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§ Ongoing	Challenges

Overview
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MATHEMATICAL	PREFACE
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Re

Im

ϕ
  y =α sinϕ

α  x =α cosϕ

  
α = x2 + y2 ,ϕ = arctan y

x

   

Polar:  z =α∠ϕ =αejϕ =α (cosϕ + jsinϕ )     Euler's Law
Rectangular:  z = x + jy      Polar ↔  Rectangular (Equivalent)

   

note:  j = −1, j2 = −1

z∗ = x − jy

Complex	Number	Conversion



Basic	Notation
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§ Voltage	signal:	
§ Current	signal:	
§ Apparent	Power:

§ The	measure	of	AC	power
§ Energy/Time	expressed	in	Volt-Ampere	(VA);	Real	(W),	Reactive	(VAr)

§ Admittance	Matrix:
§ Equivalenced AC	Network	Characteristics

§ RMS:
§ Voltage	magnitude:
§ Current	magnitude:	

§ Steady-State:
§ Voltage	phasor (RMS,	cosine-referenced):

§ Rate	of	movement	of	charge
§ Charge/Time	expressed	in	Ampere	(A)

§ Current	phasor (RMS,	cosine-referenced):
§ Potential	electrical	energy
§ Energy/Charge	expressed	in	Volt	(V)

  v(t) = vmax cos(ωt +θ )

  i(t) = imax cos(ωt +φ)

  s = p + jq

  Y = G + jB

 ω   constant, e.g. 60 Hertz

  v = v ejθ = vr + jv j

  i = i ejφ = ir + ji j

  
v = 1 T v(t)2 dt

0

T

∫ = vmax 2

  i = imax 2



§ Ohm’s	Law:	

§ Power	Formula	(Joule’s	First	Law):

§ Kirchhoff’s	Circuit	Laws:

  

v = iR     i = R−1v                         DC Circuits
v = iZ      i = Z ∗v = Yv                  AC Circuits

Resistance (R) in Ohms (Ω): Opposition to a steady electric DC current
Impedance (Z) in Ohms (Ω): Opposition to the flow of AC current (sinusoidal)
Admittance (Y) in Siemens (S): Ease at which AC current flows

  

p = vi                           DC Circuits
s = vi∗                           AC Circuits

 

Kirchhoff's Current Law (KCL)
Kirchhoff's Voltage Law (KVL)

Ohm’s	Law,	AC	Power,	&	Kirchhoff’s	Laws



 n  m

 p

  vn − vm( ) + vm − vp( ) + vp − vn( ) = 0

 vn  vm

 vp

Kirchhoff’s Current Law (KCL)

Kirchhoff’s Voltage Law (KVL)

 n  m

 p

  ik (m,p)

  ik ( p,n)

  ik (n,m)

  

ik (n,m) − ik (m,p) = 0

ik (m,p) − ik ( p,n) = 0

ik ( p,n) − ik (n,m) = 0

Kirchhoff’s	1st &	2nd Circuit	Laws
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Line: If tkn = tkm = 1

In-Phase (n-side): If tkn ≠ 1,tkm = 1, yk
s ≈ 0

Phase-shifting (n-side): If tkn ≠ 1,ϕkn ≠ 0,tkm = 1, yk
s ≈ 0

Generalized	Branch	Admittance	Matrix	Yk



§ Polar	Power-Voltage	Power	Flow	Formulation	(PSV)

§ Rectangular	Power-Voltage	Power	Flow	Formulation	(RSV)

§ Rectangular	Current	Injection	Formulation	(RIV)

  

vn vm gnm cosθnm + bnm sinθnm( )
m∈N
∑ − pn + pn

d = 0,∀n∈N

vn vm gnm sinθnm − bnm cosθnm( )
m∈N
∑ − qn + qn

d = 0,∀n∈N

  

vn
r gnmvm

r − bnmvm
j( ) + vn

j gnmvm
j + bnmvm

r( )
m∈N
∑

m∈N
∑ − pn + pn

d = 0,∀n∈N

vn
j gnmvm

r − bnmvm
j( )− vn

r gnmvm
j + bnmvm

r( )
m∈N
∑

m∈N
∑ − qn + qn

d = 0,∀n∈N

  

in
r = gnmvm

r − bnmvm
j( )

m∈N
∑          in

j = gnmvm
j + bnmvm

r( )
m∈N
∑ ,∀n∈N

pn = vn
rin

r + vn
jin

j + pn
d              qn = vn

jin
r − vn

rin
j + qn

d ,∀n∈N
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Nodal	Power	Balancing	Constraints
Mathematically Equivalent Approaches



IV-ACOPF	Formulation
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Line Current Flows

Network Current Balancing Nodal Power Injections

Generator Limits

  

s.t.

ik (n,m)
r = Re Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

r = Re Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K

ik (n,m)
j = Im Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

j = Im Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K
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r
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min( )2

≤ vn( )2
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ik (⋅)( )2
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max( )2
   ∀k n,m( ),k m,n( )∈F
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g ,2 pn

g( )2
+
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g

Nodal Voltage Magnitude Limits

Thermal Line (Flowgate) Limits
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RSV-ACOPF	Formulation
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Generator Limits

  

Pn
min ≤ pn

g ≤ Pn
max    ∀n∈N
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g

Nodal Voltage Magnitude Limits

Thermal Line (Flowgate) Limits
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Network Power Balancing

@ 𝑝2(.)
�

2∈B(")
− 𝑝"

# + 𝑝"+ = 0					∀𝑛 ∈ 𝑁

@ 𝑞2(.)
�

2∈B(")
− 𝑞"

# + 𝑞"+ = 0					∀𝑛 ∈ 𝑁

𝑝2(",9) = 𝑣"&𝑖2(",9)& + 𝑣"
)𝑖2(",9)
) , 𝑝2(9,") = 𝑣9& 𝑖2(9,")& + 𝑣9

) 𝑖2(9,")
) 				∀𝑘 ∈ 𝐾

𝑞2(",9) = 𝑣"
)𝑖2(",9)& − 𝑣"&𝑖2 ",9

) , 𝑞2 9," = 𝑣9
) 𝑖2 9,"

& − 𝑣9& 𝑖2 9,"
) 						∀𝑘 ∈ 𝐾

Line Power Flows



ACOPF	Formulation
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ACOPF Feasible Region for a Three-Bus Network

• Nonconvex, NP-Hard
• Multiple Local Optima

Image Source: Hiskens, 2001



MOTIVATIONS	&	BACKGROUND



Background
• 1962:	Carpentier formulates	the	ACOPF	based	upon	KKT	conditions
• 1960’s	to	present	day:	Trends	with	algorithmic	advancements	in	OR
• 21st century:	Global	convergence	methods	(Phan,	Jabr,	Bai,	Lavaei)

Motivations
• Co-optimizes	Real	and	Reactive	Power	Injections
• Changing	Energy	Landscape	

• More	utility-scale	renewables
• More	distributed	resources

• Co-Optimize	for	Market	Efficiency	and	Security
• Practical	Application

R&D	Perspectives



Where	are	we	going?
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15

• In	Industry?		
§ “											”

• In	Academia?
• Conventions/Assumptions
• Toy	Networks	(IEEE,	MATPOWER)

• Little	Knowledge	of	PracticeReal
World	Applications

The Hype:
• N-1, N-1-1, N-k SCOPF
• _______ + ACOPF

The Bottleneck:
• ACOPF

Future Work?
• Amass from 50+ Years of Work
• Collaborate and Compete
• Real World Applications



ACOPF

ACOPF (Globally) 
Optimal

DCOPF

SDP Relaxation

SOCP Relaxation

SLP
Approximation

• DCOPF
• Linear

• Convex Relaxations
• SDP (Bai et al., Lavaei and Low)
• SOCP (Jabr, Kocuk et al.)
• QCP (Coffrin et al.)
• Relaxation Tightening

• Chen, Coffrin, Kocuk, 
Molzahn, etc.

• Approximations
• Decoupled Methods
• Iterative Methods (e.g., SLP)

Solution	Techniques



TODAY’S	PRACTICE



System	Operator	Goals
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1.	Ensure	Just	and	Reasonable	
Rates,	Terms,	and	Conditions
2.	Promote	Safe,	Reliable,	
Secure,	and	Efficient	Infrastructure
…	Deliver	reliable	and	affordable	electric	power

Wholesale Market (Sale for Resale)
• Federal Energy Regulatory 

Commission (FERC) 
Regulatory Authority:
• Federal Power Act (FPA)
• Public Utility Regulatory 

Policies Act (PURPA)

Retail Market (Sale for Use)
• State Regulatory Commissions

Regulatory authority varies by    
state statute



The	Joint	Board	on	Economic	Dispatch	for	the	Northeast	Region	
stated	in	2006	that	some	operational	constraints	are	not	fully	
represented	within	the	current	software,	and	the	benefits	of	
economic	dispatch	can	be	negatively	impacted	if	all	the	available	
services	and	products	are	not	accurately	considered.	
Inaccuracies	in	the	market	software	and	the	subsequent	
operator	intervention	cause	economic	inefficiencies	due	to	
suboptimal	dispatch	in	the	short-term	and	misplaced	incentives	
for	long-term	decision-making.	

Increasing	Efficiency	Through	Improved	Software
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Real-World	OPF	Applications
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Day-Ahead 
Market

Residual Unit 
Commitment

Real-Time 
Market Look-

Ahead

Real-Time 
Economic 
Dispatch

Operations and Pricing 
(Market Layer)

Power Grid 
(Physical Layer)

Transmission 
Elements

Generation
Resources

Controllable 
Devices

Operational 
and Thermal 

Limits
Demand

Mathematical Representation of Operational/Physical Constraints
(Software Layer)

ACOPFDCOPF
DCOPF 

with 
Losses

Decoupled 
OPF

AC 
Feasibility



Unit	Commitment	in	the	Day-Ahead	Market

21

Current Practices Proposed Approach
UC
• Copper-plate (no network/single node)
• Ignores congestion; requires cutsets to 

proxy capacity limits on network
• Most tractable

SCUC+DCOPF
• Real power flows only (proportional to 

current)
• BΘ (full) or PTDF (compact) approach
Extensions:
• Accounts for losses (extension)
• Incorporates AC feasibility; requires 

nomograms/cutsets to proxy reliability 
requirements

SCUC+ACOPF
• Co-optimizes real and reactive power 

dispatch
• Accounts for commitments needed for 

blackstart service, reactive support, 
voltage support, and interface control

• Nonlinear, nonconvex on meshed 
networks (need to approximate)



The	link	between	physics	and	prices
§ Locational	marginal	pricing	(LMP)	is	the	spot	price	of	electricity
§ Dual	variable/Lagrange	multiplier	(λn)	to	real	power	balancing	at	all	buses								

The	LMP	incorporates	the	marginal	cost	of	supplying	the	next	MW	of	load	
for	a	given	location	in	time;	includes	
1.	marginal	unit	cost,
2.	cost	of	network	congestion	(due	to	thermal	line	limits),	and
3.	cost	of	real	power	losses	on	the	network	

⇡ |ṽn|
X

m2N
|ṽm| (Bnm✓nm)



§ Operational	Challenges
§ Committing	Least	Cost	+	Maintaining	Reliability
§ Out-of-Merit	Reliability	Commitments
§ Better	convergence	between	day-ahead	and	real-time	prices

§ Algorithmic	Challenges
§ Accounting	for	reliability	needs	in	dispatch	and	pricing	optimization
§ Better	physical	representation	of	the	generating	units	and	underlying	

network

Issues	in	Day-Ahead	Markets



Source: PJM “Impact of Reliability Units Being Included in the Day-Ahead Market” (2013)

Day Ahead
(old algorithm)

Day Ahead
(new algorithm)

Real TimeReal TimeDay Ahead

Average LMPs ($)
Power (MW)

PJM
October 3, 2012

Load Forecast: 100 MW

Reliability	Commitment	Example



CONTRIBUTIONS



CONTRIBUTIONS
LOCAL	SOLUTION	METHOD



MIN Piecewise linear cost function with penalty factors

Line Current Flows

Network Current Balancing  

s.t.

ik (n,m)
r = Re Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

r = Re Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K

ik (n,m)
j = Im Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

j = Im Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K

               

  

in
r − ik (n,m)

r +Gn
shvn

r − Bn
shvn

j
k (n,⋅)∑( ) = 0   ∀n∈N

in
j − ik (n,m)

j +Gn
shvn

j + Bn
shvn

r
k (n,⋅)∑( ) = 0   ∀n∈N

               Nodal Voltage Magnitude Limits
Outer approximation,

First-order Taylor series,
Step-size bounds,

Tangential cutting planes, &
Inequality constraints with 

slack variables

Nodal Power Injections
First-order Taylor series

Generator Limits
Inequality constraints with 

slack variables

Thermal Line (Flowgate) Limits
Set reduction, Outer approximation,

First-order Taylor series,
Tangential cutting planes, & 
Inequality constraints with 

slack variables

SLP	Linear	Subproblem



ACOPF Feasible Region 

Voltage Current 

IV-ACOPF Feasible Region 
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ACOPF Feasible Region 

Voltage Current 

IV-ACOPF Feasible Region 
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Upper Bound Cost Approximation



ACOPF Feasible Region 

Voltage Current 

IV-ACOPF Feasible Region 
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First-Order Taylor Series



ACOPF Feasible Region 

Voltage Current 

IV-ACOPF Feasible Region 
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Outer Approximation of Phasors



ACOPF Feasible Region 

Voltage Current 

IV-ACOPF Feasible Region 
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Infeasibility Handling



Successive	Linear	Program	(SLP)

Check Feasibility 
and Initialize

Solve LP 
Subproblem

Stopping 
Criteria 
Met?

Recover 
LMPs

Update T.S. 
Evaluation Points

Add Tangential 
Cutting Planes

Modify Step-Size 
Limits

No

Update Flowgate 
Monitors

Active 
Penalty?

Yes

Return
Solution No

Yes

Stopping 
Criteria 
Met?

iteration h = 0

h = h + 1
Stopping 
Criteria 
Met?

Recover 
LMPs

No

Yes

No

Yes



(2) 

ACOPF  
Feasible 

(1) 

ACOPF  
Optimal 

(3) 
SLP Feasible 

(4) 
SLP Infeasible 

SLP	Convergence	Properties
Extends	Theorem	10.3.1	of	Bazaraa et	al.	[7]	

(1)		A	KKT	point	to	the	ACOPF	is	found
(2)	The	SLP	optimal	solution	is	ACOPF	
feasible	but	not	optimal
§ Still	a	useful	solution;	may	be	better	than	a	

DCOPF	with	AC	feasibility	or	decoupled	OPF	
solution

(3) The	SLP	optimal	solution	is	ACOPF	
infeasible
§ Active	penalties	present
§ Solution	may	be	useful	depending	upon	

whether	the	violated	limits	are	“soft”	or	
“hard”

(4) The	SLP	is	infeasible
§ The	ACOPF	may	have	no	solution
§ The	SLP	requires	a	better	initialization



Experimental	Design
• Networks

• IEEE	14,	30,	57,	118,	and	300-bus
• Polish	(MATPOWER)	2383,	2736,	2746,	3012,	3120,	and	3375-bus

• Initialization	Techniques
• Flat	Start
• 10	Uniform	Starts	(Uniformly	distributed	voltage	magnitude)
• 10	DC-OPF	“Hot	Starts”
• 10	AC-OPF	“Hot	Starts”

• Transmission	Constraints	
• None,	tight,	and	loose	(network-wide	fixed	parameter)

• Solvers
• Gurobi 5.6.2	and	Cplex 12.5.1:	Solves	SLP	IV-ACOPF
• Ipopt 3.11.4	with	linear	solver	MA27:	Solves	nonlinear	IV-ACOPF	with	

piecewise	cost	function	including	penalties	and	slack	variables	on	the	
inequalities	(NLP)

• Software	Platform
• Python	2.7	with	Pyomo 3.2	(Sandia	API	for	math.	programming)



Time	Complexity	Performance

§ Running	time	increases	linearly	with	the	network	size	(p=1	
corresponds	to	a	linear	algorithmic	scaling)	for	the	SLP	algorithm

§ Potentially	applicable	in	the	strict	time	frames	of	the	real-time	
markets

Best-Case Simulations All Converged Simulations
Baseline p R2 RMSE (s) p R2 RMSE (s)

NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/Ipopt 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP/Gurobi 1.01 0.99 0.21 1.03 0.98 0.33

Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/Ipopt 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP/Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

⇥ (|N |p)



Effects	of	Taylor	Series	Initialization

Gurobi Cplex

Uniform (randomized) starts perform robustly on the SLP, 
as compared to the “hot starts” (DC and AC starts)
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Effects	of	Network	Congestion

Gurobi Cplex

Congestion does not substantially 
increase run-time for solving the SLP
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Quality	of	Convergence
• SLP	Performance	Summary:

• Real	power	costs	within	0.5%	(across	all	converged	runs)	of	the	lowest	
recorded	cost

• Power	factors	(pf)	within	0.64%	(across	all	converged	runs)	from	the	highest	
recorded

• SLP	with	randomized	starts	perform	robustly	

• Congestion	does	not	substantially	increase	the	SLP	runtime

• SLP	active	penalties	in	2	cases—removed	with	fine-tuning

pf =
X

n

pgn

.⇣
(pgn)

2 + (qgn)
2
⌘



CONTRIBUTIONS
GLOBAL	SOLUTION	METHOD



SOCR	of	the	RSV	ACOPF

41

Second-Order Cone Relaxation (SOCR)

(Jabr, 2006; Kocuk, 2015)



SOCR	of	the	RSV	ACOPF

42

Power Balance

Power Flow

Bounds

Second-Order Cone Constraints



Strong	SOCP	Relaxation

43

Cycle Constraints:
the sum of angle differences on 
each cycle equals to zero

G2

G1

G3

B1 B2

B3

θB1,B2,t

θB3,B1,t

θB2,B3,t

Convex Relaxation of arctan: 
Linear Over- and Under-Estimators
Optimality-Based Bound Tightening (OBBT)
Gradually Adding Cycle Constraints



Global	ACOPF	Solution	Method	Performance

44



CONTRIBUTIONS
UC+ACOPF



UC+ACOPF:	Parameterization
System Parameterizations
Nodal voltage limits
Reserve requirements
Real and reactive power load
Transformer tap ratio and phase-shifters
Thermal line limit and line resistance, reactance, and susceptance
Shunts

Generator Characteristics
Synchronous condensers
Power generated and unit-on state in T0
Minimum/maximum real and reactive power outputs
Minimum up/down time
Ramp up/down limits
Startup/shutdown ramp limits
Startup lags
Startup/shutdown costs



UC+ACOPF:	MINLP

!!
min !Production!Costs!+!Start1up!Costs!+!No1Load!Costs
s.t . AC Network Limits1

Real power balancing
Reactive power balancing
Voltage magnitude bounds
Thermal line limits
Spinning reserves

Apparent Power Production Limits2

Maximum/minimum real power generation 
Maximum/minimum reactive power generation 
Ramp up/down rates on real power
Minimum up/down time

1. Extends Castillo, Lipka, Watson, Oren, and O’Neill. “A successive linear programming approach to solving the IV-ACOPF,”  
IEEE Trans. On Power Syst., 2016, DOI: 10.1109/TPWRS.2015.2511010. 

2.  Extends Morales-España, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment  
problem,” IEEE Trans. on Power Syst., vol. 28, no. 4, pp. 4897–4908, 2013.



Local	Optimization	Framework
Initialization

Approximation MIP

Solve MIP for LB

Solve SLP AC OPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes



Global	Optimization	Framework
Initialization

Relaxation MIP

Solve MIP for LB

Solve NLP AC OPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes

Solving nonlinear, 
non-convex AC OPF 
to global optimality?✔



UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

No capacity line 
limits

No reactive 
power dispatch

Capacity line 
limits determined 
as
Pmax = VImax

where V = 1 p.u. 

No reactive power 
dispatch

Capacity line limits 
determined as
thermal line ratings 
(Imax) on the current 
magnitude

Compared to 
DCOPF:
V > 1 p.u. à Higher 
power transfers
V < 1 p.u. à Lower 
power transfers

Initially a SCUC+DCOPF 
is solved to determine 
the commitment 
schedule; if the solution 
is not AC feasible, then 
solve the SCUC+ACOPF 
with the specified 
commitment schedule in 
order to determine 
residual (add’l) unit 
commitments and 
change in dispatch.

Comparative	Case	Studies

Note: Thermal limits different in global solution method (i.e., apparent power 
thermal limit) and local solution method (i.e., current thermal limit) so a direct 
comparison (above) is inexact



RTS-79[9]

Cost ($) AC 
Feasible?

UC 823,145 (base) NO

UC+DCOPF 823,894 
(+0.1%)

NO

Local
UC+ACOPF

895,281 
(+8.8%)

YES

UC+DCOPF+RUC 896,169 
(+8.9%)

YES

Global
UC+ACOPF

895,096
(+8.7%)

YES

24 nodes
32 generators
17 loads
1 synchronous condenser
38 network elements/lines



UC+DCOPF 
(LOAD MISMATCH)

UC+ACOPF 
(ACOPF FEASIBLE)

RTS-79	Voltage	Levels



IEEE-118[10]
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118 nodes
54 generators
91 loads
186 network elements/lines

Cost ($) AC Feasible?
UC 811,658 (base) NO

UC+DCOPF 814,715 
(+0.4%)

NO

Local
UC+ACOPF

843,591 
(+3.9%)

YES

UC+DCOPF+RUC 844,922 
(+4.1%)

YES

Global
UC+ACOPF

835,926
(+3.0%)

YES

§ Key	Takeaway:	Results	indicate	considerable	divergence	between	the	
market	settlements	and	stability/reliability	requirements



Computational	Results	(Local	Method)

§ Most	of	the	OA	algorithm	time	spent	in	the	MILP
§ UC+ACOPF:	5x-15x	slower	than	the	UC+DCOPF
§ UC+DCOPF+RUC:	1.5x-5x	slower	than	the	UC+DCOPF

10 piecewise linear segments, relative MIP gap tolerance 0.1%
UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

MILP MILP MILP SLP MILP SLP
Solution Time (s)
6-Bus 0.13 0.21 0.88(3) 0.07(50) 1.02(1, 1) 0.06(33)
RTS-79 1.86 6.76 88.71(3) 0.75(36) 10.37(1, 2) 0.45(26)
IEEE-118 5.04 21.42 110.17(2) 5.06(46) 57.2(1, 1) 3.71(33)

Cost ($)
6-Bus 101, 270 106, 987 101, 763 102, 523
RTS-79 823, 145 823, 894 895, 281 896, 169
IEEE-118 811, 658 814, 715 843, 591 844, 922



Local	v.	Global	UC+ACOPF	Method

Case Problem 
Formulation

Upper 
Bound

Lower 
Bound

Relative 
Gap (%)

CPU Time 
(s)

6-Bus
Global
Local

101,763
101,763

101,655
-

0.11%
0.11%

3.6
0.95

RTS-79
Global
Local

895,096
895,281

893,967
-

0.13%
0.15%

266.4
89.46

IEEE-118
Global
Local

835,926
843,591

833,057
-

0.34%
1.25%

8480
115.23

§ On	the	largest	test	case,	the	approximation	method	is	over	70x	faster,	at	the	cost	
of	0.91%	in	relative	optimality	gap	change

§ Why	should	we	care	about	a	0.91%	gap?	What	tolerance	is	solved	in	practice?
§ Note:	Thermal	limits	different	in	global	solution	method	(apparent	power	

thermal	limit)	and	local	solution	method	(current	thermal	limit)	so	a	direct	
comparison	(above)	is	inexact



ONGOING	CHALLENGES



Future	Extensions

§ Hybrid	strategy	that	leverages	current	MILP	solvers	that	
industry	and	ISOs	use	and	balances	between	quality	and	
speed

§ Applying	decomposition	techniques	for	parallel,	distributed	
optimization	(e.g.,	ADMM	for	the	UC	problem	in	Feizollahi et	
al.	[11]	and	ADMM	for	the	ACOPF	problem	in	Sun	et	al.	[12])

§ Improving	the	performance	of	the	master	problem	of	the	OA	
algorithm

§ Comparing	the	fidelity	and	computational	performance	to	
current	market	practices	on	larger	scale	networks



§ A.	Castillo,	C.	Laird,	C.	A.	Silva-Monroy,	J.-P.	Watson,	R.P.	
O’Neill.	“The	Unit	Commitment	Problem	with	AC	Optimal	
Power	Flow	Constraints.”	Transactions	on	Power	Systems	
(2016)	DOI:	10.1109/TPWRS.2015.2511010

§ A.	Castillo,	P.	Lipka,	J.-P.	Watson,	S.S.	Oren,	R.P.	O’Neill.	“A	
Successive Linear Programming	Approach to	Solving the IV-
ACOPF.”	Transactions	on	Power	Systems (2015)	DOI:
10.1109/TPWRS.2015.2487042

§ J.	Liu,	A.	Castillo,	J.-P.	Watson,	C.	Laird.	“Global	Solution	
Strategies	for	the	Network-Constrained	Unit	Commitment	
(NCUC)	Problem	with	Nonlinear	AC	Transmission	Models.”	
submitted	to	Mathematical	Programming	Computation	(2016)
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