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Motivation
U

* For fluid-structure interaction (FSI) applications, must be able to predict the
pressure loading on a surface due to a turbulent flow

* Many turbulence simulations use wall-functions or simplified models near the
wall due to the computational expense of resolving wall flows

* These near wall models often result in inaccurate pressure power spectra
distributions

Clearly observed
damping of turbulent
fluctuations in the
vicinity of solid walls.

* We want to use a high fidelity Direct Numerical Simulation data set to
investigate how machine learning can be used to come up with an improved
near wall model for pressure fluctuations
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DNS Data Set
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L esose—

* Mach 2.0 compressible flat plate turbulent boundary layer
* Low-dissipation 5t order upwind biased flux-reconstruction scheme
* Fourth order explicit Runge Kutta time integration
 100.7 M mesh cells
* Near wall resolution: Ax* <5, Ay*< 0.2, Az* <4
* 1075 < Rey <1310
* Run for > 1200t (where t =6,/ U..)
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DNS Validation

I ———
DNS Re_ = 307

-------- van Driest

—Pirozzoli ReT = 250

- - Pirozzoli Re_ = 450 L

% 31s)
10 - } E |
5,
0 sl L PR | i PR | " i sl i P |
107* 10° 10* 10° 10°

Y+

« Our DNS: Re, = 302
« Good agreement of mean velocity and Reynolds stress
profiles with Pirozzoli et al. at Re, = 250, 450
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What is Machine Learninge

e Data-driven algorithms to discern patterns and make predictions on big,
high-dimensional data

* Linear regression, support vector machines, neural networks
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Machine Learning Algorithms

Random Forest

X2 <0.4

Input Layer Output Layer
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Machine Learning Framework

AT

Wall
y+=10 ||
y+=25
y+=50
y+=100 |]
y+=200

4 \‘M\ A~
~A&\' ,t‘h‘

Log Pressure PSD

Frequency (MHz)

3.0




Log PSD

Log PSD

0.4
0.2
0.0
-0.2
-041
-0.6
-0.8

0.4
0.2
0.0
-0.2

-0.4F

-0.6
-0.8
-1.0

T

T

_1. 1 1 1 1 L 1
%.0 05 1.0 15 20 25 30

Frequency (MHz)

T

00 05 10 15 20 25 3.0

Frequency (MHz)

Log PSD

Log PSD

0.4
0.2
0.0
=0.2
-0.4
-0.6
-0.8
-1.0

0

0.4
0.2
0.0
-0.2
-0.4

-0.6}

-0.8
-1.0

Random Forest Predictions

Log PSD

.0 05 10 15 20 25 3.0 35

Frequency (MHz)

Input PSD
Wall PSD

i |

0.0 O

5 10 15 20 25 30 35
Frequency (MHz)

Ling et al.

0.4
0.2
0.0
-0.2

—0.4}

-0.6
-0.8

T

_1- L 1 L 1 1 L
%.0 05 10 15 20 25 30
Frequency (MHz)




Frequency-Dependence of Random Forest "‘
AcCcuracy “’
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e Each split in decision tree is based
* Feature importance is based on h¢
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Log PSD

Neural Network Predictions
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Machine Learning Performance (.:
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Developed machine learning f
pressure PSD (or other inputs
Evaluated two different ML alj
e Random Forest provided
perceptron neural netwo

Evaluated machine learning p
distances
Data out to y* =100 allo
Higher frequencies are hz
the wall
These results suggest tha
wall model for the pressu




Next Steps

different flow configurati
* Given WMLES data, try tc
e Evaluate more complex

improved neural networ




Questions?e




