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Abstract

Advanced Computational Methods for Monte Carlo Calculations
Prof. Forrest Brown

This course is intended for graduate students who already have a basic understanding of Monte 
Carlo methods. It focuses on advanced topics that may be needed for thesis research, for 
developing new state-of-the-art methods, or for working with modern production Monte Carlo 
codes. Topics to be covered include:

– Linear Boltzmann transport equation & integral form 
– Optimal random sampling from piecewise-linear PDFs
– Parallel & vector Monte Carlo algorithms
– Green's functions, the fission matrix, and linear integral operators 
– Adjoint-weighted integrals & sensitivity analysis
– Precision & roundoff considerations, IEEE-floating point
– Bit operations & random number generators
– Detailed workings of delta-tracking & 3D CSG

Thorough knowledge of some programming language is required (e.g., C++, Fortran-2003, perl, 
python). A previous course in transport theory is recommended. Students are assumed to be 
familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for 
Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website)
Meet: 3 hours/week  
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Lecture Topics

Transport Theory & Physics
AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11 Adjoints & Green's Functions
AMC-12 Fission Matrix Method for MC Criticality Problems
AMC-13 Continuously Varying Materials & Tallies

Random Numbers & Sampling
AMC-20 Random Number Generators & RNG Testing
AMC-21 Random Sampling – Beyond the Basics
AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts

Code Development
AMC-30 Monte Carlo Codes – Basic Algorithm & Structure
AMC-31 Code Development – How to Time & Test
AMC-32 Vector & Parallel Monte Carlo
AMC-33 Optimizing Monte Carlo Calculations
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Advanced Computational Methods for Monte Carlo Calculations

This course is intended for graduate students and professionals who already have a basic 
understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for 
thesis research, for developing new state-of-the-art methods, or for working with modern 
production Monte Carlo codes. 
Thorough knowledge of some programming language is required (e.g., C++, C, Fortran-2003, perl, 
python, Matlab). A previous course in transport theory is recommended. Students are assumed to 
be familiar with the material in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for 
Nuclear Systems", LA-UR-16-29043, in the Reference Collection at the mcnp.lanl.gov website).    
Meet 3 hours/week.

Lecture Topics:
Transport Theory & Physics

AMC-10 Linear Boltzmann Transport Equation & Integral Form
AMC-11 Adjoints & Green's Functions
AMC-12 Fission Matrix Method for MC Criticality Problems
AMC-13 Continuously Varying Materials & Tallies

Random Numbers & Sampling
AMC-20 Random Number Generators & RNG Testing
AMC-21 Random Sampling – Beyond the Basics
AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
AMC-23 Permutations, Sets of N-from-M, & Counting-sorts

Code Development
AMC-30 Monte Carlo Codes – Basic Algorithm & Structure
AMC-31 Code Development – How to Time & Test
AMC-32 Vector & Parallel Monte Carlo
AMC-33 Optimizing Monte Carlo Calculations
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NE-515-006 Information

• Focus – advanced Monte Carlo methods
– Transport theory 
– Random sampling
– Coding issues
Target audience is (1) graduate students who may need to write their own MC codes as part of their research & 
(2) professionals who need to know the underlying theory & sampling methods that arise in mature, 
production-level MC codes.
This is not a beginning course in MC methods. Students are assumed to be familiar with the basics of MC 
methods, as in UNM NE-462 / NE-562 (see F. Brown, "Monte Carlo Techniques for Nuclear Systems", LA-UR-16-
29043, in the Reference Collection at the mcnp.lanl.gov website)
Production MC codes such as MCNP are not used or required. There is no discussion of using MCNP or 
preparing MCNP input for application problems. 
Some computer programming is required. Any language is OK (Preferred: C++, C, Fortran-2003, python, perl;  
Acceptable: Matlab)

• Office hours, discussion, help
– Wednesdays – about 1 hour before/after classes
– Email – anytime,  7:00-4:00 - fbrown@lanl.gov,   other times – fbrown@q.com
– Other office hours by request

• Grading
– There are a few homework assignments. These will be discussed in class & not graded
– Attendence at most classes is expected
– A project is required & graded. One of the following:

• A MC code or calculations that directly support your research. Send a 1-paragraph description.
• Write a 3D, multigroup, mesh-based MC code. Specific features & tests will be discussed.
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UNM NE-515-006, Spring 2018

• Schedule
– Lecture topics will vary among transport, sampling, & codes. Depending on class interests, 

additional topics are possible.
– Rough schedule is:

1/17 AMC-10 Linear Boltzmann Transport Equation & Integral Form
1/24 AMC-30 Monte Carlo Codes – Basic Algorithm & Structure

AMC-31 Code Development – How to Time & Test
1/31 AMC-20 Random Number Generators & RNG Testing
2/7 AMC-21 Random Sampling – Beyond the Basics
2/14 AMC-22 Optimal Random Sampling from Piecewise-Linear PDFs
2/21 AMC-23 Permutations, Sets of N-from-M, & Counting-sorts
2/28 AMC-11 Adjoints & Green's Functions
3/7 AMC-12 Fission Matrix Method for MC Criticality Problems
3/14 break
3/21 AMC-33 Optimizing Monte Carlo Calculations
3/28 AMC-32 Vector & Parallel Monte Carlo
4/4 AMC-13 Continuously Varying Materials & Tallies
4/11 Project presentations &/or discussion
4/18 Project presentations &/or discussion
4/25 Project presentations &/or discussion
5/2 Project presentations &/or discussion
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Outline

• Introduction

• Assumptions

• Linear Boltzmann Transport Equation

• Integral Form & Basis for Monte Carlo Simulation

• Monte Carlo Eigenvalue Problems
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Introduction
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Introduction

• Monte Carlo methods (MC) can be used to simulate the transport 
of radiation through matter
– These lectures will focus on neutral particles (e.g., neutrons & photons)
– It will also be assumed that we are solving linear problems, where the 

material properties and geometry are fixed during the MC simulation

• The fundamental equation being solved is the linear Boltzmann 
transport equation (LBTE)
– We will focus on interpreting & using the LBTE, not deriving it

• Reading
1. Bell & Glasstone, Nuclear Reactor Theory,   pp 1-20, 21-27, 35-37
2. Ganapol, Analytical Benchmarks for Nuclear Engineering 

Applications,  pp 1-14
3. Cacuci, Handbook of Nuclear Engineering, Chapter 5 (Prinja & 

Larsen),  pp 430-464
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Introduction

• The LBTE provides a continuum description of the behavior of 
radiation particles in matter
– For a given radiation source, the solution of the LBTE gives the angular 

flux, 𝜓(r,E,𝛺,t), a continuous function (or field)
– 𝜓(r,E,𝛺,t) represents the average behavior of a very, very large number 

of particles (in nature, typically 104 – 1018 particles/cm3)
– Physical results are obtained by integrating 𝜓(r,E,𝛺,t) with some 

response function:

fission rate  =     ⨌ dr dE d𝛺 dt 𝚺F(r,E) ∙ 𝜓(r,E,𝛺,t) 
V,E,𝛺,t

• LBTE describes continuum, but MC simulates discrete particles

• MC simulates the behavior of individual particles
– To obtain a solution to the LBTE, must simulate very many particles
– Average behavior of the particles gives 𝜓(r,E,𝛺,t)    (with uncertainty)
– In the limit of many particles, MC average results approach 𝜓(r,E,𝛺,t) 
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Introduction

• The LBTE is an integro-differential equation

• MC methods compute integrals (or averages)

• General approach in what follows:

– Examine the LBTE, including what every term represents

– Convert the LBTE integro-differential equation into an integral form

– Examine the integral LBTE to see the fundamental basis for the MC 
solution

– Consider time-independent steady state cases – k-eigenvalue &
𝛂-eigenvalue forms of the LBTE 

– In some later lectures...
• Start over, defining & using a Green's function approach
• Introduce the adjoint transport equation
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Monte Carlo Simulation of Radiation Transport

• Goal: Simulate nature,   
particles moving through physical objects

Flight

Random sampling using
ΣT & exponential PDF:
• Free-flight distance

to next collision, s

Ray-tracing in 3D
computational geometry

Collision

Simulate absorption:
• absorb,   or
• reduce weight

Random sampling 
using nuclear data:
• Collision isotope
• Reaction type
• Exit  E'  &  Ω'
• Secondary particles

During analysis of both flights & collisions,
tally information about distances, collisions, etc.
to use later in statistical analysis for results
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Assumptions for LBTE & MC Simulation
Assume:

– Neutrons & photons are particles, not waves
– Particles move in a straight line between collisions   (neutrons, photons)
– Collisions occur instantaneously, at a point in space
– Ignore neutron-neutron collisions

– Particle speeds are  small enough to neglect relativistic effects
– Particle speeds are  high  enough to neglect quantum    effects

– Particle collisions do not change the properties of a material
(ie,  no feedback,  no material heating,  no depletion)

– Material properties are fixed for the duration of the simulation
(geometry,  densities,  temperatures,  material compositions, …..) 

Why?
– Want to solve the linear Boltzmann transport equation
– Want to apply the superposition principle
– Want the Central Limit Theorem to apply for computing statistics

• Statisticians love the term “IID” - Independent, Identically Distributed

(Any or all of the above assumptions can be relaxed, with careful analysis & extra computing cost.)
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Linear Boltzmann Transport Equation

• Time-dependent linear Boltzmann transport equation for neutrons,  with 
prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial  (independent, identically distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method:   geometry & materials fixed over solution interval Δt
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The LBTE is a Balance Equation

• Contributions to the Total Neutron Balance during Δt

Number in ΔrΔΩΔE at  t + Δt =      Number in ΔrΔΩΔE at  t

+  Number gained during  Δt

- Number lost during Δt

Note:  for this discussion, we will assume all neutrons are prompt

0E
EΔ

0

ΔΩ

Δr

sin
     
d d d

d d
θ θ φ
µ φ

=
= −

Ω

r φ

θ

( )cosµ θ≡

Ω
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• Source term, Q

– Accounts for particles added from some external source,
not from scatter or fission within system

– May be an internal source – point, line, volume source
• Particles added to ΔrΔΩΔE during Δt

ΔΩΔEΔt ∫dr Q( r, Ω, E, t )

– May be an incoming boundary source
• Particles added to ΔrΔΩΔE on boundary during Δt

ΔΩΔEΔt ∫dr Q( r, Ω, E, t )  δ(r-rS)

 
1
v ⋅ ∂ ∂ tψ(

!
r,E,
!
Ω,t) = Q + [S+M] ⋅ψ   −   [L + T] ⋅ψ
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1
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Number gained in ΔrΔΩΔE
from scattering during  Δt

Probability of scatter from Ω',E' to Ω,E

• Joint pdf for E,𝛀 exiting collision

• For some types of scatter, may be 
factored as    f𝝁(𝝁) fE(E|𝝁)

• Angular dependence of scattering
from  E',𝛀'  to  E,𝛀 depends on 
the cosine of the scattering angle
𝛀'⋅𝛀, not the individual directions 

number scattering
at   Ω',E'
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𝟀 = pdf for energy E of fission
neutrons produced 

1/4𝜋 =  isotropic emission in Ω

fissions due to
neutrons at E',Ω'
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Linear Boltzmann Transport Equation

• Time-dependent linear Boltzmann transport equation for neutrons,  
with prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial  (independent, identically 

distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method:   geometry & materials fixed over solution interval Δt

 

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q(


r,E,

Ω,t) + ψ(


r, ′E , ′


Ω ,t)ΣS(


r, ′E →E,


Ω⋅

′Ω )∫∫ d

′Ω d ′E

+ χ(

r,E)
4π

νΣF(

r, ′E )ψ(∫∫


r, ′E , ′


Ω ,t)d


′Ω d ′E

−

Ω⋅∇ + ΣT(


r,E)⎡⎣ ⎤⎦ ⋅ ψ(


r,E,

Ω,t)

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S +M] ⋅ ψ    −     [L + T] ⋅ ψ

External source Scattering

Multiplication

Leakage Collisions

Gains Losses
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Integral Transport Equation
&

Basis for MC Simulation
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Monte Carlo & Transport Equation

• Derive integral equation, in kernel form
– Start with integro-differential equation
– Use integrating factor

– Define

Collision density:

Transport kernel:

Collision kernel:

– Then

 
exp − ΣT (

!
r − RΩ̂,E)d ′R

0

R

∫
⎡

⎣
⎢

⎤

⎦
⎥ , where  RΩ̂ =

!
r −
!
′r

 

T( ′
!
r →

!
r,
!
E) = ΣT(

!
r,E) ⋅ exp − ΣT(

!
′r + sΩ̂,E)ds

0

!
r−
!
′r

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅
δ Ω̂i

!r−! ′r!r−! ′r −1( )
!
r−
!
′r 2

 
!
E = E ⋅ Ω̂

 Ψ(
!
r,
!
E) = ΣT(

!
r,E) ⋅ ψ(

!
r,
!
E)

 
C(
!
′E →
!
E,
!
r) = ΣS(

!
r,
!
′E →
!
E)

ΣT(
!
r, ′E )

+ χ(
!
r,E)νΣF(

!
r, ′E )

4π ⋅ ΣT(
!
r, ′E )

 
Ψ(
!
r,
!
E) = Ψ(

!
′r ,
!
′E ) ⋅C(

!
′E →
!
E,
!
′r )d
!
′E + Q( ′

!
r ,
!
′E )∫⎡⎣ ⎤
⎦∫ ⋅T(

!
′r →
!
r,
!
E)d
!
′r

Reference: D.C. Irving, "The Adjoint Boltzmann Equation and Its Simulation by Monte Carlo"
Nuclear Engineering & Design 15, 273-292 (1971)



The Linear Boltzmann Transport Equation AMC-10  - 24

Monte Carlo & Transport Equation

Basis for the Monte Carlo Solution Method

 

Let    p = (
!
r,
!
E)        and         R( ′p → p) = C(

!
′E →
!
E,
!
′r ) ⋅T(

!
′r →
!
r,
!
E)

Expand  Ψ   into components, k,  having  0,1,2,...  collisions

Ψ(p) = Ψk (p)
k=0

∞

∑ , with    Ψ0(p) = Q(
!
′r ,
!
E) ⋅T(

!
′r →
!
r,
!
E)d
!
′r∫

By definition,

Ψk (p) = Ψk−1( ′p )∫ ⋅R( ′p → p)d ′p

Markovian:  collision  k  depends only on the results of collision  k-1,
                and not on any prior collisions  k-2, k-3, ...

 
Ψ(
!
r,
!
E) = Ψ(

!
′r ,
!
′E ) ⋅C(

!
′E →
!
E,
!
′r )d
!
′E + Q( ′

!
r ,
!
′E )∫⎡⎣ ⎤
⎦∫ ⋅T(

!
′r →
!
r,
!
E)d
!
′r
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Monte Carlo & Transport Equation

Histories
• After repeated substitution for  Ψk

• A "history" is a sequence of states   (p0, p1, p2, p3, …..)

• For estimates in a given region, tally the occurrences for
each collision of each "history" within a region

Ψk (p) = Ψk−1( ′p )∫ ⋅R( ′p → p)d ′p

= ... Ψ0(p0 )∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2)...R(pk−1 → p)dp0...dpk−1

p0

p1

p2
p3

p4p1

p0

p2p3

History 1
History 2
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Monte Carlo & Transport Equation

Monte Carlo approach:

• For 1 trial,  generate a sequence of states (p0, p1, p2, p3, …)  by:

– Randomly sample from PDF for source: Ψ0( p0 )
– Randomly sample from PDF for kth transition: R( pk-1 → pk )
– Repeat sampling transitions until termination

• Repeat for M trials (histories)

• Generate estimates of results by averaging over states for M 
histories:

Ψk (p) = ... Ψ0(p0 )∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2)...R(pk−1 → p)dp0...dpk−1

A = A(p) ⋅ Ψ(p)dp∫ ≈ 1
M

⋅ A(pk,m)
k=1

∞

∑⎛⎝⎜
⎞
⎠⎟m=1

M

∑
Events

In history
Histories

In problem

sample
p0

sample
p1

sample
p2

sample
p
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Fixed-source Monte Carlo Calculation

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk
Random

Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3

Random Walk for a particle

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E,Ω randomly
- tallies

Secondary
Particles
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Monte Carlo 
Eigenvalue Problems
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Time-dependent Transport

• Monte Carlo solution   (over Δt, with fixed geometry & materials)
– Simulate time-dependent transport for a neutron history
– If fission occurs, bank any secondary neutrons. 
– When original particle is finished, simulate secondaries till done.
– Tallies for time bins, energy bins, cells, …

• At time  t,  the overall neutron level is

• Alpha  & T (reactor period, T = 1/α) can be defined by:

This is the "dynamic alpha",  NOT an eigenvalue !

 

1
v
∂ψ(
!
r,E,
!
Ω, t)

∂t
= Q + [S +M] ⋅ ψ − [L + T] ⋅ ψ

N(t) = N0 e
α t

α = d ln N(t)
dt

≈ ln N(t) − ln N0

t − t0

 
N(t) = ψ(

!
r,E,Ω̂, t)
v!

r ,E,Ω̂
∫∫∫ d

!
rdEdΩ̂
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Alpha Eigenvalue Equations 

• For problems which are separable in space & time, it may be 
advantageous to solve a static eigenvalue problem, rather than a fully 
time-dependent problem

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. Separability: 𝚿(r,E,Ω,t) =  𝚿α(r,E,Ω) eαt,

• Substituting 𝚿 into the time-dependent transport equation yields  

– This is a static equation,  an eigenvalue problem for α and 𝚿α
without time-dependence 

– α is often called the time-eigenvalue or time-absorption
– α -eigenvalue problems can be solved by Monte Carlo methods

 
L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (
!
r,E,
!
Ω) = S +M[ ]Ψα
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Keff Eigenvalue Equation 

• For problems with fission multiplication, another approach is to create a 
static eigenvalue problem from the time-dependent transport equation   
(the asymptotic or steady-state solution) 

• Introduce Keff, a scaling factor on the multiplication (𝛎)

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. ∂𝜓/∂t = 0: 𝛎 ⇒ 𝛎 / keff

• Setting  ∂𝜓/∂t  = 0   and   introducing the  Keff eigenvalue gives

– Steady-state equation,  a static eigenvalue problem for Keff and 𝜓k
– Keff = effective multiplication factor
– Critical:   K=1,       subcritical:   k<1,       supercritical:    k >1
– Keff & 𝜓k should never be used to model time-dependent problems.

 
L + T[ ]Ψk (

!
r,E,
!
Ω) = S + 1

Keff

M⎡

⎣
⎢

⎤

⎦
⎥Ψk
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Comments on Keff and α Equations

• Criticality
Supercritical: α > 0 or Keff > 1
Critical: α = 0 or Keff = 1
Subcritical: α < 0 or Keff < 1

• Keff vs. α eigenvalue equations
– 𝚿k(r,E,Ω) ≠ 𝚿α(r,E,Ω),   except for a critical system

– α eigenvalue &  𝚿α eigenfunction used for   time-dependent problems
– Keff eigenvalue &  𝚿k   eigenfunction used for   reactor design & analysis

– Although  α = ( Keff - 1) / λ,    where  λ = lifetime,
there is no direct relationship between 𝚿k(r,E,Ω) and 𝚿α(r,E,Ω)

• Keff eigenvalue problems can be solved directly using Monte Carlo

• α eigenvalue problems are solved by Monte Carlo indirectly
using a series of Keff calculations
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Comments on Keff and α Equations

K equation [ L + T ] 𝚿k =   [S  +  1/k M ] 𝚿k

α equation [ L + T +  α/v ] 𝚿α =   [S  +  M ] 𝚿α

• The factor  1/k  changes the relative level of the fission source

• The factor   α/v   changes the absorption  &   neutron spectrum
– For α > 0,  more absorption at low E  ➜ harder spectrum
– Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30  MeV
α calculation: 1.68  MeV

• For separable problems,   𝚿(r,E,Ω,t) =  𝚿α (r,E,Ω) eαt

• No similar equation for k,  since not used for time-dependence
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K-eigenvalue equation

where
L = leakage operator S = scatter-in operator
T = collision operator M = fission multiplication 

operator
• Rearrange

➜ This eigenvalue equation will be solved by power iteration

(L + T)Ψ = SΨ + 1
Keff MΨ

(L + T − S)Ψ = 1
Keff MΨ

Ψ = 1
Keff ⋅ (L + T − S)−1MΨ

Ψ = 1
Keff ⋅FΨ

Ψ (n+1) = 1
Keff
(n) ⋅FΨ (n), n = 0,1,2,... iteration
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Power Iteration

Diffusion Theory or
Discrete-ordinates Transport

Initial guess for Keff and 𝚿
Keff

(0), 𝚿(0)

Outer iteration –
Repeat until Keff

(n+1) & 𝚿 (n+1) converge

Solve for 𝚿(n+1)

Inner iterations - sweep over space
or space/angle to solve for 𝚿(n+1)

Update Keff
(n+1)

Done.  Print results

Monte Carlo

Initial guess for Keff and 𝚿
Keff

(0), 𝚿(0)

Outer iteration –
Repeat until Keff

(n+1) & 𝚿 (n+1) converge

Solve for 𝚿(n+1)

Follow particle histories to solve for 𝚿 (n+1)

During histories, save fission sites to use 
for source in next iteration 

During histories, make tallies for Keff
(n+1)

Done, clear tallies.
Continue iterating, accumulate tallies

(L + T − S)Ψ (n+1) = 1
Keff
(n) MΨ (n)

 
Keff
(n+1) = Keff

(n) ⋅ 1iMΨ (n+1)

1iMΨ (n)

(L + T − S)Ψ (n+1) = 1
Keff
(n) MΨ (n)
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Monte Carlo Eigenvalue calculation
Initial
Guess

Cycle 1
Keff

(1)
Cycle 2

Keff
(2)

Cycle 3
Keff

(3)
Cycle 4

Keff
(4)

Cycle 1
Source

Cycle 3
Source

Cycle 4
Source

Cycle 5
Source

Cycle 2
Source

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Iterate (cycle) until converged, then more to accumulate tallies
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α-Eigenvalue Calculations  (Alpha search) 

• Eigenvalue equation with both Keff & α
– α is a fixed number,    not a variable or eigenvalue

– Find the k-eigenvalue as function of α,   K(α)

• Note: If α < 0
– Real absorption plus time absorption could be negative
– Move α/v to right side to prevent negative absorption, 
– -α/v term on right side is treated as a delta-function scatter

– Select a fixed value for α
– Solve the K-eigenvalue equations, with fixed time-absorption α/v
– Select a different α and solve for a new Keff
– Repeat, searching for value of  α which results in Keff = 1

 
L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (
!
r,E,
!
Ω) = S + 1

Keff

M⎡

⎣⎢
⎤

⎦⎥
Ψα
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K- and α-Eigenvalue Calculations

• K-eigenvalue solution

Loop for Power Iteration for K
• Loop over neutrons in cycle
• • neutron history
• • • •
• • •

• α-eigenvalue solution

Loop for α search iterations
• Loop for Power Iteration for K
• • Loop over neutrons in cycle
• • • neutron history
• • • • •
• • • •
• • •

➜ Find   K(α),   then  search for  α that gives  K(α)=1

Monte Carlo

Monte Carlo
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Questions ?
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Outline 

•  Introduction 
–  Forward & Adjoint Transport Equations 
–  Superposition Principle 
–  Green's functions & transport 

•  Forward & Adjoint LBTE 
–  Integral equation for the neutron source 
–  Integral equation for the adjoint source 
–  Comments on forward vs adjoint 
–  Relationship between forward & adjoint 

•  Green's Function Approach 
–  Forward & adjoint Green's functions 
–  K-eigenvalue form 
–  Reciprocity 
–  Discussion 
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Introduction 
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Introduction – Forward & Adjoint Transport 

•  Given a source, the forward LBTE gives the response at all points 
in the problem phase space 
–  Forward LBTE describes where the particles will go 

•  Given a response, the adjoint LBTE gives the source at all points 
in the problem phase space that would produce the response 
–  Adjoint LBTE describes where the particles came from 

 
–  The adjoint LBTE essentially follows particles backwards (in Ω,E,t) from 

the response to the source 
–  For fixed-source problems, the response is a particular tally 
–  For eigenvalue problems, the response is the forward fundamental 

mode solution (ie, the fission neutron distribution) 
–  The adjoint solution is often called the importance 
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Introduction – Superposition Principle 

•  Consider 2 sources, A & B, and one detector 
point C 

–  Denote the flux response at point C by 𝟇C 

–  If source A is on & source B is off, 
•  Solve the LBTE to get the flux response at point C 

due to the source at point A, 𝟇AàC 
•  𝟇C  =  𝟇AàC 

–  If source A is off & source B is on, 
•  Solve the LBTE to get the flux response at point C 

due to the source at point A, 𝟇BàC 
•  𝟇C  =  𝟇BàC 

–  If source A is on & source B is on, 
•  𝟇C  =   𝟇AàC   +  𝟇BàC 

 
•  Linearity of LBTE permits adding the response 

from different sources to get the total source 

A B 

C 
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•  G( A à B )
–  Green's function,  "here-to-there" function
–  Probability that source at point A produces source at point B

•  Transport theory - Peierl's equation for multiplying system

–  G( r' à r ) gives the fission source at r (in a single generation) 
due to a fission neutron born at r'

–  This use of a Green's function is considered "obvious", 
but it is based on rigorous math (ie, integral operator theory)

B 

A 

Introduction - Green's Functions & Transport Theory

 
S(!r )  =   1

keff

  ⋅  d!′r ⋅S(!′r ) ⋅G(!′r →
!r )

all  !′r
∫

SB  =  SA ∙ G( A à B )
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Forward & Adjoint 
LBTE 
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Time-independent, Including Fission 

•  Time-independent forward LBTE •  Time-independent adjoint LBTE 

 

Ω̂ ⋅∇Ψ(!r,E,Ω̂)
+ΣT(!r,E)Ψ(!r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(!r, ′E →E, Ω̂• ′Ω̂∫∫ ) Ψ(!r, ′E , ˆ ′Ω )

= S(!r,E,Ω̂)

Short form: LΨ(!r,E,Ω̂) = S(!r,E,Ω̂)

For fixed-source problem, 
   S is an internal or volume source
For eigenvalue problem,

   S(
!
r,E,Ω̂) = 1

K ⋅
χ(E)

4π
d ′E d ˆ ′Ω  νΣF (

!
r, ′E ) Ψ(

!
r, ′E , ˆ ′Ω )∫∫

 

−Ω̂ ⋅∇Ψ†(!r,E,Ω̂)
+ΣT(!r,E)Ψ†(!r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(!r,E→ ′E , − Ω̂• ′Ω̂∫∫ ) Ψ†(!r, ′E , ˆ ′Ω )

= S†(!r,E,Ω̂)

Short form: L†Ψ†(!r,E,Ω̂) = S†(!r,E,Ω̂)

For fixed-source problem, 
   S†  is an specific tally response
For eigenvalue problem,

   S†(
!
r,E,Ω̂) = 1

K ⋅ νΣF (
!
r ,E) d ′E d ˆ ′Ω ⋅

χ( ′E )

4π
⋅ Ψ† (

!
r, ′E , ˆ ′Ω )∫∫

Reverse          Ω̂    to   -Ω̂
Interchange     E'   and  E
Interchange   νΣF   and  χ/4π



Adjoints & Green's Functions        AMC-11  -   9        

Adjoint = Importance 

•  Why are adjoint solutions needed? 

–  In quantum theory, operators that produce measurable results are Hermitian (or 
self-adjoint). Complete sets of orthogonal eigenfunctions exist. 

–  In 1-speed transport theory or 1-group diffusion theory 
•  The operators are self-adjoint   (kernels are symmetric) 
•  The LBTE has a complete set of orthogonal eigenfunctions 
•  Forward & adjoint eigenfunctions are the same 

–  For energy-dependent transport & multigroup diffusion 
•  The operators are not self-adjoint   (kernels are not symmetric) 
•  Eigenfunctions for the forward LBTE are not orthogonal & are different from the 

adjoint eigenfunctions 
•  However, the forward & adjoint eigenfunctions are biorthogonal, 
∫𝜓p

† 𝜓q   =0 if p≠q 

–  First-order perturbation theory:  𝚫𝜌  =  < 𝜓† 𝚫x 𝜓 > / < 𝜓† F 𝜓 >  
•  Change in parameter weighted by importance 

–  Reactor kinetics:   𝚲eff = < 𝜓†  1/v 𝜓 > / < 𝜓† F 𝜓 >   eff = < 𝜓†  1/v 𝜓 > / < 𝜓† F 𝜓 >   
•  Importance weighting   𝛃eff = < 𝜓†    B  𝜓 > / < 𝜓† F 𝜓 >  eff = < 𝜓†    B  𝜓 > / < 𝜓† F 𝜓 >  
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MC Simulation 

•  MC simulation gives the solution to the forward LBTE 

•  For some special cases, the MC simulation can be run backwards 

–  1-speed problems  
–  Multigroup problems (transpose the scattering matrix) 

•  For general, energy-dependent problems, the MC simulation 
cannot be run backwards to get the adjoint LBTE solution 

–  Some reactions can't be sampled backwards 
•  scattering with correlated E',𝛍 exit parameters 
•  some inelastic scatters 
•  etc. 
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Green's Functions 
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Forward Equations 

•  Define the net loss operator in the LBTE as 

•  The Green’s function is the solution to the LBTE for a point source 

–  By convention, G(r0,E0,𝛀0àr,E,𝛀) is used,  rather than G(r,E,𝛀) 

•  The LBTE solution for an arbitrary source can then be written as 
 

 L ⋅G(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0 ) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0 ),

 
Ψ(
!
r,E,Ω̂) = d

!
r0 dE0 dΩ̂0∫∫∫ S(

!
r0,E0,Ω̂0 ) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )

 

L ⋅Ψ(
!
r,E,Ω̂) = Ω̂ ⋅∇Ψ(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(
!
r, ′E →E, ′Ω̂ i Ω̂∫∫ ) Ψ(

!
r, ′E , ˆ ′Ω )
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Backward Equations 

•  Define the net loss operator in the LBTE as 

•  The Green’s function is the solution to the LBTE for a point source 

–  By convention, G† (r0,E0,𝛀0àr,E,𝛀) is used,  rather than G† (r,E,𝛀) 

•  The LBTE solution for an arbitrary source can then be written as 
 

 

L† ⋅Ψ†(
!
r,E,Ω̂) = −Ω̂ ⋅∇Ψ†(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ†(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(
!
r,E→ ′E ,− ′Ω̂ i Ω̂∫∫ ) Ψ†(

!
r, ′E , ˆ ′Ω )

 L
† ⋅G†(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0 ) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0 )

 
Ψ†(
!
r,E,Ω̂) = d

!
r0 dE0 dΩ̂0∫∫∫ S†(

!
r0,E0,Ω̂0 ) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )
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k-eigenvalue Equations 

•  Transport equation, k-eigenvalue form 

Solution using Green's function 

•  Adjoint transport equation, k-eigenvalue form 

Solution using Green's function 

 
L ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r )

 
S(
!
r ) = d ′E d ˆ ′Ω  νΣF(

!
r, ′E ) Ψ(

!
r, ′E , ˆ ′Ω )∫∫

 
Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0 )
4π

⋅S(
!
r0 ) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )

 L
† ⋅Ψ†(

!
r,E,Ω̂) = 1

K ⋅ νΣF(
!
r,E) ⋅S†(

!
r )

 
S†(
!
r ) = d ′E d ˆ ′Ω ⋅ χ( ′E )

4π
⋅Ψ†(
!
r, ′E , ˆ ′Ω )∫∫

 
Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0 ) ⋅S

†(
!
r0 ) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )
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Reciprocity 

•  G and G† are not symmetric, can't reverse r0,E0,𝛀0  and  r,E,𝛀 

•  Reciprocity for direct & adjoint Green’s function 

–  Because of irreversible energy dependence, neither G nor G† is 
symmetric in initial and final arguments. 

•  Apply reciprocity to the adjoint Green's function solution 

•  Compare with forward 

 G
†( 
!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )  =  G( 

!
r,E,Ω̂→

!
r0,E0,Ω̂0  )

 
Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0 ) ⋅S

†(
!
r0 ) ⋅G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0 )

 
Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0 )
4π

⋅S(
!
r0 ) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )
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Discussion 

•  Forward & backward solutions 

 
 
 
 
 
•  Why does this matter? 

 MC simulation computes G( r0,E0,𝛀0àr,E,𝛀) directly 
 

 Can pick starting points r0,E0,𝛀0,  then  
   record tallies at r,E,𝛀 with appropriate weighting functions 

 
Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0 )
4π

⋅S(
!
r0 ) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )

 
Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0 ) ⋅S

†(
!
r0 ) ⋅G(

!
r,E,Ω̂→

!
r0,E0,Ω̂0 )



Adjoints & Green's Functions        AMC-11  -   17        

Discussion 

•  Why does this matter ? 

–  Green's function approach enables the use of the very rich 
mathematical tools from linear operator theory 

–  Linear operator theory can be used to examine the existence & 
completeness of eigenfunction expansions 

–  Green's function approach enables development of different Monte 
Carlo approaches 

–  Next lecture on the fission matrix method is an example 

–  Variance reduction methods attempt to influence the endpoints  r,E,𝛀 
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Abstract

Fission Matrix Method for Monte Carlo Criticality Problems
Forrest Brown

The theory underlying the fission matrix method is derived using a rigorous Green’s function 
approach. The method is then used to investigate fundamental properties of the transport 
equation for a continuous-energy physics treatment. We provide evidence that an infinite set of 
discrete real eigenvalues and eigenfunctions exist for the continuous-energy problem, and that 
the eigenvalue spectrum converges smoothly as the spatial mesh for the fission matrix is refined. 

We also derive equations for the adjoint solution. We show that if the mesh is sufficiently refined 
so that both forward and adjoint solutions are valid, then the adjoint fission matrix is identical to 
the transpose of the forward matrix. While the energy-dependent transport equation is strictly 
biorthogonal, we provide surprising results that the forward modes are very nearly self-adjoint for 
a variety of continuous-energy problems. 
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Outline

• Introduction
– Higher eigenmodes
– Green's functions & transport
– Motivation

• Theoretical Basis of the Fission Matrix
– Integral equation for the neutron source
– Integral equation for the adjoint source
– Comments of forward vs adjoint

• Forward & Adjoint Fission Matrix Equations
– Forward fission matrix equations
– Adjoint fission matrix equations
– Relationship between forward & adjoint

• Fission Matrix Eigenmodes & Eigenvalue Spectrum
– Higher mode analysis
– Spectrum convergence with mesh refinement
– Real vs Complex eigenvalues
– Near-orthogonality of eigenfunctions

• Conclusions & Future Work
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Introduction
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Higher Eigenmodes

Vibrating strings:
• Higher modes add "tone", 

but die away quickly
• Fundamental mode persists
• Feedback, instability, nonlinear

effects, …, may excite higher modes

0

1

2

3

4

5

etc.
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• F( A à B )
– Green's function,  "here-to-there" function
– Probability that source at point A produces source at point B

• Transport theory - Peierl's equation for multiplying system

– Discretize space into blocks, or mesh regions
– Compute   F( r′ à r )  with Monte Carlo
– Solve matrix eigenvalue problem for sources:

– Can also solve for higher modes

B

A

Introduction - Green's Functions & Transport Theory

 
S(!r )  =   1

keff

  ⋅  d!′r ⋅S(!′r ) ⋅F(!′r →
!r )

all  !′r
∫

 

!
S  =   1

keff
 ⋅   F ⋅

!
S

SB =  SA · F( A à B )
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Introduction – Who Cares?

• Knowledge of fundamental & all higher modes
– “Crown Jewels” of analysis – explains everything

• Reactor theory & mathematical foundations
– Existence of higher modes
– Eigenvalue spectrum – discrete ?  real ?
– Forward & adjoint modes
– Assessment of spatial refinement

• Fundamental reactor physics analysis
– Higher modes for stabiility analysis of Xenon & void oscillations
– Slow-transient analysis
– Startup, probability of initiation

• Source convergence testing & acceleration
– May provide robust, reliable, automated convergence test 
– Acceleration of source convergence
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Theoretical Basis
of the

Fission Matrix
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Integral Equation for the Neutron Source    (1)
• Transport equation, k-eigenvalue form 

M = net loss operator

S(r) = fission neutron source

χ(E) = emission spectrum,  
following analysis is same if replaced by

 
M ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r )

 

M ⋅Ψ(
!
r,E,Ω̂) = Ω̂ ⋅∇Ψ(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω  ΣS(
!
r, ′E →E, ′Ω̂ → Ω̂∫∫ ) Ψ(

!
r, ′E , ˆ ′Ω )

 
S(
!
r ) = d ′E d ˆ ′Ω  νΣF(

!
r, ′E ) Ψ(

!
r, ′E , ˆ ′Ω )∫∫

 

χ(E,
!
r ) =

d ′E d ˆ ′Ω  χ( ′E →E) νΣF(
!
r, ′E ) Ψ(

!
r, ′E , ˆ ′Ω )∫∫

d ′E d ˆ ′Ω  νΣF(
!
r, ′E ) Ψ(

!
r, ′E , ˆ ′Ω )∫∫
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Integral Equation for the Neutron Source    (2)

• Define Green’s function & integral transport equation

• Multiply by νΣF(r,E),  integrate over E, Ω
• Define energy-angle averaged Source & Green’s function

 M ⋅G(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0 ) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0 ),

 
Ψ(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫

χ(E0 )
4π

⋅S(
!
r0 ) ⋅G(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )

 
S(!r ) = 1

K
d!r0 ⋅S(

!r0 ) ⋅H(∫
!r0 →

!r )

 
H(!r0 →

!r ) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(
!r,E)⋅ χ(E0 )

4π
⋅G(!r0,E0,Ω̂0 →

!r,E,Ω̂)

 
S(
!
r ) = d ′E d ˆ ′Ω ⋅ νΣF(

!
r, ′E ) ⋅Ψ(

!
r, ′E , ˆ ′Ω )∫∫

H(r0àr) can be tallied directly in MC simulation
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Integral Equation for the Adjoint Neutron Source    (1)
• Adjoint transport equation, k-eigenvalue form 

M† = adjoint to operator M

S† (r) = adjoint fission neutron source

Bell & Glasstone & others have shown that forward & adjoint K eigenvalues are the
same,    K† = K,   so will just use K in the following analysis.

 
M† ⋅Ψ†(

!
r,E,Ω̂) = 1

K ⋅
νΣF(

!
r,E)

4π
⋅S†(
!
r )

 

M† ⋅Ψ†(
!
r,E,Ω̂) =  −Ω̂ ⋅∇Ψ†(

!
r,E,Ω̂)+ ΣT(

!
r,E)Ψ†(

!
r,E,Ω̂)

− d ′E d ˆ ′Ω ⋅ ΣS(
!
r,E→ ′E ,Ω̂→ ˆ ′Ω∫∫ ) ⋅Ψ†(

!
r, ′E , ˆ ′Ω )

 
S†(
!
r ) = d ′E d ˆ ′Ω ⋅ χ( ′E )

4π
⋅Ψ†(
!
r, ′E , ˆ ′Ω )∫∫
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Integral Equation for the Adjoint Neutron Source    (2)

• Adjoint Green’s function & integral transport equation

• Multiply by χ(E),  integrate over E, Ω
• Define energy-angle averaged adjoint Source & Green’s function

 M
† ⋅G†(

!
r0,E0,Ω̂0 →

!
r,E,Ω̂) = δ(

!
r −
!
r0 ) ⋅δ(E−E0) ⋅δ(Ω̂ − Ω̂0 )

 
Ψ†(
!
r,E,Ω̂) = 1

K ⋅ d
!
r0 dE0 dΩ̂0∫∫∫ ⋅ νΣF(

!
r0,E0 ) ⋅S

†(
!
r0 ) ⋅G

†(
!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )

 
S†(!r ) = 1

K
d!r0 ⋅S†(!r0 ) ⋅H†(∫

!r0 →
!r )

 
H†(!r0 →

!r ) = dEdΩ̂ dE0 dΩ̂0∫∫∫∫ ⋅ χ(E)
4π

⋅ νΣF(
!r0,E0 ) ⋅G†(!r0,E0,Ω̂0 →

!r,E,Ω̂)

 
S†(
!
r ) = d ′E d ˆ ′Ω ⋅ χ( ′E )

4π
⋅Ψ†(
!
′r , ′E , ˆ ′Ω )∫∫



Fission Matrix Method for Monte Carlo Criticality Problems AMC-12  - 13

Forward & Adjoint Integral Equations for Source

• Reciprocity for direct & adjoint Green’s function

Because of irreversible energy dependence, neither G nor G† is 
symmetric in initial and final arguments. Same is true for H and H†

• Using reciprocity, comparing H and H† gives

• S and S† are bi-orthogonal

 G
†( 
!
r0,E0,Ω̂0 →

!
r,E,Ω̂ )  =  G( 

!
r,E,Ω̂→

!
r0,E0,Ω̂0  )

 

S(!r )  =   1K d!r0 ⋅S(
!r0 ) ⋅ H(∫

!r0 →
!r )

S†(!r ) =   1K d!r0 ⋅S†(!r0 ) ⋅H(∫
!r → !r0 )

 H
†(!r0 →

!r )  =  H(!r → !r0 )
 

H (!r0 →
!r )  ≠  H (!r → !r0 ),

H†(!r0 →
!r )  ≠  H†(!r → !r0 )

 
(Kp −Kq) ⋅ d

!
r ⋅Sp(

!
r∫ ) ⋅Sq

†(
!
r )  =  0
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K-eigenvalue Form of Transport Equation

• Structure & properties
– 60+ years ago:

A single, non-negative, real, fundamental 
eigenfunction & eigenvalue exist

– 50+ years ago:
For 1-speed or 1-group:   A complete set of self-adjoint, 
real  eigenfunctions & discrete eigenvalues  exists

– Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

– Nothing else proven, always assumed that higher-mode solutions exist

• In the present work based on the Fission Matrix:

– We provide evidence that higher modes  exist,   are real,   have discrete
eigenvalues,   and are very nearly self-adjoint (for reactor-like problems)

– Approach is similar to Birkhoff’s original proof for fundamental mode

– This has never been done before using continuous-energy Monte Carlo

 
M ⋅Ψ(

!
r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(
!
r )
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Forward & Adjoint
Fission Matrix

Equations
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Forward Fission Matrix Equations    (1)

• Segment the physical problem into N disjoint spatial regions
– Initial regions (r0) for fission neutron source emission
– Final regions (r) for production of a next-generation fission neutron

• Integrate the forward integral fission source equation over r0 & r
– Initial:    r0∈ VJ,       Final:   r ∈ VI

Exact equations for integral source SI
N = # spatial regions,   F = N x N  matrix, nonsymmetric

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑

 
FI,J = d!r

!r∈VI
∫ d!r0

!r0∈VJ
∫

S(!r0 )
SJ

⋅H(!r0 →
!r )          SJ = S(!′r )d!′r

!
′r ∈VJ
∫
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Forward Fission Matrix Equations    (2)

• FI,J  =  next-generation fission neutrons produced in region I,
for each average fission neutron starting in region J     
(JàI)

• In the equation for F,
– S(r0)/SJ is a local weighting function within region J
– As  VJ à 0:   

• S(r0)  à SJ / VJ
• Discretization errors à 0
• Can accumulate tallies of FI,J  even if not converged

• FI,J   tallies:
– Previous  F-matrix  work: tally during neutron random walks
– Present   F-matrix work: tally only point-to-point, 

using fission-bank in master proc (~free)
• Eliminates excessive communications for parallel
• Provides more consistency, FI,J  nonzero only in elements with actual sites
• Analog-like treatment, better for preserving overall balance
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Adjoint Fission Matrix Equations

• Segment the physical problem into N disjoint spatial regions
– Initial regions:   r0∈ VJ,       Final regions:    r ∈ VI

• Integrate the adjoint integral fission source equation over r0 & r

Exact equations for adjoint integral source S†
I

S†
I = 1

K ⋅ F†
I,J ⋅S

†
J

J=1

N

∑

 
F†

I,J = d!r
!r∈VI
∫ d!r0

!r0∈VJ
∫

S†(!r0 )
S†

J
⋅H(!r → !r0 )          S†

J = S†(!′r )d!′r
!
′r ∈VJ
∫



Fission Matrix Method for Monte Carlo Criticality Problems AMC-12  - 19

Relationship Between Forward & Adjoint Fission Matrix
• FI,J  =  next-generation fission neutrons produced in region I,

for each average fission neutron starting in region J     (JàI)

• Compare  FI,J  &  F†
J,I ,   interchange integration order for F†

J,I

• If the spatial discretization is fine enough that

then
• Discretization errors from neglecting weights à 0
• Can accumulate tallies of FI,J  even if not converged
• For fine spatial mesh,    F†  =  transpose of F

 

FI,J = dr
r∈VI
∫   dr0

r0∈VJ
∫ ⋅

S(r0 )
SJ

 ⋅ H(r0 →
r )

F†
J,I = dr0

r0∈VJ
∫ dr

r∈VI
∫  ⋅S

†(r )
S†
I

⋅ H(r0 →
r )

 

S(r0 )
SJ VJ

≈1    for r0 ∈VJ          and          
S†(r )
SI VI

≈1    for r ∈VI

F†  =  FT

Same form, but 
different spatial 
weighting functions
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Monte Carlo Estimation of Fission Matrix
Monte Carlo K-effective Calculation
1. Start with fission source & k-eff guess
2. Repeat until converged:

• Simulate neutrons in cycle
• Save fission sites for next cycle
• Calculate k-eff, renormalize source

3. Continue iterating &  tally results

For Fission Matrix calculation
During standard k-eff calculation,  at the end of each cycle:

• Estimate  FI,J tallies from start & end points in fission bank        ( ~ free )
• Accumulate  FI,J tallies,  over all cycles                   (even inactive cycles)

After Monte Carlo completed:
• Normalize  FI,J accumulators,  divide by total sources in J regions
• Find eigenvalues/vectors of  F  matrix      (power iteration, with deflation)
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Fission Matrix – Sparse Structure

• For a spatial mesh with N regions,  F matrix is  N x N
– 100x100x100 mesh  ➜ F is 106 x 106 ➜ 8 TB memory
– In the past, memory storage was always the major limitation for F 

matrix

• Compressed row storage scheme
– Don’t store near-zero elements,  general sparsity 
– Reduced F matrix storage,   no approximation
– Can easily do 100x100x100 mesh on 8 GB Mac

2D PWR - 15x15x1 mesh, N=225 2D PWR - 30x30x1 mesh, N=900



Fission Matrix Method for Monte Carlo Criticality Problems AMC-12  - 22

Fission Matrix – Sparse Storage

• Compressed Row Storage Scheme (CRS)
– General sparsity, no approximations or assumptions
– N = Nx x Ny x Nz mesh cells 
– (iS , jS, kS) → (iT , jT, kT)     ➜ J → I J =  iS +  (jS-1)Nx +  (kS-1)NxNy

I  =  iT +  (jT-1)Nx +  (kT-1)NxNy
– Only the nonzero F(I,J) entries are stored. 
– MC tallies:   If element exists – add to it;    if not – insert it

– L(I) array entries point to the start of a list of J indices and 
corresponding nonzero F(I,J) tallies 

– Highly optimized tally coding, typically requires less than 1 second at 
the end of each batch in the Monte Carlo simulation. 

L1 L2 L3 . . . LN LN+1

J1 J2 J3 J4 J5 J6 J7 J8 J9 ... JM
F1 F2 F3 F4 F5 F6 F7 F8 F9 ... FM
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Example – Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector
type(fission_matrix), intent(in)  :: fmat   ! sparse fission matrix
real(R8),             intent(in)  :: x(:)   ! vector in
real(R8),             intent(out) :: y(:)   ! vector out, result
integer(I8) :: k, i
real(R8)    :: t

!$OMP PARALLEL DO PRIVATE( t, k ) ß different thread for each row

do i = 1, fmat%n
t = 0.0d+00
do k = fmat%L(i), fmat%L(i+1)-1 ß k is location of J,R row data

t = t + fmat%R(k) * x(fmat%J(k))
enddo
y(i) = t

enddo
!$OMP END PARALLEL DO
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Fission Matrix Eigenmodes
& 

Eigenvalue Spectrum
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K-eigenvalue Form of Transport Equation

• Structure & properties
– 60+ years ago:

A single, non-negative, real, fundamental 
eigenfunction & eigenvalue exist     (Birkhoff)

– 50+ years ago:
For 1-speed or 1-group:   A complete set of self-adjoint, real  
eigenfunctions & discrete eigenvalues  exists   (Lehner & Wing, Sahni)

– Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

– Nothing else proven, always assumed that higher-mode solutions exist

• In the present work based on the Fission Matrix:

– We provide evidence that higher modes  exist,   are real,   have discrete
real eigenvalues,   and are very nearly self-adjoint (for reactor-like problems)

– Approach is similar to Birkhoff’s original proof for fundamental mode

– This has never been done before using continuous-energy Monte Carlo

 
M ⋅Ψ(


r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(

r )
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Higher Eigenmode Analysis with the Fission Matrix

• Run Monte Carlo,    get fission matrix, 
then solve for eigenvalues & eigenfunctions:
– Matlab,   if full-storage F matrix can fit in memory
– Power iteration with deflation,  preserves sparse format
– Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format

– F is nonsymmetric
– Sn is a right eigenvector of F,      S†

n is a left eigenvector of F
– Sn and  S†

m are biorthogonal

 


Sn = 1

Kn ⋅F ⋅

Sn             k0 > k1 > k1  ... > kN


S†
n = 1

Kn ⋅F
T ⋅

S†
n                 n = 0,1,...N

(kp − kq) ⋅(

Sp ⋅

Sq
†) = 0
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Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

• 48 1/4  fuel assemblies:
– 12,738 fuel pins with cladding
– 1206 1/4  water tubes for

control rods or detectors

• Each assembly:
– Explicit fuel pins & rod channels
– 17x17 lattice 
– Enrichments:    2.1%,  2.6%,  3.1%

• Dominance ratio  ~  .98

• Calculations used whole-core model,
symmetric quarter-core shown at right

• ENDF/B-VII data, continuous-energy
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Fission Matrix Analysis of PWR Model

• Next 2 slides:

– Spatial mesh for fission matrix: 

• 8 x 8 x 1 mesh per assembly
• 120 x 120 x 1 overall mesh
• 14,400 spatial regions

– Eigenvalues & eigenfunctions from Matlab:

• For this specific fission matrix size of 14,400 x 14,400
• Fission matrix has    207 M elements   =   1.6 GB
• Use Matlab to get all 14,400 eigenvalues & eigenvectors

– Expensive, time-consuming – requires nonsymmetic eigensolver
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PWR – Eigenmodes for 120x120x1 Spatial Mesh

n         Kn
0     1.29480
1     1.27664
2     1.27657
3     1.25476
4     1.24847
5     1.24075
6     1.22160
7     1.22141
8     1.19745
9     1.19743
10   1.18825
11   1.18305
12   1.15619
13   1.14633
14   1.14617
15   1.14584
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PWR – First 100 Eigenmodes, with More Neutrons
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Fission Matrix Analysis of PWR Model

• Following 2 slides:

– Vary the spatial discretization

– Find eigenvalue spectrum for each discretization

– Examine eigenvalue spectrum vs number of spatial regions
• N regions  ⇒ N eigenvalues
• For small N,  fewer eigenvalues to represent problem,  inaccurate

– As N increases,  spectrum extends & converges smoothly
• No anomalies, no oscillations
• Provides measure of adequate mesh refinement

for fission matrix accuracy
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Eigenvalue Spectra with Varying Meshes
Real( ki )

14400
3600

900

225
100

25

N = number of mesh regions

( Fission matrix size = N x N )

Ki

i
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Spectrum Convergence from Mesh Refinement 

# Mesh Regions           K0

5x5         =       25      1.29444
10x10       =     100      1.29453
15x15       =     225      1.29469
30x30       =     900      1.29477
60x60       =   3600      1.29479

120x120     = 14400      1.29480

K0

K1
K2

K3
K4

K5

K6
K7

K8
K9

For fine-enough spatial mesh, 
eigenvalue spectrum converges
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Are the Eigenvalues Real or Complex ?

Real( ki ):

Imag( ki ):

5 M neutrons/cycle
500K neutrons/cycle

The appearance of complex 
eigenvalues appears to be strictly 
an artifact of  Monte Carlo 
statistical noise

When more neutrons/cycle are 
used to decrease statistical noise, 
complex components diminish or 
vanish

The first few 100s or 1000s of 
discrete eigenvalues are real, and 
presumably all would be with 
sufficiently large neutrons/cycle

120 by 120 Spectrum, Varying  Neutrons/cycle
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PWR2D - Eigenvalues 

Fission Matrix
30 x 30 mesh

772 Eigenvalues

2500 M neutrons

Kn – real part
Kn – imaginary part
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PWR2D – Imaginary Part of Eigenvalues

Fission Matrix
30 x 30 mesh

772 Eigenvalues

5 M neutrons
250 M neutrons

2500 M neutrons

Kn – imaginary part

Mode number, 0 ... 771 →

.006

-.004

-.002

0

.002

.004

-.006
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PWR – Inner Products of Forward Eigenmodes

Inner products of 
forward eigenfunctions

Strictly, eigenfunctions of the transport equation are bi-orthogonal.
As shown above, forward eigenfunctions are very nearly orthogonal.
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PWR2D – Forward & Adjoint Source Eigenmodes

• Fundamental eigenmode Forward Adjoint

– Forward shows spatial detail,
much like thermal flux

– Adjoint is smoother, 
much like fast flux

• Inner products of modes:      S†
n • Sm and    Sn• Sm

forward mode number →

←
 a

dj
oi

nt
 m

od
e 

nu
m

be
r

←
 fo

rw
ar

d
m

od
e 

nu
m

be
r

forward mode number →
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Forward & Adjoint Source Eigenmodes

0 54321

Forward source modes

Adjoint source modes

2D PWR problem – 2,500 M neutrons,
tally mesh 120x120x1,   matrix NxN N=14,400
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• Forward flux modes 
– Calculated by running fixed source calculations 

using forward fission source eigenfunctions

• Source for mode n is sampled in an analog manner
– Point within mesh cell is resampled until within fissionable material
– Flag is added for sign of particle weight
– Fission is treated as absorption (NONU card)

• Track-length flux mesh tally module FMESH used

Calculation of Forward Flux Modes

n = 0, ... N
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Forward Flux Modes for 2D PWR

Thermal flux modes (0 - 0.625 eV) Fast flux modes (0.625 eV - 20 MeV)

• Source modes from fission matrix
- 500 cycles, 500k batch size
- 50x50x1 mesh,   2500x2500 fission matrix

• Fixed source calculations
- 500k histories  per mode,   minutes
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PWR – with Perturbations

• Insert SS304 Control Rods in each assembly in quadrant of core

Fission Source
Eigenmodes

Original Perturbed

Original Perturbed
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PWR - Convergence Acceleration Using Fission Matrix

• Fission matrix can be used to accelerate convergence of the 
MCNP neutron source distribution during inactive cycles

• Requires only fundamental forward mode
• Very impressive convergence improvement

standard 
MC

standard 
MC

keff

Hsrc

accelerated using F matrix

accelerated using F matrix
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Advanced Test Reactor

S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-
Aluminide Fuel Plates Reflected by Beryllium”, HEU-MET-THERM-022, Idaho National Laboratory (September 
2005).

Serpentine Arrangement of Highly Enrichment Water-Moderated 
Uranium-Aluminide Fuel Plates Reflected by Beryllium
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ATR - Eigenmodes (100x100 spatial mesh)
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Conclusions
&

Future Work
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Conclusions

• Derived theory underlying fission matrix method
– Rigorous Green’s function approach, no approximations
– Specific conditions on spatial resolution required for fission 

matrix accuracy
– If spatial resolution fine enough, adjoint fission matrix identical 

to transpose of forward fission matrix

• Applied to realistic continuous-energy MC  analysis of typical 
reactor models. Numerical evidence that:
– Infinite set of discrete, real-valued eigenvalues & eigenfunctions 

exist for the integral fission neutron source & adjoint
– As spatial resolution is refined, eigenvalue spectrum converges 

smoothly
– While forward & adjoint are biorthogonal, forward modes are 

very nearly self-adjoint (for reactor-like problems)
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Conclusions

• Fission matrix capability has been added to MCNP   (R&D for now)

• Tested on variety of real problems   (3D, continuous-energy)

• Can obtain fundamental & higher eigenmodes

– Empirical evidence for: existence of higher modes,   
real,   discrete eigenvalues,   
very nearly orthogonal eigenmodes 

(for reactor-like problems)

– Higher eigenmodes are important for 
BWR void stability, higher-order perturbation theory,
Xenon oscillations, quasi-static transient analysis, 
control rod worth, correlation effects on statistics, 
accident behavior, etc.,     etc.,      etc.

• Can provide very effective acceleration of source convergence



Fission Matrix Method for Monte Carlo Criticality Problems AMC-12  - 49

Future Work

• Capabilities discussed in this talk are NOT in MCNP6.2 –
targeted for release in later update

• Use fission matrix to accelerate source convergence
– Already demonstrated;   very effective;   needs work to automate

• Use fission matrix for automatic, on-the-fly determination of 
source convergence
– Automate the determination of “inactive cycles”

• Use fission matrix to assess problem coverage
– Need more neutrons/cycle to get adequate tallies?

• Higher modes can be used to reduce/eliminate cycle-to-cycle 
correlation bias in statistics
– Replicas & ensemble statistics may be better, for exascale computers

• Apply higher-mode analysis to reactor physics problems
– Xenon & void stability, slow transients, etc.
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Questions ?



Fission Matrix Method for Monte Carlo Criticality Problems AMC-12  - 52



Continuously Varying Materials & Tallies AMC-13  - 1

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Continuously Varying
Material Properties & Tallies
for Monte Carlo Calculations

Advanced 
Computational 

Methods for 
Monte Carlo 
Calculations 



Continuously Varying Materials & Tallies AMC-13  - 2

Abstract

Continuously Varying Material Properties and Tallies
For Monte Carlo Calculations

Forrest B. Brown (LANL), David P. Griesheimer, & William R. Martin (U. Mich)

Monte Carlo methods for particle transport are highly regarded for their continuous treatment 
of particle energy and angular dependence, and for their very general geometric representations. 
However, all of the production Monte Carlo codes available today make use of a zero-th order 
approximation for representing material densities and cell flux tallies, i.e., constant over a 
geometric cell. Recent work has shown that both of these limitations can be overcome, so that 
continuously varying spatial representations can be extended to material properties and tallies. 

In the present work, we provide derivations of the new random sampling methods and 
mathematical procedures and then demonstrate the feasibility of these new methods in a 1-D 
Monte Carlo code. We have used this code first to verify that the continuous representation was 
implemented correctly, and then to investigate a number of deep penetration problems and 
eigenvalue problems to examine the benefits of a continuous representation. 

The theory and numerical results described herein demonstrate conclusively that it is now 
feasible to implement Monte Carlo codes with continuously varying particle energy and angular 
dependence, continuously varying material properties, and continuously varying tallies. The 
continuous representation can greatly reduce modeling difficulties, can significantly reduce the 
number of cells required for accurate results, and for complex problems may even reduce the 
computation time. 
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Outline

• Introduction

• Varying Material Properties
– Stepwise Approximation
– Woodcock Tracking
– Direct Numerical Sampling
– Piecewise Legendre Expansion

• Continuous Tallies
– Stepwise Approach
– Piecewise Legendre Expansion

• Numerical Examples
– Fixed Source Example
– Criticality Example
– Timing & Complexity

• Conclusions
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Introduction

• Monte Carlo codes such as MCNP5 are continuous in
– Particle properties: position,  direction,  &  energy
– Collision physics: energy  &  angle

• Monte Carlo codes permit very general 3D geometries
& cross-section data representations

• BUT,  Monte Carlo codes use zero-th order representations
of tallies and material properties:
– Material properties are assumed constant within each cell
– Tally bins provide average scores within each cell

We should be able to do better than that !

This work demonstrates that we can.
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Varying Material Properties

For many problems of interest, ΣT varies within a cell

• Charged particle transport
– Continuous slowing down along 

the flight path due to interactions 
with electron field in material

– ΣT increases along the flight path

• Atmospheric transport
– Air density varies with altitude

• Depleted reactor
– Fuel & poison distribution varies

due to burnup

ΣT(s)

Flight distance, s

Σ(h)

Altitude, h

ΣB10

Radius in control rod, r
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Conventional techniques for handling varying material properties:

• Stepwise approximation
– Subdivide geometry
– Constant material properties

within each step

• Woodcock tracking
– Also called delta tracking, fast tracking, pseudo-collision method, hole 

tracking, …
– Involves biased sampling the flight distance using a larger ΣT, 

followed by rejection sampling to assure a fair game

Varying Material Properties

ΣT(s)

Flight distance, s
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Woodcock Tracking

• Introduce Σ for a "delta" collision
– Let   Σ* = ΣT(s) + Σδ(s)  =  constant,

where Σδ (s) ≥ 0

Σδ (s)  = cross-section for "delta" collision -
no change in E, (u,v,w), or wgt

Σ* ≥  ΣT(s)

– ΣT(s) / Σ* = probability of a "real" collision
– Σδ (s) / Σ* = probability of a "delta" collision

• Basic idea:    Sample flight distance using  Σ*,  
move the particle to the collision point,
then reject collision point if   ξ > ΣT(s) / Σ* 

• Using  Σ*  rather than ΣT(s) gives an interaction probability per unit 
distance that is too large, hence a flight distance that is too short. 
Rejection scheme compensates for this.

ΣT(s)

Flight distance, s

Σ*
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Limitations on Conventional Techniques

• Stepwise approximation
– How many steps?  How small?
– Accuracy vs number of steps
– Need to perform convergence studies:  results vs stepsize
– Tedious to set up 
– More cells --> increases time for tracking & boundary crossing

• Woodcock tracking
– Inefficient if  Σ* >> ΣT(s)  for most values of s
– Can't use pathlength estimators for tallies

Alternatives ?
Direct numerical sampling method  

(Brown & Martin, Gatlinburg M&C Topical, 2003)



Continuously Varying Materials & Tallies AMC-13  - 9

  
ξ = Σ(x) ⋅exp[− Σ( ′x ) d ′x ]dx

x0

x

∫
0

s

∫

Sampling the flight distance in varying media

• Random sampling of particle free-flight distance in media where 
the cross-sections are constant during the particle flights, solve 
for s:

• Random sampling of particle free-flight distance in media where 
the cross-sections vary during the particle flights, solve for s:

  
ξ = Σ(x) ⋅exp[−Σx]dx

0

s

∫
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Sampling the flight distance in varying media

• Optical depth along flight path

ΣT(x) is finite, ΣT(x) ≥ 0

Note that 

• To explicitly allow for the case of no collision,

PNC = probability of no collision

• Probability density function (pdf) for the flight distance s:

Where 

    

� 

f (s) = PNC ⋅δ(s = ∞) + (1− PNC ) ⋅
1
G

dτ
ds

e−τ (s)

  

� 

τ(s) = ΣT ( ′ x )d ′ x 
x

x+s

∫

    

� 

dτ(s)
ds

= ΣT (x + s), 0 ≤ dτ
ds

≤ ∞

  

� 

PNC = e−τ (∞)

    

� 

G = dτ(s)
ds

e−τ (s)ds = 1− e−τ (∞) = 1− PNC
0

∞

∫
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Sampling the flight distance in varying media

• Random sampling of the Monte Carlo free-flight path requires 
solving the following equation for s, the flight path:

• Common case:     ΣT independent of x

With solution:

    

� 

ξ = f (x)dx
0

s

∫
or

ξ = PNC ⋅H (s,∞) + (1− PNC ) ⋅
1
G

⋅ 1− e−τ (s)( )

    

� 

τ(s) = ΣT ⋅ s, dτ
ds

= ΣT , PNC = 0, G = 1, f (s) = ΣT ⋅ e−ΣT ⋅s

    

� 

s = − ln(1− ξ)
ΣT
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Sampling the flight distance in varying media
Direct Numerical Sampling for the free-flight distance:

Step [1]
If    ξ < PNC, Then: No collision,  set s=∞,  exit

Otherwise: Do Steps 2 & 3
Step [2]

Define

Sample by solving

That is, sample from a truncated exponential PDF:

Step [3]
Solve for s:

Analytic solution if possible, otherwise use Newton iteration

  

� 

ˆ τ = τ(s)

� 

ˆ τ 
    

� 

ξ = 1
G e−τdτ

0

ˆ τ 

∫ , with 0 ≤ ˆ τ ≤ τ(∞)

    

� 

ˆ τ = − ln(1− ξ⋅G )
ΣT

    

� 

ˆ τ = τ(s) = ΣT (x + ′ s )d ′ s 
0

s

∫
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Sampling the flight distance in varying media

Newton iteration to numerically solve for s:

Notes:
– Because g'<0,  g(s) is monotone & there can be only one root
– For cases where ΣT>0,  Newton iteration guaranteed to converge
– If ΣT(x)=0 or very small,  g' may be 0, leading to numerical difficulties
– Remedied by combining Newton iteration with bisection if g' near zero
– Typically only 1-5 iterations needed to converge s to within 10-6

    

� 

s0 = ˆ τ /ΣT (x0)
n = 0
Iterate :

n = n+ 1
g = ˆ τ − τ(sn−1)
′ g = dg / ds = −ΣT (x0 + sn−1)

sn = sn−1 − g / ′ g 

Stop if sn − sn−1 < ε
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Verification of Direct Numerical Sampling

• Monte Carlo transport of particles through a 1-D slab of thickness 2 units. 

• Consider only transmission through the slab, ignoring scattering. 

• Table (1) shows 7 different forms of spatial variation in the cross-section 
which were used for the test problem. 

• Figures (1) through (7) show the cross-section variation over the 
thickness of the slab (labelled "sig"), the pdf at position x=0 for the cross-
section variation in each test case (labelled "pdf"), and the results of 
using the direct numerical sampling procedure to perform 1,000,000 
samples of the free-flight distance for each case (labelled "sampled"). 

• The sampled results were binned in 100 bins of width 0.02. 

• In Figures (1)-(7), it can be seen that the distributions of sampled results 
for the free-flight distance agree completely with the exact pdf’s in all 
cases, verifying that the sampling method is correct.
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Table 1. Cross-section Variation for Test Cases
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Figure 1.    Test Case - 1

1. Constant Cross-section
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Figure 2.    Test Case - 2

2. Linear Decrease
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Figure 3.    Test Case - 3

3. Linear Increase
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Figure 4.    Test Case - 4

4. Exponential Decrease
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Figure 5.    Test Case - 5

5. Exponential Increase
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Figure 6.    Test Case - 6

6. Sharp Gaussian
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Figure 7.    Test Case - 7

7. Broad Gaussian
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Compare:  Direct Numerical, Delta-tracking, & Substepping

• Multiple collisions were followed 

• Transmission through the slab was computed for each test case

• For delta-tracking, the actual value of the maximum cross-section 
over the interval was used, rather than an arbitrary guess. 

• For the substepping method, equal-thickness subdivisions of the 
slab were used, with the number of subdivisions determined by 
trial and error to be the minimum required to match the accuracy 
of the other two methods

• 1,000,000 histories were followed for each method in each of the 
test cases. Results are given in Table (2).

• Accuracy of all 3 methods is comparable, given that sufficient 
substeps are used for the substepping method. The number of 
collisions and the transmission at the right slab boundary are the 
same within statistics. 
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Compare:  Direct Numerical, Delta-tracking, & Substepping
Table 2
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Compare:  Direct Numerical, Delta-tracking, & Substepping

• Function Evaluations per Collision:
– average number of flights per collision for the substepping method
– average number of pseudocollisions (delta + real) for each real collision for the delta-tracking method
– average number of Newton iterations per collision for the direct numerical method.

• Both delta-tracking and the direct method are significantly more effective than substepping
• Delta-tracking and the direct method are roughly comparable, with delta-tracking being faster 

when there is little variation in the cross-section and the direct method being faster when there 
is more variation in the cross-section. 

• Direct method should be viewed as an alternative to delta-tracking if there are large variations 
in cross-section. 
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Varying Material Properties

• Represent material density by high-order, orthogonal polynomial 
expansion within each cell
– Legendre polynomial representation for material density in cell

• Sample the free-flight distance to next interaction using a direct 
numerical sampling scheme (Brown & Martin)

– Use Newton iteration to solve nonlinear equation for flight path 

    

� 

ρ(x) = 2n +1
2 ⋅ an ⋅Pn

2
Δx (x− xmin )− 1[ ]

n =0

N
∑

    

� 

an = 2
Δx ρ(x)Pn

2
Δx (x− xmin )− 1[ ]dx

xmin

xmax
∫

    

� 

Σ(x) = ρ(x)
ρ0

⋅ Σ0, τ(s) = Σ0
ρ0

⋅ ρ( ′ x ) d ′ x 
µ

x

x+s

∫
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• Conventional Monte Carlo codes tally integral results
– Tallies summed into bins
– Zero-th order quantities within each bin
– Stepwise approximation to results

– Unfortunately, by dividing the tally into bins we increase the variance of 
the estimate because relatively few histories score in an individual bin.

Continuously Varying Tallies

x

Φ(x)

Standard Tally± σ

x

Φ(x)

5 Bin Histogram Tally± σ
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Continuously Varying Tallies

• An alternative to the histogram tally is the Functional Expansion 
Tally (FET).
– Tally the zeroth spatial moment of flux in each cell, AND higher 

moments with respect to some set of basis functions
– Moments can then be used for a functional expansion of the flux 

distribution within the tally region

• FET, Higher order tallies
– Represent results by high-order, orthogonal polynomial expansion 

within each cell
– Make tallies for expansion coefficients
– Legendre polynomial representation for continuous tallies

    

� 

Φ(x) = 2n +1
2 ⋅ bn ⋅Pn

2
Δx (x− xmin )− 1[ ]

n =0

N
∑

    

� 

bn = 2
Δx Φ(x)Pn

2
Δx (x− xmin )− 1[ ]dx

xmin

xmax
∫
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Continuously Varying Tallies

• Make tallies for the Legendre coefficients at each collision or 
flight:

• At collisions, tally for n=1..N

• At flights, tally for n=1,N 

• Reconstruct  Φ(x) and  σΦ
2(x) from tallied coefficients

    

� 

bn = 2
Δx Φ(x)Pn

2
Δx (x− xmin )− 1[ ]dx

xmin

xmax
∫

    

� 

wgt
ΣT

⋅Pn
2
Δx (x− xmin )− 1[ ]

    

� 

wgt ⋅ 1
µ

Pn
2
Δx ( ′ x − xmin )− 1[ ]

x

x+s

∫ d ′ x 
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Continuously Varying Tallies

• FETs will have some amount of statistical uncertainty
• FET uncertainty in any expansion coefficient can be estimated 

with the sample variance statistic:

• It is also possible to derive a pointwise estimate of the variance in 
the functional approximation itself.

( )

( )

2
2

,
1 12

ˆ

1 ˆ( )
ˆ

1

i

n

CN

i c n i n
i c

a

w x a
N

N N

ψ
σ = =

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

∑ ∑

!
2

0 0

ˆ ˆ( ) ( ) ( )
1 n m

M M

a a n m n m
n m

Nx k k x x
Nφ

σ σ ψ ψ
= =

=
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Sample covariance between 
coefficients ân and âm
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Numerical Examples

• Demonstration Monte Carlo code
– 1D slab geometry
– Piecewise Legendre expansion for material properties in each cell
– Piecewise Legendre expansion for pathlength tallies within each cell
– 5th order Legendre expansions,  trivial to go higher

• Examples
– A:    Fixed source,  beam into slab
– B:    Criticality,  reflected reactor

• Procedure
– Calculations with continuous materials + continuous tallies
– Calculations with stepwise approximations:      2, 4, 8, 16, 32
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Varying Materials & Tallies - Example A

• Beam source into slab
– Vacuum boundaries
– Density in slab varies from 0 at edges to 10 at center
– ΣT = 1.00, Σs = 0.99, ΣA = 0.01  

0 2x
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Varying Density - Problem A
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Continuous Tallies - Problem A
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Varying Materials & Tallies - Example B

• Eigenvalue calculation - depleted core with reflector
– Density varies quadratically in core:   .25 at center,  2.25 at edges
– Constant density in reflector, 1.0
– Core: ΣT = 2.00, Σs = 0.125, ΣA = 1.025,   ΣF = 0.85, ν = 2.4
– Reflector: ΣT = 0.25,   Σs = 0.24, ΣA = 0.01

x-2 2-1.75 1.75
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Varying Density - Problem B
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Continuous Tallies - Problem B
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Continuous Materials & Tallies

• Timings for Problem B
Continuous (3 cells) 102 sec
4-step (12 cells) 117 sec
8-step  (24 cells) 130 sec
32-step (96 cells) 283 sec

Continuous tallies require more work, but fewer cells.
Can give computational advantage for some problems.

• Conclusions
– It is now practical to extend Monte Carlo codes to use

continuously varying material properties & tallies
– 5th order Legendre polynomials within each cell look promising
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Continuous 2D Tallies - Reactor Fuel Pin Cell

• For testing the 2-D FET was implemented in MCNP4c.

• Benchmark tests were conducted on a simulated PWR fuel pin to 
calculate the spatial distribution of thermal flux in the x-y plane.

• The FET results were compared with results from an MCNP5 mesh 
tally calculation.

– Fuel OD: 1.206 cm
– Pitch: 1.875 cm
– Clad Thickness: 0.06 cm
– Gap Thickness: 0.008 cm
– Fuel Enrichment: 1%
– Eigenvalue: 1.026

1.5% UO 2

1.875 cm

1.206 cm

Figure 1. Simulated PWR fuel pin model 
used for benchmark testing of the Legendre
functional expansion tally (FET) implemented 
in MCNP4c.

1.5% UO 2

1.875 cm

1.206 cm

1.5% UO 2

1.875 cm

1.206 cm

Figure 1. Simulated PWR fuel pin model 
used for benchmark testing of the Legendre
functional expansion tally (FET) implemented 
in MCNP4c.



Continuously Varying Materials & Tallies AMC-13  - 40

Continuous 2D Tallies - Reactor Fuel Pin Cell

DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte 
Carlo Simulations," PHYSOR-2004, Chicago, IL (2004)
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Continuous 2D Tallies - 1/4 Fuel Assembly

• In order to test the method on a more realistic problem a PWR-
type quarter assembly was modeled.

• For testing the 2-D FET was implemented in MCNP4c.

• A separate 2-D Legendre expansion was used for each individual 
pin-cell.

– ¼ of a 16×16 fuel assembly
– 58 fuel pins, 4 control rods, 2 

burnable poison pins
– Pitch: 1.26
– Fuel Enrichment: 2%
– Burnable Poison Density: 0.30 g/cc
– Eigenvalue: 1.1709
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Continuous 2D Tallies - 1/4 Fuel Assembly
• Control rods withdrawn
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Continuous 2D Tallies - 1/4 Fuel Assembly
• Control rods inserted
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Conclusions

• It is now practical to extend Monte Carlo codes to use
continuously varying material properties & tallies

– Continuous materials can be modeled with delta-tracking or direct 
numerical tracking

– Flux expansion tallies have many benefits over traditional histogram 
tallies
• Can obtain a functional form for the tally distribution directly from the 

Monte Carlo, with no post-processing or curve fitting required.
• Can provide a more accurate approximation than a histogram tally, 

without requiring significantly more work per history. 
• FET estimators are easy to implement in existing Monte Carlo codes

• Future work:
– Practical implementation in production Monte Carlo codes
• See Griesheimer & Martin PHYSOR-2004 paper for 2D extension
• Will be added to MCNP5 mesh tallies in near future

– Investigate methods for reactor depletion



Continuously Varying Materials & Tallies AMC-13  - 45

References - Continuous Materials & Tallies

• FB Brown, D Griesheimer, & WR Martin, "Continuously Varying Material Properties and Tallies for Monte Carlo 
Calculations", PHYSOR-2004, Chicago, IL (April, 2004)

• FB Brown & WR Martin, "Direct Sampling of Monte Carlo Flight Paths in Media with Continuously Varying 
Cross-sections", ANS Mathematics & Computation Topical Meeting, Gatlinburg, TN (April, 2003).

• W.R. Martin and F.B. Brown, "Comparison of Monte Carlo Methods for Nonlinear Radiation Transport," Proc.
ANS Mathematics and Computations Topical Meeting, Salt Lake City (Sept 2001)

• DP Griesheimer & WR Martin, "Estimating the Global Scalar Flux Distribution with Orthogonal Basis Function 
Expansions", Trans. Am. Nucl. Soc. 89 (Nov, 2003)

• DP Griesheimer & WR Martin, "Two Dimensional Functional Expansion Tallies for Monte Carlo Simulations," 
PHYSOR-2004, Chicago, IL (April, 2004)

• ER Woodcock, T Murphy, PJ Hemmings, TC Longworth, “Techniques Used in the GEM Code for Monte Carlo 
Neutronics Calculations in Reactors and Other Systems of Complex Geometry,” Proc. Conf. Applications of 
Computing Methods to Reactor Problems, ANL-7050, p. 557, Argonne National Laboratory (1965).

• LL Carter, ED Cashwell, & WM Taylor, “Monte Carlo Sampling with Continuously Varying Cross Sections 
Along Flight Paths”, Nucl. Sci. Eng. 48, 403-411 (1972).

• J. Spanier, “Monte Carlo Methods for Flux Expansion Solutions of Transport Problems,” Nucl. Sci. Eng., 133, 
73 (1999).

• CJ Everett, ED Cashwell, RG Schrandt, "A Monte Carlo Transport Routine for the ‘US Standard Atmosphere’
(1962) to an Altitude of 90 Kilometers,"  LA-5089-MS, Los Alamos National Laboratory  (1972).

• G.E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Oceans, p. 429, Cambridge University 
Press (1999)

• H.D. Rees, Phys. Lett. A 26, 416 (1968), also   J. Phys. Chem. Solids 30, 643 (1969).
• M.M.R. Williams, Random Processes in Nuclear Reactors, Pergamon Press (1974).
• S.N. Cramer, "Application of the Fictitious Scattering Radiation Transport Model for Deep-Penetration Monte 

Carlo Calculations," ORNL/TM-4880, Oak Ridge National Laboratory (1977).
• W.A. Coleman, "Mathematical Verification of a Certain Monte Carlo Sampling Technique and Applications of 

the Technique to Radiation Transport Problems," Nucl. Sci. Eng. 32, 76-81 (1968).



Continuously Varying Materials & Tallies AMC-13  - 46



Continuously Varying Materials & Tallies AMC-13  - 47



Continuously Varying Materials & Tallies AMC-13  - 48



Random Number Generators & Testing AMC-20  - 1

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Random Number Generators
for Particle Transport MC
&
RNG Testing

Advanced 
Computational 

Methods for 
Monte Carlo 
Calculations 



Random Number Generators & Testing AMC-20  - 2

Outline

• Random Number Generators for Particle Transport MC

• Random Number Generator Testing



Random Number Generators & Testing AMC-20  - 3

Introduction

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• Random sampling distinguishes Monte Carlo from other methods

• When Monte Carlo is used to solve the Boltzmann transport equation:

– Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, …..)

x̂
x̂
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Monte Carlo & Random Sampling

Categories of random sampling

• Random number generator ➜ uniform PDF on (0,1)
• Sampling from analytic PDFs ➜ normal, exponential, Maxwellian, …
• Sampling from tabulated PDFs ➜  angular PDFs, spectrum, …

For Monte Carlo codes…

• Random numbers, ξ, are produced by the RN generator on (0,1)
• Non-uniform random variates are produced from the ξ’s by:

– Direct inversion
– Rejection methods
– Transformations
– Composition (mixtures)
– Sums, products, ratios, …
– Table lookup + interpolation
– Lots (!) of other tricks

• Typically  <  5 - 10% of total CPU time
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Random Number Generators
For Particle Transport MC
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Random Number Generators

"Randomness is a negative property; it is the absence of any pattern."
Richard W. Hamming, 1991

• Numbers are not random;  a sequence of numbers can be.

• Truly random sequences are generally not desired on a computer.

• RNG
– Function which generates a sequence of numbers which appear to 

have been randomly sampled from a uniform distribution on (0,1)

– Repeatable  (deterministic)
– Pass statistical tests for randomness

– Typical usage in codes: r  =  rang()
– Also called "pseudo-random number generators"

• All other random sampling is performed using this basic RNG
• Note that the probability of something occurring also varies  in (0,1) 

between 0 & 1 …..
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RNGs – Some Comments . . . . .

From “An Essay on Random Number Generators for Monte Carlo Codes”, F. Brown:

Numbers are not random, they are just numbers.

An algorithm for producing "random numbers" is not random, it is a fully prescribed sequence of operations to be 
performed.

When we talk about "random numbers" on a computer, what we really mean is "a sequence of numbers that appears 
to be uniformly distributed". Similarly, a "random number generator" is an algorithm for producing a sequence of 
numbers that appears to be uniformly distributed.

We can't determine whether a single number was produced "randomly". We can, however, subject a sequence (or 
stream) of numbers to a set of statistical tests. We then compare the outcome of these tests to the known theoretical 
results that would be produced if a truly random, uniformly distributed sequence of numbers was subjected to the 
same tests. If our algorithm-produced sequence yields the same results as a theoretical truly random sequence for all 
of the tests, we declare that our algorithm-produced sequence is "random". What we mean is that the algorithm-
produced sequence is indistinguishable from a truly random sequence.

In considering a random number generator for Monte Carlo codes, we are fully aware that algorithm-produced 
sequences are deterministic, not truly random. However, if a sequence of algorithm-produced random numbers is 
indistinguishable from a truly random sequence, then we may confidently use it in Monte Carlo simulations.

An important theme of the preceding discussion is that we cannot prove that a sequence is random, nor that a given 
random number generator produces a random sequence. All we can do is subject the algorithm-produced sequences 
to a set of statistical tests and compare to theoretical results for truly random sequences. If an algorithm-produced 
sequence fails any of the tests, then we can declare that the random number generator is bad. Hence, given a 
comprehensive set of statistical tests, we can identify bad generators, but cannot prove that a generator is good.
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RNGs for Particle Transport MC – Needed Properties

• Quality - depends on what it is to be used for:
– Cryptography

• Every bit in every integer in a sequence must be random & unpredictable
– Particle transport

• We convert a random sequence of integers into a sequence of floating-point (real) numbers. Not 
concerned about the last few least-significant bits

• Reproducibility
– For any combination of the number of processors, MPI tasks, threads, or spatial 

domains (for domain decomposition):
• Want same results (ie, RN usage for each particle) 
• The order in which particles are processed should not affect results
• Every particle created must be given a unique RN seed

• Skip-Ahead
– For parallel calculations, must be a fast way to skip-ahead in the RN sequence

• State
– The RNG state-space or storage per particle must be small

• Robust
– Must never, ever fail !!!
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Linear Congruential RNGs (LCGs)

Most production-level Monte Carlo codes for particle transport use 
linear congruential random number generators (LCGs):

Si+1 =  Si • g  +  c    mod 2m

Si = seed,   g = multiplier,  c = adder,  2m = modulus

• Simple, fast, robust, over 60 years of heavy-duty use

• Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

• Not the "best" RNGs, but good enough - RN's are used in 
unpredictable ways during particle simulation

• To achieve reproducibility for vector or parallel calculation, there 
must be a fast, direct method for skipping ahead (or back) in the 
random sequence
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Simple LCG - Example #1

Sk+1 = [ g·Sk + C ] mod p,   with g=47, C=1, S0=1, P=100

Sk+1 = [ 47·Sk + 1 ] mod 100

s( 0) = 1
s( 1) = (47x1  + 1) mod 100 =   48 mod 100 = 48
s( 2) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
s( 3) = (47x57 + 1) mod 100 = 2680 mod 100 = 80
s( 4) = (47x80 + 1) mod 100 = 3761 mod 100 = 61
s( 5) = (47x61 + 1) mod 100 = 2868 mod 100 = 68
s( 6) = (47x68 + 1) mod 100 = 3197 mod 100 = 97
s( 7) = (47x97 + 1) mod 100 = 4560 mod 100 = 60
s( 8) = (47x60 + 1) mod 100 = 2821 mod 100 = 21
s( 9) = (47x21 + 1) mod 100 =  988 mod 100 = 88
s(10) = (47x88 + 1) mod 100 = 4137 mod 100 = 37
s(ll) = (47x37 + 1) mod 100 = 1740 mod 100 = 40
s(12) = (47x40 + 1) mod 100 = 1881 mod 100 = 81
s(13) = (47x81 + 1) mod 100 = 3808 mod 100 =  8
s(14) = (47x8  + 1) mod 100 =  377 mod 100 = 77
s(15) = (47x77 + 1) mod 100 = 3620 mod 100 = 20
s(16) = (47x20 + 1) mod 100 =  941 mod 100 = 41
s(17) = (47x41 + 1) mod 100 = 1928 mod 100 = 28
s(18) = (47x28 + 1) mod 100 = 1317 mod 100 = 17
s(19) = (47x17 + 1) mod 100 =  800 mod 100 =  0
s(20) = (47x0  + 1) mod 100 =    1 mod 100 =  1
s(21) = (47x1  + 1) mod 100 =   48 mod 100 = 48
s(22) = (47x48 + 1) mod 100 = 2257 mod 100 = 57



Random Number Generators & Testing AMC-20  - 11

Simple LCGs - Examples  #2  &  #3

Example #2: Sk+1 = [ 5·Sk + 1 ] mod 100, 

s( 0) = 1
s( 1) = (5x1  + 1) mod 100 =   6 mod 100 =  6
s( 2) = (5x6  + 1) mod 100 =  31 mod 100 = 31
s( 3) = (5x31 + 1) mod 100 = 156 mod 100 = 56
s( 4) = (5x56 + 1) mod 100 = 281 mod 100 = 81
s( 5) = (5x81 + 1) mod 100 = 406 mod 100 =  6
s( 6) = (5x6  + 1) mod 100 =  31 mod 100 = 31
etc.

Example #3: Sk+1 = [ 5·Sk + 0 ] mod 100, 

s( 0) = 1
s( 1) = (5x1 ) mod 100 =   5 mod 100 =  5
s( 2) = (5x5 ) mod 100 =  25 mod 100 = 25
s( 3} = (5x25) mod 100 = 125 mod 100 = 25
s( 4) = (5x25) mod 100 = 125 mod 100 = 25
etc.
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Choosing Parameters for LCGs

See Knuth, Vol 2
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RNG Example (very old)
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LCGs – Last Few Bits
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Typical Linear Congruential RNGs

• Multiplicative congruential method - Lehmer

Sk =  g∙Sk-1 + c   mod 2m, 0  <  Sk <  2m, integer

ξk = Sk / 2m, 0  ≤ ξk <  1, real

• Typical parameters
2m Period g c

RACER (KAPL) 247 245 84,000,335,758,957 0
RCP (BAPL) 248 248 29+1 59,482,192,516,946
MORSE (ORNL) 247 245 515 0
MCNP (LANL) 248 246 519 0
VIM (ANL) 248 246 519 0
RANF (CRAY) 248 246 44,485,709,377,909 0
G. Marsaglia 232 232 69069 1
MCNP5 (LANL) 263 263 (7 options) 1  or  0
MCNP6 (LANL) 263 263 (7 options) 1  or  0
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MCNP5  &  MCNP6   RNG

Sn+1 = g Sn + c  mod 2m

– See Knuth for rules for selecting g,c,m so that period is maximized & 
correlation minimized

– 7 different LCGs are available -- chosen based on the spectral test, Knuth's 
tests, & Marsaglia's DIEHARD tests

– LCG( g, c, m ):

• Traditional MCNP, period =  246 ≈  7x1014

#1 - LCG( 519, 0, 48 )
• L'Ecuyer 63-bit Mixed LCGs,  period =  263 ≈ 9x1018

#2 - LCG( 9219741426499971445, 1, 63 )
#3 - LCG( 2806196910506780709, 1, 63 )
#4 - LCG( 3249286849523012805, 1, 63 )

• L'Ecuyer 63-bit Multiplicative LCGs,  period =  261 ≈ 2x1018

#5 - LCG( 3512401965023503517, 0, 63 ) 
#6 - LCG( 2444805353187672469, 0, 63 ) 
#7 - LCG( 1987591058829310733, 0, 63 )   

[L’Ecuyer, Math. Comp., 68, 249-260 (1999)]
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Using RNGs in Particle Transport MC Codes

• Naïve use, in many older codes & student codes

– Problem: Can't start Particle-2 until Particle-1 is finished, etc.
Can't do parallel processing of different particles

• MCNP, VIM, RACER, MC21, & many other production codes
– Partition RN sequence into equal-length subsequences, one for each 

particle

– Can process all particles in parallel
– Length of each subsequence is called the stride
– Must have a fast way to skip-ahead in the RN sequence

•••••••••••••••••••••••••••••••••••••••••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3
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• Histories vs particles
– With splitting &/or secondary particle creation, 

the number of particles in a given history is 
not known in advance

– Need to partition RN sequence by history, 
not by particle

– With this scheme, can process histories in parallel, 
but not particles in same history

– Must have a predictable scheme for banking/unbanking particles in a 
given history (e.g., LIFO)

Using RNGs in Particle Transport MC Codes

Source Random
Walk

Random
Walk

Random
Walk

������������������������������������������������������

RNs for
history 1

RNs for
history 2

RNs for
history 3
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Reproducibility
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Reproducibility & Parallel Calculation
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RNG Coding – Some Details
• Real arithmetic

– IEEE Standard for Floating Point Arithmetic (IEE-754-2008)
– 32-bit reals

• 24 bits of precision, ~7 decimal digits, max exponent ~38
• Never use for general engineering/scientific calculations

– 64-bit reals
• 53 bits of precision, ~16 decimal digits,   max exponent ~308

– Arithmetic
• Least-significant bits discarded
• For mixed ops, such as  a*x+b,   intermediate results may retain more bits

• Integer arithmetic
– 32-bit integers – Fortran integer,      C++ int
– 64-bit integers – Fortran integer(8),  C++ long or ‘long long’
– C++ allows unsigned integers,  Fortran does not
– If overflow in arithmetic, least significant bits are retained

– For    (long a)*(long b),   rightmost 64-bits are kept
– Bits in an integer are conventionally numbered right-to-left

63 62 61 ... 3  2  1  0
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RNG Coding – Some Details
• RNGs generate integer sequences

– Integers converted to reals (fractions) for use in MC codes
– By convention, RNGs should not return exactly 0.0 or 1.0,

0.0  <  rang()  <  1.0

• It should be safe to do this: log( rang() )
• Or this: 1. / rang()
• This should return an integer in [0,N-1]: floor( N*rang() )

– Mixed LCGs include 0 in the integer sequence
• Must return smallest positive real number if that occurs

• Why use 63-bit RNGs,   instead of 64-bit ?

– In Fortran, all integers are signed – there are no unsigned types
• Largest positive integer is  263 – 1,   63 bits
• Could of course use tricks to get around this limitation, but then portability 

to different compilers becomes a serious issue

– Prefer to use an RNG that can be written in either Fortran or C++
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RNG Coding – Some Details

• Multiplying & adding 63-bit integers

– Below,  RN_MASK   is a 64-bit integer, 0 followed by 63 1s:    0111...111

– C++ using 'unsigned long'

RN_SEED = ( RN_MULT * RN_SEED  +  RN_ADD ) & RN_MASK ;

– Fortran, using 8-byte integers (signed)

RN_SEED = iand( RN_MULT * RN_SEED,   RN_MASK )
RN_SEED = iand( RN_SEED + RN_ADD,    RN_MASK )

Need to mask-off sign bit after each op

multiply 2 ULs,
retain least-significant

64-bits

Boolean AND with mask,
retain only 63-bits

OK to add &
retain 64-bits
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RNG Coding – Some Details

• How do you convert a 63-bit integer to a real with 53-bit precision?

– Naive implementation

RN_MULT = pow( 2.0,  -63 ) ;
rang = RN_SEED * RN_MULT ;

– Problem:
• RN_SEED  is in range    [ 0, 263-1 ]
• For the highest 512 integers in the range,  the above approach

results in     rang==1.0.     [ie, roundoff due to finite precision to exactly 1.0]

– Correct approach:

RN_MULT = pow( 2.0, -53 ) ;
i53  =  RN_SEED >> 10 // shift right 10 bits, to get 53-bits
if( ! i53  )    i53++;   // guard against 0
rang = i53 * RN_MULT ; // exact conversion to real
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RNG Coding – Some Details

• MCNP RNG (#2, 63-bit, simplified)

unsigned long   RN_SEED,  I53;

// multiplier & adder
unsigned long   RN_MULT  = 9219741426499971445UL;
unsigned long   RN_ADD   = 1UL;
// mask to retain bits 0-62,  0 for bit 63
unsigned long   RN_MASK  = (1UL<<63) – 1UL;
// shift right 10 bits, retain most significant 53 bits
int             RN_SHIFT = 10;
// multiplier to convert 53-bit int to double,  2.0**(-53)
double          RN_NORM  = 1.0 / (double) (1UL<<53);

// new 63-bit integer seed
RN_SEED = ( RN_MULT * RN_SEED  +  RN_ADD ) & RN_MASK;
// convert to double, 53-bit precision
I53     = RN_SEED >> RN_SHIFT;
if(  ! I53  )  I53++;       // guards against 0
return  (double) ( I53 * RN_NORM );

Note:   bits are conventionally 
numbered right-to-left, 
bit-0   = rightmost,
bit-63 = leftmost
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Skip-ahead for LCGs

• To skip ahead k steps in the RN sequence:

Sk = g Sk-1 + c   mod 2m

= gk S0 +  c (gk-1)/(g-1)  mod 2m

• Negative skip k equivalent to positive skip [period-k]

• Can skip from any seed to any other
– Initial seed à ith seed for jth particle on mth processor in kth generation
– Particle i à particle j
– Batch i à batch j

• Need a fast way to compute  gkmod2m &  c(gk-1)/(g-1) mod2m in  
O(m) steps, rather than O(k) steps

Reference: F.B. Brown, “Random Number Generation with Arbitrary Strides”, 
Trans. Am. Nucl. Soc. (Dec 1994)
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Random Number Generators - Skip Ahead
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Random Number Generators - Skip Ahead
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Random Number Generators - Skip Ahead
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Random Number Generators - Skip Ahead



Random Number Generators & Testing AMC-20  - 31

Random Number Generators - Skip Ahead - Example
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Random Number Generators - Skip Ahead - Example
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Random Number Generators - Skip Ahead

MCNP5         --- LANL               --- all machines
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Random Number  Generation & Testing

• Knuth statistical tests

• Marsaglia's DIEHARD test suite

• Spectral test

• Performance test

• Results

F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, 
Trans. Am. Nucl. Soc. [also, LA-UR-02-3782] (November, 2002)

Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators", 
LANL report on testing MCNP5 RN generators, 
work performed in 2002 for original MCNP5 version, LA-UR-11-04858 (2011)
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MCNP5  RNG: History

• MCNP & related precursor codes
– 40+ years of intense use
– Many different computers & compilers
– Modern versions are parallel:     MPI + threads
– History based:  Consecutive RNs used for primary particle, 

then for each of it’s secondaries in turn, etc. 
– RN generator is small fraction of total computing time (~ 5%)

• Traditional MCNP RN Algorithm
– Linear congruential, multiplicative

Sn+1 = g Sn mod 248, g = 519

– 48-bit integer arithmetic, carried out in 24-bit pieces
– Stride for new histories:    152,917 
– Skip-ahead:    crude, brute-force
– Period / stride   =  460 x 106 histories
– Similar RN generators in  RACER, RCP, MORSE, KENO, VIM
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MCNP5  RNG: Requirements

• Algorithm
– Robust, well-proven
– Long period: > 109 particles  x  stride 152,917  = 1014  RNs
– >109 parallel streams
– High-precision is not needed,  low-order bits not important
– Must have fast skip-ahead procedure
– Reasonable theoretical basis,  no correlation within or between 

histories

• Coding
– Robust !!!!     Must never fail.
– Rapid initialization for each history
– Minimal amount of state information
– Fast, but portable – must be exactly reproducible on any 

computer/compiler
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MCNP5  RNG: Algorithm

• Linear congruential generator (LCG)

Sn+1 = g Sn + c  mod 2m,

Period  =  2m (for c>0)   or    2m-2 (for c=0)   

Traditional MCNP: m=48, c=0 Period=1014,  48-bit integers
MCNP5: m=63, c=1 Period=1019,  63-bit integers

How to pick  g  and  c  ???

• RN Sequence & Particle Histories
••••••••••••••• ••••••••••••••• •••••••••••••••
1 2 3 etc.

– Stride for new history:     152,917
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MCNP5  RNG: Coding

• RN Generation in MCNP-5

– RN module,  entirely replaces all previous coding for RN generation

– Fortran-90,  using  INTEGER(I8)  internally,   
where  I8=selected_int_kind(18)

– All parameters, variables, & RN generator state are PRIVATE,
accessible only via “accessor” routines

– Includes “new” skip-ahead algorithm for fast initialization of histories,
greatly simplifies RN generation for parallel calculations

– Portable, standard, thread-safe

– Built-in unit test, compile check, and run-time test

– Developed on PC, tested on SGI, IBM, Sun, Compaq, Mac, alpha
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Extended generators : 63-bit LCGs
• Selection of multiplier, increment and modulus

Sn+1 = 519 Sn + 0  mod 248 (MCNP4)

• Multiplicative LCG(g, 0, 2b)
g    ±3 mod 8, S0 = odd         Period : 2b-2

• Mixed LCG(g, c, 2b)
g    1 mod 4, c = odd             Period : 2b

• MCNP5 - Extension of multiplier
– 519 = 45-bit integer in the binary representation
– 519 seems to be slightly small in 63-bit environment.
– Odd powers of 5 satisfy both conditions above.
– Try these: (519,0,263), (523,0,263), (525,0,263),

(519,1,263), (523,1,263), (525,1,263) 

523, 525 1 263
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L’Ecuyer’s 63-bit LCGs

• L’Ecuyer suggested 63-bit LCGs with good lattice structures. 
Math. Comp., 68, 249-260 (1999)

– Good multipliers were chosen based on the spectral test.

– Multiplicative LCGs
• LCG(3512401965023503517, 0, 263) 
• LCG(2444805353187672469, 0, 263) 
• LCG(1987591058829310733, 0, 263)

– Mixed LCGs
• LCG(9219741426499971445, 1, 263)
• LCG(2806196910506780709, 1, 263)
• LCG(3249286849523012805, 1, 263)
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Tests for RNGs

• 13 different LCGs were tested:
– Traditional MCNP RNG,  (519, 0, 248)
– 6 - Extended 63-bit LCGs 
– 6 - L’Ecuyer’s 63-bit LCGs

• Theoretical tests : 
– Analyze the RNG algorithm of based on number theory and the theory 

of statistics.
– Theoretical tests depend on the type of RNG. (LCG, Shift register, 

Lagged Fibonacci, etc.)
– For LCGs, the Spectral test is used

• Empirical tests : 
– Analyze the uniformity, patterns, etc. of RNs generated by RNGs.
– Standard tests - reviewed by D. Knuth, SPRNG test routines
– DIEHARD tests - Bit level tests by G. Marsaglia, more stringent
– Physical tests - RNGs are used in a practical application. The exact 

solutions for the tests are known. (not performed in this work)
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Spectral test

• LCGs have regular patterns (lattice structures) when overlapping 
t-tuples of a random number sequence are plotted in a hypercube. 
(Marsaglia, 1968).

• all the t-tuples are covered with families of parallel (t-1)-
dimensional hyperplanes. 

• The spectral test determines the maximum distance between 
adjacent parallel hyperplanes.
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Illustration of the spectral test

• Example:    Sn+1 = 137 Sn + 187 mod 256

0.26562, 0.12109, 0.32031, 0.61328, 0.75000, …

pair pair

pair pair
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Measures for Spectral Test Criterion & Ranking

• µ value proposed by Knuth
– Represent the effectiveness of a multiplier.

Knuth’s criterion

• S value
– Normalized maximum distance.

– The closer to 1 the S value is, the better the RNG is.

µt(m,g)  for  2 £ t £ 6 Result

µt(m,g)  >  1 Pass with flying colors 

0.1  £ µt(m,g)  £ 1 Pass

µt(m,g)  £ 0.1 Fail

Maximum distance between adjacent parallel 
hyperplanes.

Lower bound on                 .
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Spectral test for extended LCGs
Dimension(t) 2 3 4 5 6 7 8

LCG(519,0,263)
µt(m,g) 1.7321 2.1068 2.7781 1.4379 0.0825 2.0043 5.9276
St(m,g) 0.6910 0.7085 0.7284 0.6266 0.3888 0.6573 0.7414

LCG(523,0,263)
µt(m,g) 0.0028 1.9145 2.4655 5.4858 0.3327 0.2895 6.6286
St(m,g) 0.0280 0.6863 0.7070 0.8190 0.4906 0.4986 0.7518

LCG(525,0,263)
µt(m,g) 0.3206 1.8083 0.0450 3.0128 0.3270 3.1053 0.4400
St(m,g) 0.2973 0.6733 0.2598 0.7265 0.4892 0.6998 0.5356

LCG(519,1,263)
µt(m,g) 1.7321 2.9253 2.4193 0.3595 0.0206 0.5011 1.6439
St(m,g) 0.6910 0.7904 0.7036 0.4749 0.3086 0.5392 0.6316

LCG(523,1,263)
µt(m,g) 0.0007 2.8511 2.5256 3.1271 4.5931 1.8131 4.2919
St(m,g) 0.0140 0.7837 0.7112 0.7319 0.7598 0.6480 0.7121

LCG(525,1,263)
µt(m,g) 0.0801 3.4624 1.3077 1.0853 1.4452 0.7763 1.3524
St(m,g) 0.1486 0.8361 0.6033 0.5923 0.6266 0.5740 0.6163



Random Number Generators & Testing AMC-20  - 47

Spectral test for L’Ecuyer’s 63-bit LCGs
Dimension(t) 2 3 4 5 6 7 8

LCG(3512401965023503517,0,263)
µt(m,g) 2.9062 2.9016 3.1105 4.0325 5.3992 6.7498 7.2874
St(m,g) 0.8951 0.7883 0.7493 0.7701 0.7806 0.7818 0.7608

LCG(2444805353187672469,0,263)
µt(m,g) 2.2588 2.4430 6.4021 2.9364 3.0414 5.4274 4.6180
St(m,g) 0.7891 0.7443 0.8974 0.7228 0.7094 0.7579 0.7186

LCG(1987591058829310733,0,263)
µt(m,g) 2.4898 3.4724 1.7071 2.5687 2.1243 2.0222 4.1014
St(m,g) 0.8285 0.8369 0.6449 0.7037 0.6682 0.6582 0.7080

LCG(9219741426499971445,1,263)
µt(m,g) 2.8509 2.8046 3.5726 3.8380 3.8295 6.4241 6.8114
St(m,g) 0.8865 0.7794 0.7757 0.7625 0.7371 0.7763 0.7544

LCG(2806196910506780709,1,263)
µt(m,g) 1.9599 4.0204 4.4591 3.1152 3.0728 3.0111 3.7947
St(m,g) 0.7350 0.8788 0.8199 0.7314 0.7106 0.6967 0.7012

LCG(3249286849523012805,1,263)
µt(m,g) 2.4594 2.4281 3.7081 2.8333 3.7633 3.0844 1.9471
St(m,g) 0.8234 0.7428 0.7829 0.7176 0.7350 0.6991 0.6451
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Results of spectral test

• Results for the traditional MCNP RNG

• All extended 63-bit LCGs fail with Knuth’s criterion.
• All L’Ecuyer’s 63-bit LCGs pass with flying colors.
• Comparison of minimum S values

Dimension(t) 2 3 4 5 6 7 8
µt(m,g) 3.0233 0.1970 1.8870 0.9483 1.8597 0.8802 1.2931

St(m,g) 0.9129 0.3216 0.6613 0.5765 0.6535 0.5844 0.6129

RNG Minimum St(m,g)

LCG(519,0,248) 0.3216
LCG(3512401965023503517,0,263) 0.7493
LCG(2444805353187672469,0,263) 0.7094
LCG(1987591058829310733,0,263) 0.6449
LCG(9219741426499971445,1,263) 0.7371
LCG(2806196910506780709,1,263) 0.6967
LCG(3249286849523012805,1,263) 0.6451
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Standard test suite in SPRNG

• SPRNG (Scalable Parallel Random Number Generators )
– Test programs are available. http://sprng.cs.fsu.edu

• Standard test suite  (Knuth)
– Equidistribution
– Serial
– Gap
– Poker
– Coupon collector’s
– Permutation
– Runs-up
– Maximum-of-t
– Collision tests

• Choice of test parameters
– L’Ecuyer’s test suite : Comm. ACM 31 p.742 (1988)
– Vattulainen’s test suite : Comp. Phys. Comm. 86 p.209 (1995)
– Mascagni’s test suite : Submitted to Parallel Computing
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Equidistribution test

• Check whether RNs are uniformly generated in [0, 1). 
• Generate random integers in [0,d-1].
• Each integer must have the equal probability 1/d.

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

0,  5,  3,  7,  2,  0,  2,  3,  1,  4, …
Count frequencies of 0 ~ d-1.

Cumulative chi-square distribution
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Criterion of “Pass or Failure”
• All empirical tests score a statistic.
• A goodness-of-fit test is performed on the test statistic and yield a 

p-value. (Chi-square or Kolmogorov-Smirnov test)
• If the p-value is close to 0 or 1, a RNG is suspected to fail.
• Significance level : 0.01(1%)
• Repeat each test 3 times.
• If all 3 p-values are suspicious, then the RNG fails. 
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DIEHARD test suite

• DIEHARD test
– A battery of tests proposed by G. Marsaglia.
– Test all bits of random integers, not only the most significant bits.
– More stringent than standard Knuth tests.
– Default test parameters were used in this work.
– Test programs are available. http://stat.fsu.edu/~geo/diehard.html

• Included tests:
– Birthday spacings
– Overlapping 5-permutation
– Binary rank
– Bitstream
– Overlapping-pairs-sparse-occupancy (OPSO)
– Overlapping-quadruples-sparse-occupancy (OQSO)
– DNA
– Count-the-1's test on a stream of bytes
– Count-the-1's test for specific bytes
– Parking lot
– Minimum distance
– 3-D spheres
– Squeeze
– Overlapping sums
– Runs
– Craps
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Overlapping-pairs-sparse-occupancy test (1)

• OPSO = Overlapping-Pairs-Sparse-Occupancy test 
• Preparation of 32-bit integers

0.10574, 0.66509, 0.46622, 0.93925, 0.26551, 0.11361, …

454158374,  2856527213,  2002411287,  4034027575, …

11011000100011110100000100110,
10101010010000110010010101101101, …

• Letter : a designated string of consecutive 10 bits 
11011000100011110100000100110,

10101010010000110010010101101101, …

Binary representation

Letter :   210 = 1024 patterns (letters)
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Overlapping-pairs-sparse-occupancy test (2)

• 2-letter words are formed from an alphabet of 1024 letters.
0000100110,  0101101101,  1100010111,  0000110111, …

38,  365,  791,   55, …

• Count the number of 
missing words (=j). 

• The number of missing 
words should be very closely 
normally distributed with 
mean 141,909, 
standard deviation 290. 

Decimal representation

2-letter word 2-letter word

Cumulative normal distribution
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Overlapping-quadruples-sparse-occupancy test 

• OQSO = Overlapping-Quadraples-Sparse-Occupancy test 
• Similar to the OPSO test.
• Letter : a designated string of consecutive 5 bits

11011000100011110100000100110,
10101010010000110010010101101101, …

• 4-letter words are formed from an alphabet of 32 letters.
00110,  01101,  10111,  10111, …

• The number of missing words should be very closely normally 
distributed with  mean 141909, standard deviation 295. 

Letter :   25 = 32 letters

4-letter word
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DNA test 

• Similar to the OPSO and OQSO tests.
• Letter : a designated string of consecutive 2 bits

11011000100011110100000100110,
10101010010000110010010101101101, …

• 10-letter words are formed from an alphabet of 4 letters.
10, 1, 11, 11, 11, 1, 10, 0, 11, 10, …

• The number of missing words should be very closely normally 
distributed with  mean 141909, standard deviation 399. 

Letter : 22 = 4 letters

10-letter word
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DIEHARD Test Suite

• Criterion for DIEHARD test

– If the p-value is close to 0 or 1, a RNG is suspected to fail.

– Significance level : 0.01(1%)

– A RNG fails the test if we get six or more p-values less than 0.01 or 
more than 0.99.

• Results for standard & DIEHARD tests

– All 13 RNGs pass all standard tests with L’Ecuyer’s, Vattulainen’s and 
Mascagni’s test parameters.

– Extended and L’Ecuyer’s 63-bit LCGs pass all the DIEHARD tests.

– The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in the 
DIEHARD test suite.



Random Number Generators & Testing AMC-20  - 58

Result of OPSO test for traditional MCNP RNG

Tested bits p-value Tested bits p-value

bits 23 to 32 0.0000 bits 11 to 20 0.7457 

bits 22 to 31 0.0000 bits 10 to 19 0.0598 

bits 21 to 30 0.0000 bits   9 to 18 0.1122 

bits 20 to 29 0.0000 bits   8 to 17 0.4597 

bits 19 to 28 0.0001 bits   7 to 16 0.0011

bits 18 to 27 0.6639 bits   6 to 15 0.6319

bits 17 to 26 0.0445 bits   5 to 14 0.7490

bits 16 to 25 0.0125 bits   4 to 13 0.2914 

bits 15 to 24 0.7683 bits   3 to 12 0.1792 

bits 14 to 23 0.9712 bits   2 to 11 0.3253

bits 13 to 22 0.1077 bits   1 to 10 0.7277

bits 12 to 21 0.0717 
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Result of OQSO test for traditional MCNP RNG

Tested bits p-value Tested bits p-value

bits 28 to 32 1.0000 bits 14 to 18 0.6487 

bits 27 to 31 1.0000 bits 13 to 17 0.5575 

bits 26 to 30 1.0000 bits 12 to 16 0.1634 

bits 25 to 29 1.0000 bits 11 to 15 0.6600 

bits 24 to 28 1.0000 bits 10 to 14 0.2096

bits 23 to 27 1.0000 bits   9 to 13 0.3759 

bits 22 to 26 0.0000 bits   8 to 12 0.9191 

bits 21 to 25 0.0000 bits   7 to 11 0.8554 

bits 20 to 24 0.0000 bits   6 to 10 0.5535 

bits 19 to 23 0.1906 bits   5 to   9 0.4955 

bits 18 to 22 0.0011 bits   4 to   8 0.0868 

bits 17 to 21 0.3823 bits   3 to   7 0.1943 

bits 16 to 20 0.8394 bits   2 to   6 0.8554 

bits 15 to 19 0.2518 bits   1 to   5 0.7421 
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Result of DNA test for traditional MCNP RNG

Tested bits p-value Tested bits p-value Tested bits p-value

bits 31 to 32 1.0000 bits 20 to 21 0.4937 bits   9 to 10 0.4550 

bits 30 to 31 1.0000 bits 19 to 20 0.0613 bits   8 to   9 0.4737 

bits 29 to 30 1.0000 bits 18 to 19 0.2383 bits   7 to   8 0.7834 

bits 28 to 29 1.0000 bits 17 to 18 0.4831 bits   6 to   7 0.4063 

bits 27 to 28 1.0000 bits 16 to 17 0.0925 bits   5 to   6 0.8959

bits 26 to 27 0.1777 bits 15 to 16 0.0197 bits   4 to   5 0.3438 

bits 25 to 26 0.0000 bits 14 to 15 0.7377 bits   3 to   4 0.3972 

bits 24 to 25 0.0000 bits 13 to 14 0.7171 bits   2 to   3 0.8986 

bits 23 to 24 0.0000 bits 12 to 13 0.0309 bits   1 to   2 0.5407 

bits 22 to 23 0.0000 bits 11 to 12 0.2803 

bits 21 to 22 0.0000 bits 10 to 11 0.8440 
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Comments on results for OPSO, OQSO, DNA

• Less significant (lower) bits of RNs fail the tests.

• These failures in less significant bits are caused by the shorter 
period than the significant bits. 

• However, these failures do not have a significant impact in the 
practical use.

The (r+1)-th most significant bit has period length 
at most 2-r times that of the most significant bit.

Drawback of LCGs with power-of-two modulus
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Performance test

• Test program

. . . . .
integer(8) :: i

integer(8), parameter :: NumGeneratedRNs = 1000000000
!real(8)    :: rang ! For MCNP4
real(8)    :: RN_initial, RN_last
real(8)    :: dummy
. . . . .

!call random ! For MCNP4
call RN_init_problem( new_standard_gen = 1 )

RN_initial = rang()

do i = 2, NumGeneratedRNs-1
dummy = rang()

end do

RN_last = rang()
. . . . .
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Results of performance test

• Comparison between MCNP4 and MCNP5
• Generate 1 billion RNs.

Platform : Windows 2000, Intel Pentium III 1GHz
Compiler : Compaq Visual Fortran Ver.6.6

MCNP4 MCNP5 MCNP4/MCNP5
CPU (sec)

No optimization
(/optimization:0)

290.0 97.1 3.0

CPU (sec)
Local optimization
(/optimization:1)

191.7 77.2 2.5

CPU (sec)
Full optimization
(/optimization:4)

188.4 78.1 2.4
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Summary

• The traditional MCNP RNG fails the OPSO, OQSO and DNA tests in 
the DIEHARD test suite. 

• The 63-bit LCGs extended from the MCNP RNG fail the spectral 
test.

• L'Ecuyer's 63-bit LCGs pass all the tests and their multipliers are 
excellent judging from the spectral test.

• These 63-bit LCGs are implemented in the RNG package for 
MCNP5

• The MCNP5 RNG is ~2.5 times faster than the MCNP4 RNG.
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own & 
read these references:

– D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, 3rd

Edition, Addison-Wesley, Reading, MA (1998). 

– L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY (1986). 

– J. von Neumann, "Various Techniques Used in Conjunction with Random Digits," J. Res. 
Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951). 

– C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, Los Alamos 
National Laboratory, Los Alamos, NM (1983). 

– H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa Monica, CA 
(1954).

– F.B. Brown, “Random Number Generation with Arbitrary Strides”, Trans. Am. Nucl. Soc.
(Dec 1994)

– F.B. Brown & Y. Nagaya, “The MCNP5 Random Number Generator”, Trans. Am. Nucl. Soc. 
[also, LA-UR-02-3782] (November, 2002)

– Y. Nagaya & F.B. Brown, "Testing MCNP Random Number Generators", LANL report on 
testing MCNP5 RN generators, work performed in 2002 for original MCNP5 version, LA-UR-
11-04858 (2011
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Introduction

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• Random sampling distinguishes Monte Carlo from other methods

• When Monte Carlo is used to solve the Boltzmann transport equation:

– Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, …..)

x̂
x̂
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Monte Carlo & Random Sampling

Categories of random sampling

• Random number generator ➜ uniform PDF on (0,1)
• Sampling from analytic PDFs ➜ normal, exponential, Maxwellian, …
• Sampling from tabulated PDFs ➜  angular PDFs, spectrum, …

For Monte Carlo codes…

• Random numbers, ξ, are produced by the RN generator on (0,1)
• Non-uniform random variates are produced from the ξ’s by:

– Direct inversion
– Rejection methods
– Transformations
– Composition (mixtures)
– Sums, products, ratios, …
– Table lookup + interpolation
– Lots (!) of other tricks

• Typically  <  5 - 10% of total CPU time
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Random Sampling - Basics

"Anyone who considers arithmetical methods of producing 
random digits is, of course, in a state of sin."

John Von Neuman, 1951
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Probability ?

What are the odds of …..

• Being audited by the IRS this year 100 to   1

• Losing your luggage on a U.S. flight 176 to   1

• Being dealt 4 aces on an opening poker hand 4,164 to   1

• Being struck by lightning in your lifetime 9,100 to   1

• Being hit by a baseball at a major league game 300,000 to   1

• Drowning in your bathtub this year 685,000 to   1

• Winning the Powerball jackpot with 1 ticket 292,201,338     to   1

Yet we all still keep buying Powerball tickets, but don’t worry too much about lightning…

Introduction
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Simple Random Sampling (1)

• Suppose we have 2 items, A and B
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 75% = 0.75

– PA + PB = 1.0

• Random sampling - pick A or B

Generate a random number R
in the range (0,1)

If    R  <  .25 ➜ select  A
Otherwise ➜ select  B

PA = .25

PB = .75

0

.25

1.0

Cumulative
Probabilities
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Simple Random Sampling (2)

• Suppose we have 3 items, A, B, and C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25

– PA + PB + PC = 1.0

• Random sampling - pick A or B or C

Generate a random number R
in the range (0,1)

If    R  <  .25 ➜ select  A
Else If.25 < R  <  .75 ➜ select  B
Otherwise ➜ select  C

PA = .25

PB = .50

0

.25

1.0
PC = .25

.75

Cumulative
Probabilities
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Simple Random Sampling (3)

• Random sampling - pick A or B or C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25
– PA + PB + PC = 1.0

0

.25

A B C

.50

Cumulative
Probabilities

A B C
0

.25

.50

.75
1.0

Discrete
Probabilities

Generate a 
random number R
in the range (0,1),

Pick A, B, or C
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Probability Density Functions

• Continuous Probability Density

• Discrete Probability Density

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

{ fk }, k = 1,...,N, where fk = f(xk )
fk ≥ 0
Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

∑
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Continuous PDF & CDF

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

F(x) = f( ′x )d ′x
-∞

x

∫
0 ≤ F(x) ≤ 1
dF(x)
dx

≥ 0

F(−∞) = 0, F(∞) = 1

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

Note:   convention is to use f(x) for PDF,  F(x) for CDF
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Discrete PDF & CDF

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

Note:   convention is to use fJ for PDF,  FJ for CDF
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• The use of random sampling distinguishes Monte Carlo from other 
methods

• When Monte Carlo is used to solve the integral Boltzmann transport 
equation:
– Random sampling models the outcome of physical events

(e.g., neutron collisions, fission process, sources, …..)

x̂
x̂

Given f(x),
Randomly choose x
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Random Sampling

• Basic procedure for analytic random sampling

① Convert PDF f(x) to CDF F(x)

② Generate RN  ξ on (0,1)

③ Solve for x: F(x) = ξ

If this is repeated many time, the resulting PDF will approach f(x)

• Formally

– Solve for x:

– Or: x = F-1(ξ)

ξ= f(y)dy
-∞

x

∫
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★★★★★ Direct Sampling ★★★★★

• Direct solution of x = F-1(ξ )

• Sampling procedure
– Generate ξ
– Determine  x  such that  F( x ) = ξ

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for  x: ξ= f(y)dy
-∞

x

∫
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Discrete PDFs

• Sampling from Discrete PDF's - Conventional Procedure

Direct Solution of x' ← F-1(ξ)

(1)  Generate ξ
(2)  Determine k such that   Fk-1 ≤  ξ < Fk

(3)  Return   x' = xk

• Step (2) requires a table search
– Linear table searches require O(N) time - use when N small
– Binary table searches require O(lnN) time - use when N large

– An alternative method – alias sampling – eliminates the table search 
& requires O(1) time, independent of N

• For some discrete PDFs, Fk’s are not precomputed.
– Use linear search, with Fk's computed on-the-fly as needed
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Discrete Uniform PDF

• Example - Sampling from Discrete Uniform PDF

• Discrete Uniform PDF
– fk = 1 / N,    k = 1, …, N
– Fk = k / N,   F0=0,   FN= 1

• Sampling procedure:
– Could use table search method, ....
– Easier, for this special case:

k ← 1   +    floor(  N ξ ),

floor(y) gives largest integer < y

– Fortran: k = 1 +   int( N*rang() )
C: k = 1 + floor( N*rang() )

– Note: must be sure that 1 ≤  k ≤  N
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Discrete PDFs - Examples

• Example – Pick 1 Powerball number, uniform integer in [1,69]

k = int( 1 + 69*rang() )

• Example - loaded die, faces show  2,2,3,4,5,5 – simulate 1 roll

pdf(1:6) =  [ 0./6., 2./6., 1./6., 1./6., 2./6., 0./6. ]
cdf(1:6) =  [ 0./6., 2./6., 3./6., 4./6., 6./6., 6./6. ]

r = rang()
do j = 1, 6
if(  r < cdf(j)  ) then
k = j
exit

endif
enddo

{result is k}

This coding is a simple linear search to 
determine an integer k in the range [1,6]
Search for the first occurrence of  ξ ≤ cdf(j)
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• Multigroup Scattering

– Scatter from group  g  to  group  g',   where   1 ≤  g' ≤  G

• Selection of scattering nuclide for a collision

– K = number of nuclides in composition

Random Sampling -- Discrete PDFs

f ′g =
σg→ ′g

σg→k
k=1

G

∑

f k =
N(k)σs

(k)

N(j)σs
( j)

j=1

K

∑
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★★★★★ Direct Sampling ★★★★★

• Direct solution of x = F-1(ξ )

• Sampling procedure
– Generate ξ
– Determine  x  such that  F( x ) = ξ

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for  x: ξ= f(y)dy
-∞

x

∫
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Continuous PDFs - Exponential

Examples - Sampling from an Exponential PDF

PDF:

CDF:

Direct sampling:
Solve for x:      F(x) = ξ

Although  (1- ξ) ≠ ξ,     
both  ξ and  (1- ξ)  are uniformly distributed on (0,1),
so that we can use either in the random sampling procedure.

i.e., the numbers are different, but the distributions are the same

Solving    ξ = 1− e−Σx        gives:    x ← − ln(1− ξ) / Σ
or

x ← − lnξ / Σ

f(x) = Σ ⋅e−Σx, x > 0

F(x) = f(y)dy
0

x

∫ = Σ ⋅e−Σy dy
0

x

∫ = −e−Σy
0

x
= 1− e−Σx
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Continuous PDFs - Uniform

Example - Sampling from uniform PDF in range (a,b),
Histogram with 1 bin

PDF: f(x) = 1/(b-a),   a ≤ x ≤ b
= 0           x<a, or  x>b

CDF: F(x) = (x-a)/(b-a),   a ≤ x ≤ b

Sampling scheme: F(x)  =  ξ,      solve for x
(x-a)/(b-a) = ξ
x  ←  a   +   (b-a) ξ

Note:   Often implemented as:
f  =  ξ
x  ←  (1-f) a   +   f b

a b

1/(b-a)
f(x)

x à
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Continuous PDFs – Linear    (1)

Example - Sampling from an increasing linear PDF in range [0,1]

PDF: f(x) = 2 x,        0 ≤ x ≤ 1

CDF: F(x) = x2,        0 ≤ x ≤ 1

Sampling scheme: F(x)  =  ξ,      solve for x
x2 = ξ
x  ←  sqrt( ξ )

While not obvious, 2 alternative schemes for sampling x are:
x  ←  max( ξ1, ξ2 )
x  ←  1 – abs( ξ1 – ξ2 )

0 1

f(x)

X à

2
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Continuous PDFs – Linear    (2)

Example - Sampling from a decreasing linear PDF in range [0,1]

PDF: f(x) = 2 - 2x,          0 ≤ x ≤ 1

CDF: F(x) = 2x - x2,        0 ≤ x ≤ 1

Sampling scheme: F(x)  =  ξ,      solve for x
2x-x2 = ξ
x2 - 2x + 1 = 1 – ξ
(x-1)2 = 1 - ξ
x – 1 =  ± sqrt(1-ξ)

Choose the minus sign for correct range in x:
x  ←  1 - sqrt( 1-ξ )

Or, since ξ and 1-ξ have the same distribution:
x  ←  1 - sqrt( ξ )

0 1

f(x)

X à

2
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Continuous PDFs – Power Law on [0,1]

Example - Sampling from power law PDF in range [0,1],

PDF: f(x) = (n+1) xn, n>0, 0 ≤ x ≤ 1
= 0           x < 0,  or   x > 1

CDF:

Sampling scheme: F(x)  =  ξ,      solve for x

xn+1 =  ξ
x  ←  ξ 1/(n+1)

For power laws on  [0,1]:
n=1: f(x) = 2x, F(x) = x2, x ← √ξ
n=2: f(x) = 3x2, F(x) = x3, x ← ∛ξ
n=3: f(x) = 4x3, F(x) = x4, x ← ∜ξ

F(x) = f (y)dy = (n +1) ⋅ yn dy
0

x

∫
0

x

∫ = (n +1) ⋅ y
n+1

n +1 0

x

= xn+1, 0 ≤ x ≤1

Note : (n +1)  is necessary, so that f ( ′x )d ′x = 1
0

∞

∫
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Direct Sampling – Common PDFs
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Linear Transformations
&

Scaling
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Continuous PDFs - Uniform

Example – Shifting & Scaling a 1-bin Histogram

PDF: f(x) = 1 f(x) = 1/(b-a)

CDF: F(x) = x F(x) = (x-a)/(b-a)

Range: [ 0, 1 ] [ a, b ]

Sampling: x ← ξ x  ←  a   +   (b-a) ξ

a b

1/(b-a)
f(x)

x à0 1

1

Shift Scale
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Continuous PDFs - Linear

Example – Shifting & Scaling a unit linear PDF

PDF: f(x) = 2x f(x) = 2 (x-a)/(b-a)2

CDF: F(x) = x2 F(x) = [(x-a)/(b-a)]2

Range: [ 0, 1 ] [ a, b ]

Sampling: x ← √ξ x  ←  a   +   (b-a) √ξ

a b

2/(b-a)
f(x)

x à0 1

2

Shift Scale
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Composition
Methods
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Composition Method

• A complicated PDF . . .

• . . . Can be decomposed into a sum of simpler PDFs 

f(x)  =    pA fA(x)    +    pB fB(x)    +    pC fC(x) 

where pA + pB + pC =  1
and each piece of the PDF is scaled s.t. area is 1

• Sampling then proceeds in 2 steps:
① Discrete sampling from { pA, pB, pC } to select A, B, or C

② Continuous sampling within the chosen PDF piece

A B C
f(x)
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• A PDF can be decomposed in many different ways . . .

f(x)  =    pA fA(x)    +    pB fB(x)    +    pC fC(x) 

f(x)

A
B C

f(x)

A
B

C

Composition Method

f(x)

A
BC
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Continuous PDFs - Histogram

Example - Sampling from histogram with 2 bins

A1 =  (x1-x0)∙f1
A2 =  (x2-x1)∙f2

p1 =   Prob{  x0 < x < x1 }  =  A1 / (A1+A2)
p2 =   Prob{  x1 < x < x2 }  =  A2 / (A1+A2)
p1 +  p2 =  1

Two-step sampling procedure:
1. Select a bin, b:

If  ξ1 <  p1, select  b = bin 1
otherwise, select  b = bin 2

2. Sample x within bin:
x  ←  xb-1 +  ξ2∙(xb-xb-1)

x0 x1 x2

f(x)
Bin 1 Bin 2

f1

f2
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Continuous PDFs - Histograms

Example - Sampling from Histogram PDF

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

• Discrete PDF: pk = fk∙(xk-xk-1),       k = 1, …, N,       Σpk = 1
– Generate ξ1
– Use table search to select  k

• Uniform sampling within bin k
– Generate ξ2
– Then, x  ←   xk-1 +  (xk-xk-1)∙ξ2

x0 x1 x2

f(x) f1

f2

x5x4x3

f3
f4

f5
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Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b],    1 bin

PDF: f(x) = fa + m (x-a),     m = (fb-fa)/(b-a),  a ≤ x ≤ b

CDF: F(x) =   (m/2) x2 + (fa-ma) x  + (ma2/2 – faa)
=        A x2 +         B x   +       C

Sampling scheme: F(x) = ξ,     solve for x
x  =  { -B  ± sqrt( B2 – 4A(C-ξ) }  /  2A

è Awfully complicated,  and  sensitive to numerical roundoff
è There must be a simpler scheme         ( there is …)

a b

f(x)

X à

fa

fb
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Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #1
Decompose the original PDF into the 
sum of 2 PDFs,  uniform + linear:

f(x) = pu u(x)  +  pl l(x)

u(x) = uniform on a ≤ x ≤ b,
pu = { min(fa,fb) (b-a) }  /  { .5(fa+fb) (b-a) }

l(x) = linear on a ≤ x ≤ b,
pl = { .5 abs(fb-fa) (b-a) }  /  { .5(fa+fb) (b-a) }

Sampling scheme: if(   ξ1 <  pu )
x  ←  a  +  (b-a) ξ2

else
if(  fb > fa ) x  ←  a  +  (b-a) sqrt( ξ2 )
else x  ←  a  +  (b-a) (1 - sqrt( ξ2 ))

a b

f(x)

X à

fa

fb

a b

u(x) 1/(b-a)

a b

l(x) 2/(b-a)
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Continuous PDFs – Linear 

Increasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a +  (b-a) sqrt( ξ )

Decreasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a + (b-a) (1 - sqrt(ξ))

a b

f(x)

X à

2/(b-a)

a b

f(x)

X à

2/(b-a)
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Continuous PDFs – Linear

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #2
Decompose the original PDF into the 
sum of 2 PDFs,  increasing + decreasing linear:

f(x) = pm m(x)  +  pl l(x)

m(x) = linear decreasing on a ≤ x ≤ b,
pm = { .5 fa (b-a) }  /  { .5(fa+fb) (b-a) }

=  fa / (fa+fb) 

l(x) = linear increasing on a ≤ x ≤ b,
pl = { .5 fb (b-a) }  /  { .5(fa+fb) (b-a) }

=  fb / (fa+fb) 

Sampling scheme: if(   ξ1 <  pl )
x  ←  a  +  (b-a) sqrt( ξ2 )

else
x  ←  a +  (b-a) (1 - sqrt( ξ2 ))

a b

f(x)

X à

fa

fb

a b

m(x) 2/(b-a)

a b

l(x) 2/(b-a)
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Continuous PDFS – Piecewise Linear
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Rejection
Methods
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Rejection Sampling

• Von Neumann:
" ........ it seems objectionable to compute a
transcendental function of a random number. "

• Select a bounding function, g(x), such that
•   c ≥  g(x)  > f(x)    for all x
•   g(x) is an easy-to-sample PDF

• Sampling Procedure:
• sample x' from g(x): x'   ←  G-1(ξ1)

• test: ξ2 ≤  c g(x') < f (x')

if true Ü accept x',   done
if false Ü reject   x',   try again

• Advantages
– Simple computer operations

• Disadvantages
– “Low-level” approach, sometimes hard to understand
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Rejection Sampling - Examples

• Sample from a PDF
f(x)  =  c ∙ erf( x ),    0 ≤ x ≤ 5.

note:   erf(∞) = 1.
Do
xtry = 5.*rang()
ftry = 1.*rang()
if( ftry <= erf(xtry) ) exit

Enddo
x = xtry

• Select (x,y) points uniformly in a disk
Do
x = 2.*rang() - 1.
y = 2.*rang() – 1.
if(  x**2 + y**2  <  1.0 )   exit

Enddo

X à
0 5

0

1

f(x) keep

reject

X à
Y 
à

-1

1

1
-1

keep

reject
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Direct vs. Rejection - 2D Direction Cosines
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Isotropic Scatter – Sampling the Scattering Angle

• Consider isotropic scattering
– Any direction is equally likely
– Interpret as:

"pick a random point on a unit sphere, 
then get direction-cosines"

• Rejection method for scatter 
angle sampling
– Pick  x,y,z randomly in unit cube
– If x,y,z outside unit sphere, 

reject and try again
– If x,y,z inside   unit sphere, 

scale so that  x2+y2+z2 = 1
– Get direction-cosines of angles,  u,v,w

• Direct method for scatter 
angle sampling

➜ μ  is distributed uniformly in [-1,1]
➜ φ is distributed uniformly in [0,2π]

μ   ←   2ξ1 - 1
φ ←   ξ2 2 π

φ

θ
μ= cos θ

f(Ω̂) = 1
4π

, dΩ̂
4π

= sinθ ⋅dθ
2

⋅ dφ
2π

f(θ,φ) = sinθ ⋅dθ
2

⋅ dφ
2π

, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

f(θ) = f(θ,φ)dφ = sinθ
20

2π

∫
µ = cosθ, dµ = −sinθ ⋅dθ, −1≤ µ ≤ +1

f(µ) = f(θ) dθ
dµ

= sinθ
2

⋅ 1
sinθ

= 1
2
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Miscellaneous
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Continuous PDFs – Linear    (8)

We have seen that a simple, increasing linear PDF in the range 
[0,1] can be sampled directly by inverting the CDF to obtain:

PDF: f(x) = 2 x,       0 ≤ x ≤ 1
CDF: F(x) = x2,        0 ≤ x ≤ 1
Sampling scheme:

F(x) = ξ,     solve for x
x  ←  sqrt( ξ )

While not obvious, some other schemes for sampling x are:
x = ξ1
r = ξ2
if(  r > x  )   x = r

x  ←  max( ξ1, ξ2 )

x  ←  1 – abs( ξ1 – ξ2 )

0 1

f(x)

X à

2

Why consider these other schemes?

Sqrt() function used to be very expensive. The other 
schemes involve only simple non-arithmetic 
operations & were much faster.

Today, sqrt() operations & computers are very fast –
sqrt() is as fast as generating a 2nd RN. We usually go 
with the more obvious direct method.

BUT, the older schemes are still commonly used in 
production MC codes.  Learn to recognize them.
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Stratified Sampling
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own & 
read these references:

– D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical 
Algorithms, 3rd Edition, Addison-Wesley, Reading, MA (1998). 

– L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY 
(1986). 

– J. von Neumann, "Various Techniques Used in Conjunction with Random 
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951). 

– C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, 
Los Alamos National Laboratory, Los Alamos, NM (1983). 

– H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa 
Monica, CA (1954).
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Outline

• Introduction

• Piecewise-Linear PDFs

• Conventional Approach to Random Sampling
– Binary search in CDF
– Direct inversion of iin PDF

• Optimal Approach
– Alias sampling for CDF
– Composition method for bin PDF



Optimal Random Sampling from Piecewise Linear PDFs AMC-22  - 3

Introduction

• Continuous Probability Density Functions (PDFs) are frequently 
approximated by tabulated piecewise-linear PDFs

– Bin widths can be chosen adaptively to minimize relative error

• This lecture addresses cases where the PDFs are
– Known at problem setup, prior to running any particle histories
– Small to moderate number of entries, so that preprocessing & some 

extra storage is practical
– Sampled often-enough during particle histories that any preprocessing 

time is unimportant 
– Generally most useful for PDFs found in source sampling & collision 

physics (exit energy & angle)

x1 x9x8x7x6x5x4x3x2

f(x)

f1

f2

f3

f4 f5

f6 f7 f8 f9

x →
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Conventional Approach to
Random Sampling from a

Piecewise Linear PDF
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Piecewise Linear PDFs 

• Many PDFs are represented as tabulated piecewise linear 
functions of  E, 𝜇, x, …

– Probability Density
Function (PDF),  f(x)

N points,   N-1 bins

– Cumulative Distribution
Function (CDF),   F(x)

Quadratic shape within bins

• Usually stored as linear arrays:
x(1..N)  =  [  x1, x2,   …, xN ]
f(1..N)   =  [  f1, f2, …, fN ]
F(1..N)  =  [  F1,   F2, …, FN ]

x1 x9x8x7x6x5x4x3x2

F(x)

F1
F2

F3

F4

F5
F6 F7

F8 F9

x →

1.0

x1 x9x8x7x6x5x4x3x2

f(x)
f1

f2

f3
f4 f5

f6 f7 f8 f9

x →
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Conventional Sampling Technique 

• Data:
x(1..N)  =  [  x1,   x2,   …,   xN ]
f(1..N)   =  [  f1,    f2,   …,    fN ]
F(1..N)  =  [  F1,   F2,  …,    FN ] ß computed at problem setup

• Two steps are required:

1. Randomly sample a bin,  k

• r  =  ξ
• Search the CDF array to find the bin k containing  r,

Fk ≤  r  ≤ Fk+1,           1  ≤  k  ≤  N-1

2. Sample  x’  from the linear PDF within bin  k
Linear PDF  from  (xk, fk)  to   (xk+1, fk+1)    è Quadratic CDF,  F(x)

• r  =  ξ
• Solve for  x’: r = F(x’) 
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Search Algorithms

• There is extensive literature on search algorithms
– D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting & 

Searching
– Many other references - books & journals

• For general Monte Carlo codes with cross-section data, the 
commonly-used methods are linear search &/or binary search

– Linear search takes  O( N )    time,   best when   N ~ 10 or less

– Binary search takes O( ln N ) time,   best when   N ~  large

– Linear searches are easier to program, less prone to code errors

– For both linear & binary searches, need to consider 
what to do if    x < x1 or    x > xN (x outside table)
• Best to avoid this
• Error stop?     Use endpoint?     Extrapolate?
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Binary Search to Sample Bin

• Given x and data table: N,   table(1..N)
• Find  k  such that: tablek ≤   target ≤ tablek+1,      1 ≤ k ≤  N-1

int binary_search(  int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 

for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast)/2; 
if( *target >= table[jmid] ) { 
jfirst = jmid; 

} 
else { 
jlast  = jmid; 

} 
} 
return  jfirst+1; 

} 

For use in random sampling, target is 
an RN in (0,1) so that an error check 
on out-of-range is not needed.

Not obvious, but:
• Guaranteed to terminate
• Guaranteed result in  [ 1, N-1 ]
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Continuous PDFs – Linear

Example - Sampling from linear PDF bin k

PDF: f(x) = fk + m (x-xk),        m = (fk+1-fk)/(xk+1-xk),      xk ≤ x ≤ xk+1

CDF: F(x) =   (m/2) x2 + (fk-mxk) x  + (mxk
2/2 – fkxk)

=        A x2 +         B x   +       C

Sampling scheme: F(x) = ξ,     solve for x
x  =  {  -B  + sqrt( B2 – 4A[C-ξ] )  }  /  2A

(always want +sqrt)

è Awfully complicated,  and  sensitive to numerical roundoff
è There must be a simpler scheme         ( there is …)

xk xk+1

f(x)

X à

fk

fk+1
Note:  normalized such that

0.5*(fk+fk+1)*(xk+1-xk)=1
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Conventional Sampling in Bin k

double linear_sample_std(  int *n,
double x[],
double pdf[],
int *k ){

double x0,p0, x1,p1, r,s, a,b,c,d;

p0=pdf[*k-1],  p1=pdf[*k],  x0=x[*k-1],  x1=x[*k];
r = 2.0/((p0+p1)*(x1-x0));
p0*=r;  p1*=r;

s = (p1-p0)/(x1-x0);
a = 0.5*s;
b = p0-s*x0;
c = .5*s*x0*x0 - p0*x0 - rang();
d = b*b - 4.*a*c;
d = (d<0.0) ? 0.0 : d; // sloppy, set negative roundoff to zero

return .5*(-b+sqrt(d))/a;
}
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Conventional Sampling

!=====> in problem setup,  given x(N) & pdf(N),  find cdf(N)

cdf(1) = 0.0
do k=2,N
cdf(k) = cdf(k-1) + 0.5*(pdf(k)+pdf(k-1)) * (x(k)-x(k-1))

endo

!=====> during particle histories 

!---> random sample bin k
r = rang()
k = binary_search( N, cdf,  r )

!---> sample xsample within bin k
xsample = linear_sample( N, x, pdf,  k ) 



Optimal Random Sampling from Piecewise Linear PDFs AMC-22  - 12

Optimal Approach to
Random Sampling from a

Piecewise Linear PDF
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Outline

• Selecting the bin
– First try to hand-optimize the search coding
– Then look at a better algorithm – eliminate the search by alias method

• Sampling within the bin
– Examine an often-used composition method
– Examine a better composition method

• Final results
– Robust within bin sampling – immune to roundoff & faster
– No table search, due to alias method
– Constant time

• Using linear  table search, t  ~  O(N)
• Using binary table search, t  ~  O(logN)
• Using alias method, t  ~  O(1)

– Overall speedup  ~ 10-100x or more
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Binary Search - Variations

Basic MCNP binary search

int binary_search(  int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast)/2; 
if( *target >= table[jmid] ) { 
jfirst = jmid; 

} 
else { 
jlast  = jmid; 

} 
} 
return  jfirst+1; 

}
n=16 6.7 ns
n=128 14.6 ns
n=1024 24.9 ns 

Basic binary search, with shift

int binary_search1( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast) >> 1; 
if( *target >= table[jmid] ) { 
jfirst = jmid; 

} 
else { 
jlast  = jmid; 

} 
} 
return  jfirst+1; 

}
n=16 5.4 ns
n=128 12.2 ns
n=1024 19.0 ns 

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Binary Search - Variations

Basic binary search, with shift

int binary_search1( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast) >> 1; 
if( *target >= table[jmid] ) { 
jfirst = jmid; 

} 
else { 
jlast  = jmid; 

} 
} 
return  jfirst+1; 

}
n=16 5.4 ns
n=128 12.2 ns
n=1024 19.0 ns 

Basic binary search, with shift+merge

int binary_search2( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast) >> 1; 
jtest =  *target >= table[jmid];

jfirst = (jtest) ? jmid : jfirst;

jlast = (jtest) ? jlast : jmid;

} 
return  jfirst+1; 

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns 

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Binary Search - Variations

Basic binary search, with goto

int binary_search3( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
more: 
if( jlast-jfirst == 1 ) goto done; 
jmid = (jfirst+jlast) >> 1; 
jtest =  *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;
goto more;

done: 
return  jfirst+1; 

}
n=16 5.6 ns
n=128 12.2 ns
n=1024 19.1 ns 

Basic binary search, with shift+merge

int binary_search2( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 
for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast) >> 1; 
jtest =  *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

} 
return  jfirst+1; 

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns 

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Binary Search - Variations

Basic binary search, with no if-tests

int binary_search4( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid, k, m; 
jfirst = 0; 
jlast  = *n – 1;
k      = jlast – jfirst + 1;
m      = 32 - leadz( &k ); 
for( k=0; k<m; k++ ) { 
 
jmid = (jfirst+jlast) >> 1; 
jtest =  *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

} 
return  jfirst+1; 

}
n=16 6.6 ns
n=128 11.7 ns
n=1024 17.9 ns 

Basic binary search, with shift+merge

int binary_search2( int*  n,
double* table,

 double* target )
{ 
int jfirst, jlast, jmid; 
jfirst = 0; 
jlast  = *n – 1;

 

for(;;) { 
if( jlast-jfirst == 1 )  break; 
jmid = (jfirst+jlast) >> 1; 
jtest =  *target >= table[jmid];
jfirst = (jtest) ? jmid : jfirst;
jlast = (jtest) ? jlast : jmid;

} 
return  jfirst+1; 

}
n=16 5.3 ns
n=128 12.4 ns
n=1024 19.1 ns 

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Table Search – Timing Summary

• For randomly generated PDFs  &  randomly sampled targets
• Lookup time (nanosec)    vs number of bins:

N	bins	= 2 4 8 16 32 64 128 256 512 1024

Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 72.4 139.4 270.7

Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9

Binary,	shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0

Binary,	shift,	merge 1.4 2.2 3.5 5.3 7.6 9.4 12.4 14.4 16.2 19.1

Binary,	goto 1.3 2.2 3.4 5.6 7.3 9.2 12.2 14.1 15.7 19.1

Binary,	no	if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Alias Sampling
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Alias Sampling
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Alias Sampling - Setup
void alias_setup(  int*    n,

double* prob,
double* aiq )

{
// set up aiq[] array for alias sampling,
// using FB Brown method, with 1-based indexing for aiq()
double  eps = 1e-10, onep=1e0+eps, onem=1e0-eps;
int is[*n], ig[*n],  j, js, jg, ls, lg;
double  p[*n];

// initial index lists of smaller/greater
ls = -1;
lg = -1;
for( j=0; j<*n; j++ ) {
p[j] = (*n) * prob[j];
if(      p[j]<onem )  is[++ls] = j;
else if( p[j]>onep )  ig[++lg] = j;

}

// fill the aiq[] array
for( j=0; j<*n; j++ )  aiq[j] = j; 
lg = 0;
while( ls>=0 ) {
js = is[ls--];
jg = ig[lg];
aiq[js] = jg + p[js];      // aiq = (index of alias).(prob of non-alias)
p[jg]  += p[js] - 1e0;
if( p[jg]<onem )  is[++ls] = ig[lg];
if( p[jg]<onep )  lg++;

}
// change from 0-based to 1-based for aiq[]
for( j=0; j<*n; j++ )  aiq[j] += 1e0;
return;

}
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Alias Sampling - Sample

int alias_sample(  int* n, 
double* aiq  )  

{ 
// use alias sampling, 
// return index in range [1,n] 
int bin, alias; 
double   r,   q; 

 
r = (*n)*rang();  bin   = r; r -= bin; 
q = aiq[bin++];  alias = q;  q -= alias; 

 
if( r>q )  bin = alias;

 
return  bin; 

} 
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Alias Sampling - Timing

Alias Sampling

Binary search

Linear search
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Continuous PDFs – Linear

Example - Sampling from linear PDF bin k

PDF: f(x) = fk + m (x-xk),        m = (fk+1-fk)/(xk+1-xk),      xk ≤ x ≤ xk+1

CDF: F(x) =   (m/2) x2 + (fk-mxk) x  + (mxk
2/2 – fkxk)

=        A x2 +         B x   +       C

Sampling scheme: F(x) = ξ,     solve for x
x  =  {  -B  + sqrt( B2 – 4A[C-ξ] )  }  /  2A

(always want +sqrt)

è Awfully complicated,  and  sensitive to numerical roundoff
è There must be a simpler scheme         ( there is …)

xk xk+1

f(x)

X à

fk

fk+1
Note:  normalized such that

0.5*(fk+fk+1)*(xk+1-xk)=1
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Continuous PDFs – Linear    

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #1
Decompose the original PDF into the 
sum of 2 PDFs,  uniform + linear:

f(x) = pu u(x)  +  pl l(x)

u(x) = uniform on a ≤ x ≤ b,
pu = { min(fa,fb) (b-a) }  /  { .5(fa+fb) (b-a) }

l(x) = linear on a ≤ x ≤ b,
pl = { .5 abs(fb-fa) (b-a) }  /  { .5(fa+fb) (b-a) }

Sampling scheme: if(   ξ1 <  pu )
x  ←  a  +  (b-a) ξ2

else
if(  fb > fa ) x  ←  a  +  (b-a) sqrt( ξ2 )
else x  ←  a  +  (b-a) (1 - sqrt( ξ2 ))

a b

f(x)

X à

fa

fb

a b

u(x) 1/(b-a)

a b

l(x) 2/(b-a)
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Continuous PDFs – Linear

Increasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a +  (b-a) sqrt( ξ )

Decreasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a + (b-a) (1 - sqrt(ξ))

a b

f(x)

X à

2/(b-a)

a b

f(x)

X à

2/(b-a)
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Continuous PDFs – Linear  

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #2
Decompose the original PDF into the 
sum of 2 PDFs,  increasing + decreasing linear:

f(x) = pm m(x)  +  pl l(x)

m(x) = linear decreasing on a ≤ x ≤ b,
pm = { .5 fa (b-a) }  /  { .5(fa+fb) (b-a) }

=  fa / (fa+fb) 

l(x) = linear increasing on a ≤ x ≤ b,
pl = { .5 fb (b-a) }  /  { .5(fa+fb) (b-a) }

=  fb / (fa+fb) 

Sampling scheme: if(   ξ1 <  pl )
x  ←  a  +  (b-a) sqrt( ξ2 )

else
x  ←  a +  (b-a) (1 - sqrt( ξ2 ))

a b

m(x) 2/(b-a)

a b

l(x) 2/(b-a)

a b

f(x)

X à

fa

fb
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Composition Method for Sampling within Bin k

double  linear_sample_new(  int    *n, // num of points
double x[], // x[*n]
double pdf[], // pdf[*n]
int *k ) // bin number,

//   1-based
{
double  r, p;

// next line could have been precomputed, in place of pdf[] 
p = pdf[*k] / (pdf[*k-1] + pdf[*k]);

r = sqrt( rang() );
 
if( rang() > p )  r = 1.0-r;

return x[*k-1] + (x[*k]-x[*k-1])*r;
}
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Continuous PDFs – Linear  



Optimal Random Sampling from Piecewise Linear PDFs AMC-22  - 30

Combined Alias & Linear PDF Sampling

• Combined: alias sampling to select a bin, then 
composition method for linear pdf sampling

double alias_sample_linear_pdf(  int *npts,
double x[], // [npts]
double pdf[],         // [npts]
double aiq[]  )       // [npts-1]

{
// Note: below uses 0-based indexing, C-style
int nbin, bin, alias;
double r,   q;

nbin = *npts - 1;

// use alias sampling, get bin in range [0,nbin-1]
r = nbin*rang();    bin = r;  r -= bin;
q = aiq[bin];       alias = q;  q -= alias;
if( r>q )  bin = --alias;

// linear sampling within bin, composition method
r = sqrt( rang() );
if( rang()*(pdf[bin]+pdf[bin+1]) > pdf[bin+1] )  r = 1.0-r;
return x[bin] + (x[bin+1]-x[bin])*r;

}



Optimal Random Sampling from Piecewise Linear PDFs AMC-22  - 31

Comparison of Sampling Times
• Compare:

– Standard sampling, with linear search
– Standard sampling, with binary search
– Alias sampling, with composition method

• Sampling time (nanosec)   vs    Number of bins

0
50

100
150
200
250
300

0 200 400 600 800 1000

Std sampling, Lin-srch
Std sampling, Bin-srch
Alias sampling

N	bins	= 2 4 8 16 32 64 128 256 512 1024
Std	sampling,	
linear	search 26.6 34.7 41.7 43.4 47.6 54.6 66.5 96.1 162.6 291.8

Std	sampling,	
binary	search 37.9 41.4 46 48.7 52.1 55.1 58.1 61.7 65 69.1

Alias	sampling 20.5 20.7 21.1 20.7 20.5 20.6 20.5 20.4 20.6 20.7
Alias,	combined 17.6 17.4 17.5 17.4 17.3 17.4 17.4 17.3 17.4 17.6

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  
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Summary

• Optimal sampling method for piecewise-linear PDF
– Alias sampling to select bin         (eliminates the search)
– Composition method using increasing/decreasing linear sampling

• Final results
– Robust within bin sampling – immune to roundoff & faster
– No difficulties if x-points are identical
– Can mix delta functions into piecewise-linear PDF
– No table search, due to alias method
– Constant time

• Using linear  table search, t  ~  O(N)
• Using binary table search, t  ~  O(logN)
• Using alias method, t  ~  O(1)

– Overall speedup  ~ 10-100x or more
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Outline

• Random Permutations

• Sampling N Items from a Set of M Items
– With Replacement

– Without Replacement

• Reordering the Fission Bank, without Sorting
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Random
Permutations
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Random Permutations (1)

• Problem:   Generate a random permutation of a set of N items

– N items: { x1, x2, x3, …, xN }

– Want a a random ordering of the N items, 
without duplicate or missing entries

– Examples: shuffling cards;   random order for presentations; . . .

• Basic algorithm

for   J = 1 .. N

pick a random integer K in range [1,N]

swap   x(J)  and   x(K)
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Random Permutations (2)

Matlab C

long     J, K, N;
double   x[],  xtmp;

for  J = 1 : N for( J=0; J<N; J++ ) { 

% Random integer in range [1..N]
K = 1 + floor( N*rand ); K =floor( N*rang() );

% Swap  x(J) &  x(K)
xtmp = x(J); xtmp = x[J];
x(J) = x(K); x[J] = x[K];
x(K) = xtmp; x[K] = xtmp;

end }



Permutations, Sets of N-from-M, Counting-sorts AMC-23  - 6

Sampling
N-from-M

Items
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Sampling N from M Items (1)

• Problem: Given M items,  randomly select N

• For   N ≤ M
– If duplicates are       allowed, called   "sampling with replacement"
– If duplicates are not allowed, called "sampling without replacement"

• For   N > M
– Usually interpreted to mean:

(1) Make  K copies of all M items,  where  K = floor( N / M )
(2) Sample  the remainder (N - K*M) with or without replacement 

Example: To sample  20 items from 6:
Copy all 6 items 3 times each,
then sample   2 items from 6

• While we may be picking from { x1, x2, x3, …, xN },
we only need consider the indices of selected items.
After picking the list of indices, gather the values.
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Sampling N from M Items (2)

• Sampling "with" vs "without" replacement
– Easy way to understand - picking Powerball numbers, by drawing 

labeled balls from bucket    (pick 5 from 69,  then 1 from 26)
• Sampling with replacement: 

pick a ball, record the number, then put it back in the bucket
• Sampling without replacement: 

pick a ball, record the number, don't put it back in the bucket

• Sampling with replacement could give:     5, 5, 5, 5, 5,    5
• Sampling without replacement gives 5 unique numbers, then another.

– Need sampling without replacement for picking Powerball numbers

• This type of sampling occurs in criticality calculations, 
where N neutrons must be selected randomly from a 
fission-neutron-bank that contains M neutrons
– We generally prefer to use sampling without replacement
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Sampling N from M Items, WITH REPLACEMENT (3)

• Example
Given: M=5,     { 1, 2, 3, 4, 5 }
Randomly select: N=3 items,  with replacement

integer, parameter :: M=5     ! Given items
integer, parameter :: N=3     ! How many to select

do J = 1, N

K = 1 + M*rang() ! Random pick from 1..M

keep(J) = K ! Save the pick

enddo
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Sampling N from M Items (4)
• Example

Given: M=5,     { 1, 2, 3, 4, 5 }
Randomly select: N=3 items,  without replacement

integer, parameter :: M=5     ! Given items
integer, parameter :: N=3     ! How many to select

IX(1:M) = [ 1, 2, 3, 4, 5 ]   ! List of items

Mleft = M
do J = 1, N
K = 1 + Mleft*rang() ! Random pick from items left

keep(J) = K ! Save the pick

IX(K) = IX(Mleft) ! Replace pick by last item
Mleft = Mleft - 1 ! Fix count of unpicked items

enddo
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Sampling N from M Items (5)

• Better algorithm - from Knuth, Volume 2, Section 3.4.2
• Example

Given: M=5,     { 1, 2, 3, 4, 5 }
Randomly select: N=3 items,  without replacement

integer, parameter :: M=5     ! Given items
integer, parameter :: N=3     ! How many to select

K = 0 ! # selected so far
do J = 1, M ! Note: M, not N
prob = real(N-K) / real(M-J+1) ! Prob of selecting
if( rang() < prob ) then
K = K + 1
keep(K) = J ! Save it

endif
enddo
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Sampling N from M Items (6)

• Example - randomly pick numbers for Powerball

Use sampling without replacement to pick  5  from  69

Then pick 1 from 26

[As of 2015]

Notes:
– Using the first algorithm for sampling without 
replacement, the results are not ordered, so may get 
[ 5, 1, 3, 2, 4, 6 ]

– Using the Knuth algorithm, results are ordered, so would 
get  [ 1, 2, 3, 4, 5, 6 ] 
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Sampling N from M Items - Mods

• Modifications so that algorithm works for N<M, N=M, N>M
• Example

Given: M=5,     { 1, 2, 3, 4, 5 }
Randomly select: N=3 items,  without replacement

integer, parameter :: M=5     ! Given items
integer, parameter :: N=3     ! How many to select

K = 0 ! # selected so far
do J = 1, M ! Note: M, not N
prob = real(N-K) / real(M-J+1) ! Prob of selecting
knt  = prob + rang() 
do i=1,knt
K = K + 1
keep(K) = J ! Save it

endif
enddo
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Sampling N from M Weighted Items (W/O Replacement)

• When the M items to be sampled (without replacement) each have 
weights, only minor modifications are needed

• Algorithm below works for N<M, N=M, N>M
• Example

Given: M=5,     { 1,  2,    3,   4,   5.  }
W=       { w1, w2, w3, w4, w5 }

Randomly select: N=3 items,  without replacement
integer, parameter :: M=5   ! Given items
integer, parameter :: N=3     ! How many to select

K    = 0 ! # selected so far
wtot = sum(W)
wcum = 0 ! cumulative wgt, so far
do J = 1, M ! Note: M, not N
prob = w(J) * real(N-K) / (wtot-wcum) ! Prob of selecting
wcum = wcum + w(J)
knt  = prob + rang()
do i=1,knt
K       = K + 1
keep(K) = J ! Save it

enddo
enddo
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Fission Bank
Reordering
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Fission Bank Reordering     (1)

• During criticality calculations, neutrons created by fission during 
a cycle are added to the "fission bank", and held as sources for 
the next cycle
– Due to parallel processing (threading &/or MPI), the order of the 

neutrons in the fission bank is not predictable
– For reproducible results in criticality problems, the fission bank must 

be reordered into a unique order prior to starting the next cycle
– For definiteness, we choose to order the fission bank according to the 

"particle number" nps.  If there are more than 1 fission bank entries 
with the same nps, retain the order of those.

• Fission bank example – showing just nps, xyz
original reordered
3 xyz... 1 xyz...(a)
1 xyz...(a) 1 xyz...(b)
4 xyz... è 2 xyz...
1 xyz...(b) 3 xyz...
2 xyz 4 xyz...
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Fission Bank Reordering     (2)

• The fission bank reordering could be done by sorting, but that 
would take  O(N2)  or  O( N logN ) time, and could be expensive

• A counting sort algorithm is most efficient for reordering the 
fission bank,    O(N) timing
– Sorts a collection of objects according to keys that are small integers
– Applies only to sorting integers
– Basic idea:

• count the number of objects that have each distinct key value
• use arithmetic on those counts to determine the positions of each key 

value in the output sequence
– Running time is linear in the number of items and the difference between the 

maximum and minimum key values
– Suitable for cases where the range of keys is not significantly greater than 

the number of items
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Fission Bank Reordering     (3)

• Algorithm described next does the reordering in  O(N) time, & is the method 
used in the RACER & MCNP codes

FB Brown & TM Sutton, "Reproducibility and Monte Carlo Eigenvalue
Calculations",  Trans Am Nuc Soc 65, 235 (1992)

Given initial vector of parent numbers in the bank,  P(N)

L1 = 1
LJ+1 = LJ +  count[ PI == J ],   J = 1, ..., N

So that (LJ+1-LJ) = number of progeny in bank for parent J

Then permutation vector Q(N) for reordering P(N) is

for J=1,N
QJ = LP(J)
LP(J) = LP(J) + 1
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Fission Bank Reordering     (4)
!===> find permutation vector for reordering an array in increasing order 

n     = length of ix() & perm() 
ix(:)   = integer vector, unchanged 
perm(:) = perm vector for reordering ix()  

 
keymin = minval(ix(1:n)) ! minimum ix() 
keymax = maxval(ix(1:n)) ! maximum ix() 
nkeys = keymax - keymin + 1 ! size of vector to span range of ix() 
allocate( knt(nkeys) )

 
knt(1:nkeys)  = 0 
do i=1,n 

key = ix(i) - keymin + 1 
knt(key) = knt(key) + 1 ! count the entries for each unique ix() 

enddo
 
loc = 1 
do key=1,nkeys 
km   = knt(key) 
knt(key) = loc ! convert to starting locs in permuted vect 
loc = loc + km 

enddo
 
do i=1,n 

key = ix(i) - keymin + 1 
loc = knt(key) ! get loc for the permuted entry 
perm(loc) = i ! store index for permuted entry 
knt(key) = knt(key) + 1 ! bump the base loc, in case duplicates 

enddo 
 deallocate( knt )
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Fission Bank Reordering     (5)

— Old MCNP,  with fission-bank sorting
- - Sorting overhead time, quadratic

— New MCNP, no sorting, linear reordering

PWR2D Model

• 1/4-core, detailed 
geometry, ENDF/B-VII

• KCODE problem, first 
5 cycles

• Mac Pro, 3 GHz, 2 
quad-core Xeon

• Run with 8 threads

• Times are wall-clock 
seconds

• Identical results for old 
& new reordering

Timing Studies  vs Fission Bank Size
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Fission Bank Reordering     (6)

• For older versions of mcnp
– Fission bank reordering was done using a simple-minded bubble-sort, 

that scaled as O(N2)
– Timing was OK for 100s or 1000s of neutrons/cycle
– For millions of neutrons/cyce, the time for reordering was longer than it 

took to run the neutron histories !

• For newer versions of mcnp (and racer)
– Counting-sort, timing is O(N)
– Time for reordering fission bank is not an issue

Note:  Romano's papers compared his methods for treating the fission
bank with the older mcnp schemes. Not valid for newer schemes.
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Outline

• Perspective

• Building a Monte Carlo Code

– Basic building blocks

– Testing

– Data Structures

– Overall code organization

– Random walk for a history
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Perspective

• The lectures on computing & Monte Carlo codes are intended for 
both future code developers and code users

• For future code developers
– Follow these guidelines until you’re good enough to make your own
– Throw out your “Numerical Recipes” book - look at real codes & the 

literature
– Learn both Fortran & C,  and perl & python & bash scripting

• For code users
– A general idea of what the codes do & why helps in deciphering input 

manuals & output results
– Need to be good at using editor & shell windows & command line, not 

just point-and-click GUIs
– Never just accept the MC results - always question whether results are 

reasonable & what you expect
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Building a 
Monte Carlo Code
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Basic building blocks

• Random number generator
– Use a known, well-tested RNG - MCNP routines

• Random sampling routines
– See my notes, Devroye's book, Kahn's report, 3rd MC Sampler, …

• Geometry routines - locate, distance, neighbors, boundary
– For mesh geometry & very simple 3D, can do it yourself
– For general 3D, this is a career - borrow from real codes

• Physics routines - access, search, interpolate, sample
– For 1-group or multigroup, do it yourself
– For general continuous-energy, borrow from real codes

• Tally & statistics routines
– Usually straightforward, but review your statistics
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Testing a Monte Carlo Code

• Basic building blocks must be tested separately, 
before putting into larger code
– RN generator
– Random sampling routines
– Distance calculations
– Table search routines
– Interpolation routines

• Whole code must be tested on as many problems as possible 
where correct answers are known
– Analytical problems, with exact solutions
– Experiments, with measured results

• Be wary of experiment error bars & model uncertainties
• Calculate many experiments, never just one 
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General Guidelines

• For any scientific & engineering programs,
always use “double-precision” for real numbers

Fortran: real(8)    x
C/C++: double   x;
Matlab: (default is double)

• Data types should be explicit for constants
Fortran: pi  = 3.14159265358979d+0

not pi  = 3.14159265358979

• Integer lengths - 32-bit vs 64-bit
Fortran: integer   id integer(8):: id integer(8):: id
C/C++: int id; long    id; long long    id;

Usually,  Fortran integer & C int limited to:    ≤ 2,147,483,647
OK for simple demo codes;  production codes usually need bigger ints

Matlab: uses real(8)
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Data Structures (1)

• Particle - minimum attribute set
struct particle  {

long long id; // particle identifier number
double x,y,z; // position
double u,v,w; // direction cosines,   u2 + v2 + w2 = 1
double e; // energy (or group number, integer)
double wgt; // weight
long long seed; // RN seed - most codes don't do this!

}

• For convenience & speed, often include derived info:
long cell; // current cell number
double dcol; // distance to collision 
double dsur; // distance to cell  boundary surface
long jsur; // number/label of boundary surface
long ix,jx,kx; // lattice cell index numbers
…..
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Data Structures (2)

• Multigroup Cross-sections
– Vectors of σ’s
– Matrix of group-to-group scatter
– Group 1  - highest energy range

• Continuous-energy Cross-sections
– Complex format, 68 page description in MCNP Manual Vol-III

– Microscopic σ’s given as ladder of (Ek, σk) pairs or sets
• σk is the cross-section at energy Ek
• For    Ek <  E <  Ek+1,   linear interpolation [sometimes lin-log, log-lin, log-log]

– Data for scattering laws has varied, complex formats

σt σs σa 𝛎σf G
roup g

’
à

G
roup à

Group g à

σg àg’

f = E − Ek

Ek+1 − Ek

σ t (E) = (1− f ) ⋅σ t ,k + f ⋅σ t ,k+1
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Overall Code Organization

Initialize problem
� read input, or hard-wired setup - geom, xsecs, options
� clear tally arrays for problem
� set RN seed for problem

Do    n=1, nhistories

Initialize history
� clear tally arrays for history
� set RN seed for history

Source for history n
� set   x,y,z,  u,v,w,  E,  wgt,  cell

Random walk for history n
� geometry, physics, tallies  for history

Statistics
� add history tallies & tallies2 to problem tallies

end-of-history-loop

Compute overall results & statistics
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Random Walk for a History

Source - set  x,y,z,  u,v,w,  E,  wgt,  cell

Do  while     wgt > 0
� get  material number & xsec data
� dist_collision from random sampling
� dist_boundary from distance routines

dist =  min( dist_collision, dist_boundary )
(x,y,z)  =  (x,y,z)   +   dist * (u,v,w)
� make pathlength tallies

if(  dist_collision <  dist_boundary )
� collision physics,   get new   u,v,w, E, wgt
� make collision tallies
� if particle terminated,  exit loop

else
� boundary routine
� find neighbor cell
� make surface tallies
� if particle escapes,   exit loop

� Russian roulette & splitting games
end-of-flight/collision-loop



MC Codes – Algorithms & Structure AMC-30  - 12



Code Development – How to Time & Test AMC-31  - 1

Forrest B. Brown

National Laboratory Professor, UNM-NE
Senior R&D Scientist, Monte Carlo, LANL

Code Development –
How to Time & Test

Advanced 
Computational 

Methods for 
Monte Carlo 
Calculations 



Code Development – How to Time & Test AMC-31  - 2

Introduction

• For a production-level code

– Correct results is #1
• Compare code results to experiments or analytic solutions
• Document the verification/validation results

– Run-time is #2
• If calculations take too long, users might not do them or might take 

undesirable shortcuts...
• On today's computers, parallelism is required for decent performance

• For developing new algorithms, methods, & numerical schemes

– Generally done stand-alone, separate from large production code

– Developers need to test & time the old vs new approaches

– Impact on production code runtime depends on how often the new 
coding is used, and also on the applications
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Timing



Code Development – How to Time & Test AMC-31  - 4

How to Time

• Small sections of coding may take 𝝻sec or nsec

– For such short times, system timing routines are not reliable for a 
single execution of the coding

– Need to take an average execution time for many runs
• May need 1000s or Ms of repetitions for reliable timing
• Subtract the overhead for repeating the test
• Need to vary the inputs for the tests, perhaps randomly

– For threaded coding
• Timing should be in terms of wall-clock time, not cpu-time

– For single-thread coding
• Either cpu-time or wall-time is fine
• cpu-time is easier
• In MC, threading is by history, so any coding acting on only 1 history 

(particle) should be timed for a single thread
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Fortran 2003 CPU Timing

call cpu_time ( t )

To measure cpu time:

real(8) :: t, t1, t2

call cpu_time( t1 )

do k=1,nrepeat

.....code being timed

enddo

call cpu_time( t2 )

!===> time/trial

t = (t2 – t1)/nrepeat  - t_overhead
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Fortran 2003 Wall-clock Timing

call system_clock(  COUNT= count,   COUNT_RATE= crate,   COUNT_MAX= cmax )

count, crate, cmax:   integers with the same KIND attribute

To measure elapsed wall-clock time:

integer(8) :: count1, count2, crate, cmax

call system_clock( COUNT=count1 )

.....code being timed

call system_clock( COUNT=count2, &

&                COUNT_RATE=crate, COUNT_MAX=cmax )

t = (count2-count1) / real(crate,8)

! in case count rolls over:

if( t<0 )  t = t + cmax/real(crate,8)

Note for Intel Fortran-17, Macos 10.12 :
• Using integer(4): cmax/crate ~ 2.5 days,      max interval
• Using integer(8): cmax/crate ~ 300K years, max interval
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Timing Example

nrepeat = 1000000 <--- should be large,
so total time is > a few seconds

!===> get overhead per trial
call cpu_time(t1)
s = 0
do j=1,nrepeat

s = s + rang() <--- include overhead, & some extra
enddo (cheap) op so that compiler has
call cpu_time(t2) to do something & can't optimize
t_overhead = (t2-t1) / nrepeat     everything away

!===> timing for binary search
call cpu_time(t1)
do j=1,nrepeat

r = rang()
k = bsearch( npts, cdf, r )

enddo
call cpu_time(t2)
t = (t2-t1)/nrepeat  - t_overhead

write(*,*) "bsearch:", t, "sec/trial" 
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Timing & Scaling

• For many algorithms, the time/trial depends on the size of a 
dataset
– Table searches
– Permutations
– Reordering data
– Sampling from a discrete PDF

• Timing tests need to be performed with different dataset sizes

– The "best" algorithm for small datasets may be bad for large datasets

– Plots of (time/trial) vs (dataset size) are especially useful to identify 
which algorithms are best for a range of likely dataset sizes
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Timing Example – with Scaling

nrepeat = 1000000

!===> get timing overhead/trial
call cpu_time(t1)
s = 0
do j=1,nrepeat
s = s + rang()

enddo
call cpu_time(t2)
t_overhead = (t2-t1) / nrepeat

!===> timing for various table sizes
n_ndata = 10
ndata = [ 2,   4,   8,  16,   32, &
&      64, 128, 256, 512, 1024 ]

do k=1,n_ndata
n = ndata(k)
write(*,*) "Test tablesize =",n
call make_data( n, x, pdf, cdf )

call time_bsearch( nrepeat, n, &
&               cdf, t_overhead)

enddo

subroutine time_bsearch( nrep,npts,cdf,tover)
integer,intent(in) :: nrepeat, npts
real(8),intent(in) :: cdf(:), tover
integer :: j,k
real(8) :: r, t, t1, t2
!===> timing for binary search
call cpu_time(t1)
do j=1,nrep

r = rang()
k = bsearch( npts, cdf, r )

enddo
call cpu_time(t2)
t = (t2-t1)/nrep  - tover
write(*,*) "bsearch:", t, "sec/trial" 

end subroutine time_bsearch

subroutine make_data( n, x, pdf, cdf )
!===> randomly create piecewise linear PDF
integer,intent(in)  :: n
real(8),intent(out) :: x(:), pdf(:), cdf(:)
integer :: k
do k=1,n

x(k)   = k
pdf(k) = rang()

enddo
cdf(1) = 0.0
do k=2,n

x1=x(k-1);    x2=x(k); 
p1=pdf(k-1);  p2=pdf(k)
cdf(k) = cdf(k-1) + 0.5*(p2+p1)*(x2-x1)

enddo
pdf(1:n) = pdf(1:n) / cdf(n)
cdf(1:n) = cdf(1:n) / cdf(n)

end subroutine make_data    
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Timing Example – 6 Variations on Table Searches

• For randomly generated PDFs  &  randomly sampled targets
• Lookup time (nanosec)    vs number of bins:

N	bins	= 2 4 8 16 32 64 128 256 512 1024

Linear 6.0 9.2 11.7 13.4 18.2 25.2 40.4 72.4 139.4 270.7

Binary 1.6 2.6 4.3 6.7 9.3 11.6 14.6 18.0 21.5 24.9

Binary,	shift 1.4 2.2 3.5 5.4 7.3 9.2 12.2 14.1 15.7 19.0

Binary,	shift,	merge 1.4 2.2 3.5 5.3 7.6 9.4 12.4 14.4 16.2 19.1

Binary,	goto 1.3 2.2 3.4 5.6 7.3 9.2 12.2 14.1 15.7 19.1

Binary,	no	if-tests 2.6 3.6 5.0 6.6 8.2 9.8 11.7 13.8 15.7 17.9

MacBook Pro
3.5 GHz I7
2.1 Ghz LPDDR3  

0

100

200

300

0 200 400 600 800 1000

Linear
Binary
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Testing
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Introduction

• General ways to test new algorithms

– Compare 2 or 3 different approaches 
• For searching, may want to compare results using linear & binary searches
• For sampling, may want to compare rejection & direct, old vs new, . . . . .

– For random sampling algorithms, common approaches are
• Use very many histogram bins (1000s) for sampled results, compare to 

original PDF on same bin structure
• Compute moments of sampled results & compare to analytic moments

m1 = sum( xi )/N,    m2 = sum( xi
2 )/n, etc.

– Need to repeat the sampling or searching algorithm very, very many 
times, varying the tables or probabilities, both size & shape
• Sometimes, need to pay particular attention to end-cases
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Example – Searching

• Compare different methods & check
nrepeat = 10000000

!===> pick different table sizes
n_ntable = 10
ntable = [ 2, 4, 8, 16, 32, 63, 64, 65, 128, 256 ]

do k=1,n_ntable
n = ntable(k)

do k=1,nrepeat
!---> generate a random PDF
call make_random_pdf( n, pdf )

!---> search different ways (with same RN)
r = rang()
i = linear_search( n,cdf,  r )
j = binary_search( n,cdf,  r )

!---> check
if( i /= j       ) stop ‘***** error 1 *****’
if( r < pdf(i)   ) stop ‘***** error 2 *****’
if( r > pdf(i+1) ) stop ‘***** error 2 *****’

enddo
enddo
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Example – Sampling, Histogram Bins

• Histogram binning
nbins = 1000
xmax = ... Max value for range
xmin = ... Min value for range

!---> fill reference array with exact pdf at bin midpoints
call fill_with_exact_pdf( nbins, x_exact )

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

x   = sample_pdf()

bin = 1 + nbins*(x-xmin)/(xmax-xmin)
x_sample(bin) = x_sample(bin) + 1

enddo
x_sample = x_sample / nrepeat

!---> compare x_exact(:) to x_sample(:) ...
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Example – Sampling, Moments

• Compute moments of exact PDF & sampled PDF
nmom = 10

!---> fill reference array with mements of exact pdf
call fill_with_exact_moments( nmom, moments_exact )

nrepeat = 1000000
!---> repeated sampling (may have outer loop for parameters)
do k=1,nrepeat

x = sample_pdf()
!---> compute sample moments
do j=1,nmom

moments_sample(j) = moments_sample(j)  +  x**j
enddo

enddo
moments_sample = moments_sample / nrepeat

!---> compare moments_exact(:) to moments_sample(:) ...
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Assessing Test Results

• Plots of exact vs sampled results

• Compute goodness-of-fit parameters
– RMS difference,  max difference,  etc.
– Could compute statistics on sampled results

• For moment checking
– Could compute statistics on sampled moments
– RMS differences, etc.

• For modern unit-testing, need to decide on definite pass/fail 
criteria
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Final Comments

• Timing & testing takes a lot of time & effort
– Sometimes more time than the algorithm development
– It's work, not fun
– Necessary – if not done, the new method or algorithm is worthless

• Documenting the work
– Modern code development practices

• Software Quality Assurance (SQA)
• Rigorous SQA is required by many professional standards
• Must document

– Basis for method (ie, theory, algorithm, ...)
– Testing results
– Timing/scaling results not required (but should be)
– Independent review

– It's work, not fun
– Necessary – if not done, the new method or algorithm is worthless

• By today's standards, if code development is not documented, 
tested, & reviewed, it won't be used
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Introduction
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Vector Processing
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Vector Processing
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Vector Processing
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Vector Processing
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Vector Processing
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Vector Processing
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Vectorization
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Vectorization
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Vectorization
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Vectorization
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Event-Driven Algorithm
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Event-Driven Algorithm
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Event-Driven Algorithm
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Event-Driven Algorithm
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Event-Driven Algorithm
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Vectorization
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Parallel Processing
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Parallel Processing
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Parallel Processing
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Performance
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Issues
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Monte Carlo Algorithms:    Vector & Parallel
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Hierarchical Parallelism
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Parallel MC Algorithms – Alternatives for Shared-Memory
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Parallel MC Algorithms – Distributed Memory & Clusters
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Parallel MC – Speedup & Scaling
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Parallel Speedup & Scaling
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Advanced Computers
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Parallel Speedup & Scaling
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Parallel Speedup & Scaling – Eigenvalue Problems
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Parallel Speedup & Scaling
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Parallel Speedup & Scaling



Vector & Parallel Monte Carlo AMC-32  - 35

Scaling - Limits & Metrics
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Scaling – Limits & Metrics
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Vector & Parallel MC
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Conclusions
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Abstract

Optimizing Monte Carlo Calculations
Forrest Brown, XCP-3, LANL

Improving the performance of a large, complex, production-quality Monte Carlo code is difficult 
due to the multitude of features and historical constraints. Experienced Monte Carlo code 
developers recognize that classic optimization techniques applied to code “hot-spots” may result 
in 20-30% speedups, while very much larger code speedups are possible from improved 
algorithms.

This talk reviews the initial performance improvements to MCNP6.1 (2013) that were incorporated 
into MCNP6.1.1 (2014). The improvements included both classic code optimizations and new 
algorithms. Testing on a variety of problems demonstrated that the performance improvements 
were effective, yielding speedups by factors of 1.2x - 4x, depending on the type of problem. For 
criticality problems, speedups were 1.5x - 1.7x.

For many applications, improved algorithms are required to prepare for the new architectures 
expected from exascale systems in the next 5-10 years. Much more work is planned as part of the 
MCNP 2020 initiative for improving MCNP6 performance, structure, parallelism, and algorithms.
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Outline
• Introduction

– MC darts
– Monte Carlo & computer history
– MCNP 2020 & Parallelism

• Classic Code Optimization
– Traditional vs MC codes
– Performance benchmarks
– Classic optimization

• Compiler options
• Strided array ops
• Inlining & guards
• Storage allocation

• Algorithms
– Hash-based energy lookup algorithm
– Sparse storage for the fission matrix
– Fission bank reordering
– Random sampling algorithms
– Parallel Monte Carlo

• Conclusions
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Introduction
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• Darts game

Throw darts at a square:
• Sample x & y randomly on (-1,1)
• If   x2 + y2 <  1,  tally a hit

π ~   4 * [# hits] / [# tries]

• The Monte Carlo "darts" game has been played on some of the biggest 
and fastest computers around, and has been an informal measure of 
computer speed. For example, 
– Los Alamos in 1981 stated that 400,000 darts/sec could be thrown on 

the Cray-1 computer
– The challenge to throw darts faster was taken up by F. Brown (KAPL) & 

W. Martin (Univ. Michigan):
• 10,000,000 darts/sec on the Cyber 205 (vector supercomputer)
• 1 dart/sec on the  HP-11C hand calculator. 

Monte Carlo Darts Game    (1)

-1 1
-1

1
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Monte Carlo Darts Game    (2)
Year/Place Machine Darts / sec

1981  LANL  CDC-7600 0.18 M
1981  LANL  Cray-1 0.40 M
1982  Mich HP-11C 1
1982  Mich Apple II+ 34
1982  Mich Amdahl 470V/8 0.17 M
1982  KAPL Cyber-205, scalar 0.74 M
1982  KAPL Cyber-205,  vector 9.83 M
1999  Mich 233 M PC 0.20 M
1999  Mich 100 M PC 0.07 M
1999  Mich 200 M Pentium, Matlab 446
2002  Mich 900 M P3, Matlab 0.35 M
2002  Mich 900 M P3, Matlab, vec 1.25 M
2002  LANL 1.2 G P3 11 M
2005  LANL 1.0 G P3 19 M
2005  LANL 2.0 G AMD Opteron 24 M
2005  LANL 1.7 G PowerPC G4 32 M
2005  LANL 1.2 G Alpha EV68 101 M
2005  LANL 2.6 G PowerPC G5 140 M

Note that CPUs, architecture, and compilers all change over time, so that CPU clock speed is not always a good 
measure of the performance of an application code. This particular comparison is sensitive to 64-bit integer 
operations (CPU & compiler) and is not necessarily a good predictor of overall Monte Carlo code performance. 

Year/Place Machine Darts / sec

2010  LANL 2.6 G i7 2-core, Matlab 0.8 M
2010  LANL 2.6 G i7 2-core 124 M
2010  LANL 2.6 G i7 2-core *** 410 M
2010  LANL 3.0 G  2 Xeon 4-core, 1 thread *** 189 M
2010  LANL 3.0 G  2 Xeon 4-core, 8-thread *** 1460 M
2011  Mich Linux cluster, MPI, 32 cpu 2000 M
2013  LANL  3.0 G i7 2-core 2-HT 142 M
2013  LANL 3.0 G i7 2-core 2-HT, 1 thread *** 518 M
2013  LANL 3.0 G i7 2-core 2-HT, 2 threads *** 920 M
2013  LANL 3.0 G i7 2-core 2-HT, 4 threads *** 1025 M
2014  LANL 2.4 G 2 i7 4-core, 2-HT, 1 threads *** 194 M
2014  LANL 2.4 G 2 i7 4-core, 2-HT, 8 threads *** 1448 M
2014 LANL 2.4 G 2 i7 4-core, 2-HT, 16 threads ***    2037 M
2014  LANL  2.7 G Xeon 12-core, 2-HT, 12 thrd *** 2670 M
2014  LANL  2.7 G Xeon 12-core, 2-HT, 24 thrd *** 4000 M  
2016  LANL  2.7 G Xeon 12-core, 2-HT, 24 thrd *** 5800 M
***  =  hand-tuned, highly optimized

M = MHz, clock speed HT = hyperthreads / core
G = GHz, clock speed Fortran,  a few Matlab



Optimizing Monte Carlo Calculations AMC-33  - 7

Monte Carlo Darts Game    (3)

2.66 GHz Intel Core i7,  64-bit, MacBook Pro  (2010)
Straightforward coding 124  M     darts/sec
Hand tuned 410  M

2.7 GHz Intel Xeon, 12-core, 2 hyperthreads/core, 64-bit,  Mac Pro (2014)
Hand tuned, 24 threads 4000  M

For darts: Mac Pro 2014 ~  10,000x   Cray-1
~  4 x 109 Bill + HP-11c
~  world  pop. + HP-11c
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MCNP 2020

• MCNP6.1
– Preserves old capabilities
– Many new capabilities
– RSICC release - July 2013

• Status
– Last few years – focus on features, 

merger, testing, release
– Slower,   by 30-500 %

• Path forward – MCNP 2020
– Concerted effort to modernize the 

codebase, upgrade foundations
– Goals:  faster, sustainable, flexible
– Necessary for MCNP to survive into 

the 2020’s & new computers
– Proposed joint support by 

DOE-ASC  &  DOE-NCSP
• Experienced Lead
• 2-3 core developers

MCNP 2020
• Improve performance

– Goal:    2X speedup within 2 years

• Upgrade core MCNP6 software
– Restructure, clean up coding,  Fortran 

2003 & C/C++ standards
– Reorganize data structures
– Evolution, not revolution
– Reduce future costs for new 

development & maintenance
– Goal:    sustainable code

• Prepare for future
– New computers – massive parallel, 

but less memory per core
– Improve MPI & thread parallelism
– Goal:    flexible, adaptable code
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MCNP 2020 - Performance Improvements
• Initial 3-month effort, focus on speedup & optimization

– Focus on neutron criticality problems common to ASC & NCSP applications
– Speedups from recent performance improvements 

Performance Test Set 
Criticality Other
ks1   1.76 void1  3.03
ks2   2.13 void2  4.11
ks3   1.35 void2  4.11
ks4   1.36 void3  2.72
baw1  2.19 det1   1.67
baw2  1.59 med1   1.15
fvf 2.04 pht1   1.22
g1    1.14
g2    2.20
pin   1.73

VALIDATION_CRITICALITY  Suite
Measured wall-clock times, including data I/O:

mcnp5     release  34.7 min
mcnp6.1   release  43.9 min
mcnp6.1.1 NEW      27.9 min

➜ 1.57 X speedup over mcnp6.1
➜ 1.24 X speedup over mcnp5

Performance Benchmark Suite
Speedups vs MCNP6.1 Release

Neutron Problems Speedup
BAWXI2 4.37 
GODIVA 1.05
Mode n in air w 750,000 tally bins 1.18
Well log problem 1.91 
100M lattice cells in void 5.17 

Other
mode p e in air 1.01 
mode n p e in air 1.05 
mode p in air 1.20 
Pulse height tally 1.20 
Radiography 1.07
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Parallel
Monte Carlo
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Computing - Latency & Threading

• Hardware - Moore’s Law
– Before 2000: 2X cpu speed every 18 months
– After    2000: more cpu-cores per chip,   not faster cpus
– Today,  hardware speed gains come from parallelism

• Fast, multicore cpus
– Need more data & need it faster
– Data transfer speed from memory to CPU has not kept up
– Today,  data access & latency are biggest concerns

• Dealing with latency:
– Hardware    -- cache, out-of-order execution, multicore,  GPUs
– Algorithms -- High-level, data order & layout, vectorization, threading
– Important to match algorithms & hardware

• Most large computer systems today are clusters
– Many nodes: fiber network interconnect
– Multicore cpus: share memory within each node
– Hierarchical parallelism for Monte Carlo
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MCNP – Hierarchical Parallelism – Since 2000
Concurrent Jobs ➜

Parallel Processes

– Total processes =   (# jobs)  x  (# MPI processes)  x  (# threads)

– Tradeoffs:
• More MPI processes - lots more memory & messages
• More threads - contention from lock/unlock shared memory
• More jobs - system complexity, combining results

Master

Slave SlaveSlave

HistoryHistory HistoryHistory HistoryHistory

MESSAGE-PASSING

THREADS THREADS THREADS

Master

Slave SlaveSlave

HistoryHistory HistoryHistory HistoryHistory

MESSAGE-PASSING

THREADS THREADS THREADS
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Parallel Monte Carlo - Future

• Particle parallelism + data decomposition -- logical view:

• Mapping of logical processes onto compute nodes is flexible:
– Could map particle & data processes to different or same  compute nodes
– Lightweight – particles,       heavy-weight – data & tallies
– Heterogeneous nodes – range of memory, speed, parallelism, etc.

Data
Node

Data
Node

Data
Node

Parallel
Calculation

Data Layer
(tally servers, etc.)

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Master
Process
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Classic Code Optimization
• Traditional  vs MC codes
• Performance benchmarks
• Classic Optimization

- Compiler options
- Fix strided array ops
- Inlining & guards
- Storage allocation
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Traditional vs. MC - Code Optimization   (1)

• Traditional:
Use performance tools to find "hot spots" in code execution

• Apply classic techniques to optimize coding in hot spots
– In-line functions
– Unroll loops
– Eliminate unnecessary work (hoist invariants outside loops)
– Bottom load, top store for loops
– Vector ops on contiguous data (stride 1)
– Rearrange storage or loops for contiguous vector ops
– Etc., etc., etc.

• For traditional codes (especially mesh-based PDE solvers),
focus is typically inner loops in solvers & the floating-point 
arithmetic
– Optimizing data structures & loops can lead to high fractions of overall 

processor peak speeds
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Traditional vs. MC - Code Optimization   (2)
• Breakdown of computer operations for typical large, general-purpose 

Monte Carlo code  (approximate)

40% - indexing,  integer ops,  memory access
30% - test-and-branch
25% - arithmetic
5% - RN generation & sampling,  64-bit integers

• MC code performance vs. computer hardware
– Memory access is largely random

• Little cache-coherency - only small gain from larger cache
• Memory speed is important

– CPU-intensive, but not floating-point
• Big gains from multiple integer/logical functional units
• Smaller gains from multiple floating-point units

– Compiler optimizations are critical
• Test-and-branch operations,  indexing,  prefetching

• MC codes have no hot spots – ops are spread across 100s of routines
– Outer loop over particles,  random ops for particles,  no inner loops 
– Many traditional coding optimization techniques do not apply
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• M.C. codes have many levels of indirection for memory access

• Each level of indirection:
– Integer ops for indexing
– Irregular memory access
– Cache-misses
– Inhibits   pre-fetching,   compiler optimization,  &  vectorization

mat  = mat_in_cell( cell )

iso = iso_in_mat( i, mat )

cell

k   = energy_bin_table_search( E, Eiso(1,iso) )

sigt = sigt 
+ den*[ (1-de)*sigt_iso(k,iso) + de*sigt_iso(k+1,iso) ]

Traditional vs. MC - Code Optimization   (3)
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Traditional vs. MC - Code Optimization   (4)

Conditionals

• Traditional codes
– Vectorizable loops inside a conditional
– 1 conditional, to skip many ops

if( using_some_option ) then
do k = 1, big_number

...vectorizable coding 
enddo

endif

• Monte Carlo
– Outer loop over particles, inner coding 

is scalar (threadable)
– Many conditionals, to skip a few ops
– 1/3 of statements are conditionals, rare 

options can have significant cost

do k = 1, big_number
if( using_some_option ) then

...scalar coding
endif

enddo

Functions

• Traditional codes
– One function call,  vector ops
– Often call,  then return if not needed
– Almost no-cost if immediate return

call some_option( ...vectors )

• Monte Carlo
– Many function calls, scalar ops
– Significant cost to call if not needed

do k = 1, big_number
call some_option( ...scalars )

enddo
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Traditional vs. MC - Code Optimization   (5)

• These software practices are bad inside Monte Carlo histories:
– Assuming that the compiler will inline functions

• No inlining is done for the safe optimization level used for mcnp

– Using accessor functions to determine if an option is in effect
• Requires an external call, invoked very many times

– Calling an unneeded routine, even if it exits immediately
• Requires an external call, invoked very many times

– Eliminating goto statements by pushing coding into a subroutine
• Requires an external call, invoked very many times

– Adding extra levels of looping just to avoid goto’s for very rare cases
• Extra overhead on all particles;  less understandable code

– Heavy use of loop constructs cycle & exit is as bad as goto’s
• Obscures code flow & logic

– Obsession with removing goto’s
• They have their place in MC, more so than in other types of algorithm

2013-09-11
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Traditional vs. MC - Code Optimization   (6)

What classic optimizations work for MC ?

• Eliminate unneeded work,  wherever possible

• Replace any code constructs that require temporary storage
(eg,  noncontiguous array ops,  character manipulation, …)

• Replace calls to accessor functions by direct inline access

• Put if-tests for options inline, not in external routines

• Put (short) functions inline, not in external modules 



Optimizing Monte Carlo Calculations AMC-33  - 21

Performance Benchmarks

All tests run on Mac Pro, 3.0 GHz Xeon, 2 quad-cores using 8 threads.  For criticality problems 
results are neutrons/hr; for fixed-source problems results total wall time. ENDF/B-VII.1; Only 
discrete S(a,b) was used.

CRITICALITY PROBLEMS
ks1.txt 3D PWR, OECD perf. bench., Kord Smith, 60 isotopes, no tallies
ks2.txt ks1.txt, 10 isotopes, no tallies
ks3.txt ks1.txt, 10 isotopes, fmesh tallies
ks4.txt ks1.txt, 60 isotopes, fmesh tallies
baw1.txt BAWXI2 ICSBEP problem, 31 isotopes, no    tallies
baw2.txt BAWXI2 ICSBEP problem, 31 isotopes,  fmesh tallies
fvf.txt fuel storage vault, from OECD convergence bencharks
g1.txt Godiva problem, 3 isotopes
g2.txt Godiva problem, 423 isotopes
pin.txt AECL pin cell, with FPs, 147 isotopes

FIXED-SOURCE PROBLEMS
void1.txt ks1.txt,  with VOID card & no tallies
void2.txt baw1.txt, with VOID card & no tallies
void3.txt fvf.txt,  with VOID card & no tallies
det1.txt 3D porosity tool, Reg. problem 12, neutrons, weight windows, F4 tallies
med1.txta medical physics, modified 3D Zubal head, photons
pht1.txt PHTVR cylindrical test problem, photons

2013-09-11
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Classic Optimization - Compiler Options  (1)

Try different compiler optimization levels

Test case:
– BAWXI2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
– Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version
-O1 86 M 1.0

MCNP6.1, RSICC version
-O1 58  M .67
-O2 57  M .66
-O3 57  M .66

➜ No gains from higher compiler optimization level (-O1, -O2, -O3)
(Some other test problems segfault for –O2, -O3)

2013-07-24
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Classic Optimization - Compiler Options  (2)

Try different  heap-array allocation for temporary storage

Test case:
– BAWXI2 criticality benchmark, endf-7.0, 250 cycles, 5K neuts/cycle
– Mac OS X, Intel-12, 8 threads

Results:
compile options neutrons/hr relative speed

MCNP5, RSICC version
-O1   -heap-arrays 1024 86  M 1.0

MCNP6.1, RSICC version
-O1   -heap-arrays 1024 37  M .43
-O1   -heap-arrays 16384 39  M .46
-O1   -heap-arrays 1048576 38  M .45

➜ No gains from larger heap-array allocation
(Some other test problems segfault if heap-array allocation not used)

2013-07-24
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Classic Optimization – Inlining Functions

Modifications to original mcnp6.1:

• Inline binary searches in neutron 
problems for cross-section data, 
tallies, etc.

• Eliminate unnecessary calls to 
external routines, using extra logical 
variables for global options

• Inline external routines for neutron 
problems, ~10 routines in collision 
physics

➜ Roughly 5-15% gain in overall code 
speed due to moderate inlining

speedup
due to inlining

KCODE
ks1 1.34    
ks2 1.16 
ks3 1.11
ks4 1.11
baw1 1.09
baw2 1.07
fvf 1.09
g1 1.00
g2 1.14
pin 1.05

FIXED-SOURCE
void1 1.04
void2 1.05
void3 0.96
det1 1.08
med1 0.99
pht1 1.05

All problems run on Mac Pro (3 GHz 
Xeon) with 8 threads, Intel 12.0
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Classic Optimization – Storage Allocation 

Fortran Common Blocks & Threading 
Performance
• In MCNP6.1, each thread-private 

variable used in particle tracking 
was individually & explicitly 
declared to be THREADPRIVATE. 
COMMON blocks were not used.

• In MCNP6.1.1,  all thread-private 
variables used in particle tracking 
were placed in COMMON blocks & 
only the COMMON block names are 
declared THREADPRIVATE

➜ Roughly 5-20% gain in overall code 
speed due to changes in thread-
private declaration

– Very compiler-dependent
– Apparently more addressing ops needed when each 

variable declared separately

speedup due to
thread-private

COMMON

KCODE   
ks1.txt 1.12
ks2.txt 1.17
ks3.txt 1.12
ks4.txt 1.06
baw1.txt 1.28
baw2.txt 1.18
fvf.txt 1.31
g1.txt 1.09
g2.txt 1.02
pin.txt 1.07

FIXED-SOURCE
void1.txt 1.08
void2.txt 1.03
void3.txt 1.08
det1.txt 1.24
med1.txt 1.00
pht1.txt 1.12

All problems run on Mac Pro (3 GHz 
Xeon) with 8 threads, Intel 12.0
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Classic Optimization – Combined Gains
Overall speedup

vs mcnp6.1

KCODE 
ks1 1.44
ks2 2.11
ks3   1.34
ks4     1.23
baw1      1.87
baw2      1.43
fvf 1.97
g1      1.17
g2      1.19
pin      1.19

FIXED-SOURCE
void1      2.96
void2      4.02
void3      2.71
det1     1.59
med1      1.07
pht1      1.21

All problems run on Mac Pro (3 GHz 
Xeon) with 8 threads, Intel 12.0

• Overall speedups due to recent 
coding optimization

Modifications: 
– Compiler options
– Fix strided array ops  
– Inlining & guards
– thread-private common

• Comments
– Focus for classic optimizations was 

neutron criticality problems

– Classic optimizations focused on coding, 
not algorithms

– Many more improvements could be made

– Effort only required ~2 months, hardest 
part was testing on a variety of problems
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Algorithms
• Coding optimizations are easy, but provide only limited speedups. 
• Speedups from code optimization are often compiler-dependent & 

need to be revisited when new compilers are used.

• The biggest gains always come from new algorithms.

• New algorithms are needed for the coming new computer 
architectures: cpu + mic + gpu,  billions of cores,  limited 
memory
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Hash-based Energy
Lookup Algorithm
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Hash-based Energy Lookup – Background   (1)

• Cross-section data are stored as piecewise linear functions of  E

– Typical   σ (E)  vs E

• Usually stored as linear arrays:
N = number of entries
E(1..N)  =  array of E values  =  ( E1, E2, …, EN )
σ(1..N)   =  array of σ values  =  ( σ1, σ2, …, σN )

• Two steps are required to lookup & use the data:
1. Given E, search the E() array to find interval k containing E  (1≤ k ≤ N-1)
2. Interpolate linearly between  Ek &  Ek+1

E1 E9E8E7E6E5E4E3E2

σ(E)

σ1

σ2

σ3
σ4 σ5

σ6 σ7 σ8 σ9

σ (E) =σ k +
E − Ek

Ek+1 − Ek

⎛
⎝⎜

⎞
⎠⎟
⋅ σ k+1 −σ k( ), Ek ≤ E ≤ Ek+1
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Hash-based Energy Lookup – Background   (2)

• After a collision (before a flight)   or   entering new material
– Must look up & interpolate  σT for the neutron energy E, 

for each nuclide in a material
– The σT's are used to determine  ΣT for the material
– ΣT  is then used in randomly sampling of distance to collision

For     U235, U238, O16, …    (fuel material)

. Search the array of energies for the nuclide, find interval k containing E

. Interpolate σT for nuclide at energy E

. Accumulate NσT for nuclide into overall material ΣT

. . .

Similar  {search, interpolate, accumulate} for scatter, absorption, fission, …

• This set of operations   {search, interpolate, accumulate} often 
consumes   1/3 – 2/3   of the overall time in neutron transport MC



Optimizing Monte Carlo Calculations AMC-33  - 31

Hash-based Energy Lookup – Background   (3)

• There is extensive literature on search algorithms
– D.E. Knuth, The Art of Computer Programming Vol 3 - Sorting & 

Searching
– Many other references - books & journals

• For general Monte Carlo codes, the commonly-used methods are 
linear search &/or binary search of the cross-section energy 
tables
– Need 1 table search for each of the nuclides in a material

– Linear search takes  O( N )    time,   best when   N ~ 10 or less
– Binary search takes O( ln N ) time,   best when   N ~  large

• To reduce the time needed for the table searches for cross-section 
data, several unified energy grid schemes were used in the past
– Map the data for every nuclide in the problem onto 1 energy grid
– Requires only 1 energy table search, rather than 1 table search for 

every nuclide in a material
– Can be 10-100x faster for energy lookups
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Hash-based Energy Lookup – Background   (4)
Unified Energy Grid Schemes
• Scheme 1 – very old (racer, rcp, o5r, …)

– Used in the 1960s – 1980s due to memory limitations 
– Typically 104 – 105 energy bins (supergrouped)
– Map all xsec data to these bins
– Approximate, required weighting functions 

• Scheme 2 – unified grid (psg, serpent, …)
– Combine all xsec energy grids, including all energy points
– Expand all xsec data onto unified grid
– Exact, but required very large amounts of memory

• Scheme 3 – unified grid with pointers (serpent, …)
– Combine all xsec energy grids, including all energy points
– For each unified grid bin, store pointers to bins in each nuclide xsec

data set
– Exact, retains original nuclide xsec data
– Extra storage for unified grid & nuclide pointers
– Requires only 1 table search, then (indirect) lookups in nuclide tables

• Scheme 4 – NEW, current hash-based energy lookup
(mcnp611)
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Hash-based Energy Lookup – Background   (5)

Unified Energy Grid Schemes – Memory Storage
nuclides E pts ACE xs Ugrid+xs Ugrid+ptrs NEW

K Smith bench 64 .73 M .12 GB 1.5 GB .38 GB 2.2 MB

Rx pin, 1 temp 77 .66 M .12 GB 1.6 GB .41 GB 2.6 MB

Rx pin, 2 temps 145 1.2 M .24 GB 5.6 GB 1.4 GB 4.8 MB

Rx pin, 5 temps 349 2.8 M .55 GB 31  GB 7.8 GB 12 MB

All nucs, 1 temp 423 2.6 M .58 GB 36  GB 9.0 GB 14 MB

ACE xs = actual memory for ACE data in mcnp611
E pts = total energy points, summed over all ACE nucs = pts in Ugrid

Ugrid+xs = extra storage for unified E-grid + {σT, σA, σE, heating } at each E & nuc
Ugrid+ptrs = extra storage for unified E-grid + pointers to nuc xsecs at each E & nuc
NEW = extra storage for current hash-based lookup, with 8192 ubins
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Hash-based Energy Lookup – New   (1)

• History
– Suggested by George Zimmerman (LLNL, ret.) in 2013
– Used for lattice physics code (Dave Austin) in ~1989, and in several 

variations in RACER  MC (Brown) in 1980s
– Certainly much older .....

• Recent
– Zimmerman, in proprietary code mods, 2013
– Brown, stand-alone & in mcnp6.1.1b, 2013-2014

• Basic idea
Retain all mcnp6 machinery for energy lookups &
forming the total cross-section, but

➜ use a physics-based hash scheme to greatly narrow
the bounds for each binary search of nuclide E tables

➜ Minimal mcnp6 code changes, but significant speedups

➜ Modest memory storage,  much less than unified grids
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Hash-based Energy Lookup – New   (2)

• The setup portion of the algorithm, performed prior to neutron 
random walks, involves the following steps:

1. Determine Emin and Emax energy bounds for the problem
• Check Emax & Emin for all nuclide ACE datasets in the problem

2. Setup the "ugrid" for the hashing function
• Ugrid:     uniform spacing in ln(E) between Emin and Emax
• M:     number of bins in  ugrid().   
• No need to store ugrid() -- just store M, Emin, Emax
• mcnp611:  M = 8192,   reasonable speed/storage tradeoff

3. Setup nuclide search bounds for each ubin index
• For each bin in ugrid, lookup & store for each nuclide the 

bounding indexes k1(u,n) and k2(u,n) in the ACE energy table for 
that nuclide  (n= nuclide index, N= no. nuclides, u= index in ugrid )

• Only need store k1(u,n),    since k2(u,n) = k1(u+1,n)+1
• Total extra storage = (M+1)∙N∙4 bytes        (int4 sufficient for ACE data)

Note:  The above steps do NOT involve any approximations 
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Hash-based Energy Lookup – New   (3)

• During random walk simulation,  after particle energy change  or  
when entering new material

Defining umin= log Emin, umax= log Emax, du = M / (umax - umin)

New algorithm for energy lookups for neutron energy E is:

u = 1 +   ⎣ du ∙ ( logE – umin ) ⎦,        ⎣ ⎦ is truncation to the next lowest integer

For each nuclide n:
search its energy table between entries k1(u,n) &  k2 =k1(u+1,n)+1

E
Compute u.
Get  k1, k2

for each n 
as needed.

⦁
⦁
⦁
⦁
⦁
⦁
⦁

⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁
⦁

⦁
⦁
⦁
⦁
⦁
⦁

Nuclide 1

Nuclide 2

Nuclide N

k2

k1

k2

k1
k2

k1
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Hash-based Energy Lookup – New   (4)

• Memory storage
– ugrid is completely defined by M, Emin , Emax -- need not be stored
– Because k2(u,n) = k1(u+1,n)+1, the k2(u,n) values need not be stored 
– Total additional memory storage = (M+1)∙N∙4  bytes
– More compact memory use,  so more cache-friendly

• Speed/space tradeoff
– Larger M gives improved speed, but dependence is weak for M >1000
– Smaller M reduces speedup but also reduces memory requirements. 

• Choice of M does not in any way affect accuracy of the xsec data
• k1 and k2 indexes for each nuclide for each of the ugrid bins

– Bounds for performing ordinary binary searches in the nuclide ACE
– These bounds narrow the range of the binary searches, so that only a 

small portion of each nuclide energy table need be searched
– Frequently the search range in the nuclide energy tables is < 8. 

For such small ranges, a simple linear search will be slightly faster than 
a binary search & may provide additional small speedups
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Hash-based Energy Lookup – Testing    (1)

• Stand-alone coding to compare 3 methods: 
1. Standard MCNP6.1 with   external function  for binary searches
2. Standard MCNP5 with inline coding for binary searches
3. New hash-based scheme with inline binary searches. 

• ACE datasets
– The energy tables for 9 nuclides from the ENDF/B-VII.1 nuclear data 

libraries were used in the comparisons: 
1001.80c, 8016.80c, 26056.80c, 92235.80c, 

92238.80c, 94239.80c, 94240.80c, 94241.80c, 6000.80c. 
– These nuclides had energy table sizes ranging from 590 to 157,744 

bins. 

• For each energy lookup scheme, many millions of neutron 
energies were randomly sampled in the ugrid range, and then the 
energy lookups were performed for all 9 nuclides. Overall timing 
results are averages for the set of nuclides.
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Hash-based Energy Lookup – Testing    (2)

• Timing results for stand-alone test of energy lookup methods. 
Results are the average time for each energy lookup 

• Inlining binary searches 
gives 10-20% speedup 
(mcnp5 vs mcnp6.1)

• New hash-based scheme 
gives 15-20x speedup

• M = 8192 used for table

• Lookup time for other M on 
MacBook

M = 64 k       2 ns
M = 32 k       2 ns
M = 16 k       2 ns
M =  8 k       3 ns
M =  4 k       3 ns
M =   1 k       5 ns

• Mixed binary/linear search 
(break at 8) did not improve 
speedup 
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Hash-based Energy Lookup – Testing    (3)

• MCNP6.1  (2013)  runs significantly slower than MCNP5
– Slowdowns are problem-dependent,  20% to 5x slower

• MCNP6.1.1  (2014)
– Significant classic optimizations performed

Inline functions,  eliminate non-unit-stride vector ops, if-guards, …
– New hash-based energy lookup scheme
– Measured timing results for new energy lookup scheme compare 

mcnp6.1.1 before & after new scheme,  with all other optimizations 
the same

• New energy lookup scheme provides 1 – 1.9x speedup in overall 
MCNP6.1.1 problem runtime     (at least for neutron problems)

• MCNP6.1.1  is a  lot     faster than MCNP6.1
• MCNP6.1.1  is a  little  faster than MCNP5
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Hash-based Energy Lookup – Testing    (4)

• MCNP6.1.1 speedups due to new hash-based energy lookup 
algorithm

• Speedup compares 
mcnp6.1.1 before & after 
new energy lookup scheme, 
with no other changes

• M = 8192 used for table

• All runs performed on Mac 
Pro (3 GHz, 2 quad-core) 
with 8 mcnp6 threads, using 
standard ENDF/B-VII data
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Sparse Storage for
Fission Matrix Tallies
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Fission Matrix for MCNP

• Exact integral equation for fission source

N = # spatial regions,    F  is  NxN  matrix

• FI,J  =  next-generation fission neutrons produced in region I,
for each fission neutron starting in region J      (JàI)

– As region size decreases:      S(r0)  à SJ / VJ,     discretization errors à 0
– Can accumulate tallies of FI,J  even if not converged

• Similar analysis for adjoint source shows that    

SI
†
I = 1

K ⋅ FI,J
† ⋅SJ

†
J

J=1

N

∑ ,        F† = FT

 
FI,J = d

!
r

!
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∫ d

!
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!
r0∈VJ
∫
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!
r0 )
SJ

⋅ dEdΩ̂dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(
!
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′r

!
′r ∈VJ
∫ = d

!
′r d ′E d ˆ ′Ω νΣF(

!
′r , ′E )Ψ(

!
′r , ′E , ˆ ′Ω )

!
′r ∈VJ
∫∫∫ ,

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑



Optimizing Monte Carlo Calculations AMC-33  - 44

Monte Carlo Estimation of Fission Matrix

Monte Carlo K-effective Calculation
1. Start with fission source & k-eff guess
2. Repeat until converged:

• Simulate neutrons in cycle
• Save fission sites for next cycle
• Calculate k-eff, renormalize source

3. Continue iterating &  tally results

For Fission Matrix calculation
During standard k-eff calculation,  at the end of each cycle:

• Estimate  FI,J tallies from start & end points in fission bank        ( ~ free )
• Accumulate  FI,J tallies,  over all cycles                   (even inactive cycles)

After Monte Carlo completed:
• Normalize  FI,J accumulators,  divide by total sources in J regions
• Find eigenvalues/vectors of  F  matrix           (nonsymmetric eigensolver)
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Fission Matrix – Sparse Structure

• For a spatial mesh with N regions,  F matrix is  N x N
– 100 x 100 x 100  mesh   ➜ F  is  106 x 106 ➜ 8 TB memory
– In the past, memory storage was always the major limitation for F 

matrix

• Compressed row storage scheme
– Don’t store zero elements,  general sparsity
– Reduced F matrix storage,   no approximation
– Can easily do 100 x 100 x 100 mesh on  8 GB Mac

2D PWR
15x15x1 mesh

N = 225

2D PWR
30x30x1 mesh

N = 900
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Fission Matrix – Sparse Storage

• Compressed Row Storage Scheme (CRS)
– General sparsity, no approximations or assumptions
– N = Nx x Ny x Nz mesh cells 
– (iS , jS, kS) → (iT , jT, kT)     ➜ J → I J =  iS +  (jS-1)Nx +  (kS-1)NxNy

I  =  iT +  (jT-1)Nx +  (kT-1)NxNy
– Only the nonzero F(I,J) entries are stored. 
– MC tallies:   If element exists – add;    if not – insert

– L(I) array entries point to the start of a list of J indices and 
corresponding nonzero F(I,J) tallies 

– Highly optimized tally coding, typically requires less than 1 second at the 
end of each batch in the Monte Carlo simulation. 

L1 L2 L3 . . . LN LN+1

J1 J2 J3 J4 J5 J6 J7 J8 J9 ... JM
R1 R2 R3 R4 R5 R6 R7 R8 R9 ... RM
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Example – Sparse-Matrix * Vector

! multiply a fmat matrix times a vector, return result in y vector
type(fission_matrix), intent(in)  :: fmat   ! sparse fission matrix
real(R8),             intent(in)  :: x(:)   ! vector in
real(R8),             intent(out) :: y(:)   ! vector out, result
integer(I8) :: k, i
real(R8)    :: t

!$OMP PARALLEL DO PRIVATE( t, k ) ß different thread for each row

do i = 1, fmat%n
t = 0.0d+00
do k = fmat%L(i), fmat%L(i+1)-1 ß k is location of J,R row data

t = t + fmat%R(k) * x(fmat%J(k))
enddo
y(i) = t

enddo
!$OMP END PARALLEL DO
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Higher Eigenmode Analysis with the Fission Matrix

• Run Monte Carlo,    get fission matrix, 
then solve for eigenvalues & eigenfunctions:

– Matlab,   if full-storage F matrix can fit in memory
– Power iteration with deflation,  preserves sparse format
– Implicitly Restarted Arnoldi Method (IRAM), preserves sparse format

(thanks, Max & Colin)

F is nonsymmetric
Sn is a right eigenvector of F,      S†

n is a left eigenvector of F
Sn and  S†

m are biorthogonal

 


Sn = 1

Kn ⋅F ⋅

Sn             k0 > k1 > k1  ... > kN


S†
n = 1

Kn ⋅F
T ⋅

S†
n                 n = 0,1,...N

(kp − kq) ⋅(

Sp ⋅

Sq
†) = 0
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PWR – Source Eigenmodes for 120x120x1 Spatial Mesh

n         Kn
0     1.29480
1     1.27664
2     1.27657
3     1.25476
4     1.24847
5     1.24075
6     1.22160
7     1.22141
8     1.19745
9     1.19743
10   1.18825
11   1.18305
12   1.15619
13   1.14633
14   1.14617
15   1.14584
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PWR – with Perturbations

• Insert SS304 Control Rods in each assembly in quadrant of core

Fission Source
Eigenmodes

Original Perturbed

Original Perturbed
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PWR - Convergence Acceleration Using Fission Matrix

• Fission matrix can be used to accelerate convergence of the 
MCNP neutron source distribution during inactive cycles

• Requires only fundamental forward mode
• Very impressive convergence improvement

standard MC

standard MC

keff

Hsrc

accelerated using F matrix

accelerated using F matrix
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Fission Bank
Reordering
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Reproducibility & Threading

• For criticality problems with OpenMP threading, the 
fission-bank fso() needs to be reordered into a unique 
ordering that is independent of the number of threads or 
MPI processes. 

• This was previously done by very crude, inefficient 
sorting, and did not scale well for large numbers of 
neutrons/cycle.

Scaling ~ O( N2 ) N = neutrons/cycle

• A new routine was added, fso_reorder, to provide a 
unique reordering of fso() WITHOUT SORTING. This is 
based on:

FB Brown & TM Sutton, "Reproducibility and Monte 
Carlo Eigenvalue Calculations", Trans Am Nuc Soc 65, 
235 (1992)

Scaling ~ O( N ) N = neutrons/cycle
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Timing Studies

— Standard MCNP5, 
with fission-bank sorting

- - Sorting overhead

— New MCNP5, no sorting

PWR2D Model

• 1/4-core, detailed 
geometry, ENDF/B-VII

• Mac Pro, 3 GHz, 2 quad-
core Xeon, 8 threads

• Identical results for old & 
new reordering

• For >10M neuts/cycle, old 
sorting took more time 
than running neuts

• New scheme eliminates 
this, scales
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Random Sampling
Improvements
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Sampling the Evaporation Spectrum

• During the analysis of neutron collisions in MCNP, one of the possible 
Probability Density Functions (PDFs) for the outgoing neutron energy, 
Eout, is an “evaporation spectrum” (ENDF Law 9) given by: 

Where T and U are tabulated functions of Ein,   and 

• The sampling scheme used in MCNP since the 1970s is: 

• This rejection scheme is extremely inefficient when (Ein-U)/T is small. 

– With some ENDF/B-VII data,  (Ein-U)/T is sometimes smaller than  0.1, 
giving rise to rejection sampling efficiencies  of  0.1 % or smaller

– For some problems, mcnp6  may get stuck in this rejection sampling loop for 
minutes, hours, or even days.

f (Ein → Eout ) = C ⋅Eout ⋅e
−Eout /T , 0 ≤ Eout ≤ Ein −U

C = T −2 ⋅[1− e−(Ein−U )/T ⋅(1+ Ein−U
T )]−1

Eout = −T ⋅ ln(ξ1ξ2 ), reject & repeat if  Eout > Ein −U
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New Sampling Scheme

• It can readily be shown that a 
truncated Gamma PDF (the 
evaporation spectrum) can be 
efficiently sampled with a 
rejection scheme based on 
truncated exponentials:

• The efficiency of this rejection 
scheme is always greater than 50%, 
even for very small (Ein-U)/T .  The 
gains in sampling efficiency can be 
very large,  1000x or more:

 

Let x = Eout /T ,   w = (Ein −U ) /T ,  
and  g = 1− e−w .  Then,
(1)  !E = − ln(1− gξ )
(2)  ! ′E = − ln(1− g ′ξ )
(3)  x = !E + ′!E
(3)  Reject & resample if   x > w
(4)  Eout = x ⋅T

( Ein – U ) / T
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Summary
&

Conclusions
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Overall Performance Improvements

• Initial 3-month effort, focus on speedup & optimization
– Focus on neutron criticality problems common to ASC & NCSP applications
– Speedups from recent performance improvements 

Performance Test Set 
Criticality Other
ks1   1.76 void1  3.03
ks2   2.13 void2  4.11
ks3   1.35 void2  4.11
ks4   1.36 void3  2.72
baw1  2.19 det1   1.67
baw2  1.59 med1   1.15
fvf 2.04 pht1   1.22
g1    1.14
g2    2.20
pin   1.73

VALIDATION_CRITICALITY  Suite
Measured wall-clock times, including data 

I/O:
mcnp5     release  34.7 min
mcnp6.1   release  43.9 min
mcnp6.1.1 NEW      27.9 min
➜ 1.57 X speedup over mcnp6.1
➜ 1.24 X speedup over mcnp5

Performance Benchmark Suite
Speedups vs MCNP6.1 Release

Neutron Problems Speedup
BAWXI2 4.37 
GODIVA 1.05
Mode n in air w 750,000 tally bins 1.18
Well log problem 1.91 
100M lattice cells in void 5.17 

Other
mode p e in air 1.01 
mode n p e in air 1.05 
mode p in air 1.20 
Pulse height tally 1.20 
Radiography 1.07
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MC & Computing - Status

• Computers continue to evolve - speed & accessibility
– Everyone now has multicore, Gflop computers - laptops, deskside
– Almost everyone now has access to Linux clusters
– New computers will have 16, 32, 48, 64, 80, … cores per processor

• MC codes must evolve
– All MC codes - new & old - must be parallel,  with threading + MPI
– Much larger problem sizes - millions of regions, materials, tallies

• Monte Carlo for the 2020s & beyond:
– Outstanding success to date,  will continue
– More & more analysis will be done using Monte Carlo codes
– New physic methods,   eliminate approximations
– Upgrade codes for huge problem sizes
– New parallel computing algorithms
– Improve robustness & ease-of-use
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