or algorithm is worthless

 Documenting the work
— Modern code development practices
« Software Quality Assurance (SQA)
» Rigorous SQA is required by many professional standards
* Must document
— Basis for method (ie, theory, algorithm, ...)
— Testing results
— Timing/scaling results not required (but should be)
— Independent review
— It's work, not fun
— Necessary - if not done, the new method or algorithm is worthless

- By today's standards, if code development is not documented,
tested, & reviewed, it won't be used
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Introduction

Particle transport Monte Carlo is naturally parallel

* Fixed-source problems: each particle in problem is independent
 Eigenvalue problems: each particle in generation is independent

= Particle histories can be analyzed in parallel

Monte Carlo is often the first use for advanced computers

« Easy to port — compact coding, little /0O, simple parallel algorithm
« Flexible — independent histories on each node
* Big payoff — bigger & faster calculations

Computational considerations
« Expensive — hours / days / weeks of computing
« Compact — moderate memory size
« CPU-intensive — very little I/O or communications

T( computation ) >> T(communications )
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Vector Processing

Vector Processing

Vector Functional Unit

 Fortran
do j=1,L
a(j) = b(j) + c(j)
enddo
« Timing
Tvector o tstartup + ke toperation
- Speedup
L. tscalar-op tscalar—op
S = Tscalar/ Tvector = i Lot = &
startup vector-op vector-op
Q.
=)
T
[}
a
7

Vector Length
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Vector Operations

- Gather — form a contiguous vector from data in arbitrary locations

doj=1,L b(): F
i(): 4,

a(j) = b(i())
enddo a(): 6,

« Scatter — disperse vector data to arbitrary locations
do j=1,L b():
i(): 4,
a(i() ) =b()
enddo a(): 2,

14
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Vector Processing

Vector Operations

« Mask — either/or selection of data from two vectors

do =1,L
if( test(j) ) then test): T, T, F, F, T
c(j) = a(j) a(): 0, 1, 2, 3, 4
else b(): 5 6, 7, 8, 9
c(j) = b(j)
endif
enddo c(): o, 1, 7, 8, 4

« Compressed Index Generation — find the indices of selected items in a vector

k=0
do j=1,L test(): T, T, F, F, T
if( test(j) ) then
k=K+ 1
indx(k) = j
endif K: 3

enddo indx(): 1, 2, 5
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Vector Processing

The Tally Loop (scalar)
 Indexed accumulation

do j=1,L
sum( i) ) = sum( i) ) + r()

enddo
« Used to tally particle scores into bins, for overall results
- Tally operations account for 1-10% of time

« Not readily vectorized (some tricks for Cray-C90)
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Vector Processing

Writing Efficient Vector Coding

- Clean loops — structure & indent (Good-looking code runs faster!)
* Innermost loop should be the vector loop

 Avoid IF tests, unless strictly "either/or"

« Never use "GO TO" statements

« No subroutine calls

« No user-defined function calls

* No recursion (ie, forward-stores or backward-fetches)

« Timing estimates:

— Count all operations inside loop, including both branches for IF’s.
— Multiply by vector length & clock cycle time.

— Measure. If much different from estimate, find out why !
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Vector Processing

Amdahl’s Law

« If a computation has fast (vector) & slow (scalar) components,
the overall calculation time will be dominated by the slower component

1

« Speedup = , where f = fraction vectorized
(1-f) +f/R _
R = max speedup from vector
for R=10 for R=w
f S i S i S f S
20% 1.2 90% 5.3 20% 1.3 90% 10
40% 1.6 95% 6.9 40% 1.7 95% 20
60% 2.2 99% 9.2 60% 2.5 99% 100
80% 3.6 99.5% 9.6 80% 5 99.5% 200

* For effective vector performance, must vectorize everything !
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Vectorization

Vectorized Monte Carlo

- Monte Carlo | Select source r, Q, E randomly
Simulate neutron behavior Track through geometry,
by random-walk. select collision site r randomly
Collision physics analysis,
select new Q, E randomly
|

« Conventional Monte Carlo

Analyze many events forone neutron, repeat for other neutrons

« Vectorized Monte Carlo

Analyze many neutrons for one event, repeat for other events

= Event-based algorithms developed by Kalos, Brown/Martin, Bobrowicz
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Vectorization

Monte Carlo is difficult to "vectorize"

« Branching, data retrieval, & arithmetic operations vary for each particle,
depending on location, type of collision, code options, etc.

 Typically, ~ 1/3 of essential Fortran statements are |IF-tests,
which inhibit vectorization

 Not useful: — "automatic vectorizers"
— syntactic hand-vectorization by programmers

[ In early 1980s, LANL tried each approach with menp =» 2X slower ]

Method for Vectorizing Monte Carlo

1. Use supercomputer with vector hardware for data-handling
Deliberate & careful development

Restructure the database

&~ @

Restructure & rewrite the Monte Carlo code
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Vectorization

Method for Vectorizing Monte Carlo

1. Use supercomputer with vector hardware for data-handling

« Only ~40% of operations are floating-point arithmetic (*, +,-, /, sgrt)
« 40-60% of operations involve data-handling, indexing, selection, .....
« Must have hardware suport for data-handling (gather, scatter, mask, compressed index, ...)

2. Deliberate & careful development

« Start small, with few options

* No committees !!!

« Focus effort on total vectorization

« Build gradually, restructuring as needed for new features

« Debugging is extremely difficult — test everything, separately & integrated

3. Restructure the database

« Unified data formats, with no special cases
« Arrange for simple & logical direct addressing using vector gather operations
« Use some new (but equivalent) physics, if necessary

4. Restructure & rewrite the Monte Carlo code

« "Top-down" development, based on event-driven algorithm

» Use some new (but equivalent) physics, if necessary

« Avoid rejection methods for random sampling

« "Vectorize" the IF-tests by data motion, extra computation, or new algorithms
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Vectorization

Vectorizing IF-tests

In Monte Carlo codes, |IF-tests arise in the context of:
implicit loops, conditional coding, = code options

Implicit loops

« Logic of the form "loop UNTIL ....."

« Usually coded as "IF ..... GOTO" & backward branch, instead of "DO ....."

* Number of passes is generally not known in advance

- Some patrticles satisfy the exit conditions on first pass, others take many passes

« Vectorize by:
— Data motion — rearrange the particle data after each pass (eg, event-driven algorithm)
— Extra computation — dummy ops on "finished" particles till all are done
— Different math/physics — eliminate implicit loop (eg, direct sampling instead of rejection)

Conditional coding
« Selective operations of some particles, but not others

« Vectorize by:
— Gather / Operate / Scatter
— Rearrange selective ops into series of "either/or" ops using vector masks
— Generalized equations, without special cases

Code options

« Easy — one test/branch for all particles
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Event-Driven Algorithm

Monte Carlo — Vectorization

Conventional Algorithm

history event sequence

1 SfTcfbfbfcfbk ©

2 STbfcfcfbfbEfb kK =

3 STDH FDb ED Kk

.

4 s fb K .

) s TelfclfoecrfTbhbtblfelfTbiIblk
Event-Based Algorithm

history event sequence

- sf~cfb~fb~f~~~~cfbk

2 s fEfb~fecf~cfTbfbf==bk

3 sfb~fb~fTb~=~=~=~ -~ ~ ~ ~ ~ Kk

4 §E B ~ ~ = = = = o % 5 ow oo ow o ow k

5 s f~cf~cf~cfbfbfcfb-~1*fDbk

vector eventsequence
s fbcfbcfbcfbfbfcfbkI£fDbk
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Event-Driven Algorithm

RACER Computational Events
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Event-Driven Algorithm

Monte Carlo — Vectorization

Event-Driven Algorithm: Fanicle SiEck
Attributes =
Event Queues it
Event1 [T T [ [T TT]
Event2 [ [ T[]
Event3 [ [ [ [ [ [ [ [ [ [ [ [7]]
Event4lll[lllllll‘&
etc. . . z
pointers to particles @
O
while events are pending: §_
. — select event (1,2,3,...) with largest event-queue
. — execute the event:
. « PullN pointers from event-queue
. « Gather attributes for N particles from stack
. « Analyze event — vector calculation
. « Scatter modified attributes to stack

. « Push pointers onto next event-queue
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Event-Driven Algorithm
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RACER — Code Organization

Model Event
Properties Analysis

| Geometry
| < SURFACE
| + SECTOR
. *GRID

| Compositions | [ 2-D Grid |
| .MATERIAL | | Tracking

| Edit Specs
. <« EDITS

| Tally Scores

' Physics Data |
.+ Cross-sections
|+ Probabilities

|+ Angular PDFs

Neutron

Attributes

16



Vector & Parallel Monte Carlo AMC-32 - 17

Event-Driven Algorithm

% Loop over timesteps

% Loop over batches

-» select starters

% Loop over edit-groups

=» clear edit-group tallies

% Loop over super-groups

=» get o’s, f(W’s, .....

=» clear event-queues

=» push to event-queues:

% Loop until event-queues are empty
. =» select event with longest pending queue

pointers to neutrons in supergroup

. =» pull from event-queue: pointers to neutrons

. =» gather: needed neutron attributes
. =» analyze event & tally

. =» scatter: updated neutron attributes

=» push to next-event queue:  pointers to neutrons

=» update eigenvalue, results, stats

=» depletion
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Vectorization

Monte Carlo — Vectorization

Status

 Vectorized Monte Carlo, with event-driven algorithms,
was proven to work effectively in ~1980 on Cray-1 & Cyber-205

- Large speedups (20x or more) were demonstrated
in production Monte Carlo codes, on real problems

 Relatively easy to migrate to MIMD or mixed MIMD/SIMD architectures

- Very few large production codes have adopted this approach

What'’s the problem ?
» Must restructure the entire database & rewrite the entire code
« Large amount of people-time -» expensive

« "Why change something that works?" - QA work
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Parallel Processing

Parallel Programming

SIMD Machines
 Fine-grained parallelism, low-level
« Vector algorithms & programming

MIMD Machines & Distributed Systems

Specify Decompose Analyze Collect
Physical Computational Sub-domains Problem
Problem Problem in Parallel Results

» Coarse-grained parallelism, high-level

- Ideal for loosely-coupled machines & message-passing libraries
pvm, p4, MPI, express, lam, parmacs, .....
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Parallel Processing

Physical Problem

« 3-D geometry, continuous-energy physics
« vim— ANL, racer— KAPL, mcnp— LANL

Conventional Solution Algorithm

Global
Tallies

« Random walk for neutrons
« Tally events of interest

Parallel Algorithm

« Distribute neutrons to different processors
« Local tallies on each processor
« Combine local tallies into global results

Local

Status
| Tallies

 racer — in production use,
Cray-C90, Cray-YMP, Meiko-CS1
« vim — in testing,
workstation network & IBM-SP1

« menp — in production use,
workstation network, Cray-YMP

Global
Tallies

.| Local
| Tallies
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Parallel Processing

Monte Carlo — Parallel

Master-slave approach

» Master
— Control
— All I/0

- Slaves
— computations

Master process Slave process

% Loop over timesteps % Loop forever
* % Loop over batches «  =initialize tallies

- = =»selectstarters % Loop over chunks, till done

* * % Loop over chunks |2 = === = tellmaster: ready for work
. 8 . - find a ready slave & ="~

. - -» receive starters from master
. . . -» send starters to slave

. . % Loop over histories in chunk
. . . =» random walk for 1 history

. . % Loop over slaves
. . . =» collect slave tallies .

~

. . =» update eigenvalue, results, stats

] % =« = send tallies to master
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Performance

racer — Parallel / Vector Performance

« Measured performance =» histories / minute

« 3-D full-core PWR test problem

 Fixed number of histories/processor

« Range in performance spans 1000x [8 hr Cray-C90] ~ [1 yr workstation]

1e+07 v
Cray-C90/16 - 25K hist/proC s
Cray-YMP/8 - 16K hist/proc s |
Meiko-CS1 (i860) - 4K hist/proC s |
1e+06 |
@
=
3
=
=
@ 100000 }
o
]
=7
2
=

10000 |

1000

1 10 100

Number of Processors
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Issues

Vector & Parallel Monte Carlo — Issues

 Hierarchical parallelism

« Shared memory vs distributed memory
- Parallel speedup & scaling

- Software & Portability

« Reproducibility



Vector & Parallel Monte Carlo

Monte Carlo Algorithms:

Vector & Parallel

AMC-32 -

Scalar Monte Carlo
Loop over batches

Loop over particles

. analyze many events
. for 1 particle history

Parallel Scalar Monte Carlo

Loop over batches

. Loop over particles, N at a time

- . scalar scalar ... scalar
. . cpu-1 cpu-2 ... cpu-N

parallel = 1 particle per CPU,

scalar analysis
high-level: parallel
low-level: scalar

Vector Monte Carlo

Loop over batches

. Loop over events

. . vector analysis of 1 event
. . for many particle histories

Parallel Vector Monte Carlo
Loop over batches

. Loop over events

. . vector vector ... vector
. . cpu-1 cpu-2 ... cpu-N

parallel = many patrticles per CPU
vector = events on each CPU
high-level: parallel

low-level: vector

24
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Hierarchical Parallelism

RACER parallel algorithm

High-level:
V « independent tasks + message-passing

« distribute histories among processors
« Master / Slave algorithm

— Master: control, distribute work, collect results
— Slaves: compute particle histories, no communication with other slaves
Mid-level:
(next) - independent tasks + shared memory

 "macro-tasking”

- several slaves share memory, take turns on "critical regions"

x Low-level:
* "microtasking”
- split each DO-loop into pieces, compute, synchronize

V Low-level:
« vectorization, within each slave process
« Event-based algorithm (Brown/Martin, 1981)

— vectorize events independently (collision, 3D flight, boundary, ...)
— create & manage queues of particles waiting for each event
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Parallel MC Algorithms — Alternatives for Shared-Memory

Shared memory usage

Algorithm decisions:

Issues:

RACER — 1986

« benchmarks
 Cray-XMP

RACER — 1987
« Cray-XMP

RACER — 1988...today

« Cray-YMP
 Cray-C90
 super-WS

Private data vs. Shared data

overall memory size, data coherency, memory contention,
lock/unlock overhead, portability

PP @

(neuts| [neuts] [neuts] private memory
. rl;n?a%Kaccess i I|"'I| 2l - O C:U d
o 1L LT In{ " bank | memory snare
*« UNLOCK by all CPU’s

private memory
for each CPU

memory shared
by all CPU’s

private memory
for each CPU
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Parallel MC Algorithms — Distributed Memory & Clusters

Distributed memory usage

Algorithm decisions: private data (only)

Issues: local memory size

RACER — 1989...today

. i private memory
g \","\,‘;}"c‘.’uife‘; 2 for each CPU
Clustered Shared-Memory
Algorithm decisions: Private data vs. Shared data
Issues: overall memory size, data coherency, memory contention,

lock/unlock overhead, _ portabilit

RACER — (soon)

o gext scl;)%er neut| [neu private memory
- Cray- ose for each CPU
« LOCK —edils |
. c:us:er OI suptel:_-WS - mem access !}l .P" memory shared
cluster ot anytning « UNLOCK [geq] XS [mal) by all CPU’s
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Parallel MC — Speedup & Scaling

Performance Measurements
» Metrics

Speedup SN T4/ TN N = # processors
Effciency mny = Sy / N

- Fixed Overall Work
— Efficiency decreases with N
— Speedup (eventually) drops

— Example: constant — # histories/batch
variable — # histories/processor (~1/N)

- Fixed Work per Processor
— Efficiency approx. constant with N
— Speedup approx. linear with N

— Example: variable — # histories/batch (~N)
constant — # histories/processor

=» called "scaled speedup"
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Parallel Speedup & Scaling

Master / Slave Algorithm

- Master
— control
— distribute work
— collect results
- Slaves
— compute particle histories
— no communication with other slaves
TS Tc Tr

distribute compute collect
work histories results
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Advanced Computers

"Parallel” Message Passing

Most parallel computers support
concurrent message-passing
between separate pairs of nodes

M-
—>» B
-

t=

"Serial" Message Passing

But, multiple messages to a
single node are (almost always)
handled sequentially

— A
— B
——ap C

t=
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Parallel Speedup & Scaling

For a given physical problem,
« computation time ~ number of histories (M)

* Define:
M; = number of histories in job (fix.src.) or batch (eig.)
for calculation using 1 slave
N = number of slave processes
My = number of histories per slave
in job (fix.src) or batch (eig.) using N slaves
Ty = total time required for My histories = Tg + To + T,
"Fixed Size" Problem: My = My/N
« Constant number of particles in job (fix.src.) or batch (eig.)
« Goal of parallel calculation: same work, less time
"Scaled" Problem: My = M

« Constant number of particles per slave
« Goal of parallel calculation: more work, same time
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Parallel Speedup & Scaling — Eigenvalue Problems

Ts Te Ty
— > Mr——
5 ' UTTY || [T B B L | 1L etc.
B - I | [TEI = - wasfins-

X

U

U

cpu time per history,

depends on: physics, geometry, Fortran compiler,
machine speed & architecture,
computer coding, random straggling, etc.

amount of tally data per slave, proportional to # regions

0 negligible — send coordinates to slaves
S+ L/r s = latency, r = streaming rate
My th

T = M;t,/N (fixed size)

TScle - M, t, (scaled)
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Parallel Speedup & Scaling

Scaling Models for Parallel Eigenvalue Calculations

Problem Message

Size  Passing Parallel Speedup
fixed Six = Tq/T\™
. serial Stixser = T1/ (0 + TYN + NT,) = N/(1+cN?)
“ parallel Stixpar = T1/ (0 + Ty/N + T,) = N/(1+cN)
scaled Secale = NTq / T\SC2e
" serial Sscale’se,= NT;/(0+ Ty + NT,) =N/(1+cN)
" parallel Sscalepar= NT1 / (0 + T4 + T;) = N/(1+c¢)

c=(s+Lir)/ (M1th)
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Parallel Speedup & Scaling

Scaling Models for Parallel Eigenvalue Calculations

problem size communications Speedup
fixed serial S=N/(1+cN?)
fixed parallel S=N/(1+cN)
scaled serial S=N/(1+cN)
scaled parallel S=N/(1+c¢)

Scaling Models for Parallel Fixed-source Calculations

for long calculations: S~ N

N = number of slaves
c= (s+Lir)/ (M)
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Scaling - Limits & Metrics

Parallel Eigenvalue Calculations

Fixed size, serial messages

S = NI/(1+cN?) 1

Scaled size, serial messages
i1/c

S

N/(1+cN) 1/ e

N = number of slaves
C = (S+L/I')/(M1th)
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Scaling — Limits & Metrics

Parallel Eigenvalue Calculations — scaled size, serial messages

S = N/(1+cN)
Sax= 1/6€ N = number of slaves
Ny = 1/c

Examples:

« VIM, TREAT problem

Sun Sparc2 workstation cluster c=.0043 B = 200
rs6000/350 workstation cluster c=.011 Srax= 93
SP1, using ethernet c=.014 Oirgx = 10
SP1, using EUIH comm. c=.00134 Smax = 748

« RACER, "typical" large problem

100 K histories/min, 20 K histories/slave
32 MB tally data, r~ 1800 MB/sec

Cray-C90, using SSD for messages  ¢~.001 Siax ~ 1000
(16 processors, max)
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Vector & Parallel MC

Software & Portability Issues

Portability
 Best bets (for now) <=» Fortran-77 + C + message-passing
or =» Fortran-77 + C++ + message-passing
« Maybe =» Fortran-90 + C
« Gamble =» vendor-specific languages, new languages
* Not likely -» "automatic" parallelizers

"Standard" message-passing packages

« pvm =» from Oak Ridge & Univ. Tennessee

« mpi -» "Message-Passing Interface", draft standard
- p4 =» from Argonne

- express =» commercial product, Parasoft

Performance using distributed computing
« Minimize communications
« Minimize disk I/O (master only ??7?)
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Conclusions

- Parallel Monte Carlo codes ( mcnp4a, keno, vim, racer, ... ) are now
running on many parallel computers (cray, meiko, intel, convex, cm,, ...)
& workstation networks

« Master/slave algorithms are simple, easy to implement, & scale well
for eigenvalue problems.

« Communications bottlenecks at the master process are not a problem
today:

— ethernet is fast enough for 10’s of slaves

— FDDI, EUIH, & other schemes should permit 100’s of slaves

- The major limitation on parallel Monte Carlo today appears to be
memory size — each node must contain entire problem & tallies



Conclusions

Vector & parallel computing have side-benefits:
 reduces convergence problems
« Larger batches + more batches =» - reduces bias
* better correlation corrections

« "Unthinkable" problems become routine

Proven Monte Carlo algorithms exist for
« SIMD, MIMD, & mixed MIMD/SIMD supercomputers & MP computers

« MIMD distributed processing on a network of machines
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Challenges

Parallel algorithms which scale to 1,000's or 1,000,000's of nodes

« "master-slave" algorithm on 1,000,000 Internet nodes could take ~ 1 year to start
« UNIX socket connections — limits master to 10’s or 100’s of nodes

=» develop hierarchical parallelism, "clusters-of-clusters"
=» parallel histories + geometric decomposition (?)

Algorithms with load-balancing & fault-tolerance
« "Virtual supercomputer" can change continuously

=» recover from lost nodes & hardware failures
=» dynamic load balancing
=» cooperate with distributed queuing systems

Acceleration for eigenvalue calculations

=» automated procedures for discarding initial batches
=» importance sampling or "fission matrix"

Methods for eliminating bias

Improved methods for estimating variance, corrections for correlation
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Optimizing Monte Carlo Calculations

Abstract

Optimizing Monte Carlo Calculations
Forrest Brown, XCP-3, LANL

Improving the performance of a large, complex, production-quality Monte Carlo code is difficult
due to the multitude of features and historical constraints. Experienced Monte Carlo code
developers recognize that classic optimization techniques applied to code “hot-spots” may resulit
in 20-30% speedups, while very much larger code speedups are possible from improved
algorithms.

This talk reviews the initial performance improvements to MCNP6.1 (2013) that were incorporated
into MCNP6.1.1 (2014). The improvements included both classic code optimizations and new
algorithms. Testing on a variety of problems demonstrated that the performance improvements
were effective, yielding speedups by factors of 1.2x - 4x, depending on the type of problem. For
criticality problems, speedups were 1.5x - 1.7x.

For many applications, improved algorithms are required to prepare for the new architectures
expected from exascale systems in the next 5-10 years. Much more work is planned as part of the
MCNP 2020 initiative for improving MCNP6 performance, structure, parallelism, and algorithms.
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Outline

 Introduction
— MC darts
— Monte Carlo & computer history
— MCNP 2020 & Parallelism

* Classic Code Optimization

— Traditional vs MC codes
— Performance benchmarks
— Classic optimization

« Compiler options

» Strided array ops

* Inlining & guards

» Storage allocation

« Algorithms
— Hash-based energy lookup algorithm
— Sparse storage for the fission matrix
— Fission bank reordering
— Random sampling algorithms
— Parallel Monte Carlo

« Conclusions



Introduction
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Monte Carlo Darts Game (1)

- Darts game

Throw darts at a square:
- Sample x & y randomly on (-1,1)
- If x2+y? < 1, tally a hit

U ~ 4*[# hits]/ [# tries] -1 1 1

- The Monte Carlo "darts" game has been played on some of the biggest
and fastest computers around, and has been an informal measure of
computer speed. For example,

— Los Alamos in 1981 stated that 400,000 darts/sec could be thrown on
the Cray-1 computer

— The challenge to throw darts faster was taken up by F. Brown (KAPL) &
W. Martin (Univ. Michigan):

10,000,000 darts/sec on the Cyber 205 (vector supercomputer)
- 1 dart/sec on the HP-11C hand calculator.
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Monte Carlo Darts Game (2)

Year/Place

1981 LANL
1981 LANL
1982 Mich
1982 Mich
1982 Mich
1982 KAPL
1982 KAPL
1999 Mich
1999 Mich
1999 Mich
2002 Mich
2002 Mich
2002 LANL
2005 LANL
2005 LANL
2005 LANL
2005 LANL
2005 LANL

Machine

CDC-7600

Cray-1

HP-11C

Apple ll+

Amdahl 470V/8
Cyber-205, scalar
Cyber-205, vector
233 M PC

100 M PC

200 M Pentium, Matlab
900 M P3, Matlab

900 M P3, Matlab, vec
1.2G P3

1.0G P3

2.0 G AMD Opteron
1.7 G PowerPC G4
1.2 G Alpha EV68

2.6 G PowerPC G5

Darts / sec

0.18 M
0.40 M
1
34
017 M
0.74 M
9.83 M
0.20 M
0.07 M

446
0.35M
1.25 M
11 M
19 M
24 M
32 M
101 M
140 M

Year/Place Machine Darts / sec

2010 LANL 2.6 G i7 2-core, Matlab 0.8 M
2010 LANL 2.6 G i7 2-core 124 M
2010 LANL 2.6 G i7 2-core *** 410 M
2010 LANL 3.0 G 2 Xeon 4-core, 1 thread *** 189 M
2010 LANL 3.0 G 2 Xeon 4-core, 8-thread *** 1460 M
2011 Mich Linux cluster, MPI, 32 cpu 2000 M
2013 LANL 3.0 G i7 2-core 2-HT 142 M
2013 LANL 3.0 G i7 2-core 2-HT, 1 thread *** 518 M
2013 LANL 3.0 G i7 2-core 2-HT, 2 threads *** 920 M

2013 LANL 3.0 G i7 2-core 2-HT, 4 threads ***

1025 M

2014 LANL 2.4 G 2i7 4-core, 2-HT, 1 threads *** 194 M

2014 LANL 2.4 G 2i7 4-core, 2-HT, 8 threads ***

1448 M

2014 LANL 2.4 G 2i7 4-core, 2-HT, 16 threads *** 2037 M
2014 LANL 2.7 G Xeon 12-core, 2-HT, 12 thrd *** 2670 M
2014 LANL 2.7 G Xeon 12-core, 2-HT, 24 thrd *** 4000 M
2016 LANL 2.7 G Xeon 12-core, 2-HT, 24 thrd *** 5800 M

*** = hand-tuned, highly optimized

M = MHz, clock speed
G = GHz, clock speed

HT = hyperthreads / core
Fortran, a few Matlab

Note that CPUs, architecture, and compilers all change over time, so that CPU clock speed is not always a good
measure of the performance of an application code. This particular comparison is sensitive to 64-bit integer
operations (CPU & compiler) and is not necessarily a good predictor of overall Monte Carlo code performance.



Monte Carlo Darts Game (3)

2.66 GHz Intel Core i7, 64-bit, MacBook Pro (2010)

Straightforward coding 124 M darts/sec
Hand tuned 410 M

2.7 GHz Intel Xeon, 12-core, 2 hyperthreads/core, 64-bit, Mac Pro (2014)
Hand tuned, 24 threads 4000 M

For darts: Mac Pro 2014 ~ 10,000x Cray-1
~ 4 x 10° Bill + HP-11c¢c
~ world pop. + HP-11c
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MCNP 2020

 MCNP6.1

— Preserves old capabilities
— Many new capabilities
— RSICC release - July 2013

» Status
— Last few years — focus on features,
merger, testing, release

— Slower, by 30-500 %

 Path forward — MCNP 2020

— Concerted effort to modernize the
codebase, upgrade foundations

— Goals: faster, sustainable, flexible

— Necessary for MCNP to survive into
the 2020’s & new computers

— Proposed joint support by
DOE-ASC & DOE-NCSP

 Experienced Lead
» 2-3 core developers

MCNP 2020

Improve performance
— Goal: 2X speedup within 2 years

Upgrade core MCNPG6 software

— Restructure, clean up coding, Fortran
2003 & C/C++ standards

— Reorganize data structures
— Evolution, not revolution

— Reduce future costs for new
development & maintenance

— Goal: sustainable code

Prepare for future

— New computers — massive parallel,
but less memory per core

— Improve MPI & thread parallelism
— Goal: flexible, adaptable code
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MCNP 2020 - Performance Improvements

* Initial 3-month effort, focus on speedup & optimization
— Focus on neutron criticality problems common to ASC & NCSP applications
— Speedups from recent performance improvements

Performance Test Set

Criticality Other

ksl 1.76 voidl 3.03
ks2 2.13 void2 4.11
ks3 1.35 void2 4.11
ks4 1.36 void3d 2.72
bawl 2.19 detl 1.67
baw2 1.59 medl 1.15
fvf 2.04 phtl 1.22
gl 1.14

g2 2.20

pin 1.73

VALIDATION_CRITICALITY Suite

Measured wall-clock times, including data 1/O:

release 34.7 min
release 43.9 min
27.9 min

mcnp5
mcnp6.1
mcnp6.1.1 NEW

=» 1.57 X speedup over mcnp6.1
=*» 1.24 X speedup over mcnp5

Performance Benchmark Suite
Speedups vs MCNP6.1 Release

Neutron Problems Speedup
BAWXI2 4.37
GODIVA 1.05
Mode n in air w 750,000 tally bins 1.18
Well log problem 1.91
100M lattice cells in void 5.17

Other
mode p e in air 1.01
mode n p e in air 1.05
mode p in air 1.20
Pulse height tally 1.20
Radiography 1.07




Parallel
Monte Carlo
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Computing - Latency & Threading

- Hardware - Moore’ s Law
— Before 2000: 2X cpu speed every 18 months
— After 2000: more cpu-cores per chip, not faster cpus
— Today, hardware speed gains come from parallelism

* Fast, multicore cpus
— Need more data & need it faster
— Data transfer speed from memory to CPU has not kept up
— Today, data access & latency are biggest concerns

* Dealing with latency:
— Hardware -- cache, out-of-order execution, multicore, GPUs
— Algorithms -- High-level, data order & layout, vectorization, threading
— Important to match algorithms & hardware

 Most large computer systems today are clusters
— Many nodes: fiber network interconnect
— Multicore cpus: share memory within each node
— Hierarchical parallelism for Monte Carlo
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MCNP - Hierarchical Parallelism — Since 2000

Concurrent Jobs =

Parallel Processes

— Total processes = (# jobs) x (# MPI processes) x (# threads)

— Tradeoffs:
 More MPI processes - lots more memory & messages
* More threads - contention from lock/unlock shared memory

* More jobs - system complexity, combining results



Parallel Monte Carlo - Future

Optimizing Monte Carlo Calculations

« Particle parallelism + data decomposition -- logical view:

Parallel
Calculation

Data Layer
(tally servers, etc.)

« Mapping of logical processes onto compute nodes is flexible:

Master
Process

_—

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Data
Node

Data
Node

Data
Node

— Could map particle & data processes to different or same compute nodes
— Lightweight — particles,

heavy-weight — data & tallies
— Heterogeneous nodes — range of memory, speed, parallelism, etc.

13
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Classic Code Optimization

« Traditional vs MC codes
 Performance benchmarks
« Classic Optimization

- Compiler options

- Fix strided array ops

- Inlining & guards

- Storage allocation

14
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Traditional vs. MC - Code Optimization (1)

* Traditional:
Use performance tools to find "hot spots” in code execution

« Apply classic techniques to optimize coding in hot spots
— In-line functions
— Unroll loops
— Eliminate unnecessary work (hoist invariants outside loops)
— Bottom load, top store for loops
— Vector ops on contiguous data (stride 1)
— Rearrange storage or loops for contiguous vector ops
— Etc., etc., etc.

* For traditional codes (especially mesh-based PDE solvers),
focus is typically inner loops in solvers & the floating-point
arithmetic

— Optimizing data structures & loops can lead to high fractions of overall
processor peak speeds
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Traditional vs. MC - Code Optimization (2)

« Breakdown of computer operations for typical large, general-purpose
Monte Carlo code (approximate)

40% - indexing, integer ops, memory access
30% - test-and-branch
25% - arithmetic

5% - RN generation & sampling, 64-bit integers

 MC code performance vs. computer hardware

— Memory access is largely random
 Little cache-coherency - only small gain from larger cache
 Memory speed is important

— CPU-intensive, but not floating-point
» Big gains from multiple integer/logical functional units
« Smaller gains from multiple floating-point units

— Compiler optimizations are critical
» Test-and-branch operations, indexing, prefetching

 MC codes have no hot spots — ops are spread across 100s of routines
— Outer loop over particles, random ops for particles, no inner loops
— Many traditional coding optimization techniques do not apply

16
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Traditional vs. MC - Code Optimization (3)

|
 M.C. codes have many levels of indirection for memory access

cell
mat = mat_in cell( cell )

iso = iso _in mat( i, mat )
k = energy bin_table search( E, Eiso(1l,iso) )

sigt = sigt
+ den*[ (1l-de)*sigt _iso(k,1so) + de*sigt _iso(k+1l,1iso) ]

« Each level of indirection:
— Integer ops for indexing
— Irregular memory access

— Cache-misses
— Inhibits pre-fetching, compiler optimization, & vectorization
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Traditional vs. MC - Code Optimization (4)

Conditionals Functions
* Traditional codes * Traditional codes
— Vectorizable loops inside a conditional — One function call, vector ops
— 1 conditional, to skip many ops — Often call, then return if not needed

: : _ — Almost no-cost if immediate return
1f( using some option ) then

do k = 1, big number
...vectorizable coding
enddo
endif

call some option( ...vectors

* Monte Carlo
— Many function calls, scalar ops

 Monte Carlo
— Outer loop over particles, inner coding

is scalar (threadable) — Significant cost to call if not needed
— Many conditionals, to skip a few ops
— 1/3 of statements are conditionals, rare do k = 1, big number
options can have significant cost call some o;tion( scalars )
enddo B

do k = 1, big number
if( using some_option ) then
. .scalar coding
endif
enddo

)
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Traditional vs. MC - Code Optimization (5)

I 2045-09-44

- These software practices are bad inside Monte Carlo histories:

— Assuming that the compiler will inline functions
* No inlining is done for the safe optimization level used for mcnp

— Using accessor functions to determine if an option is in effect
* Requires an external call, invoked very many times

— Calling an unneeded routine, even if it exits immediately
* Requires an external call, invoked very many times

— Eliminating goto statements by pushing coding into a subroutine
* Requires an external call, invoked very many times

— Adding extra levels of looping just to avoid goto’ s for very rare cases
- Extra overhead on all particles; less understandable code

— Heavy use of loop constructs cycle & exit is as bad as goto’ s
« Obscures code flow & logic

— Obsession with removing goto’ s
- They have their place in MC, more so than in other types of algorithm



Traditional vs. MC - Code Optimization (6)

What classic optimizations work for MC ?
- Eliminate unneeded work, wherever possible

 Replace any code constructs that require temporary storage
(eg, noncontiguous array ops, character manipulation, ...)

* Replace calls to accessor functions by direct inline access
« Put if-tests for options inline, not in external routines

* Put (short) functions inline, not in external modules
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Performance Benchmarks

(oY P E. W .V. WP V|
=V TV VI T1

All tests run on Mac Pro, 3.0 GHz Xeon, 2 quad-cores using 8 threads. For criticality problems
results are neutrons/hr; for fixed-source problems results total wall time. ENDF/B-VII.1; Only
discrete S(a,b) was used.

CRITICALITY PROBLEMS
ks1.txt 3D PWR, OECD perf. bench., Kord Smith, 60 isotopes, no tallies
ks2.txt ks1.txt, 10 isotopes, no tallies
ks3.txt ks1.itxt, 10 isotopes, fmesh tallies
ks4.txt ks1.ixt, 60 isotopes, fmesh tallies
baw1.txt BAWXI2 ICSBEP problem, 31 isotopes, no tallies
baw2.txt BAWXI2 ICSBEP problem, 31 isotopes, fmesh tallies
fvf.txt fuel storage vault, from OECD convergence bencharks
gl.txt Godiva problem, 3 isotopes
g2.txt Godiva problem, 423 isotopes
pin.txt AECL pin cell, with FPs, 147 isotopes

FIXED-SOURCE PROBLEMS

void1.txt ks1.txt, with VOID card & no tallies

void2.txt baw1.txt, with VOID card & no tallies

void3.txt fvf.txt, with VOID card & no tallies

det1.txt 3D porosity tool, Reg. problem 12, neutrons, weight windows, F4 tallies
med1.txta medical physics, modified 3D Zubal head, photons

pht1.txt PHTVR cylindrical test problem, photons



Optimizing Monte Carlo Calculations

Classic Optimization - Compiler Options (1)

NANA N N= 04
=V TV VI &

Try different compiler optimization levels

Test case:
— BAWXIZ2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
— Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version

-O1 86 M 1.0
MCNP6.1, RSICC version

-O1 58 M .67

-02 57 M .66

-03 57 M .66

=» No gains from higher compiler optimization level (-O1, -02, -03)
(Some other test problems segfault for —-02, -O3)
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Classic Optimization - Compiler Options (2)

NANA N N= 04
=V TV VI &

Try different heap-array allocation for temporary storage

Test case:
— BAWXIZ2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
— Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version

-O1 -heap-arrays 1024 86 M 1.0
MCNP6.1, RSICC version

-O1 -heap-arrays 1024 37 M 43

-O1 -heap-arrays 16384 39 M 46

-O1 -heap-arrays 1048576 38 M 45

=» No gains from larger heap-array allocation
(Some other test problems segfault if heap-array allocation not used)



Optimizing Monte Carlo Calculations AMC-33 - 24

Classic Optimization — Inlining Functions

speedup
due to inlining

Modifications to original mcnp6.1: KCODE
kst 1.34
_ _ _ ks2 1.16
* Inline binary searches in neutron ks3 1.11
problems for cross-section data, ks4 1.1
tallies, etc. baw1 1.09
o baw2 1.07
- Eliminate unnecessary calls to fvf 1.09
external routines, using extra logical g1 1.00
variables for global options g2 1.14
pin 1.05

* Inline external routines for neutron

problems, ~10 routines in collision FIXED-SOURCE
i void1 1.04
physics void2 1.05
void3 0.96
deti 1.08
=» Roughly 5-15% gain in overall code med1 0.99
speed due to moderate inlining pht1 1.05

All problems run on Mac Pro (3 GHz
Xeon) with 8 threads, Intel 12.0
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Classic Optimization — Storage Allocation

speedup due to

Fortran Common Blocks & Threading thread-private

Performance COMMON
* In MCNP6.1, each thread-private KCODE
variable used in particle tracking ks1.txt 1.12
was individually & explicitly g s
declared to be THREADPRIVATE. ksd.txt 1.06
COMMON blocks were not used. baw1.txt 1.28
baw2.txt 1.18
- In MCNP6.1.1, all thread-private fvi.txt 1.31
variables used in particle tracking Q;Iﬁ :'82
were placed in COMMON blocks & gir',_txt 1.07
only the COMMON block names are
declared THREADPRIVATE FIXED-SOURCE
void1.txt 1.08
void2.txt 1.03
-» Roughly 5-20% gain in overall code nowds bt o
speed due to changes in thread- e txt 100
private declaration pht1.txt 1.12

— Very compiler-dependent

— Apparently more addressing ops needed when each
variable declared separately

All problems run on Mac Pro (3 GHz

Xeon) with 8 threads, Intel 12.0
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Classic Optimization — Combined Gains

Overall speedup

- Overall speedups due to recent vs menp6.1
coding optimization KCODE
ks1 1.44
g ] ks2 2.1
Modifications: ks3 1.34
— Compiler options ks4 1.23
— Fix strided array ops baw1 1.87
. . baw2 1.43
— Inlining & guards fvf 1.97
— thread-private common g1 1.17
g2 1.19
pin 1.19
-  Comments
_ L FIXED-SOURCE
— Focus for classic optimizations was void1 296
neutron criticality problems void2 4.02
void3 2.71
— Classic optimizations focused on coding, det1 1.59
not algorithms med1 1.07
pht1 1.21

— Many more improvements could be made
All problems run on Mac Pro (3 GHz

— Effort only required ~2 months, hardest Xeon) with 8 threads, Intel 12.0

part was testing on a variety of problems
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Algorithms

« Coding optimizations are easy, but provide only limited speedups.

 Speedups from code optimization are often compiler-dependent &
need to be revisited when new compilers are used.

 The biggest gains always come from new algorithms.

 New algorithms are needed for the coming new computer
architectures: cpu + mic + gpu, billions of cores, limited
memory



Hash-based Energy
Lookup Algorithm
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Hash-based Energy Lookup — Background (1)

Cross-section data are stored as piecewise linear functions of E

— Typical o(E) vs E
o(E)

- Usually stored as linear arrays:
N = number of entries
E(1..N) = array of E values
o(1..N) = array of o values

- Two steps are required to lookup & use the data:

1. Given E, search the E() array to find interval k containing E (1=k = N-1)
2. Interpolate linearly between E, & E,,;

E-E,
Ek+1 _ Ek

G(E)=Gk+[ )-(Gkﬂ—ak), E <E<E,,
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Hash-based Energy Lookup — Background (2)

- After a collision (before a flight) or entering new material

— Must look up & interpolate o; for the neutron energy E,
for each nuclide in a material

— The o¢'s are used to determine z; for the material
— X7 is then used in randomly sampling of distance to collision

For U235, U238, 016, ... (fuel material)

Search the array of energies for the nuclide, find interval k containing E
Interpolate ot for nuclide at energy E
Accumulate No; for nuclide into overall material 2

Similar {search, interpolate, accumulate} for scatter, absorption, fission, ...

- This set of operations {search, interpolate, accumulate} often
consumes 1/3 —2/3 of the overall time in neutron transport MC

30




Hash-based Energy Lookup — Background (3)

- There is extensive literature on search algorithms

— D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting &
Searching

— Many other references - books & journals

- For general Monte Carlo codes, the commonly-used methods are
linear search &/or binary search of the cross-section energy
tables

— Need 1 table search for each of the nuclides in a material

— Linear search takes O(N) time, bestwhen N~ 10 orless
— Binary search takes O( /In N ) time, best when N ~ large

- To reduce the time needed for the table searches for cross-section
data, several unified energy grid schemes were used in the past
— Map the data for every nuclide in the problem onto 1 energy grid

— Requires only 1 energy table search, rather than 1 table search for
every nuclide in a material

— Can be 10-100x faster for energy lookups



Hash-based Energy Lookup — Background (4)

Unified Energy Grid Schemes

« Scheme 1 - very old (racer, rcp, o5r, ...)
— Used in the 1960s — 1980s due to memory limitations
— Typically 104 — 10° energy bins (supergrouped)
— Map all xsec data to these bins
— Approximate, required weighting functions
« Scheme 2 — unified grid (psg, serpent, ...)
— Combine all xsec energy grids, including all energy points

— Expand all xsec data onto unified grid
— Exact, but required very large amounts of memory

 Scheme 3 — unified grid with pointers (serpent, ...)
— Combine all xsec energy grids, including all energy points

— For each unified grid bin, store pointers to bins in each nuclide xsec
data set

— Exact, retains original nuclide xsec data
— Extra storage for unified grid & nuclide pointers
— Requires only 1 table search, then (indirect) lookups in nuclide tables

 Scheme 4 — NEW, current hash-based energy lookup
(mcnp611)
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Hash-based Energy Lookup — Background (5)

Unified Energy Grid Schemes — Memory Storage

nuclides E pts ACE xs Ugrid+xs Ugrid+ptrs NEW

K Smith bench 64 T3 M 12 GB 1.5 GB .38 GB 2.2 MB
Rx pin, 1 temp 77 .66 M 12 GB 1.6 GB .41 GB 2.6 MB
Rx pin, 2 temps 145 1.2 M .24 GB 5.6 GB 1.4 GB 4.8 MB
Rx pin, 5 temps 349 2.8 M .55 GB 31 GB 7.8 GB 12 MB
All nucs, 1temp 423 26 M .58 GB 36 GB 9.0 GB 14 MB
ACE xs = actual memory for ACE data in mcnp611

E pts = total energy points, summed over all ACE nucs = pts in Ugrid

Ugrid+xs = extra storage for unified E-grid + {o;, o,, o, heating } at each E & nuc
Ugrid+ptrs = extra storage for unified E-grid + pointers to nuc xsecs at each E & nuc

NEW = extra storage for current hash-based lookup, with 8192 ubins
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Hash-based Energy Lookup — New (1)

* History
— Suggested by George Zimmerman (LLNL, ret.) in 2013

— Used for lattice physics code (Dave Austin) in ~1989, and in several
variations in RACER MC (Brown) in 1980s

— Certainly much older .....

 Recent
— Zimmerman, in proprietary code mods, 2013
— Brown, stand-alone & in mcnp6.1.1b, 2013-2014

 Basic idea

Retain all mcnp6 machinery for energy lookups &
forming the total cross-section, but

=» use a physics-based hash scheme to greatly narrow
the bounds for each binary search of nuclide E tables

=» Minimal mcnp6 code changes, but significant speedups

=» Modest memory storage, much less than unified grids
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Hash-based Energy Lookup — New (2)

 The setup portion of the algorithm, performed prior to neutron
random walks, involves the following steps:

1. Determine E,_;, and E, ., energy bounds for the problem

Check E,_, & E,;, for all nuclide ACE datasets in the problem

2. Setup the "ugrid" for the hashing function

Ugrid: uniform spacing in In(E) between E, ;. and E,__,
M: number of bins in ugrid().

No need to store ugrid() -- just store M, E, ;. E, ..
mcnp611: M =8192, reasonable speed/storage tradeoff

3. Setup nuclide search bounds for each ubin index

For each bin in ugrid, lookup & store for each nuclide the
bounding indexes k,(u,n) and k,(u,n) in the ACE energy table for
that nuclide (n= nuclide index, N= no. nuclides, u= index in ugrid)

Only need store k,(u,n), since k,(u,n) = k,(u+1,n)+1
Total extra storage = (M+1)-N-4 bytes (int4 sufficient for ACE data)

Note: The above steps do NOT involve any approximations



Hash-based Energy Lookup — New (3)

 During random walk simulation, after particle energy change or
when entering new material

Deﬁning Umin= |Og Emin’ Umax™ |Og Emax’ du = M/(umax' umin)
New algorithm for energy lookups for neutron energy E is:

u=1+ |_ du - (IogE - Um,-n) J, | ] is truncation to the next lowest integer

For each nuclide n:
search its energy table between entries k,(u,n) & k,=k,(u+1,n)+1

k, - Nuclide 1

Compute u. ﬁ - Nuclide 2
Get ki, k, k
foreachn [—M_ ~— Bt
as needed. k1E )
% Nuclide N

kv




Hash-based Energy Lookup — New (4)

 Memory storage
— ugrid is completely defined by M, E,_ ., , E,.., -- need not be stored
— Because k,(u,n) = k,(u+1,n)+1, the k,(u,n) values need not be stored
— Total additional memory storage = (M+1)-N-4 bytes
— More compact memory use, so more cache-friendly

« Speed/space tradeoff
— Larger M gives improved speed, but dependence is weak for M >71000
— Smaller M reduces speedup but also reduces memory requirements.

« Choice of M does not in any way affect accuracy of the xsec data

* k, and k, indexes for each nuclide for each of the ugrid bins
— Bounds for performing ordinary binary searches in the nuclide ACE

— These bounds narrow the range of the binary searches, so that only a
small portion of each nuclide energy table need be searched

— Frequently the search range in the nuclide energy tables is < 8.
For such small ranges, a simple linear search will be slightly faster than
a binary search & may provide additional small speedups
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Hash-based Energy Lookup — Testing (1)

- Stand-alone coding to compare 3 methods:
1. Standard MCNP6.1 with external function for binary searches
2. Standard MCNP5 with inline coding for binary searches
3. New hash-based scheme with inline binary searches.

 ACE datasets
— The energy tables for 9 nuclides from the ENDF/B-VII.1 nuclear data

libraries were used in the comparisons:
1001.80c, 8016.80c, 26056.80c, 92235.80c,
92238.80c, 94239.80c, 94240.80c, 94241.80c, 6000.80c.

— These nuclides had energy table sizes ranging from 590 to 157,744
bins.

* For each energy lookup scheme, many millions of neutron
energies were randomly sampled in the ugrid range, and then the
energy lookups were performed for all 9 nuclides. Overall timing

results are averages for the set of nuclides.
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AMC-33 - 39

Hash-based Energy Lookup — Testing (2)

« Timing results for stand-alone test of energy lookup methods.
Results are the average time for each energy lookup

Mac Pro, MacBook,
3 GHz Xeon, 3 GHz 17,
667 MHz mem | 1600 MHz mem

MCNP6.1 energy

lookup, W}th 97 ns 67 ns

external binary

search function

MCNPS energy

!oo.kup,.wnh explicit 81 ns 57 ns

inline binary search

coding

New hash-based

energy lookup, with 6 ns 3 ns

explicit inline binary
search coding

* Inlining binary searches
gives 10-20% speedup
(mcnp5 vs mcnp6.1)

* New hash-based scheme
gives 15-20x speedup

* M = 8192 used for table

* Lookup time for other M on
MacBook

M=64k 2ns
M=32k 2ns
M=16 k 2ns
M= 8k 3 ns
M= 4k 3 ns
M= 1k 5ns

» Mixed binary/linear search
(break at 8) did not improve
speedup
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Hash-based Energy Lookup — Testing (3)

« MCNP6.1 (2013) runs significantly slower than MCNP5
— Slowdowns are problem-dependent, 20% to 5x slower

« MCNP6.1.1 (2014)
— Significant classic optimizations performed
Inline functions, eliminate non-unit-stride vector ops, if-guards, ...
— New hash-based energy lookup scheme

— Measured timing results for new energy lookup scheme compare
mcnp6.1.1 before & after new scheme, with all other optimizations

the same

 New energy lookup scheme provides 1 — 1.9x speedup in overall
MCNP6.1.1 problem runtime (at least for neutron problems)

« MCNP6.1.1 isa lot faster than MCNPG6.1
« MCNP6.1.1 is a little faster than MCNP5
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Hash-based Energy Lookup — Testing (4)

« MCNP6.1.1 speedups due to new hash-based energy lookup

algorithm
Overall
Problem Code
Speedup
OECD Performance Benchmark, 3D PWR, 60
) . 1.2x
isotopes, no tallies
BAW XI(2), ICSBEP Problem LEU-COMP- 1.2
THERM-008, Case-2, 31 isotopes, no tallies eX
Godiva problem, 2 isotopes, no tallies 1.0x
Godiva problem, with trace amounts of 421
. 1.9x
other isotopes
Reactor pin cell with 147 isotopes 1.5x
Porosity tool for well-logging, 5 isotopes 1.0x

« Speedup compares
mcnp6.1.1 before & after
new energy lookup scheme,
with no other changes

* M = 8192 used for table

» All runs performed on Mac
Pro (3 GHz, 2 quad-core)
with 8 mcnp6 threads, using
standard ENDF/B-VII data

4



Sparse Storage for
Fission Matrix Tallies
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Fission Matrix for MCNP

- Exact integral equation for fission source

: E, - LA
F, = jvdr jv L -VE_(F,E). Xin) G(,E,, O, —T,EQ)
= | S(F)d¥ —md 'dE’ dQVE. (F,E )W (F,E, ),
eV, eV,
N
SI = % : ZFIJ -SJ N = # spatial regions, F is NxN matrix
J=1

- F,, = next-generation fission neutrons produced in region |,
for each fission neutron starting in regiondJ (J->I)
— As region size decreases: S(r,)) 2> S,/V,, discretization errors > 0

— Can accumulate tallies of F, ;, even if not converged

- Similar analysis for adjoint source shows that

N —_— —_—
- SRS, FeF
J=1
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Monte Carlo Estimation of Fission Matrix

Monte Carlo K-effective Calculation mia fosdent fosgenz fossens o ssons
1. Start with fission source & k-eff guess : : : :
2. Repeat until converged:
« Simulate neutrons in cycle
- Save fission sites for next cycle
« Calculate k-eff, renormalize source ; : ; : :
3. Continue iterating & tally results sen1  Bathe  Baeha  Batchs Baten s

Source Source Source Source Source

Source particle generation
‘ P g —Y Neutron
. Monte Carlo random walk

For Fission Matrix calculation
During standard k-eff calculation, at the end of each cycle:
- Estimate F,, tallies from start & end points in fission bank (~ free)
- Accumulate F,, tallies, over all cycles (even inactive cycles)

After Monte Carlo completed:
- Normalize F,;, accumulators, divide by total sources in J regions
* Find eigenvalues/vectors of F matrix (nonsymmetric eigensolver)
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Fission Matrix — Sparse Structure

- For a spatial mesh with N regions, F matrixis N x N
— 100 x 100 x 100 mesh =» F is 106 x10° = 8 TB memory
— In the past, memory storage was always the major limitation for F

matrix

Compressed row storage scheme

— Don’ t store zero elements, general sparsity
— Reduced F matrix storage, no approximation
— Can easily do 100 x 100 x 100 mesh on 8 GB Mac

2D PWR

15x15x1 mesh
N =225
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Fission Matrix — Sparse Storage

- Compressed Row Storage Scheme (CRS)

— General sparsity, no approximations or assumptions

— N=N,x N, x N, mesh cells

— (Is; Jss kg) > (ir, jr, K1) =¥ J-> 1 J=is + (js-1)Ny + (ks-1)N,N,
I = ir + (jr-1)N, + (k-1)N,N,

— Only the nonzero F(l,J) entries are stored.

— MC tallies: If element exists —add; if not—insert

— L(l) array entries point to the start of a list of J indices and
corresponding nonzero F(l,J) tallies

L, L, L; . .
1 2 3
1 2 3 4 5 6 7 8 R9 e RM

— Highly optimized tally coding, typically requires less than 1 second at the
end of each batch in the Monte Carlo simulation.
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Example — Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector

type(fission matrix), intent(in) :: fmat ! sparse fission matrix
real (R8), intent(in) :: x(:) ! vector in
real (R8), intent(out) :: y(:) ! vector out, result
integer(I8) :: k, i
real (R8) st
!SOMP PARALLEL DO PRIVATE( t, k ) ¢ different thread for each row
do 1 =1, fmat%n
t = 0.04+00
do k = fmat%L(i), fmat%L(i+l)-1 € k is location of J,R row data
t = t + fmat3R(k) * x(fmat2J(k))
enddo
y(i) = t
enddo

!SOMP END PARALLEL DO
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Higher Eigenmode Analysis with the Fission Matrix

- Run Monte Carlo, get fission matrix,
then solve for eigenvalues & eigenfunctions:

— Matlab, if full-storage F matrix can fit in memory
— Power iteration with deflation, preserves sparse format

— Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format
(thanks, Max & Colin)

S,=#F-S, ko > k| >k ... >]ky
éI:Ki-IET-él n=0,1..N
(k, —k,)- (S, S) =0

F is nonsymmetric
S, is aright eigenvector of F, St is a left eigenvector of F

S, and St are biorthogonal
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PWR - Source Eigenmodes for 120x120x1 Spatial Mesh

mode 0, eigenvalue = 1.29480 mode 1, eigenvalue = 1.27657 mode 2, eigenvalue = 1.27664 mode 3, eigenvalue = 1.25476

Kn
1.29480
1.27664

mode 4, eigenvalue = 1.24847 mode 5, eigenvalue = 1.24075 mode 6, eigenvalue = 1.22160 mode 7, eigenvalue = 1.22141
120 120 = = 120 120 1 27657
]
100 100 100 = 100 L 1 25476
80 80 2 80 I*I ]
) - E 1.24847
[]
40 40 40
1.24075
; ’ —! ‘ ”
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 1 L] 221 60
mode 8, eigenvalue = 1.19745 mode 9, eigenvalue = 1.19743 mode 10, eigenvalue = 1.18825 mode 11, eigenvalue = 1.18305 1 = 22 1 4 1
120 120 120

= . 1.19745
| 1.19743
. - 10 1.18825
. . 11 1.18305
o e 12 1.15619
o T ke 1150 g mode 3, cgenvabs - 11403 e 14, ot 1155 g mode s, cgenabe - 11463 13 1.14633
I & 14 1.14617

k. : - 15 1.14584
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PWR — with Perturbations

- Insert SS304 Control Rods in each assembly in quadrant of core

Original Perturbed

Original Perturbed

Fission Source
Eigenmodes
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PWR - Convergence Acceleration Using Fission Matrix

- Fission matrix can be used to accelerate convergence of the
MCNP neutron source distribution during inactive cycles

- Requires only fundamental forward mode

* Very impressi

1

ve convergence improvement

0.995
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keff 0.985|
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0.975f

0.97
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Fission Bank
Reordering



Reproducibility & Threading

* For criticality problems with OpenMP threading, the
fission-bank fso() needs to be reordered into a unique
ordering that is independent of the number of threads or

MPI processes.

 This was previously done by very crude, inefficient
sorting, and did not scale well for large numbers of
neutrons/cycle.

Scaling ~ O( N2) N = neutrons/cycle

« A new routine was added, fso_reorder, to provide a
unique reordering of fso() WITHOUT SORTING. This is

based on:
FB Brown & TM Sutton, "Reproducibility and Monte
Carlo Eigenvalue Calculations", Trans Am Nuc Soc 65,
235 (1992)

Scaling ~ O( N) N = neutrons/cycle
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Timing Studies
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— Standard MCNP5,
with fission-bank sorting
- - Sorting overhead

— New MCNP5, no sorting

/

/

i _
P

// -~
///4/
PR

-
-
-
—
I I

0

2

4 6 8
neutrons/cycle (millions)

10

12

14

PWR2D Model

1/4-core, detailed
geometry, ENDF/B-VII

Mac Pro, 3 GHz, 2 quad-
core Xeon, 8 threads

Identical results for old &
new reordering

For >10M neuts/cycle, old
sorting took more time
than running neuts

New scheme eliminates
this, scales



Random Sampling
Improvements
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Sampling the Evaporation Spectrum

During the analysis of neutron collisions in MCNP, one of the possible
Probability Density Functions (PDFs) for the outgoing neutron energy,
Eout, is an “evaporation spectrum” (ENDF Law 9) given by:

f(E, —>E

out

)=C-E,, -e """, 0<E, <E, -U

out —

Where T and U are tabulated functions of E;;, and ¢ =77 .[l—¢ &7 (14 LUy

The sampling scheme used in MCNP since the 1970s is:

E _=-T-In(¢¢,), reject&repeatif E, >FE, —U

This rejection scheme is extremely inefficient when (E; -U)/T is small.

— With some ENDF/B-VIl data, (E;,-U)/T is sometimes smaller than 0.1,
giving rise to rejection sampling efficiencies of 0.1 % or smaller

— For some problems, mcnp6 may get stuck in this rejection sampling loop for
minutes, hours, or even days.



Optimizing Monte Carlo Calculations 57

New Sampling Scheme

It can readily be shown that a
truncated Gamma PDF (the
evaporation spectrum) can be
efficiently sampled with a
rejection scheme based on
truncated exponentials:

Letx=E /T, w=(E,-U)I/T,
and g=1-¢". Then,
(1) E = —In(1- g&)
) E' = —In(1-g&")
3) x=E+E’
(3) Reject & resample if x>w
4 E  =x-T

* The efficiency of this rejection
scheme is always greater than 50%,
even for very small (E; -U)/T. The
gains in sampling efficiency can be
very large, 1000x or more:

100000
=®-Rejection Eficiency (%) - menp old

10000 =®-Rejection Efficiency (%) - mcnp new
=®-Gain in efficiency

1000

100

10

1

0.1

0.01

0.001
0.001 0.01 0.1 1 10

(En—-U)/T



Summary
&
Conclusions



Optimizing Monte Carlo Calculations AMC-33 - 59

Overall Performance Improvements

* Initial 3-month effort, focus on speedup & optimization
— Focus on neutron criticality problems common to ASC & NCSP applications
— Speedups from recent performance improvements

Performance Test Set
Criticality Other -
ks1 1.76 voidl 3.03 Performance Benchmark Suite
ks2 2.13 void2 4.11 Speedups vs MCNP6.1 Release
ks3 1.35 void2 4.11
ks 4 1.36 void3d 2.72 Neutron Problems Speedup
bawl 2.19 detl 1.67 BAWXI2 4.37
baw2 1.59 medl  1.15 GODIVA _ 1.05
£vE 2.04 pht1l 1.22 Mode n in air w 750,000 tally bins 1.18
gl 1.14 Well log [.aroblem _ . 1.91
g2 2.20 100M lattice cells in void 5.17
pin 1.73 Other o
mode p e in air 1.01
. mode n p e in air 1.05
VALIDATION_CRITICALITY Suite mode p in air 1.20
Measured wall-clock times, including data Pulse height tally 1.20
1/O: Radiography 1.07
mcnp5 release 34.7 min
mcnp6.1 release 43.9 min
mcnp6.1.1 NEW 27.9 min
=» 1.57 X speedup over mcnp6.1
=*» 1.24 X speedup over mcnpS




MC & Computing - Status

« Computers continue to evolve - speed & accessibility
— Everyone now has multicore, Gflop computers - laptops, deskside
— Almost everyone now has access to Linux clusters
— New computers will have 16, 32, 48, 64, 80, ... cores per processor

« MC codes must evolve
— All MC codes - new & old - must be parallel, with threading + MPI
— Much larger problem sizes - millions of regions, materials, tallies

« Monte Carlo for the 2020s & beyond:
— Outstanding success to date, will continue
— More & more analysis will be done using Monte Carlo codes
— New physic methods, eliminate approximations
— Upgrade codes for huge problem sizes
— New parallel computing algorithms
— Improve robustness & ease-of-use
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