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Motivation

• For fluid-structure interaction (FSI) applications, must be able to predict the 
pressure loading on a surface due to a turbulent flow

• Many turbulence simulations use wall-functions or simplified models near the 
wall due to the computational expense of resolving wall flows

• These near wall models often result in inaccurate pressure power spectra 
distributions

• We want to use a high fidelity Direct Numerical Simulation data set to 
investigate how machine learning can be used to come up with an improved 
near wall model for pressure fluctuations
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Clearly observed 
damping of turbulent 
fluctuations in the 
vicinity of solid walls.



DNS Data Set
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• Mach 2.0 compressible flat plate turbulent boundary layer
• Low-dissipation 5th order upwind biased flux-reconstruction scheme 
• Fourth order explicit Runge Kutta time integration
• 100.7 M mesh cells

• Near wall resolution: Δx+ < 5, Δy+ < 0.2, Δz+ < 4
• 1075 <  ReΘ < 1310
• Run for > 1200τ (where τ = δ0/ U∞)



DNS Validation
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• Our DNS: Reτ = 302
• Good agreement of mean velocity and Reynolds stress 

profiles with Pirozzoli et al. at Reτ = 250, 450
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What is Machine Learning?

• Data-driven algorithms to discern patterns and make predictions on big, 
high-dimensional data

• Linear regression, support vector machines, neural networks
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Machine Learning Algorithms
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Random Forest Neural Network
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Machine Learning Framework

7Ling et al.

Given Pressure PSD at a 
point above the wall, 
can we predict the 
Wall Pressure PSD?

Split data sequentially 
into training and test 
set



Random Forest Predictions
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y+ = 10 y+ = 25 y+ = 50

y+ = 100 y+ = 200



Frequency-Dependence of Random Forest 
Accuracy
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Random Forest Feature Importance
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• Each split in decision tree is based on greedily maximizing the reduction in variance
• Feature importance is based on how often each feature is used in a split and the 

aggregated reduction in variance over those splits
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Random Forest Feature Importance
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file:///Users/jling/WebstormProjects/FeatureImportance/FeatureImportance_v3.html



Neural Network Predictions
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Machine Learning Performance
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Conclusions
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• Performed and validated a DNS of a compressible flat plate boundary layer
• Developed machine learning framework to predict wall pressure PSD given 

pressure PSD (or other inputs) above the wall
• Evaluated two different ML algorithms

• Random Forest provided better performance than simple multi-layer 
perceptron neural network

• Evaluated machine learning performance using input data at different wall 
distances

• Data out to y+ = 100 allows accurate reconstruction of wall pressure PSD
• Higher frequencies are harder to predict using information farther from 

the wall
• These results suggest that it should be possible to create a data-driven 

wall model for the pressure PSD



Next Steps
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• Train and validate across wider range of Mach numbers, 
different flow configurations

• Given WMLES data, try to predict DNS wall pressure PSD
• Evaluate more complex neural network architectures to see if 

improved neural network performance is achieved



Questions?
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