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Femtosecond Polarization Switching Using a Cadmium-Oxide-Based Perfect Absorber
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Introduction

Ultrafast control of the polarization state of light may enable a plethora of
applications in optics, spintronics, and chemistry. However, conventional polarizing
elements such as polarizers and waveplates are either static or possess only moderate
switching speeds on the order of milliseconds. Femtosecond (fs) all-optical switching
of light polarization has been proven challenging. Here, with the aid of high-mobility
epitaxially-grown dysprosium-doped cadmium oxide (CdO) as the gateway plasmonic
material!, we realize a high-quality factor, polarization-selective Berreman-type
perfect absorber’ at a wavelength of 2.08 um. Upon sub-bandgap resonant optical
pumping, the perfect absorption resonance strongly redshifts due to the transient
increase of the ensemble-averaged effective electron mass of CdO, leading to a giant
absolute p-polarized reflectance change from 1.0% to 86.3%. The switching time is
sub-picosecond and is governed by electron-phonon coupling. By combining the
exceedingly high modulation depth with the polarization selectivity of the perfect
absorber, we experimentally demonstrate a reflective polarizer with a polarization
extinction ratio of 91 that can be switched on and off within 800 fs. The device can be
fabricated on a wafer scale, does not require surface patterning, and is scalable from

near- to mid-infrared frequencies.
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Schematic of a switchable reflective
polarizer. (Top), Schematic
illustration of an un-polarized beam
reflecting from a switchable
polarizer. The expected polarization
states of the output beam, with the
polarizer turned “ON” and “OFF”,
are shown on the right side.

1
““““““ (Bottom), Depiction of a tunable
optical cavity for the realization of a
switchable polarizer. At the
5 wavelength A,, the cavity is switched
§ ON from a polarizer to a mirror when
s the polarizer is switched from “ON”
© to “OFF”. In the meantime, at the
nd . :
wavelength A,, the cavity is switched
from a mirror to a polarizer.
0 !
\ Wavelength /
Material Carrier Density Mobility ENZ wavelength g” at ENZ
[cm-3] [cm?2/V.s] [um] wavelength
CdO: Dy 9.94x10%° 474 3.61 0.19
CdO: Dy 3.7x10%° 359 1.87 0.13
AZO (2 wt%) 7.2x10%° 48 1.43 0.21
ITO (10 wt%) 7.7x10%° 36 1.40 0.69

Table 1. A comparison of losses of various plasmonic materials.

ISandia National Laboratories, Albuquerque, New Mexico 87185, USA

SAND2017-0182C

U.S. DEPARTMENT OF

'ENERGY

Office of Science

2Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
3Department of Materials Science, North Carolina State University, Raleigh, North Carolina 27695, USA cin’r.lunl.gov

Polarization Switching
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(Left), Schematic of the CdO-
based perfect absorber.
(Right), The real and
imaginary parts of the
permittivity of the CdO film.
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(Left), The dispersion
relation of the 3-layer
structure. (Right), The field
distribution as a function of
I wavelength and the position
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d, Schematic illustration of ultrafast dynamics in the CdO film, consisting of
photoexcitation, hot electron redistribution and cooling. e, The experimental AOD
\spectrum along with the numerical fit (at the horizontal orange dashed line in panel b). /
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a, Schematic of the pump-probe measurement setup. b, The AOD map as a function of
wavelength and delay time. c, Line-scans of the absolute reflectance of the sample versus
delay time at 2.08 um and 2.23 um respectively (at the vertical blue and red dashed lines in
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a, Schematic of the pump-probe measurement setup with the polarization analyzing unit
included. b, The projected output polarizations for a linearly polarized input beam at 2.08
um and 2.23 um, and with and without pump, respectively.
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¢, The measured polarization ellipse of the reflected beam at 2.08 um at delay time of O fs,
250 fs, and 800 fs, respectively. d, The simulated polarization ellipse of the reflected beam
at 2.08 um with and without pump, respectively. e-f, The measured and simulated
Q)Iarization ellipse of the reflected beam at 2.23 um, respectively. /

To summarize, by taking advantage of a low-loss plasmonic material (CdO) with a
stringently designed Berreman mode plasmonic cavity, we manage to construct a high
Q-factor perfect absorber with an extremely high contrast dynamic tuning of the
amplitude and polarization state of infrared light at a sub-picosecond time scale. The
device could be implemented for the ultrafast control of numerous material
excitations. The same design strategy can be applied to other high mobility materials
at different spectral ranges, for example, InAs at THz frequencies. We could also
envision solid state, electrically addressable and high contrast amplitude, phase or
polarization modulators to be developed based on similar platform.
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