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Abstract

The use of Bayesian inference in data analysis has become the standard for large scientific experiments
[1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms
currently implemented in C++ and Python to easily perform flat-prior Markov Chain Monte Carlo
Bayesian inference with pure Metropolis sampling. These implementations are designed to be user
friendly and extensible for customization based on specific application requirements. This document
describes the algorithmic choices made and presents two use cases.

1 Introduction

Pure Metropolis Markov Chain Monte Carlo is a method of calculating a posterior distribution of how well
a continuous set of models represent data with uncertainties. Our implementation currently assumes that
the covariance matrix of our data points is diagonal. In addition, it assumes that a Gaussian jump function
for the Markov Chain Monte Carlo is appropriate for all variables. Finally, it assumes a uniform prior across
the bounds provided by the user. While this combination of assumptions is not appropriate for all problems,
we have found it to have broad applicability to many problems of interest to us.

The core Metropolis routine has the following structure:

1. Define starting point for model parameters and bounds

2. Calculate observables for x0

3. Calculate the χ2 of the observables given the data and uncertainties

4. Perform a Monte Carlo jump in all parameter dimensions

5. The standard deviation of the jump size is specified by the user for each dimension independently

6. If the jump is outside a bound try again until the new x lies within all bounds

7. Calculate observables for xn

8. Calculate the χ2 of the observables given the data and uncertainties

9. Calculate if the log likelihood ratio is greater than a random number on [0,1]

10. If it is jump to xn

11. If it is not remain at xn−1

12. If n > burn in and n%skip== 0 then save xn

13. Go back to step four until n=total samples
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As long as n is large enough that the distribution has converged, the distribution of x values will be rep-
resentative of the posterior distribution of model parameters. In both C++ and Python the implementation
has been designed such that the core evaluation function used to calculate the observables for the model can
be provided by the user.

Two applications of this technique are evaluation of nuclear data and unfolding of neutron spectra from
a liquid scintillator.

The data used by neutron transport codes like PARTISN and MCNP is based on evaluations of nuclear
data. These evaluations attempt to combine nuclear theory with measured data to produce a best estimate of
nuclear data at all energies. Bayesian inference is a powerful tool for this type of work. One example of this
is the evaluation of the total kinetic energy of fission fragments. For this evaluation, we used data for 235U
238U, and 239Pu. Theoretical models that use an empirically fit set of constant for all three isotopes have
been developed separately [3]. In order to determine an uncertainty in the evaluation it is necessary to jointly
infer parameters across all three models and calculate a posterior distribution of valid model parameters.
Metis makes this task trivial. The results of this analysis are shown in Figure 1 and will be included in
ENDF-VIII.

Figure 1: Experimental data for the post-neutron emission average TKE as a function of incident neutron
energy, En, for the three targets 235U [4], 239Pu [5], and 238U [6]. The red and green curves show the ENDF-
VIII.0 and VII evaluations, respectively. The 238U data and evaluations curves have been shifted upwards
by 1 MeV, to avoid clutter.

A second use case is unfolding of neutron spectroscopy data. In a simple model example we have a Watt
spectrum of neutrons incident on a liquid scintillator. These neutrons produce proton recoils that can be up
to the total neutron energy but are most often much less. This makes the inference of the incident energy non-
trivial because the uncertainties in high energy bins can dominate the uncertainty in the inferred spectrum.
In order to make this problem tractable it is often reduced to just a few bins and then the incident spectrum
is calculated using simple minimization techniques. This does not allow for any uncertainty quantification
and limits the fidelity of the results. With Metis it is possible to reconstruct the full Watt fission spectrum
with uncertainties based on a set of measured data with uncertainties. Figure 2 shows the reconstruction
of an incident neutron spectrum in an idealized model case. We have used this technique for inference of
measured data with similar results.

As a check on the accuracy of the MCMC method we also developed an analytic integral method and
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Figure 2: Neutron spectrum unfolding of a 252Cf source from a model of a liquid scintillator detector with
the incident source in the model plotted.

verified that the MCMC method converges to it. This method is computationally expensive as it has to
perform a calculation for every voxel in parameter space and has numerical stability issues in areas with
large gradients in observables so it has limited usefulness for realistic applications.
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A Basic Implementation

This simple implementation has no burn-in period or skips but is meant to illustrate the simplicity of the
methodology.

de f p rob dens i ty ( value , sigma , model ) :
expo = np . sum ( ( value−model )∗∗2/( sigma ∗∗2))
re turn −expo

de f newloc ( current , l i m i t s , jumps ) :
cur r ent = np . ones ( l en ( cur rent ) )∗ cur rent
t h e l o c = cur rent + np . random . normal ( 0 , 1 . 0 , l en ( cur rent ) )∗ jumps
mask = np . l o g i c a l o r ( l i m i t s [ : , 1 ] < the loc , t h e l o c < l i m i t s [ : , 0 ] )
whi l e np . sum(mask ) > 0 :

mi = np . nonzero (mask )
t h e l o c [ mi ] = cur rent [ mi ] + \

np . random . normal (0 , 1 . 0 , np . sum(mask ) )∗ jumps [ mi ]
mask = np . l o g i c a l o r ( l i m i t s [ : , 1 ] < the loc ,

t h e l o c < l i m i t s [ : , 0 ] )
cur r ent = t h e l o c
re turn cur rent

de f runmcmc( nsamples , loc , model spec ,
jumps , l i m i t s , spec , sigmas , extended =False ) :

n=0
bloc = l o c
nbins = 1000
d e l t a s = ( l i m i t s [ : , 1 ] − l i m i t s [ : , 0 ] ) / f l o a t ( nbins )
v a l s = model spec ( l o c )
prob = prob dens i ty ( spec , sigmas , v a l s )
bp = prob
h = np . z e r o s ( ( l en ( l o c ) , nbins ) )
i n d i c e s = range ( l en ( l o c ) )
l o c l i s t = None
i f extended :

l o c l i s t = np . z e ro s ( ( nsamples , l en ( l i m i t s )+1))
accepted = 0
whi le n < nsamples :

tmploc = newloc ( loc , l i m i t s , jumps )
v a l s = model spec ( tmploc )
tmpprob = prob dens i ty ( spec , sigmas , v a l s )
i f tmpprob > prob or np . exp ( ( tmpprob − prob )∗0 . 5 ) > np . random . rand ( ) :

prob = tmpprob
l o c = tmploc
accepted += 1

i f tmpprob > bp :
bp = tmpprob
b loc = l o c

h [ i n d i c e s , np . array ( ( loc−l i m i t s [ : , 0 ] ) / de l ta s , dtype=’ int ’ ) ] += 1
i f l o c l i s t i s not None :

l o c l i s t [ n ] [ : − 1 ] = l o c
l o c l i s t [ n ] [ −1 ] = prob

n += 1
i f extended :

re turn h , bloc , f l o a t ( accepted )/ f l o a t ( nsamples ) , l o c l i s t
r e turn h , bloc , f l o a t ( accepted )/ f l o a t ( nsamples )
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