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Abstract

Wavefront curvature defocus effects occur in spotlight-mode S-4R imagery when recon-
structed via the well-known polar-formatting algorithm (PFA) under certain imaging scenar-
ios. These include imaging at close range, using a very low radar center frequency, utilizing
high resolution, and/or imaging very large scenes. W-avefront curvature effects arise from
the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This
dissertation presents a method for the correction of wavefront curvature defocus effects un-
der these scenarios, concentrating on the generalized: squint-mode imaging scenario and its
computational aspects. This correction is accomplished through an efficient one-dimensional,
image domain filter applied as a post-processing step to PF.4. This post-filter, referred to
as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and
varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the
imaged scene size in order to avoid defocus effects under these scenarios when using PF-%.
The SVPF algorithm eliminates the need for scene size restrictions when wavefront curva-
ture effects are present, correcting for wavefront curvature in broadside as well as squinted
collection modes while imposing little additional computational penalty for squinted images.

This dissertation covers the theoretical development, implementation and analysis of
the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case)
and provides examples of its capabilities and limitations as well as offering guidelines for
maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination
and other spotlight-mode S.4R image formation techniques are discussed with regard to
computational burden, image quality, and imaging geometry constraints. It is demonstrated
that other methods fail to exhibit a clear computational advantage over polar-formatting
in conjunction with SVPF. This research concludes that PF-4 in conjunction with SVPF
provides a computationally efficient spotlight-mode image formation solution that solves the
wavefront curvature problem for most standoff distances and patch sizes, regardless of squint,
resolution or radar center frequency. .4dditional advantages are that SVPF is not iterative
and has no dependence on the visual contents of the scene: resulting in a deterministic
computational complexity which typically adds only thirty percent to the overall image
formation time.
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Abstract

Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when

reconstructed via the well-known polar-formatting algorithm (PF.4) under certain

imaging scenarios. These include imaging at close range, using a very low radar cen-

ter frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront

curvature effects arise from the unrealistic assumption of strictly planar wavefronts

illuminating the imaged scene. This dissertation presents a method for the correc-

tion of wavefront curvature defocus effects under these scenarios: concentrating on

the generalized, squint-mode imaging scenario and its computational aspects. This

correction is accomplished through an efficient one-dimensional, image domain space-

variant filter applied as a post-processing step to PF.A. This space-variant post-filter,

referred to as SVPF, is precalculated from a theoretical derivation of the wavefront

curvature effect and varies as a function of scene location. Prior to SVPF, severe
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restrictions were placed on the imaged scene size in order to avoid defocus effects

under these scenarios when using PFA. The SVPF algorithm eliminates the need

for scene size restrictions when wavefront curvature effects are present: correcting for

wavefront curvature in broadside as well as squinted collection modes while imposing

little additional computational penalty for squinted images.

This dissertation covers the theoretical development, implementation and analy-

sis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a

special case) and provides examples of its capabilities and limitations as well as of-

fering guidelines for maximizing its computational efficiency. Tradeoffs between the

PF.4/SVPF combination and other spotlight-mode SAR image formation techniques

are discussed with regard to computational burden, image quality, and imaging ge-

ometry constraints. It is demonstrated that other methods fail to exhibit a clear

computational advantage over polar-formatting in conjunction with SVPF. This re-

search concludes that PFA in conjunction with SVPF provides a computationally

efficient spotlight-mode image formation solution that solves the wavefront curvature

problem for most standoff distances and patch sizes, regardless of squint, resolution

or radar center frequency. .4dditional advantages are that SVPF is not iterative and

has no dependence on the visual contents of the scene: resulting in a deterministic

computational complexity which typically adds only thirty percent to the overall

image formation time.
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cWt f/pi.
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Taylor series coefficients: where 1,m = {0..2}

Complex-valued scalar denoting the amplitude and phase of a

radar return.

Transpose of phase history data (as done in polar-format algo-
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Physical widthof the antenna inthe along-track (azimuth) direc-
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Bandwidth oflinear FNl chirp.

Cone angle ofbeam at radar antenna.

Complex operations count for an FFT.

Overall complex operations count<

Complex operations count, per pixel.

Floating point operations count, per pixel.

Optimal fioating point operations count, per pixel. Based onop

timalfilter length mop~(c)forsomec-

Central reference point ofaspotlight-mode collection. Typically

the scene center.
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D
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d

dopt
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~fQpE

A1pR

Chirp scaling algorithm. Simplified RM-4 image formation via

approximation (chirp-Z transform) instead of Stolt interpolation.

Continuous wave (non-l?M range pulse).

Speed of light.

(Maximum) overlap between adjacent space -variant filter applica-
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Point target response of (Z~:y&)for the frequency extent X’ and
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Nominal spectral width of quadratic phase error signal e~”t’.

IPR broadening factor.

IPR broadening factor.
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An IPR pixel spread.

An, IPR pixel spread due to quadratic phase error.

40 Angular diversity of synthetic aperture.

Au Spatial bandwidth of impulse response.

AU., AUY Spatial bandwidth of impulse response in cross-range and range,

respectively.

AX’, AY’

Ay’

($x’

EM

FM

FReD

Spatial band-width (frequency extent) of slant plane impulse re-

sponsein cross-range and range, respectively.

Amount ofgeometric distortion in range, at edge of scene (adis-

tance L from the CRP).

Discrete frequency spacing of Fourier transformed image patch.

Electromagnetic (wave).

Frequency modulation.

Frequency domain replication and downsampling algorithm. A

newer RNIA technique to reduce along-track upsampling in squint-

mode.

F{} Fourier transform operation.

-a Fourier transform pair.

fO or f. Radar center frequency corresponding to wavelength, A = c/~o.
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fztx”

G(u> V)

g(x: y)

lFSAR

IPR

ISAR

xxi

Quadratic cross-range phase error term in the slant plane.

Fourier domain transformation of attenuation function (or ground

patch reflectivity function).

Two-dimensional attenuation function (or the complex reflectivity

of ground patch).

Interferometric S.AR. Interferometry used for terrain height esti-

mation.

Impulse response (function),

Inverse S.AR. SAR analysis of rotating objects relative to a fixed

sensor (antenna), as based on the tomographic paradigm.

IPR mainlobe broadening factor (in cross-range) due to sidelobe

reduction (windowing).

k. Nominal phase history radius (in units of spatial frequency).

kt Magnitude of reflected EM range pulse at intra-pulse time t.

kot Specifies a position in the Fourier domain as a function of time, t,
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A Radar wavelength corresponding to center frequency, jO = c/A

L Illuminated patch radius, in azimuth.

L-Band Foliage penetrating microwave radar (~c N 1.25 gHz), vulnerable

to wavefront curvature effects.

LFM

L(ITRC

m

Linear frequency (chirp) modulation.

Migration through range cells.

Filter (or patch) width for space -variant post-filter.
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mOPt(c) Optimal space-variant filter length m (yielding lowest computa-

tional complexity), for a given filter overlap c.

mr Filter (or patch) radius, measured from (z~, y&),for space-variant

post-filter.

0:, Oj Oversimple ratio in cross-range and range, respectively.

Osii Overlapped subaperture algorithm (for image formation).

P*(U) Fourier transform of tomographic projection function pO(u).

PFA Polar-format algorithm.

PFA/SVPF Polar-formatting in conjunction with space-variant post-filtering.

P; Properly placed Cartesian coordinate that is free of geometric dis-

tortion induced by wavefront curvature.

P; Geometrically distorted position of a coordinate that would oth-

erwise be placed at PI in the absence of Wavefront CUrVatUre.

4. Total Fourier domain phase error.

41 Linear Fourier domain phase term.

& Linear Fourier domain phase error term.

42e Quadratic Fourier domain phase error term.

42t Total quadratic Fourier domain phase error.

~(e, k) Complex phase of video signal at aperture angle 19and time scale

factor k.

. I

h z~,v:(xy’) Slant plane Fourier phase term with respect to the image domain

position (z&,vi) and frequency extent (A”’:Y’).
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Glossary

(jz~,,:(x’, Y’)

Q

QPE

RMA

ro

7-C

rt

7-Z

P

Pu

P;, P;

SNR

SYNTARG

SVPF

s;, s;

sp(~’>!/)

. . .
Xxlll

Rate of change of quadratic phase error with respect to image

domain coordinate (xi, yj) and frequency extent (X’, Y’).

Depression angle, from horizontal.

Quadratic phase error.

Range (seismic) migration image formation algorithm. Motion

compensation to a line yielding a chirp in azimuth and increased

squint-mode upsampling. Inherently compensates wavefront cur-

vature.

Slant plane standoff range at aperture center.

Slant plane distance at aperture center from platform to a point

target at p = (p, ~).

Slant plane distance from platform to a point target at p = (p, -y).

Slant plane distance from platform to scene center.

General image resolution, as projected onto ground plane.

Image resolution in range, based on chirp bandwidth, B.

Slant plane resolution in cross-range and range, respectively-

Signal-to-noise ratio.

Synthetic target generator (computer program).

Space-variant post-filter.

Slant plane scale factors

and range: respectively.

(typically meters/pixel) in cross-range

Contribution of point target p to slant plane scene reflectivity

function.
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TBP

TSA

rc

eL

(JWB

VLSI

Wz

x, x’

x;

x, Xf

Y, Y’

.Xxiv

Time-bandwidth product (typically, BC~Cfor LFM range chirp).

Tiered subaperture algorithm

OSA.

Duration ofLFM range chirp.

(for image formation), a modified

Angle at platform formed by edges between platform and scene

center, and platform and scene edge (x’, y’) = (L, O).

Squint angle, relative to range direction. +@~:squint forward; –O.:

squint backward; d~=0: broadside.

U1tra-wideband (spotlight-mode SAR), ~. N 470 mHz, vulnerable

to wavefront curvature affects. Often requires extended apertures

to achieve sufficient cross-range

Very large scale integration (as

ing).

Along-track beam width (patch

resolution pZ.

applied to 0S.4

illumination) at

or TS.4 process-

the ground.

Cross-range spatial bandwidth (frequency extent) in ground plane

and slant plane, respectively. Or, the cross-range axis in Fourier

ground plane and slant plane, respectively.

Maximum cross-range spatial bandwidth (frequency extent) in the

slant plane.

Cross-range distance in the image ground plane and slant plane,

respectively. Or, cross-range axis in image ground plane or slant

plane, respectively.

Range spatial bandwidth (frequency extent) in the ground plane

and slant plane, respectively. Or, range axis in Fourier ground

plane or slant plane: respectively.
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I?

Y: Y’

z’

xxv

Maximum range spatial bandwidth (frequency extent) in slant

plane.

Range

tively.

distance in image ground plane

Or, range axis in image ground

spectively.

Length ofsynthetic aperture.

and slant plane, respec-

plane or slant plane, re-
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Chapter 1

Introduction

1.1 Overview

The classic approach to SAR image formation from phase history data collected in

the spotlight-mode has been the polar-format algorithm (PF.A). This algorithm was

developed in 1974 by Dr. Jack Walker and served as the basis of his Ph.D. dissertation

[1]. Later, this work was published in the _LE-ZL?3Transactions on Aerospace and

Electronic Systems journal [2] and patented in 1980 [3]. The polar-format algorithm

is still popular today because of its straightforward implementation and robustness

in constructing images of large scenes without introducing phase discontinuities. In

contrast to the stripmap-mode SARI which is a radar with a fixed look angle for a

given collection (see Figure 1.1), the spotlight-mode S.AR slews its antenna as the

aperture is flown, thereby staying aimed at the scene center for the entire duration

of the collection, as shown in Figure 1.2. Due to its extended dwell time on a

given scene, the spotlight-mode SAR is capable of higher along-track resolutions and

typically requires less transmit power than the strip-map S.AR. The disadvantage of

spotlight-mode SAR is that a smaller ground patch is imaged compared to strip-map

SAR. However, it is possible (and in fact common) to mosaic spotlight-mode images

into larger image patches.
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Figure 1.1: Striprnap-Mode SAR Imaging Geometry

In polar-formatting, the collected phase history data are described in terms of a

slice of the three-dimensional Fourier transform of the scene reflectivity, obtained on

a polar raster, as shown in Figure 1.3 (a). Known as the tomographic approach to

SAR, the analogy between spotlight-mode S.AR and tomography was first proposed

by David C. Munson and his colleaewes, and presented formally in 1983 [4]. It was

then revisited and recast by Ausherman, et. al. [5]. Munson’s method expounded

on the preliminary work of Walker, yet failed to cover several important points. For

instance, the imaging of three dimensional (elevated) targets was not discussed in

Munson’s paper. A complete three-dimensional tomographic model that was later

developed by Jakowatz and Thompson accounts for range-dependent layover in the

scene [6]. Jakowatz, et al, [7, pp. 355–365] in 1996 addressed the effects of certain
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Figure 1.2: Spotlight-Mode SAR Imaging Geometry for Polar-Formatting

phase errors in polar-formatted imagery that arise from assumptions in the tomo-

graphic spotlight-mode SAR model. The first is deramp residual phase error, which is

a residual of the signal deramp process used in the range compression of LFM (chirp)

radar processing. This phase error induces a geometric distortion on the formed im-

agery (with the effect of distorting a square scene into a keystone) and also some

mild defocus, yet is mitigated through a well-known procedure known as deskew

processing. Deramp processing is discussed in detail in [7, pp. 396–398]. Deskew

processing for mitigating deramp residual phase error is discussed in [’i, pp. 363-

365], and alternative methods are presented in [4, 8, 9]. Typically, this phase error is

negligible and can be ignored in nearly all SAR imaging scenarios. .4 second unde-

sired effect is that of wavefront curvature, which is based on the faulty assumption

of strictly planar wavefronts being transmitted by the radar. These are potentially

—.— — .— - ——
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more serious in terms of image degradation than the deramp residual phase errors,

since wavefront curvature phase errors can induce a significant geometric distortion

and a space-variant defocus of the imaged scene for some imaging geometries. These

defocus effects are troublesome to negate due to their space-variant nature. This

dissertation is based on a concept originally proposed by Jakomatz, et al, [10] in

which a geometric model of the phase return from a point target is used to derive

(and ultimately compensate) the phase errors. That concept was further expanded to

include squint-mode imaging, as described by Doren, et al, in [11]. This dissertation

provides a comprehensive treatment of the subject including wavefront curvature

examples, a complete mathematical development of the phase error model, meth-

ods for efficient computer implementations, examples of post-filtered imagery and a

timing analysis comparing PFA with wavefront curvature correction to other image

formation methods. Furthermore, the detailed mathematical analysis presented here

avoids several of the original simplifying assumptions which limited the utility of the

original algorithm.

The traditional polar-format algorithm consists of a polar-to-rectangular interpo-

lation of all complex-valued, phase history data points from a points from a spotlight-

mode collection (see Figure 1.3 (b) and (c)). This interpolation, in conjunction with

motion compensation to the scene center, negates migration through range cells

(MTRC), also known as range walk (see Figure 1.4). Then, an inverse Fourier trans-

form of these data (as projected onto a chosen two-dimensional plane, based on iMun-

son’s model) forms the S-ARimage. Since the derivation of this technique relies upon

the unrealistic assumption of strictly planar wavefronts in the transmitted microwave

pulses, the polar-format algorithm cannot compensate these wavefront curvature ef-

fects. Consequently, any actual amount of curvature present in these wavefronts

introduces the geometric distortion and space -variant defocus in the SAR image, as

formed by the polar processor. In some literature, this wavefront curvature (and

the associated distortion and defocus effects) is referred to as differential range cur-

vature, or more simply (and loosely), range curvature. For clarity, this dissertation
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makes a semantic distinction between range curvature, which is the range-oriented

movement of a target during the duration of the aperture (as shown in Figure 1.4

(b)), and wavefront curvature, which induces the distortion and defocus effects asso-

ciated with the faulty assumption of planar wavefronts. The poIar-format algorithm:

until now, did not compensate wavefront curvature effects and was considered to

be mostly but not completely range curvature compensating, since it did account for

MTRC but not wavefront curvature. This dissertation deals strictly with negation

of the wavefront curvature effects, and in conjunction with MTRC compensation:

renders the polar-format algorithm as fully range curvature compensating.

In polar-formatted imagery, the geometric distortion induced by wavefront cur-

vature, due to first-order (linear) phase errors: takes on the form of an annulus in

the processed imagery, as shown in Figure 1.5. This distortion can be rectified in a

straightforward manner by appropriate post-warping of the image. The space-variant

defocus is based on second-order (quadratic) phase errors and is not removable via

post-warping. The magnitude of this defocus effect is a function of the range and

cross-range position of the target and becomes greater for those targets placed fur-

ther in range and cross-range from the scene center. Furthermore, the space-variant

defocus is more pronounced for collections taken with radars of low center frequency,

high resolution, at close standoff ranges, or when imaging very large scenes. Figure

1.6 (a) simulates the effects of space-variant defocus due to wavefront curvature on a

PFA processed scene of the US pentagon, while Figure 1.6 (b) has the defocus effects

removed, as well as being geometrical~y rewarped.

Consider a typical L-Band (.fO= 1.25 GHz) airborne spotlight-mode radar, imag-

ing a 5 km diameter patch at range of 5 km and having a cross-range resolution of 0.6

m. The quadratic phase error induced by wavefront curvature at the far range of the

scene is sufficient to severely defocus this. point in the scene, thereby rendering that

part of the imagery as useless [12, pp. 437–439]. This is due to the impulse response

(IPR) broadening that occurs because of the quadratic phase error, as analvzed in“

-Appendix -4 of this dissertation. This degradation is due to the lack of compensation
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Figure 1.3: Basic Steps to the Polar-Format Processing Algorithm

for wavefront curvature in the polar-format algorithm under these conditions, and

not because of limitations of the radar hardware itself. Clearly, it is not desirable for

a S.AR capable of high resolution to be limited by shortcomings in the image forma-

tion algorithm. Perhaps more tragic is that this limitation is not even a shortcoming

of the image formation method, but instead the approximations of the mathematical

model used to derive the polar-format algorithm. As SARS attain ever increasing

resolutions, wavefront curvature effects become more prominent and the resulting
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Figure 1.4: Range Curvature of CRP During Spotlight-Mode Collection

quadratic, space -variant defocus becomes a major limiting factor in the quality of

polar-formatted imagery.

Prior to this dissertation research (and the initial research by Jakowatz on -which

it is based), the only “solution” to avoiding the wavefront curvature defocus effects

— .—.— ..—..—
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Figure 1.5: Geometric Image Distortion Induced by W-avefront Curvature

in polar-formatted S.AR imagery has been to reduce the size (diameter) of the re-

constructed scene relative to the standoff distance of the platform, or by reducing

cross-range resolution by shortening the synthetic aperture length. A generalized

polar-format processor, first proposed in 1991, serves to reduce the residual phase

errors arising from wavefront curvature, thereby increasing the maximum possible

patch size [13]. However, the generalized polar-format processing approach, while

computationally efficient, still requires restrictions in patch size (though somewhat

relaxed compared to traditional PFA) in order to avoid visible defocus effects in the

formed imagery. This dissertation research “breaks ground” in that it compensates

the effects of quadratic defocus induced by wavefront curvature in polar-formatted

spotlight imagery, with little increase in computational cost and without imposing

arbitrary constraints on scene size, squint, resolution or standoff range. Further-

more, this compensation can be achieved to within sub-pixel accuracy by carefully
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controlling the residual quadratic phase errors, regardless of scene size or resolution:

ensuring there” is no visible degradation of the formed imagery due to these errors.

Chapter 2 introduces the wavefront curvature problem and Chapter 3 motivates the

space -variant post-filtering solution for polar-formatted spotlight-mode imagery.

1.2 Introducing the Space-Variant Post-Filter

This research has culminated in a method for minimizing the quadratic defocus effects

associated with wavefront curvature in polar-formatted spotlight-mode S-ARimagery

for all squint angles. This method incorporates a space-variant, image-domain filter

which refocuses the formed, complex-valued image. The filtering is performed as a

post-processing step to the polar-format algorithm, and thereby preserves all the ad-

vantages of polar-format processing including its simplicity, autofocus capabilities,

and effectiveness in forming large images with no subpatch processing. It will be

shown that the quadratic defocus effect of wavefront curvature on a spotlight-mode
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S.AR image formed with polar-formatting is a space-varying one which occurs in the

cross-range (azimuth) direction only. Thus, a one-dimensional, space-variant filter

is sufficient for compensating the defocus. This has the advantage of computational

simplicity, as well as being amenable to parallel processing environments. Further-

more, it will be demonstrated that the computational burden involved in performing

the space -variant restoration to remove the wavefront curvature defocusing effects is

not particularly severe. For a certain (significantly large) set of imaging scenarios, it

will be shown to be as small as thirty percent of the polar-format image formation

time.

The image-domain, space -variant post-filter (SVPF) is based upon an analytical

derivation of the phase error that is induced by curved wavefronts, as presented in

Chapter 4. This is accomplished via a geometric model of the imaged scene with

respect to the radar’s flight path, and subsequently deriving an equation for the

phase of the return signal for a given point, (z, y), in the imaged scene. Next, a

two dimensional Taylor series expansion is applied to the phase equation, allowing

the phase return signal to be represented by its polynomial components. The linear,

first-order terms of this series represent the position of the target’s radar return in

the imaged scene, and is consistent with Munson’s tomographic paradigm. However,

included are linear distortion terms that result in a space-variant, geometric warping

of the imaged scene, ignored by Munson. This distortion is normally (and has been

traditionally) removed in a post-processing warping procedure. The second-order

terms, due to the quadratic phase error (QPE) induced by wavefront curvature, are

much more serious in terms of image degradation and account for the space-variant

defocus of targets in the imaged scene. This defocus effect (and its compensation)

serves as the basis of this dissertation. Higher order phase error terms also exist, but

are typically small in magnitude and are ignored since they have Iittle defocusing

effect on the imaged scene, at least given the state of SAR technology today. The

space -variant post-filtering method could be easily extended to deal with higher

order phase errors, if this becomes necessary due to future advances in SAR hardware
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technology that greatly improve upon current system resolutions or spotlight patch

sizes.

Typically, the space -variant post-filter operates on the formed, complex imagery

in the frequency domain, although convolution in the spatial domain is also possible,

and is mathematically (though not computationally) equivalent. In the frequency

domain, the algorithm works by calculating the one-dimensional, quadratic phase

error function for different points along the scene, and multiplying this function by

the complex conjugate of the Fourier domain data at that point in the scene. The

filter function varies as does the (z, y) location of the scene where it is being applied.

The procedure is made computationally efficient by varying the filter function only as

rapidly as required to maintain the residual blur at an acceptable level. Furthermore,

the filter function perfectly compensates the quadratic blur only at (z, y), yet serves

as a reasonable approximation to the phase error for some region of points around

(z, g). Therefore, by carefully choosing the length of the filter, and also its spacing

in (z, y) according to certain criteria as dictated by the imaging geometry and radar

frequency parameters, computational efficiency can be maximized while maintaining

residual blur at an acceptable level, as described in Chapter 5.

1.3 Alternative Spotlight-Mode Image

Methods

Formation

The space -variant post-filter for polar-formatted spotlight-mode SAR imagery is gen-

eral in that it corrects for wavefront curvature in broadside as well as squinted data

collections, with no significant computational penalty for correcting squint-mode im-

ages. Other “fashionable” spotlight-mode S.AR algorithms, such as the range migra-

tion technique (also known as seismic migration, or RMA), and recent enhancements

such as frequency domain replication (FReD), have been developed to accommodate

these wavefront curvature effects. The range migration algorithm has its roots in

—.——-—_
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the field of seismic signal processing for imaging the Earth’s substrata, as described

in [14] and [1.5],and was originally applied only to stripmap SAR collections. Sub-

sequent papers by Prati, et al, demonstrate the extension of RMA as it applies to

spotlight-mode processing [16, 17], and it was thought to be the logical successor

to polar-format processing due to its inherent ability to compensate for wavefront

curvature. However, the along-track upsampling of the phase history data required

of the original version of RMA can, in certain instances (spotlight-mode), represent

a major computational burden.

The FReD algorithm obviates the need to upsample, and is accordingly more

efficient. It takes advantage of certain characteristics specific to polar-formatted

SAR data. As presented in [18], FReD is based on the fact that when a discrete

aliased spectrum is replicated a sufficient number of times, the resultant spectrum

~,ill contain the desired siWal spectrum. Hence, the use of FReD allows the acqui-

sition of data at normal spotlight-mode rates and obviates the need for FFTs larger

than those required for normal spotlight-mode processing. However, this dissertation

demonstrates that neither RMA nor FReD exhibit a clear computational advantage

over space -variant post-filtering in conjunction with the traditional polar-format al-

gorithm. Also, it is unknown how efficiently the RMA or FReD methods can be

applied to non-straight-line flight paths [19], or how easily autofocus algorithms can

be integrated into the image formation process. Furthermore, these algorithms are

more sensitive to deramp residual phase errors than the polar-format algorithm. An

efficient approach for applying the polar-format algorithm to non-straight-line paths

is discussed in [20].

The chirp scaling algorithm (CSA) is a simplification of the RMA algorithm in

that the nonlinear Stolt interpolation step (which compensates the range curvature of

all scatterers) is replaced by a linear approximation. Thus, the CSA implementation

requires only FFTs and complex vector multiplies, without any interpolations being

necessary. It is more computationally efficient than RM.4, but at a cost. Since this

algorithm implements only the shift and linear components of the Stolt mapping,
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this approach becomes inadequate with the increase in resolution or scene size, and

residual phase errors leading to image defocus become significant in these scenarios.

Thus, the CS algorithm introduces some the same defocus effects that are removed

via post-filtering of polar-formatted imagery formed with PF... The enhancement

of the CS algorithm is a current research topic that will not be discussed in detail

in this dissertation. See [21, 22, 23] for descriptions of the chirp scaling algorithm,

and [24, 25, 26, 27] for discussions of some ongoing research regarding the CSA.

Additionally, an excellent comprehensive treatment of the CS algorithm is found in

the dissertation of G. Davidson [28], and a massively parallel implementation of the

GSA is discussed in [29].

Yet another image formation method, convolution back-projection (CBP), has

been suitably modified to compensate for wavefront curvature effects. This method

is discussed in two papers by Jerald Bauck [30, 31], which served as the preliminary

work leading to his Ph.D. dissertation [32]. In discussing the wavefront curvature-

correcting variation of CBP, Bauck states that with his method, “The task can

be fairly easy, although requiring somewhat more computation that Fourier-based

methods which use an FFT but do not correct for wavefront curvature.’) In this dis-

sertation, it will be shown that PFA, the most basic and established Fourier-based

method, even with the additional burden of space-variant post-filtering, is still sig-

nificantly better than CBP in terms of overall computational burden, even in the

simpler case when CBP has not been modified to correct for wavefront curvature.

Furthermore, CBP is not considered a computationally efficient algorithm to im-

plement on a parallel computer, as it typically requires the programmer to make

a tradeoff between excessive memory requirements and significant communications

overhead on distributed-memory computers [33]. Additionallyj the application of aut-

ofocus algorithms for uncompensated platform motion is difficult when using CBP.

This is due to the lack of an intermediate, Cartesian-coordinate, range compressed

grid on which to apply autofocus algorithms. This pitfall also applies to algorithms

based on the modified chirp z transform (~MCZT), which are variations of the chirp
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scaling algorithm [34, 35]. L.lnlikethe CBP and MCZT algorithms, polar-formatting

has been efficiently ported to a parallel processing environment. This topic has been

well researched and covers software implementations on parallel computing platforms

[36: 37, 38], as well as direct silicon implementations in VLSI [39]. In fact, even the

phase-gradient autofocus algorithm, which compensates for unknown platform mo-

tion error, has been successfully ported to the parallel processing environment [40].

In similar fashion, the new SVPF algorithm is also amenable to parallel processing,

as is discussed in Chapter 7, providing the opportunity for a complete, high perfor-

mance polar-format image formation algorithm which includes both autofocus and

post-filtering for wavefront curvature correction.

Other spotlight-mode image formation methods are used within the S.AR com-

munity, but are less prevalent. For example, the Twin- Otter SAR Testbed at Sandia

National Laboratories, capable of operation on four frequency bands, features real-

time image formation at fine resolutions in both stripmap and spotlight modes using

the overlapped subaperture (0S.4) algorithm [41]. Originally designed to take ad-

vantage of customized VLSI hardware, OSA was one of the first algorithms to form

S.4R images in real-time, using computing equipment on-board the radar platform

[42, 43]. This image formation algorithm was patented in 1997 bv Bryan Burns“

and Tom Cordaro of Sandia National Laboratories [44]. While utilized in a number

of radar systems, recent research indicates OSA and its variants such as the tiered

subaperture algorithm (TSA) [45, 46, 47] hold no clear advantage in throughput

over multiple-processor versions of PFA [48]. Furthermore, while 0S-4 does inher-

ently correct for wavefront curvature, it may sometimes have problems correcting

higher-frequency, uncompensated platform motions when large subapertures are im-

plemented.

A comparison of several different spotlight-mode image formation methods, in

terms of computational demands, is presented in Chapter 6. The reader is encouraged

to read the cited reference materials for a full mathematical understanding of these

algorithms, and to refer to Chapter 6 for the run-time analysis and comparison
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of these methods. Specific implementations of image formation algorithms do not

serve as the final word in the computational efficiency or the superiority of one

algorithm to another. However, the comparisons do give a general, ballpark-sense of

the competitiveness of each algorithm in terms of computational burden.

1.4 Dissertation

The traditional polar-format

Objectives

algorithm, PF.A, is a robust, efficient, and well proven

method for spotlight-mode S.All image formation. However, the derivation of this

technique relies on the unrealistic assumption of strictly planar wavefronts in the

transmitted pulses. As the system resolution increases, or large scenes are imaged

at close range or low center frequencies, the amount of wavefront curvature actually

present differs significantly from the planar wavefront approximation. Consequently,

for these collections, a significant amount of geometric distortion and space-variant

defocus is present. While the geometric distortion is easily removed via a post-

warping procedure, the second-order phase terms leading to space-variant image

defocus are more problematic.

Dating back to Walker’s pivotal paper in 1980, Range-Doppler Imaging of Ro-

tating Objects [2], he presents a method for separating the first and second-order

quadratic phase error terms using a Taylor series expansion, as is presented and fully

developed in this dissertation. However, Walker does so only to quantify the scene

size limitations of polar-formatted SAR data, without attempting to propose a so-

lution to the wavefront curvature problem, as is done in this dissertation. Instead,

he states that the coefficients associated with the second-order phase error terms

depend on both object point location and on processing aperture location, and that,

“In principle, these error terms can be removed by refocusing the data processor...

(but) this approach is generally difficult to implement.” Consequently, prior to this

dissertation and the preliminary papers by the author and his associates [10, 11],

—-——, . ... . .. . ... .. .! ——..



Chapterl. Introduction 16

space -variant defocus due to wavefront curvature was not compensated but simply

reduced to an acceptable level by putting upper limits on the imaged scene size when

using the polar-format. algorithm, as suggested by Walker. This was an unreasonably

restrictive constraint that limited the versatility of polar-formatting when imaging

large scenes. Indeed ironic, given that otherwise, PI?.4 lends itself nicely to imaging

large scenes, due to its simplicity: in the absence of wavefront curvature. While it is

true that second-order phase error terms depend on both object point location and

processing aperture location, this dissertation proposes, derives, and demonstrates

methods for space -variant post-filtering that greatly reduce the computational pro-

cessing burden, and they are not difficult to implement. This is true even for squinted

collections, whereby the radar is not looking at the imaged scene from a right angle,

but instead is slewed forward or backward, as shown in Figure 1.7.

The primary contribution of this dissertation is the development of the squint-

mode geometric model, which expands upon the restricted, broadside model proposed

by Jakowatz in [’i, pp. 355-365], and demonstrated in [10]. This extension general-

izes the space -variant post-filter and extends its utility to many practical imaging

scenarios, which typically are not restricted to broadside. Furthermore, this disser-

tation focuses upon computer implementation issues which relate to computational

complexity of the filter. The goal is to achieve the highest possible efficiency, while

still maintaining an acceptable quality of refocus. W“hilenot providing exact compen-

sation for the second-order phase errors, the residual blur is constrained to sub-pixel

levels while maintaining a very acceptable computational burden. The empirical

running times of SVPF in squint and broadside modes are described in Chapter 6.

1.5 Summary

This dissertation covers the motivation, theoretical development, implementation

and analysis of the new space-variant post-filter in conjunction with the traditional
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polar-format algorithm. Its primary contributions are the development of the gen-

eralized squint-mode model, and the focus upon computational issues which render

the filter efficient and practical in real imaging scenarios. This post-filter serves

to compensate the space-variant defocus effects of wavefront curvature in polar-

formatted data, which are due to the faulty assumption of planar wavefronts being

transmitted by the radar. The filter is precalculated from the theoretical derivation

of the wavefront curvature effect. It is shown that the defocus effects are based on

second-order phase errors in the cross-range direction only, so that a simple, efi-

cient one-dimensional filter is sufficient for refocus. The implementation of this filter

is discussed, including filter length and overlap issues which effect both computa-

tional burden and restorative quality. Examples of its capabilities and limitations

are provided and guidelines are offered for maximizing its computational efficiency.

—. ...— ._=-
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Tradeoffs between this method and other spotlight-mode image formation techniques

are discussed with regard to computational burden, image quality, and imaging ge-

ometry constraints.

This research concludes that space-variant post-filtering, in conjunction with

PFA, provides ineffective spotlight-mode image formation solution that solves the

wavefront curvature problem for all standoff distances and patch sizes regardless of

squint, resolution or radar frequency, while constraining residual defocus to subpixel

levels. .4dditional advantages are that SVPF is not iterative and has no dependence

on the visual contents of the scene. Thus, it has a deterministic computational

complexity which typically adds as little as thirty percent to the overall image for-

mation time. Furthermore: no other image formation technique has been shown

to have a clear computational advantage over polar-formatting with space-variant

post-filtering. Consequently, polar-formatting in conjunction with SVPF should be

considered as a viable candidate for a spotlight-mode image formation processor

when wavefront curvature effects are present.

1.6 Organization of this Dissertation

This dissertation is a combination of background information, illustrative examples,

mathematical theory, and a computer-based demonstration of the results. First, this

dissertation introduces the necessary background information which forms the ba-

sis of the space-variant post-filtering algorithm for polar-formatted S-AR imagery.

Subsequently, it includes a theoretical development of space-variant post-filtering,

and for comparative purposes: illustrative examples of wavefront curvature effects

in uncompensated polar-formatted spotlight-mode imagery as well as the corrected

images processed using the space -variant post-filtering algorithm. Empirical timing

tests are provided for the new SVPF algorithm in conjunction with PFA, as well as

those for other popular methods of image formation. Conclusions include the per-
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formance analysis of the space-variant post-filtering method, with a comparison to

some of the well known, competitive techniques for spotlight-mode image formation.

Pitfalls of the approach are discussed as well as suggestions for further work. -An

appendix is included which develops the mathematics for the IPR broadening that

occurs in the presence of quadratic phase errors. Every effort has been made to

ensure consistency with regard to terminology, variable names, and labels and axes

within diagrams. .Acronyms and variable names are described in the glossary.

The dissertation is organized as follows:

. Chapt erl – Chapter one serves as a general introduction to space-variant

post-filtering for wavefront curvature correction in spotlight-mode S-AR im-

agery. The dissertation is summarized and a brief historical perspective is

presented. The motivation for this research is given as well as a synopsis of the

significant contributions. The organization of the dissertation is discussed and

a brief research summary is presented.

. Chapter 2 – This chapter presents an overview of spotlight vs. stripmap imag-

ing and presents spotlight-mode SAR in terms of a tomographic process. The

mathematical relationship between SAR and tomography is described in terms

of the projection-slice theorem. A description of the polar-format algorithm

is given, and assumptions and omissions leading to the wavefront curvature

effects are discussed, based on the tomographic framework presented.

. Chapter 3 – A geometric model is presented which serves to explain the wave-

front curvature phenomenon. Illustrations demonstrate the efFectsof wavefront

curvature distortion and defocus on real SAR imagery. The space-variant be-

haviors are discussed in terms of how they distort and defocus the formed im-

agery. Scene size restrictions are given for traditional polar-formatted imagery,

which does not compensate wavefront curvature. The concept of a space-

variant post-filter for wavefront curvature correction is introduced.

.. . ..,, . ... . . .
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● Chapter 4 – Chapter four presents the geometric models by which the space-

variant filter is designed. These models are based on the contribution of a point

target to the overall scene reflectivity function in terms of phase returns. Using

these models, the filter parameters are mathematically derived in terms of first,

second and higher order phase error terms via a Taylor series decomposition.

Linear phase error terms in the Taylor series represent geometric distortion,

while quadratic terms induce space-variant defocus. The concept of synthetic

target generation is introduced, which is based on the same geometric models.

. chapter 5 – This chapter presents a filtering method for the compensation

of the quadratic phase errors quantified in Chapter 4. The concept of space-

variant post-filtering for refocus is introduced, and the need for space-variant

adjustments is justified. Illustrations show how the filter is applied to the

spatial-domain complex image data, with regard to filter length and overlap,

and how efficiency is improved by varying the filter only as often as necessary.

The geometric distortion of the image is taken into account, though this is not

compensated until after refocus.

. Chapter 6 – In Chapter six, the computational complexity of space-variant

post-filtering is discussed in terms of complex-number multiplies and asymp

totic compelxity. Computational burden versus the quality of refocus is dis-

cussed, Also, other “fashionable” methods of image formation are introduced

which compensate for wavefront curvature, including range migration (RM.A),

frequency domain replication (FReD), overlapped sub-apertures (OSA), and

modified convolution back-projection (CBP). These methods are compared and

contrasted in terms of complex-number operations, with regard to computing

burden and the also the ability to compensate wavefront curvature effects.

Run-time tests are performed on the various algorithms and the empirical per-

formance results are presented.

. Chapter 7 – This is the conclusion chapter. It describes the pitfalls and short-
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comings of space-variant post-filtering. Topics for future work are suggested,

the pursuit of which will extend the utility and performance of the method.

Possible computational improvements are mentioned, including adaptive filter

sizing and computational parallelism. A summary is given regarding sib~ificant

contributions of the this work. Conclusions are drawn regarding the value of

space -variant post-filtering to the SAR community.

. Appendix A – Derives the IPR broadening factor, which is a function of resid-

ual quadratic phase errors present in the imagery. This derivation is presented

from the Fourier (frequency) perspective as well as the spatially-based (pixel

spread) perspective. This mathematical derivation helps relate quadratic phase

errors to the associated degradation in image resolution. The two techniques

take a different approach but derive the same resuht.
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Chapter 2

Aperture Synthesis, Tomography

and Polar-Formatting

The synthesis of an along-track aperture, as a superposition of scene views along

the flight path, provides for cross-range resolutions similar to those achievable in the

range direction via chirped, wideband signals. Furthermore, for a synthetic aperture

radar as opposed to a real aperture radar, the dependence of resolution on radar

wavelength or standoff range is eliminated. If the radar beam is steered, or slewed,

such that it maintains aim on the imaged scene, this spotlight-mode radar has the

additional advantages of lower transmitted power for a given SNTR,lower sampling

rates and higher achievable resolution. When this spotlight-mode data is sampled

on a polar raster, without regard to the instantaneous movement of the platform or

targets, the tomographic paradigm can be used to describe the cross-range resolu-

tion capabilities of the SAR. With a direct analogy existing between computed axial

tomography (CAT) and spotlight-mode SAR and their mathematical ties via the

projection-slice theorem, spotlight-mode SAR can be cast as a tomographic process

and described with the support of a simple signal processing framework. Hovvever,

the tomographic paradigm is not without its assumptions or shortcomings, and these

are necessarily (and unfortunately) cast into the spotlight-mode tomographic S-AR

.—..-.. -. . —...
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framework. In particular, the assumption of planar wavefronts illuminating the scene,

and the associated distortion and space -variant defocus that appear in polar-format

processed imagery when this assumption is rendered invalid. This chapter serves as a

brief introduction to synthetic aperture radar and presents the spotlight-mode SAR

within the tomographic framework. The collected Fourier-domain phase history is

described as a two-dimensional projection of the three-dimensional scene being im-

aged. The polar-format algorithm is introduced as a robust, yet simple method for

Fourier inversion of the phase history into a image domain representation of the

scene. The difference between the slant plane and ground plane images is described,

as is their relationship to one another. The need for the computationally burden-

some 2D interpolation is justified, with some reassurance given that this method is

still competitive with other popular image formation methods, as will be shown in

Chapter 6.

2.1 The Range Resolution Problem

The goal of a radar system is to distinguish, in both range and cross-range (azimuth),

objects residing within the ground scene being illuminated. A number of range re-

solving techniques have been implemented over the years to achieve the desired range

resolution; namely, continuous wave (CW) processing, and more recently, techniques

incorporating the deramp processing and compression of linear ~reguency modulated

(LFM) or “chirp” signals. These “complicated” (stretch) signals provide for wide-

band illumination of the target, allowing for finer resolutions than those achievable

from the short-duration CW pulses. Furthermore, acceptable signal-to-noise ratios

are maintained when using LFIvI systems because of their longer dwell times and

consequently stronger radar returns. On the other hand, the range resolution of the

simpler CW pulse is limited by the duration of the pulse, which must be quite short

in order to avoid range-aliasing of the targets. The CW pulse is processed by de-

modulating the carrier with in-phase and quadrature sinusoids, followed by low-pass
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filtering. The Fourier analysis of the CW echo-ranging processor demonstrates that

the radar transduces a narrowband estimate of the reflectivity function, where the

range resolution depends strictly on radar bandwidth and not on center frequency

or standoff range. The CW range resolution is given by

Pu = &,
e

where Be is inversely proportional to the CW pulse envelope duration, ~e. That is,

the time-bandwidth product of the CW pulse is unity. Consequently, with CW pulse

transmission, any hope for higher resolution is lost when the pulse width is necessarily

reduced, because the SN-R of the reflected pulse is reduced as a consequence.

Using the FM chirp, a dispersed waveform, greater transmitted energy per pulse

is possible compared to CW, and signal-to-noise ratios increase. An FM chirp pulse

is dispersed in time by a factor equal to its large time-bandwidth product, BC~C,

compared to a CW burst pulse, with its time-bandwidth product of one. While the

notion of the unity time-bandwidth product seems to have been violated, the LFh!l is

not a simple pulse-like waveform, but instead is frequency modulated. As such, its

bandwidth is not simply Iimited by the bandwidth of the envelope. The bandwidth

of the FM chirp is given by

B.
cl~c=—
r’

(2.2)

where ~ is the chirp rate in radian2sec-2 and ~Cis the chirp duration. Chirp sig-

nal (deramp) processing consists of the demodulation of the returned signal with

in-phase and quadrature versions of the FM chirp: delayed appropriately by the

round-trip time to the patch center, followed by low-pass filtering and range com-

pression (Fourier processing). This effectively deconvolves the chirp -waveform from

the return signal, leaving an estimate of the terrain reflectivity function. The amount

of pulse compression is given by BC~C,the time-bandwidth product of the waveform

(in cycles). The utility of the FM chirp waveform in imaging radars is that its signal

duration can be increased relative to that of the CW burst while maintaining the
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same effective bandwidth. In essence, the range resolving capability of the LFM

chirp rests in its very large time-bandwidth product.

2.2 Cross-Range Resolution Via Synthetic Aper-

ture

The previous discussion regards range resolution, yet cross-range (azimuth) resolu-

tion must also be addressed. Unfortunately: the solution to the range resolution

problem via the notion of echo separation using high-bandwidth pulses seems irrele-

vant to the separability of targets in cross-range. However, the notion of interpreting

the deramp-processed LFM chirp returns as direct transductions of certain spatial

frequencies of the terrain reflectivity function is indeed applicable to cross-range reso-

lution. This approach, known as the tomographic paradigm, has its roots in the field

of medical tomographic imaging. The relationship between tomography and S.4R

will be detailed in Section 2.3. Unlike other cross-range resolution methods such as

range-Doppler imaging [2, 5, 49, 50, 51, pp. 33–83], which analyze the movement of

the targets during aperture synthesis, the key concept of tomography is that a set

of X’ (cross-range) spatial frequencies are induced as a consequence of integrating

differing views of the scene from the radar platform. Thus, cross-range resolution

can be obtained by the coherent integration of a large number of pulses transmit-

ted and received by the radar as it flies along a path, which becomes its synthetic

aperture. As opposed to the range-Doppler paradigm for cross-range resolution, the

continuous motion of the radar platform is not required to generate the X’ spatial

frequency data.

The detailed derivation and development of the tomographic paradigm has been

thoroughly studied: and as such, is not the focus of this dissertation. However,

enough background information on the tomographic paradigm will be presented here

so that the concepts presented in this dissertation are properly motivated. For in-
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stance, given that the tomographic paradigm can be used to describe the generation

of cross-range X’ spatial frequency data via aperture synthesis, exactly why is this

process necessary, and what are the real advantages to aperture synthesis, known

as synthetic aperture radar? The object of incorporating a synthetic aperture is to

increase the effective length (diameter) of the radar antenna, thereby increasing the

scene resolution in the cross-range direction, independent of radar center frequency

or standoff range. Prior to synthetic aperture radar (SAR), the azimuth resolution of

the real radar system was the actual cross-range width of the beam, W& which was

a function of the radar wavelength & the standoff range R from the ground location

to the radar platform, and the physical diameter of the radar antenna, D, such that

and

P1.v= Wx,

(2.3)

(2.4)

where pw is the real-aperture cross-range resolution. For certain high resolution

imaging scenarios, this could require a real antenna length of thousands of meters,

which would be foolishly impractical. On the other hand, given the ability to syn-

thesize an aperture, a 10 meter antenna mounted to the belly of an aircraft could

achieve the same cross-range resolution in these scenarios. .4pparently, the only

way to improve cross-range resolution for the real aperture system is to either re-

duce the platform standoff range or to reduce the angular beamwidth by reducing

the wavelength, given that there are tight constraints (specifically, upper limits) on

antenna diameter. However, because some radar wavelengths should be avoided in

order to eliminate atmospheric effects and because certain radar platform types are

constrained in standoff range, there are severe limitations to the practicality of real

aperture radar. If finer resolutions and/or longer operating ranges are desired, an

alternative to the real-aperture systems must be used, such as synthetic aperture

radar.

.—.,Y ,. . ..-.rc T= m.-, ... ,, ,. ._ . ..—. . . . . ,. .,.4 .,” . . . .
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2.2.1 Synthetic Aperture Radar in Stripmap-Mode

28

Stripmap S.AR is perhaps the oldest and most common type of SAR, and is still found

in a variety of modern radar systems. With the radar being flown (approximately)

in a straight line, a series of pulses are transmitted at intervals along the aperture in

the fast time (range) direction, and range processing of the wideband signal is per-

formed using LFM dechirp or another suitable method. .4s the aperture is flown, the

direction of the radar antenna remains fixed, either at a right angle (broadside) to

the scene being imaged or squinted forward or backward. Range pulses are collected

along the aperture and processed in real-time or stored for future processing. De-

pending on the capabilities of the real-time processor and the capacity of the storage

media, a strip of (theoretically) unlimited length may be imaged. The range-oriented

motion of point scatterers during the time of radar illumination is then considered

when resolving these targets in cross-range. Thus, for a given radar antenna plat-

form position, the sequence of returns obtained along the flight path centered at this

position is collectively processed to form the effective signal from an antenna much

larger than is actually illuminating the ground. In this way, the aperture synthe-

sis can be used to achieve fine cross-range resolution by the coherent integration of

a series of radar returns transmitted at a number of positions along a flight path,

thereby synthesizing the effects of a large physical antenna via data processing.

For a given point in the imaged scene, the longer this point is illuminated dur-

ing the synthetic aperture collection, the longer the length of space (segment) over

which the cross-range intee~ation occurs. This effectively narrows the synthesized

beamwidth, thereby increasing cross-range resolution. The length of this segment,

which is the synthetic aperture, cannot exceed the real beamwidth of the radar at

the ground since this is the maximum distance for which a given point on the ground

remains illuminated for all points along the aperture. -4s such, contrary to the theory

of the real aperture radar, whereby the largest possible antenna diameter is desired to

minimize bearnwidth, in stripmap mode it is desirable to have the radar bearnwidth
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(as shown in light gray in Figure 1.1) as wide as possible and to let the aperture

synthesis serve as the basis for cross-range resolution. The paper by Cutrona, et al

[52], was the first to show that the maximum achievable cross-range resolution for a

stripmap-mode S.4R is

(2.5)

where A. is the actual physical width of the antenna in the along-track (azimuth)

direction. This resolution is independent of either radar frequency or standoff range:

both of which were limiting factors in the earlier real aperture radars. However, it is

important to note that in satisfying the Nyquist sampling criterion, the pluses must

be transmitted with the spacing along the flight path also equal to the resolution;

that is, one half of the physical antenna width, in order to avoid aliasing due to

undersampling. Consequently, the sample rate in cross-range, known as the pulse

repetition frequency (PRF), may be rather high. Furthermore, while decreasing the

antenna width improves cross-range

reduction in transmitted energy.

2.2.2 Synthetic Aperture

resolution, it reduces the SNR because of the

Radar in Spotlight-Mode

The term “spotlight-mode” precisely describes the concept behind this particular

SAR collection geometry. In spotlight-mode SAR, the radar is continually steered,

or slewed, so as to constantly illuminate the same ground patch from every position

along the synthetic aperture. This geometry is depicted in Figure 2.1. .4n advantage

of spotlight-mode SAR over stripmap is that only the patch to be imaged is actually

illuminated. hTotice in Figure L 1 that the illuminated area of the stripmap SAR

(total shaded area) is significantly bigger than the area actually being imaged (dark

gray). Since a spotlight-mode collection avoids this unnecessary illumination, the

physical antenna width can be increased and the PRF reduced accordingly, thereby

reducing along-track sampling requirements. Furthermore, because the radar beam

is slewed, the illumination time is no longer dependent on (or limited by) beam width.
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The additional dwell time, in conjunction with the increase in gain from the wider

antenna, reduces the microwave transmitter power requirements while increasing the

system SINR and cross-range resolution.

Of course, the advantages of spotlight-mode over stripmap do not come without

tradeoffs. Specifically, the patch size for a spotlight-mode collection is significantly

smaller than that of stripmap because the radar beam is slewed in order to remain

on a particular portion of the scene for the duration of the aperture. The polar-

format algorithm (PF.A), perhaps the oldest and most straightforward approach to

processing spotlight-mode data, has an inherent shortcoming in its ability to deal

with large scene sizes, in certain scenarios such as imaging at close range, at high

resolution, or when utilizing a low center frequency. This shortcoming is based on the

faulty assumption of planar EM wavefronts being transmitted by the radar, leading

to the wavefront curvature degradation in PFA processed imagery. This dissertation

introduces a method for the negation of these wavefront curvature effects for both

squinted and broadside scenarios, thereby lifting the scene size limitations imposed

by the polar-format algorithm. Thus: the necessity is avoided for multiple reference

points, employed to precisely focus smaller spotlight mode patches. Consequently,

the need to mosaic many smaller PF-A processed patches into a larger scene is elim-

inated, as is the necessity to abandon the simplicity and advantages of PF-A for

another type of processing algorithm.

Note, too, that the length of the aperture, and thereby the aperture angle sub-

tended A(3 (as shown in Figure 2.1), can not increase without bound. Consider a

change in relative perspective wherein the radar platform is considered stationary

and the imaged scene rotates relative to the platform. This is known as the inverse

5’AR (ISAR) model, and is perhaps the simplest model for representing target mo-

tion in a spotlight-mode collection [12, pp. 72–75][53, 54]. -4s the aperture length

in the spotlight-mode collection increases, points within the imaged scene “rotate”

through a greater angle relative to the radar platform. During this rotation, the

range-directed motion of this point can be plotted as a curve, referred to as the
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range curvature of this point, as is shown for the center reference point in Figure

1.4. When the range-oriented motion of a point exceeds that which is represented

by the appropriate range bin of the digitally processed scene, then image defocus

occurs. The polar-format algorithm compensates this movement in several ways,

including the motion compensation of points in the scene relative to a single point

(mocomp to a point) and by collecting the sampled data on an annular as opposed

to a rectangular grid. In this way, the PFA processor becomes a partially ~ocused

radar system [55, pp. 4-6], and only the residual differential range curvature: or

wavefront curvature, is left to deal with. Interestingly, it is the collection of reflected

spotlight-mode range pulses on the polar annulus that forms the association between

tomography and spotlight-mode imagery. This dissertation will describe an efficient

and effective method for negating the defocus effects of wavefront curvature, via

space -variant post filtering, thereby rendering the polar-format algorithm as a fuzzy

focused approach to spotlight-mode image formation.

The remainder of this dissertation deals strictly with aspects of spotlight-mode

formation as they relate to the tomographic paradigm and its limitations. Specifi-

cally, shortcomings of the polar-format algorithm with regard to wavefront curvature

anomalies, which will be addressed and resolved (hopefully to a satisfactory degree)

within this paper. While in some circumstances, spotlight-mode algorithms are used

to process stripmap collections, in general the paradigm and processing procedures

for stripmap SAR differ substantially from those of spotlight-mode. The reader is

directed to the following textbook references for excellent treatments of stripmap

SAR [56: 57, 58, pp. 441–482] and [59, pp. 268-284]. The papers [54, 60, 61: 62] also

address stripmap SAR in detail.
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Figure 2.1: Bea.mwidth, .Aperture Extent and Patch Radius in Spotlight-L’Iode

2.3 Spotlight-Mode Tomography and Polar-

Formatted Data

It is not difficult to imagine a relationship between computerized axial tomography

(C.AT), wherein an object is imaged through the processing of projectional views over

a set of measurement angles, and spotlight-mode S.4R, which collects the reflected

samples of a scene from different positions along a trajectory. Indeed, while CAT and

spotlight-mode SAR have developed independently, they share a remarkable similar-

ity of principle, namely the projection-slice theorem. The C.4T scan, which enables

the imaging of two-dimensional cross sections of solid objects, is used extensively for

the examination of internal organs and the nondestructive testing of manufactured
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items, as well as many other applications [63]. While its roots lie in the integra-

tion of x-ray projections, as first described by Johan Radon (though abstractly and

not related to x-rays) in 1917 (an English translation of -which is found in [63]),

the analoagy between tomographic imaging and the two-dimensional radar reflectiv-

ity function of spotlight-mode SAR was given by Munson and his colleagues in 1983

[4]. In his paper, Munson states that the spotlight-mode SAR can be interpreted as

a tomographic, band-limited reconstruction problem and that the signal processing

theory is characterized in terms of the projection-slice theorem, as opposed to the

traditional radar view of Doppler filtering.

In order to cast spotlight-mode SAR as a tomographic problem, the projection-

slice theorem must be mathematically described, and more importantly, its meaning

must be understood as it relates to the spotlight-mode S-ARconcept. First, consider

the two-dimensional (2D) Fourier transform pair:
mm

G(zL,v) = H g(z, y)e-~2m(u’+”y)du dv (2.6)
-co —co

and

Co@

g(z, y) = H G(u, v)ej2z(uz+vy)dx dy, (2.7)
—w —a

where g(z-,y) represents the 2D complex reflectivity function of the ground patch

being imaged and G(U, V) is the Cartesian Fourier transform of g(z, y). Scale factors

are not relevant to the development and are ignored. It can be shown that G(p, 13)

is the polar representation of the 2D Fourier transform of g(z, y) for an arbitrary

angle 0 (as proven in numerous references, including [’i, pp. 55-57] ). Therefore,

the inverse Fourier transform of Equation (2.7) for projection angles spanning 180

degrees (O ~ 6< m rad), can be written as
%Co

g(z, y) = H G(P> e)#2~(Pzcos(e)+PVsin(~))@ &), (2.8)
o -m

where 0 is measured with respect to the positive abscissa axis, as shown in Figure

2.2. If a variable u is defined such that

u = x COS(6)+ ysin(d), (2.9)

I
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then Equation (2.8) becomes

pz pm

Tomography and Polar-Formatting

dw)=jo J WLo+’”pu@de
–0s

Next, if the projection function pe(u) is defined as

then

Ip~(u) = mG(P>O)d2’”
-03

Equation (2.10) becomes

fi7

9(Z:Y)=J’.Po(U) de,

34

(2.10)

dp, (2.11)

(2.12)

and by Fourier transformation,

/

lx

PO(U) = po(U)e–@~U dU (2.13)
—C@

This is the mathematical development for the projection-slice theorem, which

states that the one-dimensional Fourier transform of a projection function p.(u) is

equal to the two-dimensional Fourier transform G(u, v) of the image to be recon-

structed, evaluated along a line in the Fourier plane that lies along the same angle

8 measured with respect to the positive abscissa axis. In other words, PO(U) is a

one-dimensional (lD) slice at angle 0 of the 2D Fourier transform of g(s, g), as shown

in the geometric projection model of Figure 2.2. This analysis forms the basis of the

convolution back-projection image formation method (CBP), as well as the polar-

format Fourier inversion algorithm (PF.4). As projections are taken over a range of

0, the lD Fourier transform values of the projection data determine values of the

2D Fourier transform G(u, v), along lines of the same angular orientations. The

projections must be taken at sufficiently close intervak aIong the synthetic aperture

as to obey the Niyquist sampling criteria for the Fourier region of support in the

cross-range direction. This sampling rate is the pulse repetition frequency, or PRF.

Similarly, each projection must adequately sampled in order to support the band-

width in range (typically referred to as the A/D sampling rate). In neither case

is the scene resolution a function of sampling rates, but instead that of the chirp
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bandwidth for range, and the induced bandwidth in terms of the angular extent AO,

for cross-range. Thus, thetomographic view of thescene turns out to be a band-

pass filtered projection of the ground patch reflectivity: where the scene resolution is

determined by the frequency extent of the data, in both range and azimuth, before

Fourier inversion into the reconstructed image. Since the limited duration of the

transmitted radar pulse implies that F’e(U) will only be determined on a restricted

interval of spatial frequencies, each radial segment of the Fourier data wilI be of the

same length. Consequently, the Fourier samples will be constrained to a circular

(polar) annulus, with a nominal radius kO,as offset from the origin, of

2W0
ko= —=;,

c
(2.14)

where U. is the radar center frequency and A is the corresponding wavelength. The

frequency extent (spatial bandwidth) 4Y’ in the range dimension is found to be

AY’ = ~(27i13c), (2.13)
c

where 13Cis the chirp bandwidth as defined in Equation (2.2). The nominal cross-

range extent, as cletermined by the radius ~ and the an~lar extent AO of the

annulus is

AX’ = 2 (~) sin(AO/2). (2.16)

As is common with spotlight-mode SAR collections, the angular diversity AO is typ-

ically very small, and under the small-angle assumption of sin(0) = 0, the expression

for AX’ can be approximated by

AX’ = ~ A(?.

These parameters are

Figure 2.3.

depicted in the

(2.17)

spotlight-mode, Fourier collection surface of

In the case of a straight-line flight path across the synthetic aperture, the collec-

tion surface swept out in three-dimensional Fourier space is simply a plane, referred
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A

Figure 2.3: Slant Plane Fourier-Domain Samples and Frequency Extent

to as the slant plane. This straight-line assumption models the situation for a typi-

cal airborne collection where the out-of-plane motion is insignificant, and it will be

adopted throughout this dissertation. In the case of uncompensated platform mo-

tions, or if the collection is spaceborne, the surface swept out is 3D ribbon as opposed

to a plane. The ramifications of this motion on wavefront curvature (and its com-

pensation) are beyond the scope of this dissertation, but will be briefly addressed in

the “Future Work” section of Chapter 7. For the straight-line motion assumption

that has been adopted, the slant plane is determined by the line of the flight path

and the aim point (center reference point, or CRP) of the scene.

As was originally obtained by Walker through Doppler frequency analysis, the

slant plane surface is a two-dimensional Fourier slice of the 3D scene reflectivity
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function [2]. However, this result was also shown by Munsonviahis tomographic

analysis. Though not analyzed or considered by Munson, Jack Jakowatz and his

colleague Paul Thompson, through a novel 3D tomographic model, demonstrated

the data within the 2D Fourier surface to be the orthogonal projection of the ground

scene onto the slant plane [6]. Since ground plane objects typically have height,

this model predicts the range-dependent layover that affects these 3D objects when

projected into the slant plane. Furthermore, it describes perturbations in the phase

of waves reflected from point targets, which are indicative of terrain height variations.

Such is the foundation for interferometric SAR: as originally proposed in [64], and

further described in the article [65] and the books [12, pp. 367-383] and [7, pp.

273–351]. With regard to plane-to-plane transformations, the 2D annular slice of

Fourier-domain data, often referred to as the phase-history, represents the orthogonal

projection of the ground plane scene into the slant plane, as described by the 3D

model. Thus, the phase-history domain description of a slant plane collection is a set

of samples lying on a polar raster imposed on an annulus in the slant plane, as shown

in the upper plane of Figure 2.4. It may be easiest to consider a set of coordinate axes

(X’, Y’), wherein the center pulse of the aperture is used to define the Y’ direction

and the A“ axis is orthogonal and lying in the plane. The Y’ dimension corresponds

to the stunt range spatial frequencies, and X’ to the cross-range frequencies in the

slant plane, such that the 2D inverse Fourier transform of the data produces an image

in a slant plane domain with axes of x’ and y’.

.Alternatively, with a change in perspective, the slant plane image data can be pro-

jected onto the ground plane having coordinate axes x and y, and ground-projected

phase history samples are in X and Y, as shown in the bottom plane of Figure 2.4.

In the event of a broadside collection, the projection operation simply imposes a

contraction of phase history data onto the ground plane in the range direction, by a

factor of cos(@), with no contraction in the cross-range direction. For squinted col-

lections, the slant plane is actually tilted relative to the broadside slant plane surface.

In this case, there exists a squint dependent contraction in both range and azimuth,
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when projecting from the slant plane to the ground plane. This greatly compli-

cates the process of projecting from one of these planes to the other. Furthermore,

the calculation of range dependent layover for 3D targets is less straightforward.

The motivation for forming the S.AR image in the ground plane as opposed to the

slant plane is that the ground plane image is orthographically correct for all non-

elevated targets (although targets with height still exhibit range-oriented layover).

This property is often helpful in the human interpretation of imagery. Unless oth-

erwise noted, this dissertation assumes the simpler slant plane perspective, and as

such, this perspective will be used for all calculations and derivations. Consequently,

slant plane to ground plane transformations (and their associated complications)

become unnecessary. While in a practical sense, these projections are important to

the interpretability of imagery, they are ancillary to the wavefront curvature analysis

being presented.

The image domain resolutions in the slant plane are easily obtained from the

spatial-frequency bandwidths of Equations (2.15) and (2.17), as shown in Figure 2.3.

The resulting range resolution is

2T
~y, =B =&, (2.18)

c

while the cross-range resolution (considering the small-angle approximation) is

21r A——
Pz’ – Ax, = ~. (2.19)

Since the radar bandwidth can never exceed twice the center frequency, these resolu-

tion expressions have lower bounds. Specifically, Equation (2.18) dictates that range

resolution can never be better than A/4, while Equation 2.16 imposes a maximum

AX’ of 8n/A (for a 40 of 180°), and by Equation (2.19), the cross-range resolution

is also bounded by A/4. For a number of practical reasons, SAR systems typically

do not achieve resolutions even close to these theoretical bounds. In the case of

ground plane resolution, the uniform contraction of the phase history data in the

range direction (for broadside collections) results in a corresponding ground range
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resolution scaling of COS(0). The ground range resolution is then

2n- C Plt
~Y= ~ = 2& CoS(@)= Cos(+) ‘

(2.20)

while the ground cross-range resolution remains unchanged from its slant plane coun-

terpart and is found to be

2T 2X A

“ = Ax’ = AX = 2~e = ‘z’.
(2.21)

It is important to realize that the difference in value of pv and Pgt does not imply

that the resolvability of the two targets is improved in a slant plane as opposed to

a ground plane reconstruction. This is due to the corresponding reduction in spatial

distance between the targets as imaged in the slant plane. Thus, the only difference
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between ground and slant plane image reconstructions for broadside collectionsis

the scaling of the range dimension.

As the synthetic aperture is flown, only a limited numb er ofprojections canbe

acquired. These must be collected at aratethat satisfies the~~yquist criteria for the

cross-range bandwidth, as determined by the total aperture extent 40. Similarly,

each projection must be sampled in range as to satisfy the IYyquist criteria for the

given range chirp bandwidth. Given the distance of the radar platform from scene

center, even a few degrees of aperture translates into very long collection (flight) dis-

tances. Consequently, measurements are possible only for limited angular extents.

Despite these bandlimiting processes, the reconstructed images are observed to con-

tain surprisingly few artifacts of bandlimiting. This is remarkable, given that the

basic considerations of Fourier processing and the limited slice of Fourier data trans-

duced make it hard to imagine any usable image being formed at ail. Furthermore,

this is in direct contrast to x-ray tomography, which requires a full circular view of

the object being imaged. However, for S.AR, a coherent system in that it considers

both phase and magnitude of the reflectivity function, it is found that an assumed

distribution of point scatters in the image, each having random phase, serves to dis-

perse frequency components over much of the transform plane. That is, the image

domain microwave reflectivity function typically possesses a phase function that is

essentially uncorrelated. This particular effect was first described by Munson and

Sanz in [66], and is attributed to the coherent speckle properties of SAR imagery.

This property states that because of the small slice of Fourier data being considered,

the reconstruction is actually a speckled version of the scene reflectivity that does

not exactly match the true magnitude of the function point-for-point.

Tomographic imaging and SAR bear enough resemblance to each other for both

systems to be explained in terms of the projection-slice theorem. However, perhaps

their biggest difference Iies in the bandlimited reconstruction of the SAR image, as

compared to tomography. Furthermore, there exist other distinct differences be-

tween SAR and tomographic imaging. For instance, while x-ray tomography trans-

. . _—_ —- .-. ——. . .



Chapter 2. Aperture Synthesis, Tomography and Polar-Formatting 42

ducesimage-domain, transmissive, real data centered at baseband, S.4R transduces

complex, reflective, Fourier data offset in spatial frequency by 4m/A (in the slant

plane). Furthermore, the SAR Fourier data are only determined over an annulus

that is angularly narrow, yet the phenomenon of coherent speckle ensures suitable

reconstruction of the bandlimited image. In contrast, views spanning a full 180° are

employed in medical C-ATimaging. While Munson’s tomographic model makes these

contrasts and comparisons, it fails to consider the effects of target height and terrain

height variations, as described above. It will be seen next, when spotlight-mode

data is directly Fourier inverted (such as with the polar-format algorithm), that the

planar wavefront assumption of Munson’s model induces serious wavefront curvature

effects in certain imaging scenarios. The rest of this dissertation will address the

affects of the planar wavefront assumption on polar-formatted spotlight-mode S-4R

imagery, and will present a method for the compensation of these effects; namely,

the space -variant post-filter.

2.4 The Polar-Format Algorithm

The essence of the polar-format algorithm is the Fourier inversion of the frequency

domain spotlight-mode data (phase-history) collected on a polar raster. As such,

it is considered a direct Fourier inversion method. -4s described in the previous

section, the annular Fourier data represents the orthogonal projection of the three-

dimensional complex scene reflectivity onto the two-dimensional slant plane. The

beauty of the polar-format algorithm lies in its simplicity, as described by the to-

mographic paradigm, and in its straightforward implementation. However, it also

suffers the shortcomings of this paradigm; namely, the visible effects of wavefront cur-

vature errors in formed imagery, as a consequence of the planar wavefront assumption

on which it is based. Specifically, since the derivation of the PFA technique relies

upon the unrealistic assumption of strictly planar wavefronts in the transmitted

microwave pulses, the polar-format algorithm cannot compensate these wavefront
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curvature effects. Consequently, any actual amount of curvature present in these

wavefronts introduces the geometric distortion and space-variant defocus present in

the formed imagery forcertain imaging scenarios, such as those at close range, low

center frequencies, high resolutions, or when imaging large patches. Nevertheless,

the polar-format algorithm one of the most popular Fourier inversion methods of

spotlight mode image formation because of its simplicity, established reputation in

the remote sensing community, and ability to form images of large scenes without

resorting to subpatch processing.

With the addition of space-variant post-filtering for wavefront curvature correc-

tion, as presented in this dissertation, the major factor that has restricted scene size

is finally lifted. The fundamental steps of the polar-format algorithm are outlined in

Figure 2.5, and are briefly described below. For the reader with a deeper interest in

the specifics of the polar-format algorithm, detailed information can be found in a

number of references, including Walker’s original treatment of the subject in [1, 2, 3],

and more recently, a book in which PFA is the focus of its spotlight-mode image for-

mation techniques [7]. In Chapter 6, PFA will be compared to other popular image

formation algorithms in terms of computational burden, and it will be shown that

PFA, in conjunction with space-variant post-filtering for wavefront curvature correc-

tion, is competitive with (or superior to) other popular methods for many imaging

scenarios.

Before Fourier inversion into the image domain, interpolation of the annular

Fourier data onto a Cartesian rectangular grid is typically performed. This is neces-

sary because there currently exists no efficient, fast Fourier transform (FFT) routine

that operates directly on polar-oriented data (although some efficient polar approx-

imations to the Cartesian FFT have been proposed in [67, 68]). Without prior

interpolation to a grid, the Fourier transformation of polar raster data results in sig-

nificant space-variant defocus for imaging scenarios where the data are not already

near-Cartesian, as in the case of high resolution imagery or when using low center

frequencies (due to the shortened nominal annular radius, ko, as shown in Figure
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Z.S). while in gener~, very low resolution imagery over small patches can be formed

~,ithout first performing polar-to-rectangular resampling, this technique becomes im-

practical at best for the high resolution imaging situations for which spotlight-mode

is intended. Without this resampling, a gyadual loss of focus is observed as a func-

tion of distance from the patch center, and for most practical SAR applications this

approach is totally inappropriate.

The book by Jakowatz, et. al [7] derives an equation for the maximum imaged

patch size as a function of radar wavelength and resolution, when the polar-to-

rectangular interpolation (polar-formatting) step is avoided. For a given slant plane

range and cross-range resolution of PYIand px’, respectively, the ma~imum allowable

slant plane patch radius Z! is defined by the inequality

(2.22)

where A is the radar wavelength and x-/4 is the maximum allowable quadratic phase

error Ieading to the defocus. This phase error limit is such that defocus is kept to

within subpixel levels (see .4ppendix A). Other authors arrive at the same constraints

using somewhat different methods. One such alternative derivation is presented in

[2] and another in [69]. An example of the severity of this constraint is a S.4Ft at 10

Ghz (~ = 3 cm) with sufficient bandwidth and angular diversity to resolve 1 meter

in range and cross-range (pvJ= pZ/ = 1 m). Based on Equation (2.22), this system’

can only image a patch of 130 meters square, without exceeding the r/4 quadratic

phase error limit when polar-formatt.ing is not implemented. Thus, unacceptable

restrictions are required when not polar-formatting the phase history data. This is

because the polar-to-rectangular interpolation preserves the mitigation of range cell

migration as accomplished via sampling the original phase history on a polar raster.

While the polar-to-rectangular interpolation lifts these scene size restrictions, this

flexibility does not come without a price, as interpolation requirements are severe in

terms of required accuracy as well as computational burden. The reason that the

interpolation requirements are so severe is due to the nature of the Fourier domain
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in which the data are interpolated. Every point in the Fourier domain contributes

to the spatial reconstruction and consequently, single errors in the Fourier domain

affect the entire spatial domain. Therefore, it is important that the interpolator be

as accurate as possible, particularly in the spectral regions where energy is concen-

trated. One notion of the theory of resampling and interpolation is that the process

can be viewed as a linear digital filtering operation. The interpolation process must

maintain the underlying signal integrity and not introduce significant errors of its

own. Specifically, since data are interpolated in the complex-valued phase history

domain, the interpolation filter must be linear in its phase response so as not to

introduce phase errors, and it must also meet certain bandwidth and Niyquist con-

ditions. In the particular instance of spotlight-mode SAR, the resampling process is

that of a 2D interpolation of the polar-format data to Cartesian coordinates, so that

fast Fourier data inversion methods may be implemented to form the images.

Although the ideal solution (in terms of interpolation accuracy) is to perform

true two-dimensional interpolations, this approach is computationally intensive. in-

stead, a less computationally burdensome method expioits separability, whereby

one-dimensional interpolations are performed in the range direction (along radial

samples) for each radar pulse, followed by one-dimensional interpolations in the

cross-range dimension for each range line of the Fourier data [5, 36, 49]. Known as

the keystone method [70], the data are first interpolated in range, from their original

uniformly spaced sample grid onto a new uniformly spaced ~gridto form a keystone,

as shown in Figure 2.5(b). h~ext, the data are interpolated in the cross-range direc-

tion, resulting in the rectangular sample grid as shown in Figure 2.5(c) This step

is identical to that for the range-oriented samples, except that the data lying along

any given cross-range line are unequally spaced. These keystone samples are more

closely spaced at the samples near mid-aperture and increase in separation towards

the outer edges of the phase history. Furthermore, the sample separation increases

-withdistance from the polar origin. These are the consequences of using separable ID

resampling, when in reality, the process is only separable in the polar Fourier domain
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(r, 0) and not in the rectangular domain of (V, V). Thus, while more computationallv “

efficient as a result of separability, this interpolation approach is not without its own

inherent inaccuracies, and the interpolation filters must carefully accommodate this

space-varying sample spacing during ID cross-range interpolation.

In practice, for most spotlight-mode SAR data collections, the variation in sample

spacing along an individual cross-range record is small because the angular extent of

the phase history is only a.few degrees. .4s such, on an individual cross-range record,

the interpolation filters can act as if the sample spacing is uniform without introduc-

ing intolerable errors. This is in contrast to CAT imaging, whereby large viewing

angles (typically 180°) prohibit the use of separable 2D interpolation. In these C-AT

imaging scenarios, convolution back-projection is often implemented as the image

formation algorithm of choice. Furthermore, while SAR image formation may be

considered a tomographic process, the polar-format algorithm is often unfairly criti-

cized for having unreasonable interpolation errors [71, 72], which is not the case when

applied to most SAR imagery (the exception being UW-B SAR, as described further

in Chapter 6). It is important to realize that for spotlight-mode SAR, whereby the

angle of aperture extent 40 is typically small and the Fourier data are offset signifi-

cantly from baseband, the less computationally burdensome polar-format algorithm

can very effectively form images since the polar-to-rectangular interpolation step re-

sults in a negligible amount of interpolation error [33]. It has been pointed out in

several papers including [71, 73], the resampling portion of the polar-format algo-

rithm can be computationally burdensome. In fact, since very precise interpolations

are required to maintain image quality, the 2D interpolation is typically the dominant

factor in the overall computational complexity of the polar-format algorithm. How-

ever, in spite of the burden of the 2D interpolation, the polar-formatting algorithm

still has a lower overall computational complexity than convolution back-projection.

It has been suggested that the problem of interpolation and resampling can be

reduced to a digital filtering operatiori. The sine function can be thought of as the

impulse response of the ideal digital filter. However, the sine impulse response must

—— .— .-— ..
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be approximated with one that is realizable in that it has no infinite sums, yet pre-

serves phase and provides suitable passband and stopband characteristics. Typically,

truncated versions of infinite length sampling functions are utilized, with the num-

ber of zero crossings (in the case of the sine) selected to form a tradeoff between

interpolation error and computational burden. Specifically, the rate of falloff of pass-

band and stopband ripple is determined by the filter length, as is the transition band

steepness. Stopband attenuation must be sufficient to mask the N-yquist aliasing that

occurs from the folding of energy back into the filter. kleanwhile, the magnitude of

the ripple is a result of windowing (truncating) the filter function with a rectangular

w-indow. Consequently, in order to reduce this ripple, tapered window functions (eg:

Hamming or Taylor) are typically implemented. This is referred to as the weighted

interpolator. Alternative interpolator designs, based on polynomial or higher order

functions, are also applicable to SAR. The design of such filters is beyond of the

scope of this paper, though their computational burden will be discussed (in a most

general sense, for the weighted sine interpolator) in Chapter 6. Furthermore, Fourier

data interpolation in SAR imagery is a heavily researched topic and the reader is

directed to the following excellent references on the subject: [7, pp. 133-171],[74, pp.

117-162], and [75, 76].

The interpolation process, in conjunction with Fourier transformation, comprise

the essential elements of polar-format spotlight-mode image formation. However,

from a practical sense, there are often a number of additional steps that are taken

to ensure satisfactory image quality. Obviously, the issue of wavefront curvature

correction takes center stage in this dissertation as one of the few remaining hurdles

in polar-formatted SAR imagery. In fact, while it is a difficult problem which has

motivated this dissertation research, other serious image quality issues exist in polar-

formatted spotlight-mode SAR imagery. These are attributable to assumptions in

the tomographic paradigm on which it is based, as well as geometric and atmospheric

anomalies that occur in real imaging scenarios. However, research has led to many

practical and efficient solutions to these problems, and as such, these will issues will
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not be treated extensively here, but still deserve brief mention. These steps are

shown in Figure 2.5 and are as follows:

Phase history acquisition – The phase history data are acquired on a polar

raster with the necessary angular extent, chirp bandwidth and sample rates to

achieve the desired resolution and patch size.

Phase history trim – The polar phase history data are trimmed to a rectangle

(though still in polar format), either by inscribing, exscribing, or a combination

of the two. This process helps to control the IPR sidelobe structure.

Range deskewing – A deskewing of range pulses is performed to remove the

effects of the residual video deramp phase term, if required. This compensates

the geometric distortion and defocus in scenarios where residual deramp phase

is significant.

Motion compensation to a point – The phase history pulses are properly

demodulated and have been properly motion compensated so that the phase of

a hypothetical target at the patch center is constant over the entire synthetic

aperture time.

Geometric transformation – The phase history is geometrically transformed

to the desired imaging plane, and known three-dimensional (out of plane) mo-

tion is compensated on a pulse by pulse basis, given knowledge of the platform

position (via the pointing vector generated during the collection).

Two-dimensional interpolation –.4 2D interpolation is performed, as pre-

viously described, with the appropriate filtering/downsampling to end up with

Cartesian sampIes at the desired density over the rectangular area selected.

Windowing (aperture weighting) Fourier data – The appropriate window

functions (eg: Taylor, Hamming or anodization) are applied to the Cartesian
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Fourier data so that the desired sidelobe reduction will be achieved in the final

image [12, pp. 507–524] [46, pp. 225-239] [77].

● Fourier transformation – A 2D FFT is applied to Fourier invert the phase

history data, thereby producing the complex-valued reconstructed spotlight-

mode image. .Appropriate zero padding of the phase history prior to inversion

helps to achieve the desired image domain oversampling ratio. This heIps in

“pleasing” the human visual system during interpretation.

● Autofocus – A focus procedure is a,pplied, typically after range Fourier trans-

formation (compression) and prior to cross-range Fourier transformation, to

compensate unknown platform errors and certain propagation errors. One

typical procedure is phase gradient autofocus (PGA) [78, 79], and another is

subaperture autofocus [80], both of which operate in the range-compressed,

Cartesian domain.

. Geometric warping – A simple geometric warp is performed on the complex

image data to mitigate the distortion induced by wavefront curvature.

● Detection - The complex, image-domain data are magnitude-detected (via a

square root or logarithmic procedure) and a viewable, grayscale binary image

is produced. This image is then contrast-adjusted, equalized, or gray-scale

mapped as required for visual interpretation.

● New: Wavefront curvature defocus compensation – A Space-variant

post-filter is applied to the complex-valued image to mitigate the defocus effects

of wavefront curvature (if necessary). The post-filtered, complex-valued image

is then magnitude-detected so it can be displayed.

The book by Jakowatz, et. al [7, pp. 105-270] gives more detailed information on all

the PF.A steps previously mentioned.
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Chapter 3

The Planar Wavefront Assumption

in Polar-Formatted Imagery

The tomographic paradigm for spotlight-mode SAR imaging: as previously described,

presents the concepts of SAR in a clear and concise way within a signal processing

framework. However, there are certain limitations to the scope of the tomographic

description of spotlight-mode SAR. In fact, such would be the case for any description

of the SAR imaging process that portrays the coI1ected S.4R data as some 2D Fourier

projection of the 3D scene function. This is true of Walker’s original spotlight-mode

SAR description [1, 2, 3], and extends to the analogy of spotlight-mode SAR as a

tomographic process, as presented by Munson [4] and later Ausherman [5]. This

chapter describes the most significant current limitation of the polar-format algo-

rithm as it relates to the tomographic paradigm. That is, the faulty assumption of

planar wavefronts illuminating the imaged scene. .4 simple model will be presented

which explains the geometric distortion induced by this assumption, with an accom-

panying analysis to describe the conditions under which this behavior is troublesome.

Examples of geometrically distorted images are also presented. An introduction to

the associated quadratic defocus is given, as well as illustrative examples: with appro-

priate scene size limitations being discussed. All this serves as an introduction to the

—
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sophisticated point target phase-return model of Chapter 4, which accurately models

the effects wavefront curvature for all imaging scenarios and squint angles. With this

model, an efficient, image-domain space-variant post-filter will be designed, thereby

lifting scene size restrictions when wavefront curvature is present in polar-formatted

imagery.

3.1 The Planar Wavefmnt Assumption –

tation of the Tomographic Paradigm

A Limi-

Certain limitations of the tomographic paradigm, such as failing to predict the range-

oriented layover effects of three-dimensional targets into two-dimensional space, have

been carefully addressed by 3D extensions to the tomographic model [6]. Perhaps

the most siamificant limitation to this model, and ironically, the most recent to be

addressed (this dissertation being the first to propose a complete solution), is based

on the assumption of planar wavefronts in the construction of the projection functions

of the scene reflectivity function. See Figure 3.1 for a comparison of the illuminated

scene with realistic spherical wavefronts, as shown in part (a), to that of the planar

wavefront assumption in part (b). This assumption leads to an annular-shaped

geometric distortion of the formed imagery, as well as a more problematic space-

variant defocus (blurring) of the imaged scene. Mentioned by both Walker and

Munson, the potential effects of thki assumption on the quality of S.AR imagery were

noted, yet no solution was proposed, beyond restricting the imaging scenarios to

those which closely followed the assumption. While the geometric distortions could

be compensated through a geometric rewarping process after image formation, the

scene size restriction was suggested in order to minimize the effects of the space-

variant defocus.

The polar-format algorithm can be described in terms of a tomographic process,

and it is this analogy that lends explanation to the simplicity of the polar-format al-
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gorithm. Unfortunately, matomo~aphic process, PFA-processed imagery degades

in quality (in terms of space-variant defocus) when the planar wavefront assump-

tion no longer holds. As radars achieve ever increasing resolutions, this assumption

breaks down, particularly at lower center frequencies and when imaging large patches

at close range. Consequently, the planar wave assumption is not valid under these

scenarios: yet it is no longer reasonable to restrict radars to collection scenarios for

which the assumption is valid. When the assumption is violated: the deleritous ef-

fects on PFA-processed imagery are often referred to as range curvature or wavefront

curvature effects. However, to be precise, range curvature is the range-oriented mo-

tion of scene targets, relative to the radar platform, as the aperture is being flown

(see Figure 1.4). When this motion exceeds the distance represented by a single

range bin in the formed imagery, then defocus occurs.

It is important to note that the polar-format algorithm compensates this range

migration motion via the acquisition of samples on a polar grid, additional mocomp

to the scene center if necessary, and the 2D interpolation of the phase history onto

a Cartesian grid prior to inverse Fourier transformation. Otherwise, scene size must

be severely restricted, as discussed in the previous chapter. What remains after

this range migration compensation is actually residual, differential range curvature,

which is based on the faulty assumption of planar EM wavefronts being transmitted

by the antenna. This is specifically what is meant by the term wavefront curva-

ture. While other image formation methods inherently compensate for wavefront

curvature, this dissertation proposes a method for compensation in polar-formatted

imagery, thereby extending the utility (with little additional computational cost). of

the proven, straightforward polar-format algorithm, to produce high quality imagery

in the presence of wavefront curvature. Furthermore, as will be shown in Chapter 6,

polar-formatting is typically no more computationally burdensome (and for certain

scenarios far more efficient) than other popular image formation methods.
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Figure 3.1: Actual Spherical Wavefront Curvature Versus the Planar Assumption for

Spotlight-Mode S.4R

3.2 The Cost of Ignoring Spherical Wavefronts

This section describes the effects of wavefront curvature on polar-formatted spotlight-

mode S.4R imagery. The wavefront curvature effects that appear in reconstructed

imagery can be discovered by deriving an exact expression for the radar return signal

as dictated by the actual spatial geometry (incorporating spherical wavefronts) and

comparing this result -with that obtainecl by the sampling of the Fourier domain as

per the tomographic model. This derivation involves a single point target in the

scene, with the realization that any scene may be considered to be the superpo-

sition of a large number of point targets. Ultimately, it will be revealed precisely

how the assumption of spherical wavefronts renders invalid the relationship between
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the phase history and image domain reconstruction, as based on the tomographic

paradigm. Furthermore, via this model, which will be presented in detail in Chapter

4, it will be shown that wavefront curvature leads to both a geometric distortion of

the reconstructed scene, as well as a space-variant defocus which can be severe in

some imaging scenarios.

3.2.1 Geometric Distortion

It is instructive to describe the geometric distortion effects using a more intuitive

model than that which will be presented in Chapter 4, even though it is incomplete

in terms of describing quadratic defocus. This model will serve as the introduction

to (and later it will be shown that the results are in agreement with) the sophisti-

cated phase model of Chapter 4. This simple model will now be presented, as will

illustrative examples of geometric distortion and defocus effects on real S.AR imagery.

A simple slant plane model depicting the curved EM wavefronts is shown in Figure

3.2, for a broadside collection. This model depicts the wavefront as it crosses the

scene center, as transmitted (emanating) from mid-aperture. At first, it appears an

incomplete wavefront curvature model for predicting the overall geometric distortion

across the entire extent of the aperture. However, the MTRC compensation, which

is based on the polar-coordinate acquisition of the phase history and any additional

motion compensation to the scene center, ensures that the coherent integration of

all Fourier slices over the aperture is represented by the single wave depicted. That

is, the scene center serves as the phase center for the imaged scene, and the wave

depicted through this point is sufficient to represent the distortion behavior across

the scene.

For the slant plane model represented by Figure 3.2, let L be the radius at range

y’ = O of the imaged scene, and 0~ be the angle formed at the platform by the edges

extending to the scene center at (z’, y’) = (O,O)and the scene edge at (z’, y’) = (L: O).
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Figure 3.2: Broadside ~Modelfor Derivation of Geometric Distortion When Neglecting
Spherical Wavefront Characteristics

Furthermore, Tois the radius of the arc that defines the curvature of the wave through

both the scene center and patch edge. The difference in range between the actual

curved wavefront and the planar assumption is Ay’ at the scene edge. The value

Ay’ defines the geometric distortion, or sag in the range direction at the edge of the

scene. The range sag is defined as follows:

(3.1)

where the approximation To>> L is applied. Furthermore, when this approximation

holds, 8L is very small and consequently sin(8~/2) s 8L, so that Equation (3.1)

becomes

To L2 L2
AY’+2Z--=—.

2 ro2 2T0
(3.2)
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Thus, the range sag at thepatch edgeis afunction of the slant plane standoff

range (slant range) ro, aswellas thepatchradius L. Interestingly, itisnot a function

of radar center frequency, bandwidth or image resolution, but instead strictly based

on the degree of physical curvature of the transmitted EM pulse where it reaches

the scene. The effect of this sag, in terms of geometric image distortion, is shown in

Figure 3.3. Ironically, this approximation is least accurate when the patch is large or

the slant range is short, which are precisely the conditions leading to large range sag.

However, the approximation is accurate for many imaging scenarios, and gives an

intuitive feel for the way in which the processed image is geometrically distorted when

planar wavefronts are assumed, but in which the curvature is actually significant. As

will be shown in Chapter 4, via the more complete phase model presented there,

the geometric sag in range for any point (not just at the patch edge) is based on

the linear phase error terms derived from that model. Specifically, a point in the

slant plane image at some point XLwill actually end up being displaced in range an

amount of

Ay’ = ~
2T0

(3.3)

when significant wavefront curvature is present. Again this equation assumes To>> L.

When the point is at the patch edge, that is, z~ = L, Equations (3.2) and (3.3) are

the same. Similarly, the same point will be displaced in azimuth from y&by

Ax’ = %. (3.4)
To ‘

. .

given the same assumption of a large ratio between slant range and patch radius.

As will be shown in the phase model of Chapter 4, these position translations are a

direct result of the Fourier transform shift property, which states that linear phase

terms in the Fourier domain are represented as translations in the processed image

domain. Of course, linear translation is necessary to properly place the target in the

proper position in the processed image. However, the phase terms and translations

of Equations (3.3) and (3.4) speci& residual terms representing wavefront curvature

errors that are in addition to those for proper placement of the target in the imaged
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scene. It is these terms (in addition to the quadratic terms to be described next)

that render invalid the inverse Fourier transformation of the polar-formatted data

into a image-domain scene. Consequently, these linear phase terms, based on the

invalid planar wavefront assumption, induce translations of the reconstructed points

in both dimensions of the image domain, resulting in a position-dependent shifts that

distort a square image patch into an annulus. These effects are depicted in Figure

3.3. As expected, the amount of distortion prescribed by the Iinear phase terms ends

up placing a point in the reconstructed image along the actual circular arc of the

wavefront, as opposed to the straight line assumed to be representing the wavefront.

.4s the planar wavefront assumption becomes increasingly inaccurate, as prescribed

by an increase in patch radius or decrease in slant range, the resulting geometric

distortion becomes more severe. When comparing the orientation of the spherical

wavefront of Figure 3.2 to that of the corresponding image distortion in Figure 3.3,

one notes that they are in opposite directions. This is because the curved wavefront

“falls short” of a point in the scene (displaced from the center) compared to the

planar wavefront prediction. Consequently, the point seems farther than is actually

the case, and the imagery formed under the planar wavefront assumption distorts as

to bend away from the radar platform’s aperture center. The model of Chapter 4 is

much more complete in that it gives an exact description of geometric distortion at

all ranges and patch radii, for both squinted and broadside collections.

Figure 3.4 illustrates the effects of wavefront curvature on actual spotlight-mode

SAR imagery. It is important to note that while the imagery is real, the geometric

distortion has been induced by artificially applying severe linear phase errors to the

formed imagery; more severe than was actually present in the imagery at the time

of collection. This serves to illustrate the geometric distortion that would actually

have been present had this been a much larger scene, or taken at much closer range

than was actually the case. This distortion is based on predicted translations of

Equations (3.2) and (3.3), yet for the unrealistically close slant range of a few hundred

meters, thereby exaggerating the distortion effects. The lower portions of Figure 3.4
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Figure 3.3: Geometric Image Distortion From Wavefront Curvature - Broadside Col-
lection

(parts (c) and (d)) represent enlarged views of the pentagon scene, before and after

geometric correction, respectively. The geometric sag is evident in part (c), where

the straight edges of the building are noticeably distorted: and corrected in part (d)

via a post-warping procedure.

While Figure 3.4 serves as an illustrative example with an exaggerated case of

geometric distortion: this phenomenon is indeed a serious issue in real imagery. Take

for example, the imagery presented in Figure 3.5. The geometric distortion present

in this image is that which has occurred naturally, as a consequence of neglecting

the effects spherical wavefronts during polar-format processing. This image is of a

test track area at Sandia National Labs in Albuquerque, New Mexico. The rails of

this sled track are made to be very straight, as rocket powered test sleds moving

I
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Figure 3.4: Simulated Geometric Distortion Effects of Wavefront Curvature

at extremely high velocities are launched down the rails. This sled track is ideal

in demonstrating the effects of wavefront curvature since it is known to be a long,

straight object and also a very good radar reflector. The specific imaging parameters

for this scene are as follows: The nominal standoff range TOis 6000 meters, the

range and cross-range resolutions pv and pZ are both 1 foot (0.33 meters), and the

radius of the patch from scene center L is 175 meters. This scene was imaged

from Sandia’s high resolution testbed spotlight-mode SAR [41] at Ku band (14-16

GHz), and processed using the polar-format algorithm. Interestingly, for such a
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Figure 3.5: Actual Ku-Band SARImage of Sled Track l17ithlVavefront Curvature
Distortion (l Ft. Res.)

Ku Band SAR, j. = 14-16 GHz, To= 6000 m
Patch Radius, L(m) I Range Sag, Ay’ (m)

100
200
300
400
500
600

0.83
3.33
7.50
13.33
20.83
30.00

Table 3.1: Range “Sag” at Scene Edge for Ku Band Sled Track Example

small scene radius (L = 175 m), the observed geometric sag at the patch edge is

quite significant. Based on Equation (3.2) for L = 175 and r. = 6000, the predicted

sag is L2/2ro = 2.55 meters. This corresponds to approximately 8 range resolution

cells, given the range resolution of Py = o.33 meters and assuming DOadditioIMl

oversampling (zero padding) during Fourier inversion. For this example, the range

sag at the scene edge for various patch radii is given in Table 3.1.

The geometric distortion is easily removed by post-warping the reconstructed

image. Since the amount of translation for each point can be predicted by the linear
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phase terms of Equations (3.3) and (3.4), each point can be correctly restored

62

to its

“proper” location. A second-order polynomial can be generated from these equations

to describe the geometrically correct placement for any point in the distorted scene.

It is important to note that these equations predict the amount of linear displacement

that occurs in the distortion of a scene to its “improper” place in the warped image.

Geometric correction requires the inverse operation; that is, the movement from a

point from a position in the distorted image to that which is geometrically correct.

Consequently, the polynomial warping function must represent the inverse of the

translations specified by Equations (3.3) and (3.4). This is discussed in great detail

in Chapter 5. Once the proper positions of the points have been determined, an

interpolation of the image domain values using a simple bilinear interpolator is all

that is necessary to correct the geometric distortion. This is in contrast to the

two-dimensional polar-to-rectangular reformatting of the phase history data, which

requires a more complicated sine (or equivalent) interpolation scheme.

This dissertation presents geometric distortion as a prominent consequence of ig-

noring wavefront curvature effects in PFA processed, spotlight-mode S-AR imagery.

The model of Figure 3.2 was presented to explain the nature of the geometric dis-

tortion, and was used to derive a relation for predicting range sag in terms of patch

radius and slant range. Furthermore: as will be shown in Chapter 4: the robust

model representing the phase return from a point target will describe this geomet-

ric distortion in terms of linear phase errors, which render invalid the tomographic

relationship between the Fourier phase history and the imaged scene. However, the

geometric distortion, prominent in many S.AI?imaging scenarios, has been dealt with

since the inception of the PFA algorithm. Specifically, the necessary post-warping of

the image under these scenarios has always been incorporated as a routine step in the

polar-format algorithm processing sequence. This discussion, and that of Chapter

4, provides valuable insight as to the nature of this distortion. However, the unique

contribution of this work is the characterization and compensation of the problem-

atic space -variant defocus that appears when severe wavefront curvature is present,
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and not the geometric distortion.

3.2.2 Space-Variant Defocus

Wavefront curvature defocus effects occur in certain spotlight-mode collection modes

that include imaging at close range or using low center frequencies, especially when

imaging large ground patches. These defocus effects are particularly troublesome

in that they effectively lower scene resolution (and greatly hinder interpretability),

whiIe their space-variant nature makes them difficult to compensate. They occur

in conjunction with the geometric distortion effects described previously, yet are

less visibly, prominent when wavefront curvature is minimal. In fact: as shown in

Figure 3.5, geometric sag is evident but there is no visible image blurring. However,

given other specific imaging scenarios in which wavefront curvature becomes more

severe, the corresponding increase in defocus causes significant visual degradation to

processed imagery.

In contrast to the induced geometric distortion, the defocus effects can not be re-

moved via a post warping procedure. Instead, it will be shown that a one-dimensional

space-variant convolution (deblurring) filter, applied as a post-processing step to the

image domain data, can adequately compensate the defocus effects induced by wave-

front curvature. As will be derived in detail in Chapter 4, these blurring effects are

mostly due to quadratic phase error terms present in the specific scenarios for which

the planar wavefront assumption does not hold. The magnitude of this defocus ef-

fect is a function of the range and cross-range position of the target: and becomes

greater for those targets placed further from the scene center. For the simplest case,

a broadside collection whereby the slant range is much greater the patch radius; that

is, assuming To>> L, the quadratic, Fourier domain phase error is found to be

(3.5)

where k. = 4n/A is the nominal annular radius in the Fourier domain, Tois the slant
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range of the radar platform, (zl, vi) is the location of a target in the reconstructed

slant-plane image, and X’ is the phase-history (Fourier domain) frequency extent

associated with the cross-range dimension. The X’ term appears squared and this

indicates the phase error ~2t is indeed quadratic in nature, and the relation is also

represented as H(.X’), indicating it is a Fourier domain blurring filter as well. IXote

that there is no Y’ term in the relation, and therefore, no range frequency-dependent

blurring. That is, the filter is one-dimensional in the cross-range direction only. This

observation will be confirmed: as will the validity of Equation (3.5), via the robust

phase model for a point target to be presented in Chapter 4.

The effect of the quadratic phase term in the phase history is to convolve the

image with a kernel consisting of the Fourier transform of a complex exponential

having that quadratic phase. Consequently, the image will be blurred (in the cross-

range direction given the approximation in this case) by an amount commensurate

with the width of the convolving kernel, which in turn depends on the peak amplitude

of the quadratic. The actual amount of image defocus that occurs in the processed

imagery, as a function of peak quadratic phase error, is derived in Appendix .4, and

its application is carefully discussed in Chapters 4 and 5.

The amount of quadratic defocus is spatially variant, as indicated by Equation

(3.5). In particular, along the pair of diagonal lines in the image plane given by

Y’ = Iz’I (assuming the point has been correctly rewarped to eliminate geometric

distortion), the amount of defocus is exactly zero. The defocus is maximal at the

image locations (z’, y’) = (O,L) and (z’, y’) = (L, O). -Also, this relation reveals

that the quadratic phase error increases with decreasing slant range. as indicated

by TOin the denominator, and with decreasing radar frequency, as indicated by the

correspondingly increasing ~ in the denominator of ko. These quadratic phase errors

are not represented in the simple spherical curvature model of Figure 3.2, yet will

be quantified in the point target phase return model of the next chapter. In essence,

Equation (3.5) represents the Fourier transform of the space-variant blur function

(ie: the transform of the blurring convolution kernel), and is shown to be phase-onlv.
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(without regard to magnitude), and one-dimensional in the cross-range direction.

Without yet delving into implementation details, it is still reasonable to assume

(for now, if onlv intuitively) that the conjugate multiplication of this blur function“

with the appropriate Fourier data will result in the deconvolution (refocus) of a por-

tion of the imaged scene when those data are inverse Fourier transformed. Indeed,

by spatially varying this deconvolution filter as appropriate, it will be shown in the

following chapters that the image can be efficiently post-filtered to compensate the

defocus effects of wavefront curvature. .4s with the previously presented pentagon

illustrations for geometric distortion, examples will now be presented that simulate

the defocus effects as prescribed by Equation (3.5). That is, a space-variant con-

volution kernel~ as specified by this equation> has been applied to focused imagery

and shown in Figures 3.6 and 3.7. These illustrations demonstrate the space-variant

defocus associated with the faulty assumption of planar wavefronts. As with the pre-

vious geometric distortion example, the amount of defocus exhibited in these fiagures

is greatly exaggerated for illustrative purposes. However, the space-variant behavior

is exactly which is found in real imagery exhibiting this defocus, though of greater

magnitude in this example. In particular, parts (c) and (d) of Figure 3.6 are ex-

panded views, before and after “correction,” of defocus in a severely affected region.

In reality, the corrected version is simply that which does not have the phase error of

Equation (3.5) applied to it. That is, it has not actually been post-filtered for wave-

front curvature compensation (though it could be). In this particular illustration,

the expanded views are of a point in the region of (z’, y’) = (L, O), where defocus is

stated to be most severe. In contrast, the expanded views of Figure 3.7 are in the

neighborhood of g’ = ]z’1,where defocus is said to be minimal. These two examples

illustrate the space -variant nature of the defocus induced by the faulty assumption

of planar wavefronts illuminating the scene.

It must be emphasized that this space-variant defocus phenomenon is not re-

stricted to artificial dissertation examples, and it is not a theoretical behavior to

be found only in mathematical analyses. In fact, defocus effects due to faulty pla-
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nar wavefront assumptions occur in a number of real S.4R imaging systems under

certain scenarios. Of particular interest are the ultra-wideband (U-WB) SAR and

L-Band S-AR, as described in [12, pp. 435–439]. These radars are known for their

foliage penetrating ability [81, 82, 83], which is a phenomenon associated with their

relatively low center frequencies. The large imaged patch sizes associated with these

radars, in conjunction with the low center frequencies and close-in slant ranges,

clearly render the planar wavefront assumption invalid. Consequendy, these particu-

lar SARS generate imagery that suffers from significant space-variant defocus when

their polar-formatted phase histories are processed via the polar-format algorithm.

Furthermore, particularly in the case of the L-Band collection, the patch diameter is

on the order of the slant range distance, rendering invalid the approximation TO>> L,

on which Equation (3.5) is based. Fortunately, the robust phase model to be pre-

sented in Chapter 4 has no reliance on this approximation. As a verification of this

model, Chapter 5 will present synthetically generated spotlight-mode S-AR imagery;

based on the radar parameters of the UW-B and L-Band S.AR, and exhibiting the

mavefront curvature defocus effects exactly as are produced with the actual SAR

systems. The performance of the new space-variant post-filter will be considered for

these practical examples via the synthetic target generator, which is void of all other

phase error effects except those associated with wavefront curvature.

Of course, while fine for illustrative purposes, the approach of artificially applying

(and removing) quadratic phase errors to the imagery of Figures 3.6 and 3.7 begs

the question as to whether Equation (3.5) is correct. Clearly, if applying a faulty

defocus convolution filter, the conjugate multiplication in the Fourier domain by

the transform of this same filter will correctly remove the induced blur, even if the

filter is not an appropriate representation of the space -variant defocus induced by

wavefront curvature. However, the reader can rest assured in knowing that the

defocus phase error terms will soon be derived using a realistic model for the phase

return of a point target, and confirmed by analyzing the performance of the space-

variant post-filter which is based on this model, by way of synthetic target imagery



Chapter3. The Planar Wavefront .4ssumption in Polar-Formatted Imagery 67

(d)

Figure 3.6: Simulated Wavefront Curvature Effects Before and After Removal -
Severely Defocused Region

that has been generated via the tomographic model for the ideal phase return from

a point scatterer. In essence, synthetic imagery will be generated which, by the very

nature of the tomographic paradigm, includes the extra phase terms which induce

distortion and space -variant defocus in the processed imagery. For the practical,

real-world scenarios to be presented, these phase error terms are particularly large.



—— —... . . —

Chapter3. The Planar l~%vefront Assumption in Polar-Formatted Imager.v 68

L (b) Mer{emoval

(d)

Figure 3.7: Simulated Wavefront Curvature Effects Before and .After Removal -
Slightly Defocused Region

The imagery will then be refocused via the space-variant post filter derived from the

phase return model, by compensating the terms that render invalid the tomographic

relationship between the Fourier phase history data and the image domain.
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3.3 Scene Size Limitations Due to Wavefront Cur-

vature Defocus Effects

The faulty assumption of planar wavefronts in certain imaging scenarios leads to

linear, quadratic, and higher order phase error terms that negatively affect the polar-

format processed imagery. The linear phase terms lead to a geometric distortion

that is easily corrected via a post warping procedure. The quadratic phase term, as

described by Equation (3.5), induces a position-dependent (space-variant) defocus

that degrades the image in the cross-range direction. The amount of quadratic

phase (and the defocus induced as a consequence) becomes increasingly severe at the

edges of large patches near the axes, and subsides along the diagonals of the scene.

Furthermore, the defocus increases as the slant-range or the radar center frequency

decrease, or as the cross-range resolution increases. The quadratic defocus effects are

less prominent than the geometric distortion for a given scenario, as will be further

explored in the sled track defocus analysis of this section. However, there also exist

cubic and higher order terms that serve to further defocus and degrade the imagery

in the presence of significant wavefront curvature.

Fortunately, as in the case where the quadratic phase term is small compared to

the linear range sag term, the cubic phase errors (and their associated defocus effects)

are significantly less prominent than the quadratic phase error. This is due to the

inverse factorial scaling of each subsequent phase error (with respect to polynomial

order), when the phase return from a point target is represented by the Taylor series

decomposition. This mathematical analysis is given in the next chapter. Regardless,

in practice, the visual image degradation from these higher order terms (larger than

second order) is negligible and can be ignored. In chapter 6, the residual, higher

order phase errors for the

negligible.

The plots of Figure 3.8

L-Band SAR example will be plotted and shown to be

show the cross-range defocus effects for quadratic phase
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Values of Peak Quadratic Phase

errors of varying amplitudes (peak quadratic phase). The plot corresponding to a

zero-amplitude phase error is the ideal point-target response function, or impulse

response function (IPR). Quadratic phase errors of various peak amplitudes have

been applied to this complex function (in the Fourier domain). After inverse Fourier

transformation, the magnitude responses of the various functions are as shown. The

data has been properly zero-shifted, via alternate row/column multiplex (or proper

linear phase ramp multiplication) so that the DC (zero) component is in the center

of the plot. It is evident from these plots that a quadratic phase error of sufficient

amplitude can significantly degrade image quality. As a rule of thumb, the space-

variant defocus associated with a quadratic phase error of z/4 radian or less is

considered to be negligible.

The value of m/4 is a somewhat objective limit on the peak magnitude of the

quadratic phase error, and is based on the visual distortion of a point target. How-

ever: the development included in Appendix .4 ensures (from a mathematical per-

spective) that this phase error limit prevents visible broadening of the IPR. That
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is, by limiting the peak quadratic phase error to fi/4 radians, the defocus is kept to

within subpixel levels and the visual smear remains negligible. Based on this peak

limit, a relation can be derived that specifies the largest possible patch size allowable

for this phase limit. This is accomplished by relating the phase error calculation of

Equation 3.5 to the maximum allowable peak error for negligible target smearing:

and solving for the maximum patch size:

(3.6)

where X{ is the cross-range frequency extent defining the maximum extent of the

‘x’ < X’ < ~, where AX’ is defined by Equationaperture (]X’I < X{), and –~ _ _

(2.17). The nominal cross-range resolution of the image formed from such an aperture

– T/X~, which is known as the haZf-power width of the ideal response functionis pZt —

and is based on Equation (2.19). Furthermore, from Equation (2.14), k. = 2Uo/c =

4T/A, and from Equation (3.5), recall that the defocus is maximal at the locations

(z’, y’) = (O,L) and (z’, y’)= (L, O). Consequently, the patch size restrictions are in

terms of both range and cross-range radius limits and are found to be

(3.7)
& X:2 ~ :,
2roko

YA2 -X;2 < ;,
2roko

and by substituting for Xi and k., these restrictions can be expressed in terms of pZ/

and X

(3.8)

Thus, the maximum image dimensions in both range y{ and cross-range z~, relative

to the cross-range resolution PZI,must be restricted to maintain good focus- These

restrictions are most severe at close range (small ro) and at low frequencies (large

A), as implied by Equation (3.5), on which they are based. Also, note the patch size
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increase linearly as a function of increasing (ie: smaller valued) cross-

range resolution. Recall from Equation (2.19) that the cross-range resolution pzJ

can be represented in terms of the extent of the synthetic aperture AO; specifically,

pz, = ~/2A0. Thus, the patch radius limits can be alternatively expressed in terms

of the synthetic aperture extent. From Equation (3.8),

and by substitution back into Equation (3.8),

(3.9)

lution p.f and consequently reduces the maximum allowable patch size. In the case of

Equation (3.10), it appears that reducing radar center frequency jo, thereby increas-

ing wavelength A, is actually rekming the patch size requirement, which is contrary

to what is implied by Equation (3.8). However, this is not the case, as one must

realize that resolution is not held constant in the case of Equation (3.10) unless the

aperture extent is increased in proportion with the wavelength. This results in the

denominator outgrowing the numerator (because of the squared denominator term)

and the maximum patch size shrinks, as expected, in the case where resolution

held constant.

is

These simple equations for deriving patch size limits, as well as Equations (3.3)

and (3.5) which specify the respective geometric range sag and quadratic phase error,

are powerful in their ability to predict the geometric distortion and space-variant

defocus effects induced by wavefront curvature. This is true when the assumption is

valid of a large slant-range to patch radius (r. >> xl). For example, recall that there

was siomificant geometric distortion, yet no visible defocus in the sled track example

of Figure 3.5. Assuming a center frequency to of 14 GHz (where A = c/.fo) and a

(3.10)

an increase in aperture extent improves the cross-range reso-
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slant-range of 6000 m, by the prediction of Equation (3.8), quadratic defocus for this

scenario would not become noticeable until the scene radius exceeds 250 m. Thus,

one would not expect visible defocus in this example since the patch radius is only 175

m, and indeed no defocus is apparent anywhere in the scene. It is interesting to note

that the radius of the scene where defocus would just become evident; specifically,

at a radius of 250 m, the geometric sag in range would be over 5 m (or more than

15 range cells).

Clearly, in the presence of wavefront curvature, the amount of geometric sag is

usually quite significant compared to the amount of space-variant defocus present in

the scene. However, by no means does imply that defocus is not a significant problem

in real imagery. Take for example, the UWB SAR mentioned in the previous section.

This foliage penetrating S.4R typically operates at a center frequency .fOof 469.5 MHz

and a slant range r. of 6240 m [12, pp. 437-439]. Based on these parameters and

a cross-range resolution of 0.66 m, Equation (3.8) predicts a maximum allowable

scene radius of only 93 m, if defocus effects are to be avoided. However, scene

sizes for this radar are typically 600 m in cross-range radius. At this maximum

radius, Equation (3.5) predicts a quadratic phase error of ~zt = 32.7 radians> and

consequently, Appendix A (Eqs. (A.17) or (A.28)) can be called upon to determine

that resolution degrades at the scene edges by a factor of nearly 42! Thus, for this

radar, the scene radius must limited to 15.5 percent of the desired size in order to

avoid noticeable space -variant defocus. If this limit is ignored and instead the full

600 m patch is imaged, the degradation due to defocus is such that closely placed

targets near the scene edges are indistinguishable. Indeed, space-variant defocus

arising from the faulty assumption of planar wavefronts can be quite significant in

certain scenarios of polar-formatted spotlight-mode SAR.

Table 3.2 lists scene size restrictions for some common SAR parameters, based

on Equation (3.8). As is shown, in order to constrain the defocus to subpixel levels

(#zt s f rad)t the Patch radius must be reduced = resolution incre=es or center

frequency decreases, for a given fixed slant range. These patch size limits are based on
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Cross-range W-avelength, Center Frequency ~.
Resolution O.Olm, 30 GHz 0.03m, 10 GHz 0.2m, 1.5 GHz 0.6m, 0.5 GHz

10 m Full Patch Full Patch Full Patch Full Patch

3m Full Patch Full Patch 948 548
lm Full Patch 816 316 183

0.3 m 424 245 95 55

QEE_ll 212 122 47 27

Table 3.2: Scene Radius Limits (meters) From Wavefront Curvature Quadratic Phase
Errors

the assumption of a large slant-range relative to patch radius (To>> z~), which leads

to the approximation of Equation (3.5). However, this assumption is not a necessary

condition of the detailed phase models to be introduced next, and consequently, the

calculated phase errors will not necessarily be approximations, except where noted.

3.4 The Space-Variant Post-Filtering Approach

Wavefront Curvature Correction

to

The expression of Equation (3.5) is a closed-form, analytic expression for the space-

variant defocus in terms of the known imaging parameters. It is a small-patch ap-

proximation that represents a broadside-mode aperture synthesis only. However,

as will be shown in the folIowing chapter, an analytical expression can be derived

without these restrictions. That is, a general quadratic phase error expression can

be derived that represents all patch sizes and slant ranges, for squinted as well as

broadside collections. This analytic expression suggests that it is not necessary to

live with the patch size restrictions suggested by Equation (3.8). Indeed, Equation

(3.5) represents the Fourier transform of the approximated space-variant blur func-

tion (ie: the transform of the blurring convolution kernel) at a point (z~, y{) for

the given slant range, frequency extent (resolution), and radar wavelength specified
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by the imaging scenario. The conjugate multiplication of this blur function with

the appropriate Fourier extent at (zb, y~) results in the space-variant deconvolution

(refocus) of that portion of the imaged scene upon inverse Fourier transformation.

The full specification of this filter is based on the sophisticated point target phase

return model, the analysis of which describes the geometric distortion and defocus

in terms of linear and higher order terms. These are the terms which render invalid

the tomographic relationship between the polar-formatted phase history data and

the imaged scene. The negation of these terms compensates the defocus induced by

the assumption of planar wavefronts in the tomographic model. These concepts will

be described in chapter 4. Furthermore, it will be necessary to apply this filter such

that the computation is not overly burdensome, while still adequately compensating

the defocus effects. The application of this filter, in terms of tradeoffs between the

quality of refocus and computational burden, will be covered in Chapter 6. Given

enough computation time, any scene can be adequately rid of wavefront curvature

defocus effects, regardless of the imaged patch size. Fortunately, as will be shown,

adequate refocus can be accomplished in many imaging scenarios with as little as

thirty percent additional computation time. This puts the polar-format algorithm

in the playing field with many other spotlight-mode imaging algorithms in terms

of wavefront curvature compensation, as well as computational load. For certain

imaging scenarios, particularly those requiring squinted collections, PF.A may be

particularly advantageous in terms of computational burden.
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Chapter 4

Analysis of Phase Errors Arising

From Wavefront Curvature

The tomographic paradigm, first proposed by Munson [4, 5]: has been used to de-

scribe the spotlight-mode phase history data as a two-dimensional (planar) annulus

representing the Fourier transform of the three-dimensional scene reflectivity, as pro-

jected onto this plane [6]. Consequently, after proper polar-to-rectangular interpo-

lation, the Fourier inversion of this data yields a complex-valued, two-dimensional

image domain representation of the illuminated scene. This representation is not an

exact portrayal of the imaged scene since several assumptions have been made in

the tomographic model which carry over from Walker’s original spotlight-mode SAR

formulation [2]. These assumptions, when violated, render invalid the direct Fourier

relationship between the phase history data and the image domain reconstruction

via the tomographic paradigm. One assumption is that the residual quadratic phase

error arising from the range-deramp process is insignificant and can be ignored. In

fact, this is not the case in the range-dechirp processing of high bandwidth range

pulses (large chirp rate a), particularly when imaging at close range and in conjunc-

tion with large patch sizes and high cross-range resolutions [4, 9]. The effect of this

deramp residual phase error is to distort and defocus the imagery in a similar fashion

\

—. --
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as wavefront curvature phase errors. While the models introduced in this chapter

can be used to derive the deramp residual phase errors, these are typically small

and are usually iagnored [2] [7, pp. 363–36.5]. Instead, the focus of this chapter is to

quantify the wavefront curvature phase errors arising from the other shortcoming

of the tomographic model; namely, the faulty assumption of planar EM wavefronts

illuminating the imaged scene. As opposed to the deramp residual phase errors,

the wavefront curvature defocus effects can not be ignored in many common SAR

imaging scenarios [12, pp. 435–439].

The previous chapter previewed the nature of the phase errors leading to the

distortion and defocus of polar-formatted spotlight mode imagery exhibiting signif-

icant wavefront curvature. It was shown that the geometric distortion results from

targets lying along the actual arc of the EM wavefront as opposed to residing on the

planar wavefront being approximated. In certain imaging scenarios where the differ-

ential wavefront curvature is significant, the resultant geometric distortion is severe.

However, the planar wavefront model presented was insufficient for the analysis of

the defocus due to quadratic phase errors. In certain imaging scenarios, the defo-

cus effects are significant and their space -variant nature makes them troublesome

to negate. The analysis of the higher-order phase errors that induce space-variant

defocus requires the modeling of the Fourier domain phase history as the collective

integration of phase returns from all the targets in the scene. This model will be

introduced next and it will reveal the effects of the faulty planar wavefront assump-

tion in terms of residual phase terms that increase in value as the planar wavefront

assumption becomes less suitable. From this model, the Fourier domain linear phase

terms will be derived; the presence of which serve to place the target in its cor-

rect location within the image domain scene. In addition, the residual linear phase

terms that induce geometric distortion will be determined, as well as the quadratic

term (an approximation of which was given in Equation (3.5)), which leads to the

space -variant defocus of the imaged scene. Once these values have been quantified,

a method is introduced for the space-variant post-filtering of the imaged scene in
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order tocompensate thespace-variant defocus, asdescribed in Chapter5. The effect

of this filter is to negate the residual quadratic phase error, thereby refocusing the

image.

4.1 Point Target Contribution to Fourier Domain

Reflectivity Function

The tomographic paradigm states that the demodulated (range) echo of each trans-

mitted pulse evaluates the three-dimensional Fourier transform of the scene reflectiv-

ity function, along a line determined between the scene center and platform position.

It has been argued, via the projection-slice theorem, that the combined effect of many

such projections collected along a straight-line aperture is a two-dimensional (slant)

plane representing a slice of the Fourier domain that depicts an orthogonal projec-

tion of the three-dimensional scene onto this plane. These ideas will be formalized to

arrive at an expression for the phase of this two-dimensional Fourier data collection,

as predicted by the tomographic model. Subsequently, this expression will be repre-

sented in terms of its Taylor series expansion, and the residual phase error terms will

be revealed. Before hand, it is instructive to consider the contribution of a target

to the overall scene reflectivity function. That is, to understand the relationship be-

tween a target’s spatial scene position and its behavior in the Fourier domain. Then,

the concept of Fourier domain phase error and its effect on the imaged scene can be

fully understood.

This discussion first considers the orthogonal projection of a scene point p into

the two-dimensional Fourier slant plane. The contribution of the ideal point target

p to the two-dimensional slant plane scene reflectivity can be represented in terms

of a delta function as follows:

(4.1)
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where AP represents a complex-valued scalar denoting the amplitude and Phase of

the radar return. At this point, AP is assumed as having some value, without yet

knowing the exact derivation of its phase. In the slant plane Fourier domain, this

point target contributes a two-dimensional complex sinusoid of the form

Sp(x’,Y’)= 7{SP(Z’,y’)}

= F{.4P6(X’ – x;, y’ – y:)}

= Ape~@&~’+d~’), (4.Q)

~l,herexl and Y’ s@-@ the spatial frequency extent k cross-range and range: respec-

tively. An equivalent vector expression for this Fourier domain point target response

is

5P(k) = Ap@’”k, (4.3)

where k represents position in the Fourier domain and p is a position vector for the

point in the image domain, as projected into the slant plane. These position vectors

will now be described in detail. Consider the notion that each demodulated pulse

consists of evaluating the Fourier transform of the scene function along a line of the

slant plane. A vector denoting a position in this Fourier space and oriented along

the line in question can be written in the form

k;t = ktue. (4.4)

The vector Ue is a unit length pointing vector with a directional orientation as shown

in Figures 4.1 (a) and (b), which is coincident with the pulse being transduced by

the radar platform at the aperture position 0. This vector is then qualified as a point

by the specification of the subscript t, which denotes time variation within a given

return pulse. The magnitude of the unit vector Ue at a particular intra-pulse time t

is

(4.5)
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where UOis the radar center frequency, a is the chirp rate, and Tois the time delay

used to demodulate the return signal of period T. One source for the derivation of kt

(Equation (4.5)) is [7, pp. 16-26]. During the SAR collection, the vector Ii& sweeps

out a two-dimensional surface within the three-dimensional Fourier domain as its

angle O and magnitude kt vary. Since the flight path is assumed to be linear, this

surface is planar and its orientation analogous to the spatial slant plane defined by

the flight line and point at the scene center. The two-dimensional collection geometry

and corresponding Fourier domain for this situation are depicted in Figures 4.1 (a)

and (b), respectively. It follows from Equation (4.3) that the demodulated return

signal sampled at aperture position O and time t due to a point target at scene

position p is of the form

(4.6)

Here, the target position vector P = ZLZ’+ y~y’ is the projection of P into the slant

plane. By expressing p’ and k’ in terms of their respective Cartesian x-y coordinates

via Equation (4.2), the point target response can be written as

~z&,z,J~(x’,Y’) =Ape~(”6~’+%y’) (4.7)

This result shows that the phase function is linear in each of the slant plane spa-

tial frequency coordinates X’ and Y’, representing azimuth and range, respectively.

Furthermore, the phase function is proportional to the target location (zl, y:) in the

slant plane coordinates of the scene. According to the tomographic paradigm, the

SAR data from a point target consists of a complex sinusoid whose frequency in two

dimensions corresponds to the location of the target projected into the slant plane.

This statement is consistent with the known Fourier transform of an ideal impulse

response function, which corresponds to the sinusoid of a frequency proportional to

the spatial displacement of the impulse from the origin. Thusj it should now be clear

that the linear phase terms of the Fourier domain phase history serve to identify the

position of the particular target inducing those phase terms. By the simple inverse
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Figure 4.1: Slant Plane Imaging Geometry for Point Target Return

Fourier transform of the phase history data, an image is produced of this target

and, by extension via superposition, the entire scene is formed. This is assuming,

of course, the interpolation of the annular phase history data onto the Cartesian

grid specified by X’ and Y’, prior to Fourier inversion. The previous discussion and

mathematical development has been adapted from [7, pp. 355–358]

.4s the prior discussion points out (and is

linear Fourier phase terms of the form

01 z&?J@> y’) = W + !&’

serve to place the target in its correct position

More simply, the relation may be expressed as

summarized in Equation (4.7)), the

(4.8)

within the imaged slant plane scene.

and from Equation (4.7), the point target position is

(4.9)

(iz&,y&(x’, Y’)= Ap@ . (4.10)
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However, aswillbe shown next, theassumption ofplanar wavefronts inthetomo-

graphic paradigm leads to extraneous linear terms. These are the terms which render

invalid the direct Fourier relationship between the phase history and the scene be-

ing illuminated. Depending on the particular imaging scenario, any increase in the

residual differential wavefront curvature leads to larger extraneous linear phase terms

and the geometric distortion present in the processed image increases accordingly.

The linear distortion phase terms arising from the planar wavefront appro~imation,

if they are present, are noted as

416= f5(4>9:)X’+J%(42My’ (4.11)

and the total linear phase is

9ht = h + 41.

= X;x) + y;Y’ + tile

= xix’ + y;Y’ + fz(zj, y{)x’ + fj(z~, y:) Y’. (4.12)

It is assumed that all linear phase terms, including those for correct placement of the

target as well as the extraneous error terms leading to distortion, are a function of

the slant plane point target location (z{, y:). Thus, Equation (4.12) can be expressed

as

At = Z;x’ + y;Y’ + fgtx’ + f$IY’. (4.13)

The assumption of planar wavefronts aIso leads to quadratic (and higher order)

phase terms, which serve to defocus the imagery processed via the polar-format

algorithm. This defocus is space variant and can not be compensated via a post-

warping procedure. The higher order phase terms serve to broaden the IPR of

the point target, and consequently degrade the image resolution. .4s is shown in

Appendix A, the degree of IPR broadening can be expressed in terms of the peak

quadratic phase error at the point of the IPR. Since this phase error will be shown

to be a space-varying one with respect to point target location, the overall effect of

..—.—... .— -.—— —.
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the quadratic phase error is to spatially vary the defocus of the image. As opposed

to the linear phase case, there are no quadratic (or higher order) phase terms that

serve to specify the point target position. In fact, any higher order phase terms that

are present serve only to defocus the image. If these terms are significant, they must

be adequately compensated in order to avoid noticeable defocus of the processed

imagery. Since any second-order phase term is an error term,

and the quadratic phase error can be represented in terms of its individual contribu-

tions

tiz~= f~fx’x’ + f@x’Y’ + f~!Y’Yt

= f3,x’2 + f#’Y’ + f#’2, (’4.15)

where ~zt, ~al and .f~ are unique functions of the target point (x&,g~) for the

phase history frequency extent (X’, Y’). The total phase contribution of all first and

second-order terms is

h = h + 42t

= ht + 42.

= 41 i- q$le-1-42,

= X;x’ + y;Y’ + fglx’ + f&Y’ + fGlx’2 + f@x’Y’ + f21Y’2, (4.16)

while keeping in mind that ~1 = x&Yr’+ y&Y’correctly places the point in the imaged

scene and that all other terms are error terms. Thus, the total phase error (through

second-order) is ~t – 41 and is found to be

he = 41E+ 42t

= 41. + 42,

= f&x’ -?-fyY’ -1-f-#x’2 + f@lx’Y’ + f2rY’2. (4.17)
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4.2 The Phase Return from a Point Target

The relationship between phase and point target location is now known. Equation

(4.7) conveys in a simple and concise way, the very essence of the S.AR imaging pro-

cess. Further analysis has shown that the first-order (linear) phase history terms z&Y’

and y~Y’ of Equation (4.16) serve to correctly place the target in the imaged scene in

cross-range and range, respectively. However, according to the tomographic develop-

ment, the approximation of spherical wavefronts contributes to linear, quadratic, and

higher order phase terms that serve to distort and defocus the imagery. The residual

linear terms fa/X’ and ~jlY’ arise from the planar wavefront assumption and serve

to distort the processed imagery in cross-range and range, respectively. The residual

linear range term serves to induce the slant plane range sag Ay’ as described in the

previous chapter, such that Ay’ = ~j,. The quadratic phase terms (if present) serve

to defocus the image and it will soon be shown that this defocus is space -variant and

in the cross-range only, because all quadratic phase terms are zero except .f2fX’2,

the cross-range quadratic term.

The examples of Chapter 3 served to illustrate the effects of these phase error

terms in a qualitative and behavioral manner. However, what is the actual phase

generated by a target for a given imaging scenario? The impact of the phase terms has

been observed and analyzed, though no attempt has yet been made to quantify the

phase errors, as based on actual imaging scenarios. Without knowledge of the amount

of phase error present, these errors can not be compensated: and consequently the

imagery can not be geometrically rewarped or refocused.

4.2.1 Broadside Phase Error Modeling

The derivation of a closed-form solution for the linear and quadratic phase requires

a revisit to the point target contribution model of the previous section. This time,

an emphasis is put on the precise radar echo in the context of the actual imaging
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geometry involved. This section describes the work of Jakowatz, et al [7, pp. 355-

360], who takes the following approach to phase error model. Consider the slant

plane imaging geometry of Figure 4.2. The target position designated by p’ is again

the projection of the actual target location from its native three-space into the slant

plane. It is important to realize that this projection is not an orthogonal projection,

as implied earlier. Instead, it is a projection along a circular arc in three dimensions

centered on and normal to the flight path. That is, centered along a contour of con-

stant range and range rate. The consequence of assuming an orthogonal projection is

the a slight geometric distortion of this image with respect to the proper, circularly

arced projection. This distortion is easily corrected after image formation, assuming

a geometrically proper slant plane image is required, relative to the ground plane.

This distortion arises from the assumption of an orthogonal projection of the three-

dimensional imagery into the slant plane. It is independent of the two-dimensional,

slant plane geometric distortion due to wavefront curvature that is addressed here.

Consequently, it will be ignored since this discussion deals with wavefront curvature

compensation in the slant plane, and not those errors associated with the 3D to 2D

projection of the ground plane imagery to the slant plane.

Assume the radar transmits a linear FM chirp pulse of duration 2’ and represented

by

Sz(t) = ?R{e’J”@’@],

whose phase function is a quadratic of the form

MO= W3t+ cl!t2,

(4,18)

(4.19)

where W. is the radar center frequency and a is the chirp rate. Consider a point

target p’ in the scene at distance r~ from the radar at a certain point in the aperture,

as denoted by angle 0 and distance z’ in Figure 4.2 (a). The phase of the radar return

or echo from this target at aperture position O is simply an appropriately delayed

replica of the transmitted phase of Equation (4.19), and is expressed by

& (t, q = Wl)(t– 2r,/c) -t-G!(t– 2?-Jc)2. (4.20)
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Figure 4.2: Broadside Geometric Model for Derivation of Wavefront Curvature Phase
Errors

The time delay is represented as a function of distance from the platform to the

target point, rt. This distance is inferred to be a function of the platform position

‘O. By definition, as a phase coherent S.AR imaging system, the local reference used

to demodulate the return signal has exactly the same phase function as the return

from a hypothetical target at the scene center (CRP). When the platform is at an

aperture position Oand corresponding distance rZ from the CRP, as shown in Figure

4.2 (a), the reference phase is a variation of Equation(4.20) and is given by

#r=(t,0)= LW(t– 2rz/c) + CY(t– 2r.Jc)2. (4.21)

in

The process of quadrature demodulation forms a complex video signal represented

separate 1 and Q components. The phase of this signal is the difference of the

-- -7,.- - . ----- ..- -. -.,.— ——. .— _____
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return and the reference signal phases:

# (f: e) = dr,(f: e) – 4TZ(Le) (4.22)

This equation is an exact expression for the phase of the complex video signal ob-

tained at aperture angle Oin terms of the radar parameters and the relative geometry

of the target and platform. The equation can

~ (e, k) = –k(T, – ?-z)+ :(rt – TZ)2,

where

,=[++:@_~)]

be rewritten in the form

(4.24)

(4.25)

denotes a scaled and offset measure of intra-pulse time t. This equation for k is

identical to that given by Equation (4.5) except in this case, the time index k is a

function of imaging geometry; specifically, the distance of the platform from scene

center. This mathematical development has been adapted from [7, pp. 358–360]

Consider a certain sample of the video signal, with phase J(O, k), at a time index

k in a return pulse at aperture angle 0. This sample (X, Y) is laid down in a two-

dimensional array at angular coordinate O and radial position k, as shown in Figure

4.2 (b). As Ospans the extent of the aperture and as k varies throughout the duration

of each return pulse, a polar annulus is swept out in the two dimensional phase space.

By the tomographic paradigm, as discussed in Chapter 2, this space is known to

represent the band-limited Fourier transform of the scene reflectivity function for the

illuminated patch. By the very same paradigm, this phase space is also understood to

contain certain phase components that render invalid the direct relationship between

this phase history and Fourier transformation of the reflectivity function. However,

for many imaging scenarios, this phase history estimate is precise enough to allow the
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use of the mathematically convenient and numerically efficient Fourier techniques to

form an acceptable image, if within the patch size limits specified by Equation (3.8)

in Chapter 3.

For those scenarios in which the patch size limits are violated, significant dif-

ferential wavefront curvature is present. Consequently, the assumption of strictly

planar wavefronts illuminating the scene is rendered invalid; thus linear, quadratic,

and higher order residual phase terms appear. The nature of these phase errors

and their mathematical representation is now well understood, as are their visual

effects on the polar-format processed imagery. What remains to be determined are

the specific values of these phase errors in the Fourier domain as a function of the

point target position in the imaged scene, given a particular imaging scenario. With

this knowledge, a filter can be designed and implemented to compensate the residual

quadratic phase error and its associated space-variant defocus.

The second addend of Equation (4.24); specifically, the term (4a/c?)(r~ – rz)2,

represents a phase error resulting from a residual of the deramp process. This term

leads to the deramp residual phase error of the scene, which in fact is based on linear

and higher order phase terms which serve to distort and defocus the image, in a

similar manner as wavefront curvature. .4s with wavefront curvature, the deramp

residual phase error is ignored in the tomographic model. However, since deramp

phase errors are scaled by a factor of l/c2, they are typically small in magnitude

and can be ignored, except for particularly high chirp bandwidths or very short slant

range collections. The derivation and subsequent compensation of deramp residual

phase errors are not the subject of this dissertation, although the process is quite

similar to that which will be discussed for wavefront curvature compensation. The

reader is directed to the following references for details on deramp residual phase

errors and their compensation, which is known as deskew processing or deskewing

[2,4,7, pp. 363-365] and [8, 9]. The analysis of phase errors associated with wavefront

curvature is independent of the deramp analysis. Consequently, ignoring the deramp

residual phase errors, the expression of Equation (4.24) representing the phase of the
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complex video signal is now

@((9,k) = –k(7’t– r.)

= q?-. – ?-J, (4.26)

~,here k is unchanged from before and shown to be

k.[++:(t-:)] (4.27)

4.2.2 Phase of Video Signal With Respect to Imaging Geom-

etry

At this point, nothing more has been done than to arrange the two-dimensional phase

space of Figure 4.2 (b) according to the aperture position Oof the radar platform at

the time index k, which is a function of the distance rZ from the scene center to the

platform and the distance r~ from the platform to the target. These parameters define

the phase space @(O,k) as given by Equation (4.26), which appropriately neglects

deramp residual phase errors. However, in order to design the space-variant post-

filter for compensating the defocus due to wavefront curvature, is desirable to express

the Fourier phase history domain (X’, Y’) in terms of a hypothetical point target

(z&,y;). That is, to represent the phase in the form of @=&,Y&(X’, Y’), as was presented

in Section 4.1. This requires the further coupling (relation) of Figures 4.2 (a) and

(b), as follows. From Figure 4.2 (b), let the phase history radius k be represented

by its Cartesian ikequency coordinates (X, Y) such that

and the aperture position Orelative to the scene center is given by

()e=tan-] ; .

Consequently,

x
tan(0) = ~, Y>o.

(4.28)

(4.29)

(4.30)
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As usual, this analysis is performed in the slant plane. The prime is dropped at this

point in the mathematical development since the point (X, Y) actually represents a

Cartesian point in the Fourier space of (X’, Y’). The analogous spatial representation

of the aperture position Ois shown in Figure 4.2 (a) and is given by

Consequently,

z’ = TOtan(d), ro >0,

and from Equation (4.30),

7-OX./=—
Y’

ro>O, Y>O,

and

(4.31)

(4.32)

(4.33)

(4.34)

The complex video signal phase of Equation (4.26) is represented in terms of k, rZ and

rt. The k term represents the scaled and offset measure of iytra-pulse time t and is

represented by Equation (4.27) in terms of the radar center frequency W., range LFM

chirp rate Q, and the distance from platform to radar scene center, rZ. This distance

is measured from the scene center to the radar platform at a arbitrary aperture point.

In order to represent the complex video phase in terms of this arbitrary point in the

scene, the distances r= and r~ must be defined relative to the aperture position Oand

the point target location p’, where p’ = (p, y). The distance rZ is defined as follows:

.4 right triangle exists between the edges rO,r. and z’ in Figure 4.2 (a). The distance

r. is the broadside range from platform to scene center. By the Pythagorean relation,

T2 — # + #
z— 07 (4.35)

..._. _ .. —-- ---- .—..
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and bysubstitution from Equation (4.34),

~2_ 2

()

X 2

x —?-~ ~
1’

+ r;

{()}

2

=?-; 1+ ; ,

and

(4.36)

w 2

rZ =ro 1+ $ . (4.37)

Furthermore, from Equation (4.30),

r.=rom
(4.38)

The distance r~is defined from an arbitrary platform position along the aperture to

the target positionp’ in the slant plane. From Figure 4.2 (a), this distance canbe

derived using the lawofcosineson the triangle defined bytheedges r., pandr~:

r: =r~+p2 – 2prz COS(Q!). (4.39)

However, cos(a) A sin(~ – a) = sin(8 + 7), so

2=r~+p2r-t – 2pTz sin(6’+ y),

and taking the square root of both sides,

rt = ~r~ + @ – 2prZsin(O + ~).

From Equation (4.29), rt can also be represented by

(4.40)

(4.41)

rt = dr? + p2
-2prxsin(arcta11 (*)+7)-

(4.42)

At this point, the phase of the complex video signal @(@,k) is defined as a function

of the imaging aperture position O,the time index k, and a target in the imaged scene

at a polar point p’ = (p, ~). In summav,

4y(@,k) = k(rz – rt) (4.43)
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where

‘=[~+%+1:
‘x“~w

and

rt = <r% + p2 – 2prZ sin(O + “~).

(Equation (4.27))

(Equation (4.38))

(Equation (4.41))

The phase history swept out as O and k are varied represents the Fourier space for

the target p’ located at (p, ~), as shown in Figure 4.2 (a). The frequency extent

in range and azimuth, 4X’ and AY’, are determined by the aperture extent AO

and chirp bandwidth, respectively, as described in Chapter 2. Furthermore, these

frequency extents dictate the scene resolution as described by Equations (2.18) and

(2.19). A complete Fourier space representing all targets present in an imaged scene

would consist of the superposition of the phase histories for each individual point

target.

4.2.3 Synthetic Target Generation

The synthetic target generator (SYINTARG), described in [7, pp. 391–414], emulates

the motion of the SAR and mathematically transmits, receives, and demodulates

the returns of a number of point reflectors. It creates a two-dimensional phase his-

tory from this collection of point targets, based on Equation (4.43), which closely

matches the signals that an actual SAR would obtain under similar circumstances.

The synthesized dataset can then be processed in various ways as to quantify the im-

age properties obtained by various image formation methods. Specifically, as will be

shown next, the synthetic target generator phase history includes the terms respon-

sible for the distortion and space -variant defocus of the imaged scene resulting from

the planar wavefront assumption. Consequently, SYNTARG can be used to simulate

the close-in, low frequency, high resolution, or wide patch scenarios that exhibit these
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significant wavefront curvature anomalies. Furthermore, the space-variant post-filter

for wavefront curvature correction can be applied to these synthetic data sets, and

the effectiveness of this filter can be analyzed on a number of different scenarios with-

out actually using a real aircraft and SAR to generate these data sets. An added

benefit of processing SYN’T.4RG data is the avoidance of the atmospheric effects and

platform motion errors that occur in actual SAR imaging scenarios. Also, the IPRs

generated by SYiNTARG are theoretically ideal; therefore, the ability of the space-

~,ariant post-filter to compensate Wavefront curvature effects can be analyzed more

quantitatively. Most of the remaining examples in this dissertation use SYINT-4RG

data and help to illustrate the benefits of synthetic target generation for testing S-AR

algorithms.

One disadvantage of SYINT.4RG is its high computational burden. For example,

a phase history of n x n points is generated from the superposition of p point target

phase histories, where p is the number of targets and n2 complex phase history points

are generated for each target. Clearly, as the number of point targets being simulated

increases, the computational burden increases significantly. Thus, the growth of the

computational burden is bounded from above by 0 (pn2). This asymptotic measure

of growth, denoted by 00 (big-oh) notation, is described in detail in [84, pp. 23-41].

In Chapter 6, this notation will also be used to describe the computational burden

of the space-variant post-filter. At first, the computational burden associated with

SYNTARG seems prohibitive. However, SYINTARG obviates the need to acquire real

SAR data and furthermore, the synthetic phase histories are ideal in many respects.

These advantages generally outweigh the disadvantage of SYINT-ARG’Scomputing

time, as well as eliminating the expense of flying a real SAR. Furthermore, while

beyond the scope of this dissertation, it can be shown that the SYNTARG algorithm

is quite amenable to parallel processing, thereby reducing computation time. The

space -variant post-filter for wavefront curvature correction is based on Equation

(4.43): as is SYNTARG, yet SVPF is made more computationally efficient through a

number of simplifications, as will be described in the remainder of this chapter and
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in Chapter 5.

Prior to analyzing Equation (4.43) in terms of its first-order, quadratic, and

higher-order phase terms, it is useful to form an analogous representation in terms of

the frequency extent (X’, Y’). This precisely matches the domain of the Fourier phase

history; namely, its spatial bandwidth, and allows for the use of the computational

simplifications when compensating the wavefront curvature effects. Furthermore,

provided the actual flight path of the S-AR does not violate the assumption of a

linear flight path and that the image is motion compensated to the scene center,

it is not necessary to know the geometric position of the sample points along the

aperture. That is, the linear flight path assumption leads to a closed-form solution

that does not rely on knowledge of individual aperture positions. The slant plane,

Fourier domain phase history (X’, Y’) in terms of a hypothetical Cartesian point

target (zL, y&)is shown to be

Aw(x’,y’)= J%(T.– 7-J (4.44)

where

and

2rz

-)1
?c

(Equation (4.27))

(Equation (4.37))

+ p2 —2pr=sin
(arctan(:) +7) ‘Equati0n(442))

Furthermore, the Cartesian slant plane representation (zo, go) of the point target

P = (P?‘Y) is given bY

x; =pcos’y (4.45)

and

Y; = p sin y. (4.46)

I

.- —. — ——. -
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4.3 Polynomial Phase Term Representation

Section 4.1 describes how the Iinear phase terms of Fourier

serve to identify the position of the of the particular point

domain phase history

target inducing those

terms. By nature of the Fourier transform relationship, these Fourier phase terms

represent a complex sinusoid whose frequency in the two-dimensional space (X’, Y’)

are proportional to the target position (z&,g:) in the transformed image space. Fur-

thermore, additional residual phase terms in both X’ and Y’ appear in the presence of

differential wavefront curvature, and serve to geometrically distort the image. These

are accompanied by higher order phase terms that induce a space-variant defocus

of the image. In [7, pp. 360–363], Equation (4.41) is simplified via the small patch

approximation, which assumes the dimensions of the scene being imaged are small

compared to the SAR standoff distance, such that p <<To. Consequently, the sim-

plified equation for rt, the distance from platform to target, is substituted directly

into Equation (4.43) to yield the first ancl second-order phase terms, for a broadside

collection under the small patch constraints. However, it is desirable to derive these

phase terms without patch size constraints. To this end, in order to isolate these

phase terms, a two-dimensional Taylor series expansion will now be applied to the

Fourier domain phase history described by Equation (4.44).

The Taylor series decomposition serves to represent the phase return from a target

in terms of an infinite series of linear, quadratic, and higher order components. This

method was first used by Walker in 1980 [2] to describe the patch size limitations

of wavefront curvature in broadside collections, and it does not require small patch

approximations. The unique contribution of this dissertation is the application of

the Taylor series decomposition to both squinted and broadside collection geometries,

without regard to patch size or standoff range. The broadside case is discussed here,

with the generalized, squint-mode scenario presented in Section 4.4. From Equation

(4.44), the Taylor series expansion of the phase function ~=&,Y&(X’,Y’) expanded
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around the point (Xo, Yo) is

4x&,Y;(X’, Y’) = aOO+ alOX’ -t-aOIY’+ a~OX’2

+ allX’Y’ + a02.Y’2+...

(4.47)

where

X=X(I ,
Y=YO

(4.48)

4.3.1 LinearPhase Terms

The constant phase term aoo is of no consequence. The terms which are linear in X’

and Y’ are image translation terms and specify the linear’ displacement in azimuth

and range in proportion to alo and aol, respectively. In the presence of wavefront

curvature, these terms contain extraneous linear components that induce the geo-

metric distortion. The second-order terms, namely a20, all and aoz, represent the

space -variant defocus associated with wavefront curvature. These terms, which arise

from the faulty planar wavefront assumption in tomography, will be compensated via

the space -variant post-filter. The second-order coefficients rely both on point target

location (zi, g&) and processing aperture position (0: k), and historically, this has

been considered a computationally difficult post-filtering problem [2, 32]. .41terna-

tively, some have suggested the generation of small patches [85, pp. 274] (and the

associated mosaicking, which may prove to be inefficient [12, pp. 483]) in order to

avoid wavefront curvature defocus effects. Howeverj the relation of Equation (4.44)

associates the motion of the target relative to the platform in terms of the linear

aperture shown in Figures 4.2 (a) and (b). Assuming a linear trajectory and that

out of plane motion is adequately phase compensated, the coherent phase return

from a point target can be represented strictly in terms of its location in the scene

and no longer has dependence on the specific aperture positions in the scene, pro-

vided the aperture encompasses an angular interval which is sufficiently small. That

is, for an angular interval that is much less than 360°, as is typical in SAR but not

.—. -. —— —
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Figure 4.3: Aperture Center Geometric Model for Derivation of Wavefront Curvature
Phase Errors

C.AT, only a portion of the phase error #~~,v~will contribute to the impulse response

broadening and consequent loss of resolution [2].

If the center of the processing aperture is located at (0, k) = (O,ko), where kO

the nominal (spatial frequency) phase history radius, then from Equation (4.38),

is

7-Z= 7-0d1 + tan2(0) (4.49)

= ro (4.50)

and

rt = Jrij+fl-2WOSW7) (4.51)

=rC. (4.52)

This represents the geometry at aperture center for a broadside (non-squinted) col-

lection and is shown in Figure 4.3. The distance rC represents that from the radar
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platform at mid-aperture to the point target. Since the processing aperture is as-

sumed to encompass a sufficiently small angle, the two-dimensional Taylor series of

Equations (4.47) and (4.48) can be expanded around the aperture center such that

(x,Y)= (x,,lf) (4.53)

= (o,k,), (4.54)

where

(4.55)
A

Now, calculating the Taylor terms alo and aol will yield the linear phase terms, while

a20,all and ao2 will yield the quadratic. Cubic and higher terms are smaller and for

sufficiently small processing apertures can be safely ignored. It will be shown via

UWB and L-Band SAR examples in Chapter 6 that in fact the higher order terms

contribute little to the defocus and can be ignored. The image distortion effects

caused by @Zb,u&(X’, Y’) will be examined now. The coefficient alo represents the

target position in azimuth. Therefore, this coefficient specifies the proper cross-

range position for the target as well as describing the geometric distortion. This

coefficient is calculated as follows. From Equation (4.48),

~ &&y~(x’>y’)
alo =

ax
(4.56)

1
=—

{
–2b10X3ro – 2bloXY2r0 + 2X3r~~-

bloY (X2+ Y2) .

+ 2XY2r~dXTP + XY2p2J-

(
– 3X3Ypr0 sin arctan $ + y

)

(– 3A”Y3pr0sin arctan ~ + 7
)

(– X2 Y2pro cos arctan ~ + ‘y
)

(

x
)}

–Y4pr0 cos arctan ~ + -y , (4.57)

I
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where

(

x
blo =

)
%;+ Y%-; + Y2p2 –2Ypr0/~sin arctan ~+? . (4.58)

Next, the Taylor series coefficient alo is evaluated at the aperture center; that is:

where (X, Y) = (O,ko). First, solving for blo:

blo =
{

x%-: + Y2T; + Y2P2
X=o,
Y=kO

(

~

–2Ypro~~ sin arctan ~ + -i
)}

2
(4.59)

X=o,
Y=kO

and by substitution from Equation (4.52),

blo = r.ko .
X=o,
Yak.

(4.62)

Next, evaluating the linear phase coefficient alo given by Equation (4.56) at the

aperture center yields

1
alo = kopro COS(’y)

X=o,
Y=ko ho X=o,

Y=kO

and by Equation (4.62),

= kopro COS(~)
alo

X=o, rCkO
Y=ko

= rl)pCos(’y)
.

r=

Finally, from Equation (4.45),

(4.63)

(4.64)

(4.65)

x~ro
alo =

X=o, rc 7
Y=ko

(4.66)
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where, rewriting Equation (4.52) in terms of the target location (z& yf),

Thus, the linear cross-range coefficient alo is found to be:

xjro
alo = —.

rc

(4.67)

(4.68)

This Taylor coefficient, multiplied by the cross-range frequency extent X’ as shown in

Equation (4.12), determines the linear cross-range Fourier domain phase component

of a point target at (z!, y;). Consequently, upon Fourier transformation of the phase

history, this phase component determines the spatial location in azimuth of the point

in the imaged scene. That is, from Equation (4.12), the linear cross-range phase term

ht. is

ht. = aloX’ (4.69)

x~ro
= —x’,

r=
(4.70)

where X’ is the Fourier frequency extent in cross-range. This phase term contains the

linear phase component x~X’ that serves to correctly place the target in cross-range

within the scene, and the phase error component ~a(x~jY{)X’2which is a consequence

of the planar wavefront assumption and displaces the target from its correct posi-

tion. This phase error component causes the cross-range geometric distortion that

is induced by wavefront curvature.

As of yet, the value for linear phase given in Equation (4.’70) has not been de-

composed into its separate linear and error components. Specifically, it must be

in the form z~X’ + f~ (z~, ylJX’, where fz (z~, g~)x’ specifies the cross-range distor-

tion. In this way, the geometric distortion can be quantified and removed via a

post-warping procedure. This decomposition will be discussed in Section 4.3.2. It

should be noted here, however, that it is not trivial to represent Equation (4.70) in
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terms of its “correct” linear displacement and the additional distortion term. A rea-

sonable approximation can be used to simplify this task, or alternatively, an elegant

mathematical trick can be used to perform the decomposition, as will be presented

in Chapter 5. The latter method is particularly attractive in determining the linear

distortion terms for squint-mode geometries, which

plicated than those for broadside. Phase errors for

discussed in Section 4.4.

are more mathematically com-

squint-mode collections will be

An approach identical to the above is used to determine the linear range coefficient

aol, which will serve to place the point target in range. In this case, from Equation

(4.48), aol is calculated as follows:

aol =

=

o q5z&,v&(x’, Y’)

6’Y
1

{
. bo~Y4Trj– bo~x4r(l – Y3r~LFTP

bo~Y2(X2+ Y2)

+ Zy2FTm –Y3p2dm~

( )
– X4pro sin arctan ~ + -y

(
– X3Ypr0 cos arctan # + -~

)

(
+ X2 Y2pro sin arctan ~ + -y

)

(

x
– XY3pr0 cos arctan ~ •1-y

)

(

x

)}
+2Y4pr0 sin arctan ~ + y ,

where

(4.71)

(4.72)

. (4.73)

{ ( x )1 X2T~ + Y2r~ + Y2p2 – 2YprO~~sin arctan ~ + ~ .
‘F

(4.74)
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Solving for bOlat the aperture center (O,kO):

bol
{

= $ X2r~ + Y2r~ + Y2p2
X=o,
Y=ko

( )}

~
x 2

–2Ypro~~sin arctan ~ + ~
X-=cl,
Y=ko

and by substitution from Equation (4.52),

bol =rC.
X=o,
Y=ko

103

(4.75)

(4.76)

(4.77)

(4.78)

Having determined bol at aperture center, the linear phase coefficient aol given

by Equation (4.71) can also be evaluated at the aperture center, as follows:

aol =rO— 1 (r; - p2 - 2pr0 sin(~)) (4.79)
X=o,
Y=ki) bol X=o,

Y=kO

and by Equation (4.78),

r; – p2 – 2pro sin(y)
aol =rO—

X=o, rC
Y=kO

Finally, again by Equation (4.52),

r2
aol =ro —~=rO—rC, (4.81)

X=o, rC
Y=ko

where, as previously shown,

~ + x~2 + y~2– 2r0y& (Equation (4.67))

for the slant plane target position (zL, y:) and range n from the SCene center tO

radar platform at mid-aperture. The Taylor coefficient aol, when multiplied by the

(4.80)

I

.... ..-— —.. -. I
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range frequency extent 17’,determines the linear phase component in range of a point

target at (zh, y:). That is, from Equation (4.12), the linear range phase term g& is

h, = aolY”

= (7’0– 7-JY’,

(4.82)

(4.83)

cross-range

that serves

phase error

where Y’ is the Fourier frequency extent in range. .4s with the linear

component, this phase term contains the linear phase component g&Y’

to correctly place the target in range within the scene, as well as the

component .f2/Y’, which is a consequence of the planar wavefront assumption and

displaces (geometrically distorts) the target from its correct position. In the next

section, the linear range and cross-range phase terms will be broken into their com-

ponents, identifying the specific linear phase error terms which induce the wavefront

curvature distortion.

4.3.2 Decomposition of Linear Phase Terms

The linear phase terms of a point target constitute the two-dimensional complex

sinusoid e~”lt which determines the spatial placement of the point in the imaged

scene. Ideally, of course, in the absence of significant wavefront curvature, the linear

phase @lt is specified by Equation (4.8) to be x&X’+ y~Y’. That is, the displacement

in cross-range and range is proportional to the linear phase in those directions. In

the previous discussion, a Taylor series expansion was performed on the equation

describing the phase return from a point target with respect to the linear (first-

order) components. The the sum of these phase terms @lt was found to be

At= *X’ + (7-0–?-.)Y’. (4.84)

While these terms completely describe the position of the target in the imaged scene,

they are not yet a form which describes the target in terms of its correct position in

the scene, and its displacement in the presence of wavefront curvature. In describing
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the linear phase components in this new way, the specific geometric distortion can be

quantified. That is, one can determine (and ultimately correct, as will be shown) the

erroneous displacement of a point target from its correct position due to wavefront

curvature. Thus, the desired form for the linear phase terms, as given by Equation

(4.13), is

h = 4)X’+Yw + fe’x’ + fs’y’: (Equation (4.13))

where j&IX’ and f~~Y’ denote the cross-range and range distortion terms, respectively.

When the scene size is much smaller than the slant range at mid-aperture; that

is, when XL << To and y; << To (small patch assumption), then from Figure 4.3,

!/)= ~sin(~) ~ TO– rC. Consequently, the linear phase terms can be decomposed as

follows. From Equation (4.84), consider the cross-range linear term first:

and furthermore, given the Taylor series approximation

f’-.= ~.:+d -WOM’Y)

then for the linear term in range,

,’

(4.85)

(4.86)

Aty = (rO – rc)y’

(4.87)
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Thus, by Equation (4.13),

Error sArisingFrom Wavefront Curvature 106

(4.88)

~ Y’ denote the cross-range and range geometric distortionwhere %X’ and – ~rO

(error) phase terms .f&~X’and ~t~Y’, respectively. INote that these terms (and con-

sequently the distortion) decrease with increasing slant range To, as expected, and

that this distortion is independent of radar wavelength A Equation (4.88) is most

accurate under the small patch assumption xL,y: << To, which ironically, is when

geometric distortion is minimal anyway. However, this approximation allows the ex-

pression of linear phase as the sum of terms which represent the proper placement

of the target and the space-variant distortion terms which displace it. In the ab-

sence of significant wavefront curvature, the error terms are (nearly) zero and the

linear phase specifies the proper point target location of (zi, yj). In the presence of

wavefront curvature, the error terms specify the displacement in range and azimuth

of a point that would otherwise be placed at (xi, y~). By the linear shift property

of the Fourier transform, the linear phase error coefficients ~t, and ~ir, when ex-

pressed in meters, relate directly to target translations, in meters. Consequently,

these phase error coefficients are used to generate the appropriate warping function

for the post-processing procedure to correct for image distortions due to wavefront

curvature. Thus, in addition to being independent of radar wavelength, the geomet-

ric distortion is also independent of raclar resolution, and therefore relies only on

patch size and standoff range ro. The application of the space-variant post-filter for

image refocusing also requires knowing the proper undistorted location of targets in

the imaged scene. As will be shown in Chapter 5, an elegant mathematical trick,

as opposed to the small patch approximation given here, will be applied to precisely

determine the geometrically correct target points, with no restrictions on standoff

range or patch size.

In Chapter 3, the geometric distortion in range Ay’, or range sag, was derived
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from a geometric model that
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represented the physical characteristics of spherical

wavefronts. The range sag equation is given again here for convenience.

L2
Ay’ = —

2TIJ‘
(Equation (3.2)) (4.89)

where L is the patch radius at the edge of the scene, and the approximation To>> L

is applied. Consequently, the angle OLfrom aperture center to scene edge is small.

These assumptions of the physical model exactly parallel the small patch approxi-

mation of this chapter. Similarly: there is a direct parallel between the range sag

equation of Chapter 3 (Equation (4.89)) and the phase analysis model discussed here,

which represents geometric distortion in terms of linear phase errors. Specifically,

for range distortion,

L2
Ay’ = — L<< r.

2To ‘

and

\2

f9r= 3-, X;,y; << ‘To.

Since the models are equivalent when

(geometric model)

(phase model)

L = xi and y~ = 0; that is, when considering

range distortion at the edge of the patch, then

Ay’ = ft, (4.90)

and the models are in perfect agreement. A similar argument can be made for Ax’

and fkl.

The linear Taylor series terms dominate those of higher order. Consequently,

geometric distortion is the prominent and first observable indication of wavefront

curvature. As wavefront curvature becomes more severe and higher-order phase

terms become significant, a space-variant defocus begins to emerge, along with the

increasing geometric distortion. This distortion is prominent even when wavefront

curvature is minimal, and consequently, the post-warping, geometric correction step

of PFA has always been a standard part of the algorithm. The space-variant defocus

------- ,. ,. ,. .. . —.—.. —..——— I
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effects induced by higher-order phase errors are observed only in the more severe

cases of wavefront curvature. However, these defocus effects are significantly more

troublesome to negate than those of geometric distortion.

4.3.3 Quadratic Phase Terms

The quadratic phase terms are the next to be derived from the Taylor series expan-

sion. As previously shown, the linear phase consists of terms that correctly place

the point in the image domain as -wellas extraneous linear distortion terms. In con-

trast, any quadratic phase that is present serves only to degrade the image by way of

space -variant defocus. There is no “good” quadratic phase. From Equation (4.15),

the quadratic phase error #2~is described in terms of its components and is defined

to be

42t = f-#’x’2 + f#’Y’ + f-#Y’2. (4.91)

In terms of the Taylor series expansion: the quadratic phase is equivalently ex-

pressed as

+2t = a20X’2 i- allX’Y’ + aOzY’2, (4.92)

where the coefficients are based on Equation (4-48) and found to be

()(1 & IC(TZ– 7’J
a20 = –

2 8X2
)

> (4.93)
;~;oo ,

all = (?2Ik(Tz– ?-J

( 6’xt?Y )
(4.94)

X=xo>‘
Y=yo

and

()(1 d2IC(TZ– ?-J
aoz = 2 ~y2

) X=xo, ‘
Y=YO

(4.95)

given the slant plane, broadside-only phase return from a point target #z6,V&(X’, Y’) =

k(rZ – rt) (Equation (4.44)). It will be shown in Section (4.4) that the range-only
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and range-azimuth quadratic terms allX’Y’ and aozY’2, respectively, are zero for

all slant-ranges, squint angles, radar wavelengths, patch sizes and resolutions. That

is, the quadratic defocus is one-dimensional in cross-range only, regardless of the

imaging scenario or squint mode. This is one of the most important results of this

dissertation, as one-dimensional filtering is more computationally efficient that two-

dimensional. Furthermore, it will be shown the broadside case described thus far

is simply a specific case of the generalized squint mode scenario, where the squint

angle (?Shappens to be zero. Given that quadratic phase error is one-dimensional is

cross-range only, Equation (4.92) reduces to the following description of quadratic

phase:

4z~= azOX’2, allX’Y’ = O, aOzY’2= O. (4.96)

From Equations (4.44) and (4.93), the quadratic phase coefficient in cross-range is

calculated as follows, when evaluated at the aperture center (Xj Y) = (O,ko):

()(

1 6’2k(rz – rt)

a20 = 5. &y2
) X=o,

Y=ko

{

1 ?-()-?-c X~2T~ r:=—
2 k.

~+—–—
+ k. r~ko rCko}

{

1 To–rc ro (ro —rc) z~2r~=—
2 k. – }

(4.97)
rCko + r~ko ‘

where k. = ~ is the nominal phase history radius, Tois the slant range at broadside,

and from Figure 4.3, the distance rCfrom the platform at mid-aperture to the

at (z$, y:) is

rC = r~ + ~ – 2pro sin(~) (Equation (4.52))

= r; + z~2 + y~2– 2rOy~. (Equation (4.67))

target

Finally, from Equations (4.96) and (4.97), the total quadratic phase for a broadside

collection is found to be

6X= azOX’2

{

1 ro–r. TO(ro – rC) z~2r~
=—

}

X12,
2 k. – rCko + r~ko

(4.98)
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where X’2 is the spatial frequency extent in cross-range and the maximum value of

X’ is equal to ~ (the half-power width), given a cross-range resolution of pz.

The relation of Equation (4.98) describes the total quadratic phase for a broadside

collection, without introducing approximations. Thus, it applies to all patch sizes

at all resolutions and slant ranges. It is a closed-form, deterministic measure of

quadratic phase that is based on the specific imaging geometry and the point of

interest in the scene. As shown above, this equation hardly resembles (in terms

of simplicity) that of Equation (3.5), which described the quadratic phase error

given the small patch assumption, where zb, yj << TO. However, by applying the

approximations associated with the small patch assumption, as was done in Section

4.3.2 for the linear phase terms, in addition to the TayIor series approximation TCs

1~ Equation (4.98) can be approximated by Equation (3.5). Specifically,~o—v:+zro,

{

1 ?-()-7-= ?-0(To–?-c) x;2T~2

}
X’2

~ k. – rCko + r~ko

x~2 – Y;2 X12
2(ro – yo)ko

(4.99)

z~2 —YA2~,2
2roko > x; <<ro, y{ <<ro. (4.100)

It is evident from Equation (4.100) that the quadratic phase error @2tincreases

with better resolution (increasing X’2), decreasing slant range ro, lower center fre-

quency (decreasing ko) and larger imaged patches (increasing x{ and yj). Further-

more, as was demonstrated in Chapter 3, defocus is space-variant and greater along

the x’ and y’ axes and minimized along the diagonals given by y’ = ]z’I. Equa-

tion (4.99) is a slightly better approximation than that of (4.100). -According to

these approximations, the quadratic phase error is exactly zero along the diagonals.

However, when considering the exact relation of Equation (4.98), the phase error is

nearly zero along the diagonals, but exactly zero only at the precise center of the

patch. Given the small patch approximations, Equation (4.99) is equivalent to that

of (3.5), which was derived via an alternative method in [7, pp. 361–363], and yet

again in [12, pp. 220-234]. These consistencies are important (and in fact necessary)
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in order to validate the geometric model presented here. iNext, this model will be

extended to consider squinted collections, thereby removing the broadside restriction

and generalizing space -variant post-filtering to all spotlight-mode imaging scenarios.

4.4 Generalized Phase Error Model for all Squint

Modes

The previous discussion considers only the broadside-mode spotlight imaging sce-

nario. While this is the most fundamental case and the easiest to model and analyze,

it is not suitable for most real world imaging scenarios since these are usually squinted

collections. Consequently, without the ability to compensate wavefront curvature in

squinted modes, the space -variant post-filter is little more than an academic ex-

ercise. Given the theoretical nature of this SAR research, this is not a negative.

However, by generalizing the geometric model to cover squint-mode scenarios, the

space -variant post-filter extends beyond the theoretical bounds. In doing so, the

contribution of this research is of much greater significance. In fact, the major con-

tribution of this dissertation is the generalized, squint-mode phase error equations

to be introduced next, which serve to compensate wavefront curvature errors in all

squint modes, and at all ranges for all patch sizes. Also of major signific~ce are

the computer implementation details of Chapter 5, which provide an effective and

efficient means of applying these equations to compensate the effects of wavefront

curvature in polar-formatted, spotlight-mode images.

4.4.1 Squint-Mode Geometry

Squint-mode imaging consists of “looking backwards or forwards” at the scene being

imaged. As with the broadside case, the radar antenna is slewed as the aperture

is flown so as to stay aimed at the scene center. However, unlike the broadside
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case, the scene being imaged is not at a right angle (perfectly side-looking) to the

radar platform at aperture center. Consequently, the image is motion compensated

to the scene center, yet the motion of this point (range curvature of the CRP) is

not symmetric relative to the midpoint of the aperture. Within the tomographic

paradigm, this means the generation of a Fourier slant plane that is tilted in both

range and cross-range, due to the difference in starting depression angle @Orelative

to the ending depression angle @f at the end of the aperture. This results in the

projection of ground plane targets into the slant plane such that the ground scene is

distorted in both range and cross-range when viewed in the slant plane. However,

as did the previous discussion, this section considers the slant plane Fourier space

without regard to the geometric projection of points into this plane from the ground.

.4s such, the wavefront curvature model, phase derivation, distortion correction and

refocus techniques will apply strictly to the slant-plane imagery.

It is important to note that the squint-mode case is not simply a rotated version

of the broadside case, since the CRP movement is not symmetric relative to the aper-

ture center. Thus, the asymmetric motion must be appropriately accounted for in the

squint-mode model. .4s will be shown: this model is significantly more complicated

than that of the broadside scenario, yet the mathematical reductions yield relations

that are nearly as elegant. Perhaps the most pleasant surprise is that space-variant

defocus remains one-dimensional in the cross range direction, even for squinted col-

lections, thereby providing the segue for efficient computer implementations. One

should also note that the broadside-mode scenario previously discussed is simply a

special case of squint-mode, where the squint angle t9~happens to be zero. Thus,

as would be expected, it will be shown that the new, generalized geometric model

“collapses” to that of the previous, simpler broadside model when the squint angle is

zero. Similarly, the relations derived which represent the linear and quadratic phase

errors also reduce to the previous broadside-mode phase equations when the squint

angle is zero.

Prior to introducing the model representing the phase return from a point target
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Figure 4.4: Squint Angle and Standoff Range

in squint-mode, the coordinate system and polardy of the squint must be defined.

As shown in Figure 4.4, when the radar platform is looking forward towards the

scene, this is considered positive squint, or +0S. When looking backwards (behind

the shoulder), this is negative squint, –d.. If the platform is traveling in the direction

opposite to that shown, then what was previously considered “looking backward” is

now the opposite, and it is a simple matter of reversing the sign of the squint value to

compensate. Regarding the coordinate system, the traditional perspective has been

to align the X’ axis (of both the imaged scene and the phase history) with the flight

path so they are parallel. This axial orientation is also shown in Figure 4.4.

Azimuth ~’

Definitions for Spotlight-Mode

,’ I

The geometric model for the phase return from a point target is shown in Figure

4.5, and applies to the generalized squint-mode case. This model is an extension

of the broadside model of Figure 4.2, and their similarities are apparent. Part (a)
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represents the traditional view of the squinted collection, while part (c) is the cor-

responding Fourier space. Both are shown with the flight path parallel to the X’

axis. In the squinted case, the mid-aperture point is no longer aligned on the Y’

axis, as shown in Figure 4.2, but instead at some angular offset 19~from the Y’ axis.

Consequently, the Fourier space is “rotated” the same amount, with the center of

the frequency extent also found at an angle of O.. When the squint angle is zero

(broadside collection), it is easily seen that parts (a) and (c) are in agreement with

Figure 4.2. That is, the general~ed squint geometry is equivalent to that of the

broadside case when the squint angle is zero.

Unfortunately, the traditional view of the squinted scenario is not the appropri-

ate perspective if a computationally efficient model is to be derived for wavefront

curvature correction. Specifically, the rota,tion of the phase history, as shown in part

(c), is relative to the arbitrary, Cartesian axis of reference and is not in agreement

with the orientation of the SAR platform collecting the data. In fact, the squinted

Fourier data are actually acquired and stored as shown in Figure 4.5 (d); that is,

with respect to the platform, which slews toward the scene center as the aperture is

flown. The actual range axis lies along the line defined by the CRP and the platform

at mid-aperture, which is consistent with the simplified, broadside model of the pre-

vious section. Using the traditional view would require the costly (and unnecessary)

rotation of the entire phase history by an amount of 19~,in order be consistent with

the flight path as shown in part (a). Consequently, the modified flight path perspec-

tive shown in Figure 4.5 (b) is offered as an equivalent alternative to the traditional

view, and it does not require the global rotation of the Fourier phase history data.

While the imaging geometry of Figure 4.5 (b) is seemingly more complicated

than that of part (a), this modified view allows the use of the Fourier phase history

in-situ, without a costly global rotation and the interpolations associated with it.

As will be shown next, the geometry associated with the modified view in part (b)

does lead to some cumbersome mathematics; however, the simplified phase error

equations are elegant, straightforward to implement and computationally efficient,
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Figure 4.5: Geometric Model for Derivation of Squinted-Collection IVavefront Cur-
vature Phase Errors

even in their exact form without approximations. Thus, -what was once thought to

be a complicating transformation; that is, the selection of the modified perspective

,’
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for the squint-mode m’odel, in fact turns out to be its saving grace. .4gain, when

considering the modified view of parts (b) and (d), it is clear that when the squint

angle d~ is zero, then the flight path becomes parallel to the x’ axis, TP = r~, and

the model is identical to that of the previous broadside scenario.

A procedure identical to that of the broadside case will now be used to derive

the phase error equations for the generalized squint-mode scenario. Specifically,

the phase return of a point target must be determined in Fourier space based on

its spatial (z~, g{) position in the imaged scene and the relative platform position.

Based on a-priori knowledge that the platform trajectory is linear (as depicted in

the model), as well as the subsequent evaluation of the Taylor terms at the spectral

center of the processing aperture, a closed-form solution for the linear and quadratic

phase error terms can be found strictly as a function of the scene position, without

regard to individual aperture positions along the flight path. This approach lends

itself to efficient computer implementations. Thus, as with the previous broadside

model, it is desirable to express the Fourier phase history domain (X’, Y’) in terms

of a hypothetical point target (zL, g{). That is, to represent the phase in the form

of &~,V6(.X’,Y’). Again, this requires the further coupling (relation) of the spatial

position and phase models for the squinted case, as shown in Figures 4.5 (b) and

(d), respectively. This model is an extension of the previous broadside scenario, and

consequently, several of the broadside relations are still applicable and are restated

here for convenience. From Section 4.2, but now referring to Figures 4.5 (b) and (d),

&L,vL(x~’,y’)=~(rz – rt),

where

‘=[~+=l-w
.Mso, reflecting a minor change in symbols,

r~X
z—

‘Y’
ro>O, Y>O.

(Equation (4.44))

(Equation (4.27))

Equation (4.33) becomes

(4.101)
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and (4.37) becomes

m 2
7-P=ro 1+ $ .

Additionally,

(4.102)

rt =
/

r: + p2 —2prZ sin
(arc’an(*)+7)o ‘Equati0n(4-42))

Furthermore, the Cartesian slant plane representation (Zo,go) of the point target

P = (P>‘Y) is fmen bY

X;=pcosqf (Equation (4.42))

and

Y: = p sin ~. (Equation (4.42))

Now, additional trigonometric relations are required to fully describe the new

model in terms of its Fourier phase space, with respect to the target position in the

imaged scene. These relations are specific to the squint-mode model of Figure 4.5

and are described as follows.

7-0
Cose = —, (4.103)

rP

and from Equation (4.102),

Cos9 =
roJ~

X2
Y

‘J& X2
Y

(4.104)

I

Similarly,

(4.105)
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and from 13quations (4.10l) and (4.102),

ro~
sin O=

r~~~

F

= J+ -2.
T

—.

Wavefront Curvature 118

(4.106)

The distance r= is defined = the sum of n and rp in the squinted model:

r==rP -l-n. (4.107)

When the squint angle 19Sis zero, n = O, rP = rZ and z’ = z, which is consistent

with the broadside model. In the case of nonzero squint, a new, irregular (non-right)

triangle is defined by the edges z, z’ and n. In this case, the angle As is found to be

& = 90° - (0. + e)

=90°–6.–0: (4.108)

and by the law of sines,

sin OS sin As—= — (4.109)
n

sin~90° –O.–e)
= (4.110)

z

It is desired to represent the distance n strictly in terms of the angle subtended at

mid-aperture, O, the squint angle 6~, and the point in Fourier space: (X, Y). In this

way, the phase error can eventually be specified by the position in the image (xi, g~),

as was the case with the broadside-only collection, in addition to the new squint

angle parameter, Os. To this end, reducing Equation (4.110),

sin OS sin(90°) cos(e. +0) – cos(90°) sin(Os + 0)
=

n z
Cos(e, + e)

=
z“

It follows that

z sin (3s

n = Cos(e, + e)
z sin 8~

=
cos f3scos 0 – sin OSsin 6 ‘

(4.111)

(4.112)

(4.113)
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and by substitution from Equations (4.101), (4.104) and (4.106),

= ,OJ~+sin~s (4.114)
Coses —fsind~ “

Now, by substitution from Equation (4.102),

rPx “
~ sm 19~

n = (4.115)
cos es – # sin o’

Having expressed nin terms of the appropriate parameters, all that remains is to

define the distance rZ from platform to scene center (CRP) in terms of these same

parameters O, 0. and (X, Y). Recalling Equation (4.107),

rz=rp +-n.

By substitution from Equation

Tpx -~ sm 0s.

(Equation (4.107))

(4.115),

( ~ sin OS
=rP l+cos OY

s — ~ sin OS)

where

/()
2

7-P=ro 1+ $ .

For simplicity, let

n’ =
#sin f3~

‘0s es –#sin O$’

Then, from Equation (4.116),

r= = rP (1 + 0s).

–90° <0’<90°.

(4.116)

(Equation (4.102))

(4.117)

(4.118)
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Having described k, rt and TZin terms of a specified point target for squint-mode

scenarios (Equations (4.27), (4.42) and (4.118), respectively), the phase return from

a point target @Z~,Y~(x’, Y’) = k(?-. - r~) has been fully specified. Consequently, the

Taylor series expansion can now be applied to find the linear and quadratic phase

error terms. First, however, it is important to verify that the generalized squint-

mode model reduces to that of the specific broadside model under the appropriate

circumstances. From Figures 4.5 (b) and (d), note that when the platform is at

mid-aperture; that is, when O= O, then x = O, rp = ro, and @ = O (from Equation

(4.117)). Therefore, rZ = Tofor all squint angles 0. at mid-aperture. Consequently,

rC = r; + p2 – 2pro sin-{ at mid-aperture, which is consistent with the broadside

model of Figure 4.2 and Equation (4.52) for rC.

Furthermore, the squint-mode model must reduce to the specific broadside case

when the squint angle OSis zero. In this case, when 19$= O, then n = O from

Equation (4.115), and r= = rP = r.
m

1 + ‘y 2 from Equations (4.102) and (4.116).

Thus, the squint-mode model reduces to that of broadside when O. = O, at least

for the equations derived thus far. The generalized linear and quadratic phase error

equations will be derived next, and it remains to be shown that these equations will

(and must) also reduce to the broadside case when the squint is zero.

4.4.2 Polynomial Phase Terms for Squint-Mode

As was the case with the broadside collection, a Taylor series expansion will be

applied to the point target phase return of Equation (4.44), given the value of r~ in

Equation (4.42) (which applies to either squint or broadside collections), as well as

the new squint-specific relation for r= given by Equation (4.118). Thus, as before,

the Taylor series of the phase function &&,Y&(X’, Y’) is expanded around the aperture
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center point (Xo, Yo) = (O,ko) such that

LL,YL(x’, y’)= aOO+aIoX’ +C201Y’+ a20X’2

+ allX’Y’ +a02Y’2+... (Equation (4.47))

where

(-)(1 a~+~Ik(r=– ?-J
aij =

~!j! ~xi~yj ) fix, xo=o, Yo=ko=~.
X=xo,
Y=XJ

(Equation (4.48))

The constant phase term aoo is of no consequence. The terms which are linear in

X’ and Y’ areimage translation terms and specify the linear target displacement

in cross-range and range in proportion to alo and aol, respectively. In the presence

of wavefront curvature, these terms contain extraneous linear components that in-

duce the geometric distortion. Thus alo and aol fully describe the target position

in range and cross-range, including the displacement (geometric distortion) due to

wavefront curvature. The linear phase coefficient aol for target placement in range

for a generalized, squinted collection is defined as follows. From Equation (4.48),

(4.119)

(4.120)

,’ I
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given

and

k = 4’,

r~ = -2prZsin(arctan(~) +Y),

/()
2

rp =rlJ 1+ : ,

$ sines
f-i?.= –90° < e. <90°:

cos es –$sin8S’

x; =pcos’y

d = p sin-y.

(Equation (4.28))

(Equation (4.42))

(Equation (4.118))

(Equation (4.102))

(Equation (4.117))

(Equation (4.45))

(Equation (4.46))

Evaluating Equation (4.119) for the generalized, squint-mode range coefficient

aol yields the following.

(~dz~,y~(x’>y’)
aol =

aY ) X=o,
Y=ko

= ‘?-()—?-c, (4.121)

which is the same result as for the broadside-only case, given by Equation (4.81).

Consequently, as previously shown,

(Equation (4.67))

(Equation (4.86))

~,here To is the slant range at mid-aperture and (z6, y~) specifies the point in the

imaged slant plane scene for which the phase return is being calculated. Similarly,

for the squint-mode case, the linear cross-range phase coefficient alo is calculated
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from Equations (4.48) and (4.120):

(~#z&,?/&(x’> y’)
alo =

ax ) X=o,
Y=ko

= ~{tanO~ [r. - ro +y~] +Z~}, (4.122)
rC

where OSis the squint angle at mid-aperture, at which point the slant range is defined

as r.. From Equations (4.69) and (4.122), the linear cross-range phase term #l~z is

ht. = a~oX’

= ~ {tan 0. [r. – rO+ y:] + x:} X’, –90° <0.<90°. (4.123)
rC

When the squint angle fl~is zero, then the broadside scenario applies and this equa-

tion reduces to

x~ro ,
ht. l..=O=-& (broadside scenario) (4.124)

which agrees with (4.70), the broadside model equation. From Equations (4.82) and

(4.121), the squint-mode linear phase term in range 4,,, is

#it, = aOly’

= (Tl)– TC)Y’, (4.125)

which is identical to Equation (4.83) for the broadside model. This is true for all

squint angles (not just 0s.= O), since the equation is independent of the squint angle

19~.By linear combination of Equations (4.123) and (4.125), the total linear phase

4U for the generalized squint-mode scenario is found to be

At = At= + h,

= aloX’ + aolYJ

= Q {tan O.[r. – ?-()+ yj] + Zj} x’ + (n) – 7-C)Y’, (4.126)
r=

where X’ and Y’ represent the spatial frequency extents in cross-range and range,

respectively. This equation describes the total linear phase including the components
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x@” +g$Y’ that properly place the target in the imaged spatial-domain scene, as well

as the extraneous linear distortion terms ~&/X’ and ~ifY’, which serve to misplace

the target in cross-range and range, respectively. Hence: the total linear phase could

be represented by the form of Equation (4.13), namely

q!q~= X;x’ + y;Y’ + f~fx’ + fyY’.

In fact, this was done for the broadside-only linear phase equation of (4.84). As will

be discussed in Chapter 5, it necessary to isolate the distortion terms so that the

space -variant post-filter can be correctly appIied.

However, in its current form, there appears no straightforward method for the

decomposition of Equation (4.126) into its “correct” and distorted terms. This re-

lation is composed of both range and cross-range terms, the combination of Equa-

tions (4.123) and (4.125). Since the range term is independent of squint, it can be

decomposed as was shown in Equation (4.87) for the broadside-only case. Unfortu-

nately, the cross-range linear phase term of Equation (4.123) is more problematic.

There appears no obvious way to isolate the geometric distortion term because of

the trigonometric function that is involved. Consequently, the total linear phase ~1~

of Equation (4.126) can not be decomposed in terms of geometric distortion and

“proper placement” components, as will be required in Chapter 5. Furthermore,

even for the simpler broadside-only case of Section 4.2, this decomposition required

the application of a small patch assumption which was not always appropriate. For-

tunately, as will be shown in the next chapter, an elegant mathematical trick can

be empIoyed which serves to isolate the geometric distortion component of a given

point (zI, g:) in the presence of wavefront curwture. This is true even when using

the exact relation for linear phase; consequently, it applies to all patch sizes and slant

ranges with no approximation errors being introduced. Equally fortunate is that the

trick is appropriate for the generalized squint-mode linear phase equation and not

just the specific broadside relation. Hence, it will be possible to apply space-variant

post-filtering to all polar-formatted spotlight-mode imaging scenarios regardless of

patch size, squint angle, slant range or resolution.
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4.4.3 Quadratic Phase Error Term for Squinted Collections

The Taylor series expansion has been appliedto derive the linear components of

the phase return from a point target. Earlier, in Section 4.2, this expansion was

applied tothebroadside-only imaging model, andinthis section to the generalized,

squint-mode model of which the broadside scenario is a specific case. Next, the

quadratic phase error terms for the squint-mode model will be calculated. .4s was

the case for the linear terms, it will be shown that the broadside-mode quadratic

terms derived earlier are a special case of the more general squint-mode terms to be

derived now. As one would expect, for squinted cases ((l. # O) there are additional

quadratic phase components which are a function of the squint angle at mid-aperture,

O.. When the squint is zero, the generalized squint-mode quadratic equations reduce

to those of the broadside case, as expected. In all cases, quadratic phase serves to

defocus the image via IPR broadening, and is space-variant in nature. Perhaps the

most surprising (and pleasant) result for the generalized squint-mode scenario is that

the defocus remains strictly cross-range only, regardless of the degree of squint. This

cross-range-only defocus is observable in squinted imagery where wavefront curvature

is significant, yet this is only a qualitative observation. The one-dimensionality of

the defocus, even for squinted collections, will now be verified mathematically by

showing that the quadratic phase terms X’Y’ and Y’2 are indeed zero, regardless of

squint angle. Furthermore, in Chapter 6, it will be demonstrated via SYNT-ARG-

based computer simulations that the space -variant defocus is effectively removed for

squinted scenarios via the post-filter derived from the new, generalized squint-mode

model.

The quadratic terms of the phase return from a point target are calculated from

the Taylor series derivation of the generalized, squint-mode phase equation (4.120),

where @=~,Y&(X’, Y’) = k(r. – r~), and are

42t = f#2 + f@j’x’y’ + f#’2

= a20X’2 + allX’Y’ + ao2Y’2.

expressed as the sum #2t, where

(Equation (4.91))

(Equation (4.92))
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From Equation (4.48), the specific quadratic coefficients a20, all and ao2 are defined

as

()(1 6’2k(r. – 7-J
azo = 5 8X2

)_ ;:;.O, ‘

(

a2 Ic(rz – ?-J
all =

axaY )
>X=xo,

Y=}l)

and

()(1 & /%(?-z– 7’J
aoz = 5 ~y2

) X=A’1),‘
Y=YO

(Equation (4.93))

(Equation (4.94))

(Equation (4.95))

and the coefficients are evaluated at the aperture center, (Xo, Yo) = (O,ko). First,

calculating the quadratic range coefficient aoz,

()(1 a2/k(?-.– 7-J
aoz = 5 ~y2 ) X=o,

Y=ko

+d===)++(d’===)= 2tto

(from Equation (4.52))

= o. (4.127)

Thus, for the generalized squint-mode scenario, the range oriented quadratic

phase error term f7/Y’2 is found to be

f~fY’2 = ao2Y’2= 0Y’2 = O (4.128)

for all squint angles, slant ranges, center frequencies and resolutions. However, it has

not yet been shown that defocus due to quadratic phase is strictly one-dimensional

in cross-range. This requires the quadratic cross term f@/X’Y’ to be zero, as well.

Since f~lX’Y’ = allX’Y’, the coefficient term all can be calculated from Equations
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(4.94) and (4.120) as follows:

(i92/k(?-z– rJ
all =

b’xaY ) X=o,
Y=ko

{
‘0 tan 0. –

‘g
~ [Totan 0. – y; tan O. – z~]
rC

— tan 6. – ~ [–ro tan 0.+ g; tan O.+ z~]
}

= o. (4.129)

Thus, for the generalized squint-mode scenario, the quadratic cross term for phase

error, ~@/Y’2, is found to be

f~,X’Y’ = a~~X’Y’ = 0X’Y’2 = O (4.130)

for all squint angles, slant ranges, center frequencies and resolutions. Consequently,

there are no quadratic phase error components with range orientation, regardless of

squint. This is a remarkable result which greatly reduces the computational burden

because one-dimensional filtering is sufficient when compensating wavefront curva-

ture defocus effects via a space-variant post-filter.

All that remains is to calculate the quadratic phase term ~2/A”’2and algebraically

combine and rearrange the terms. Since i2’X’2 = azOX’2 (from Equations (4-91)

and (4.92) ), the coefficient term a20 can be calculated from Equations (4.93) and

(4.120) at the aperture center, (Xo, U) = (O,ko):

()(1 6’2Ic(r=– 7-J
azo = 5 8X2

) X=o,
Y=ki)

{

‘0 [1+ 2tan20.]=; &o-rc)+~

[ 1~ ~(7-otan 0. – g; tan 0. – z~) 2
+ 4?-=3 ko

(Equation (4.93))

}

- ~ [To+3rotan2O.-2y~tan20. - 2x: tanOs] .. (4.131)
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Finally, after some algebraic manipulation to combine and rearrange the terms of

azo, the quadratic phase term falX’2 can be expressed by the following relation:

j~rX’2 = azOX’2

1

{[

r. —rC ro (TO– rC) X;2T;
=—

2 Ik(l – 1
(a)

rCitO + r;ko

2rlJtan e.

[

x~y~ro – x~r~
+ x; +

1
(b)

rCko r;

ro tan2 es

[
2rC– 3r0 + 2y~+

r: —2y&r~+ y&2ro
+

1}
X’2, (c)

rCko r:

(4.132)

where k. = ~ = ~ is the nominal phase history radius, r. is the slant range

CRP at mid-aperture, and from Figure 4.5 (a): the distance rC from the platform

mid-aperture to the target at (zh, y:) is

to

at

rc = 4r; -?-p2– 2pr0 sin(y) (Equation (4.52))

= 4r~ + x~2 + y&2– 2r0y& (Equation (4.67))

X;2
=ro–y~+—.

2r0
(Equation (4.86))

Equation (4.132) is a complete, exact specification of the quadratic phase error for

the generalized, squint-mode scenario. This closed-form solution, based on the linear

flight path model of Figure 4.5, describes the quadratic phase error in Fourier space

as a function of the target position (z~, y&)as imaged in the slant plane. This phase

error is one-dimensional in cross-range only and is valid for every resolution, center

frequency, slant range, squint angle and patch diameter, where the spotlight-mode

aperture is constrained to an angular interval much less than 360° [2]. Equation

(4.132) is arranged such that the first bracketed addend (a) is independent of squint:

while the second and third bracketed addends, (b) and (c), respectively, are functions

of the squint angle 19~.When O. is zero, then the broadside case applies since at mid-

aperture, the platform is looking at a right angle towards the scene center. In this

case, tan OS = tan(0) = O, and squint addends (b) and (c) of Equation (4.132)
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disappear. This results in the

(4.132),
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following broadside-specific relation. From Equation

f~lx’’lo==o= a’l)x’’lo~=o (broadside scenario)

{

1 ?-o-r. 7-I)(TO–7-C) z~’r~
=—

}
x“.

2 k. –
(4.133)

rCko + r~ko

This is identical to the broadside-only quadratic phase error equation given in (4.98),

as would be expected. Thus, as was shown earlier for the geometric distortion terms,

the broadside scenario is a specific case of the generalized squint-mode scenario with

respect to the quadratic phase error term, as well.

It is useful to present a simplified approximation of the quadratic phase error of

Equation (4.132), based on the small patch assumption where Z&y~ << ro. Although

this simplified relation will allow faster phase error calculations (in terms of CPU

multiplies) given the specific scenarios for which the approximation holds, this is

not the main benefit of a simpler mathematical form. Instead, it helps us to better

visualize and understand the precise effect (detriment) of squint-mode scenarios on

quadratic phase error, compared to imaging the same scene without squint. When

the small patch assumption

yields the following relation

f31x’2 = &

{

1 z~’ – y;’
z—

2 r. k.

is applied, some additional mathematical manipulation

for squint-mode quadratic phase error:

– tan $.

As before, the equation is separated

[-]-tan’e.[-]}x”, ~l,yJ<ro.

(4.134)

into addends which represent their reliance on

squint. The first addend is independent of squint while the second and third are

functions of the squint angle 8., as shown. When squint is zero, only the first term

remains, as shown.

f-#lx’210==o= Mo.=o (broadside scenario approximated)

+{%r’}x”y“y’<’O- (4.135)

.

.- —. -.
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In this broadside-specific case, this equation reduces such that it is identical to that

of the small-patch approximated, broadside-only scenario described by Equation

(4.100).

The quadratic phase error approximation given by Equation (4.134) is simple

and revealing. It helps to aid in the understanding of how squint affects the overall

quadratic phase; specifically, how the new squint terms contribute (additively) to

the overall phase error, relative to the broadside phase term. When considering

the contribution of just the two squint addends, note that the first (with the tan Os

coefficient) contains an z~/ro term. The second squint addend (with the tan2 Os

coefficient), an Z~2/r~ term. The first squint addend dominates the second because

when x! << To, then Z~2/r~ << Z~/ro. Consequently, the second can be ignored

when considering the contribution of squint to the overall phase error. The effect

of the first squint addend is to doubIe the maximum quadratic phase error in a

scene covering a square (or circular) ground patch, over the same patch imaged at

broadside. However, by no means does this double computation time, as will be

discussed in Chapter 6.

As one might suspect (but has not yet been shown), a higher quadratic phase

error is more costly in terms of computation time when post-filtering. The additional

squint addends do increase the overall quadratic phase error and consequently, the

computation time. However, as will be shown in Chapter 6, Section 6.3, even for

moderately severe squint angles (–45° < 19~< 45°), the overall post-filtering compu-

tational burden is increased by as little as 5.5% over that of the same scene imaged at

broadside. This is in stark contrast to some other image formation algorithms such

as RMA, whose oversampling requirement in squinted scenarios drastically increases

computation time [12, pp. 401–438].
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4.5 Summary of Phase Error Analysis

Spotlight-mode image formation via the polar-formatting algorithm has traditionally

assumed that planar wavefronts illuminate the imaged scene. This assumption is

faulty in certain imaging scenarios; specifically, when the scene is large, the radar

center frequency low, the resolution high or the slant range short. In these scenarios,

the actual spherical wavefronts differ sufficiently from the planar assumption such

that linear, quadratic, and higher-order residual phase terms appear. The linear

terms lead to a geometric distortion of the imaged scene, while the higher-order

terms lead to a space-variant defocus of the scene.

The spotlight-mode SAR formulation, first introduced by Walker in [2], describes

these phase errors in terms of a Taylor series expansion and discusses the limita-

tions of the spotlight-mode approach with respect to these phase errors. W-alker also

mentions the possibility of compensating the phase errors arising from wavefront cur-

vature, yet deems the problem “difficult to implement” because the errors depend

on both aperture position and target position in the scene, rendering the problem

computationally inefficient. Later, Munson [4] and Ausherman [5] cast spotlight-

mode image formation as a tomographic process and describe the planar wavefront

assumption as a shortcoming of this tomographic paradigm. Specifically, when the

planar wavefront assumption is violated, there no longer exists a direct Fourier re-

lationship between the phase history data and the reconstructed image. Instead,

extraneous phase terms are present and lead to the geometric distortion and space-

variant defocus.

In this dissertation, a geometric model was presented in Sections 4.1 and 4.2

that represents the phase return from a point target for a linear flight trajectory,

from a tomographic perspective. This model was first proposed by Jakowatz in

[7, pp. 355-365] and applies to broadside (non-squint) spotlight-mode collections.

Jakowatz makes no assumptions regarding the spherical nature of the wavefronts, and

a mathematical analysis of the phase return from a point target yields an expression
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for the linear and quadratic phase errors in closed-form (eg: for a linear flight path),

via a small patch approximation. These phase errors arise from the faulty assumption

of planar wavefront.s illuminating the scene. Jakowatz then demonstrates in [10]

that a space-variant post-filter, based on the closed-form phase error equations,

adequately compensates the defocus for the specific case of a small patch, broadside

collection. In that paper, polar-formatting with space-variant post-filtering was

demonstrated to be competitive with other image formation methods, all of which

inherently compensate wavefront curvature. However, computational parameters for

the space -variant post-filter were picked ad hoc and no emphasis was placed on

optimizing computational efficiency. Furthermore, no model had yet been developed

to deal with squint-mode collections.

The unique contribution of this dissertation chapter, detailed in Section 4.4 and

briefly introduced by Doren in [11], is a closed-form description of the linear and

quadratic phase errors that apply not only to broadside collections, but also the more

general squinted collection scenarios. It was shown here that the original broadside-

mode equations of Jakowatz are a special case of the general squint-mode equations.

Furthermore, these generalized relations describe the linear and quadratic phase

errors for all patch sizes, resolutions, slant ranges and resolutions, without requiring

a small patch assumption, as did Jakowatz. Thus, they are applicable to many

practical imaging scenarios, without unduly restricting the collections to broadside-

only or introducing approximation errors into the phase equations. These equations

are based on a new, generalized point target phase return model based on that of

Jakowatz, in conjunction with a Taylor series expansion of the phase return equation,

as proposed by Walker in [2] for broadside scenarios.

It has now been shown that the quadratic phase term induces a one-dimensional

defocus in cross-range only, regardless of squint angle, for the linear trajectory being

modeled. In spite of Walker’s predictions, Chapters 5 and 6 will demonstrate how

this equation can be applied to a space-variant post-filter which efficiently and effec-

tively compensates wavefront curvature in squinted spotlight-mode imagery formed
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At this point, in spite of Walker’s claims, it has already been

demonstrated via the linear trajectory model of Figure 4.5 that there is no need to

calculate the phase error at individual aperture points. That is, the model yields a

closed-form solution that is independent of aperture position. Furthermore, Walker

failed to realize that the defocus is one dimensional in cross-range, even for squinted

scenarios. In the following chapters, it will be shown that wavefront curvature com-

pensation need not be calculated for every individual point in the imaged scene, as

Walker prescribes. Instead, the space -variant post-filter is varied only as often as

necessary to maintain a minimal residual phase error, which results in impercep-

tible image defocus. Consequently, the space -variant post-filter will be shown to

be computationally efficient, such that PFA will remain competitive with other im-

age formation algorithms even when compensating the defocus effects of wavefront

curvature.

In summary, the concepts of this chapter and the results of Equations (4.47),

(4.126) and (41132) lead to the following equation describing the phase return from

a point target, without the approximations associated with planar wave or small-

patch assumptions. It is general in that it applies to all squint angles, slant ranges,

resolutions, frequencies and patch sizes.

04-ML(X’,Y’) = aOO+ alOX’ + aOIY’+ azOX’2

+ allX’Y’ + a02Y’2+...

= Q {tanOs [r. – TO+ y:] + x&}X’ + (To– TC)Y’
rC

{[

TO—rC ro (ro —rC) x~2r~
+;

k. – rCko + r~ko 1

2r0 tan 0.

[

x~y~ro—x~r~
+ x; +

rCko rg 1

ro tan2 OS

[
2rC– 3r0 + 2y~+

1}

r; —2y&~ + y{2r0 X,2
+

rCko r:

+... - (4.136)

This equation is a Taylor series representation of the total Fourier domain phase as

— ..-—. ,. ——-—
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a function of spatial position the image domain, and includes the linear distortion

terms and quadratic cross-range defocus term that arise from the planar wavefront

assumption when used in the presence of wavefront curvature. While higher-order

error terms exist, they are typically inconsequential, as discussed in Chapter 6.
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Chapter 5

Space-Variant Post-Filter Design

In the previous chapter, a closed-form, analytic expression was developed to describe

the quadratic phase error in the presence of wavefront curvature. This phase error,

due to the faulty planar wavefront assumption in the tomographic paradigm, renders

invalid the direct Fourier relationship between the polar-formatted phase history and

the scene being illuminated. Without proper quadratic phase compensation, a space-

variant, cross-range defocus is induced in the formed imagery, and for some imaging

scenarios, is severe enough to significantly reduce resolution. This degradation is

particularly severe along the Cartesian axes at the far edges of large scenes, when

imaging at close range, using low center frequencies or at high spatial resolutions.

The expression previously derived for quadratic phase (Equation (4.132)) accurately

describes this error for all scene sizes, slant ranges, center frequencies, resolutions and

squint angles, for a specified linear platform trajectory. Furthermore, it was shown

that the defocus remains one-dimensional in cross-range even for squinted scenarios,

which greatly reduces computational burden. Also, it was suggested that the overall

computational burden is reasonable because phase corrections need not be applied

at every aperture point, and that the additional burden associated with squinted

scenes is typically less than 6.9% (as will be verified in Chapter 6).

Exactly how is the quadratic phase error compensated? That is, based on the

,..— ——
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space -variant quadratic phase error equation presented previously, by what process

is the polar-formatted spotlight-mode image refocused when degraded by wavefront

curvature defocus effects? That is the topic of this chapter. The space-variant

defocus effects are compensated in the image domain by what is considered an image

domain deconvolution process. The beauty of this process is that. it is performed

as a separate post-processing step to PFA, and therefore, is independent of the

image-formation process. Only basic radar parameters and simple imaging geometry

descriptions are required to satisfy the analytic quadratic phase error equation, and

consequently, image refocus is accomplished based strictly on these parameters and

the spatial position in the scene, without dependence on the original collected Fourier

phase history or knowledge of scene content. This deconvolution process, also known

as a restoration filter or inverse filter, and referred to here as a space-variant post-

jilter, frees us from the severe scene size restrictions imposed by polar-formatting in

the presence of wavefront curvature, as discussed in Chapter 3. Furthermore, space-

variant post-filtering is straightforward to implement and computationally efficient,

as it adds as little as an additional 25~0 to the polar-format computation time.

5.1 The Concept of Wavefront Curvature Correc-

tion Via Space-Variant Post-Filtering

The one-dimensional, cross-range defocus (IPR broadening) in spotlight-mode im-

agery processed via polar-formatting will be compensated via a space-variant post-

filter, whose parameters are specified by the quadratic phase error equations of Chap-

ter 3. While this process may be thought of as an image domain deconvolution

process, it may equivalently be considered a Fourier-domain phase correction pro-

cess. Since the phase return models and subsequent quadratic phase error equations

derived in Chapter 3 are in terms of Fourier space, it is convenient to discuss the

space -variant post-filter in terms of a frequency domain phase correction process.
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Furthermore, except forthesmallest ofspatial domain convolution kernels, this in-

verse filtering process is often more computationally efficient in the Fourier domain.

The filter, as applied to a location in Fourier space, is a quadratic phase function

derived from the phase error equation at that particular (z~, g&)Cartesian location

in the spatial domain. Since this equation specifies the Fourier phase error contri-

bution at that given point, a complex-conjugate multiply of the filter values with

the complex-valued Fourier data results in the appropriate compensation (negation)

of the phase error within the Fourier data. Alternatively, in the spatial domain,

wavefront curvature correction consists of a deconvolution process whereby the con-

volution kernel is the inverse Fourier transform of the quadratic phase error function

for that point in the scene.

The corrective post-filter values are based on the quadratic phase error equa-

tion (or its approximation, as appropriate), as derived in Chapter 3. This equation

is repeated here for convenience. The Fourier domain quadratic phase error due

to wavefront curvature @Z~(.~,4)(X’, Y’), which is a function of spatial slant range

position (zi, y&),was given in Equation (4.132) and found tO be

42t(z&y&)(x’, y’)= @2t(z&&0 (One-dimensional)

(5.1)

1

{[

To — ‘r~ ‘rO(7-0–?-c) x~2r~
=—

2 k. – rCko + r~ko 1

+ 2r0 tan 0.

[

x~y~ro—x~r~
x: +

rCko r: 1

ro tan2 OS
+

[
2rC– 3r0 + 234 +

1}

r: – 2y&r~+ y~2r0 X,2

rCko r: >

(5.2)

where k. = ~ = ~ is the nominal phase history radius, r. is the slant range

from platform to CRP at mid-aperture, r. is the distance from the platform at mid-

aperture to the target positioned at (xi, y{),and 19Sisthe squint angle (measured

from broadside). Furthermore, X’ is the cross-range frequency extent. The half-

.’ I

-—. .—— —r.—. ----- I
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power width of the IPR, X;, defines the maximum frequency extent of the aperture

such that (1A”’] s X;), where

x’= ~ (5.3)
Px

and pa is the image resolution in cross-range. Thus: it is obvious that the quadratic

phase error of Equation (5.1) increases as the square of the resolution in cross-range.

When the patch being imaged is small compared to the slant range;

Z:, ~~ << To, then the small patch assumption applies: and Equation

approximated by

that is, when

(5.1) can be

{

1 z~2 – y;2
#z;,y@’) = ~ roko -tano~[-l-tan2e$ [-l}x’2

(5.4)

When the squint angle O. is zero, then the broadside-specific case applies and the

approximation of Equation (5.4) reduces to

(5.5)

Equations (5.4) and (5.5) represent Equations (4.134) and (4.135), respectively, and

are repeated here for convenience. The design of the space-variant post-filter, as

presented in the remainder of this chapter, is based on these equations, as is much of

the computational analysis of Chapter 6. Specifically, filter length (patch size), to be

discussed next, is derived from Equation (5.5). While this equation is an appropriate

quadratic phase error approximation only when small patches are considered, it will

serve as the basis for all filter patch size estimates, regardless of patch size of slant

range. That is, Equation (5.5), while not an exact expression, is sufficiently accurate

to serve as the basis for these calculations.
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5.2 Space Invariance – Scope of Application

139

The quadratic phase relation of Equation (5.1) produces different values as a function

of spatial position in the image domain. .4s such, it is space-variant, dependent on

image location in both range and cross-range. By applying an appropriate spatially-

varying filter to the image that is formed by the polar-format processor, the defocus

effects induced by Equation (5.1) are compensated. In theory, Equation (5.1) spec-

ifies the filter to be applied to each Cartesian coordinate in the polar-formatted

Fourier space. If the filter were changed at every pixel in strict accordance with

the expression of (5.1), the computational burden associated with the filter imple-

mentation could become excessive. Thus, as was pointed out by Walker in [2], this

procedure is computationally inefficient. However, the key to computational effi-

ciency, as proposed in this dissertation, is to vary the post-filter only as often as

necessary to maintain a tolerable (ie: imperceptible) amount of residual blur. That

is, by applying the space-variant post-filter to patches of imagery, as opposed vary-

ing it for each individual (s!, y&)location, the computational burden is significantly

decreased while defocus is.constrained to an acceptable level. Specifically, an image

patch size is calculated such that the residual quadratic phase error at the edges:

after correction, is within subpixel levels.

Since the filter is applied to complex-valued spatial imagery, yet is specified in

terms of the Fourier domain quadratic phase error, the specified image patch is first

Fourier transformed, then conjugate multiplied by the filter coefficients, as calculated

at the patch center (zb, vi). This patch is then inverse Fourier transformed into

a refocused portion of the formed image. In order to avoid visually perceptible

discontinuities at the junctions of imaged patches, the refocus filter must overlap the

previous to some degree. In other words, there is overlap in the image patches. The

amount of filter overlap, and patch size in general, is the focus (no pun intended) of

the remainder of this chapter. Assuming the patch size is fairly large, and the overlap

reasonably small, then refocus is accomplished with an acceptable computational
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burden. Aswillbe shown, this isindeed thecase forspace-~'ariant post-filtering for

wavefront curvature correction.

The idea of a closed-form phase correction model for compensating quadratic

phase errors is not new and not necessarily limited to wavefront curvature issues.

However, only for wavefront curvature, as demonstrated in this dissertation (and also

the preliminary work of Jakowatz [7, pp. 355–365][10] and Doren [11] on which it is

based), has this method been shown to be computationally efficient. For example, in

a paper by K. Kong [86], a quadratic phase correction is applied to compensate the de-

focus that results when the polar-formatting step of spotlight-mode image formation

is omitted. It is hoped that the space -vmiant polar-format blur is more efficiently

compensated via post-filtering, as opposed to the costly two-dimensional sine interpo-

lation required for polar-formatting. However, as Kong points out, the large amount

of polar-format defocus present, in addition to its two-dimensional nature, renders

post-filtering to be very inefficient for this type of phase error, except for the smallest

of angular extents subtended by the radar platform. However, as will be demon-

strated in Chapter 6 of this dissertation, the one-dimensional nature of wavefront

curvature defocus, in conjunction with a space-variant post-filter that is varied only

as often as necessary, yields an effective method for the removal of wavefront curva-

ture defocus from polar-formatted imagery. Consequently, while Kong demonstrated

the mathematical validity of space-variant post-filtering for polar-format defocus,

the large maa~itude of those errors offset the potential computational advantage of

post-filtering. In the remainder of this ciissertation, the mathematical theory given

for wavefront curvature correction will be (partially) validated via SYNT.ARG exam-

ples. Furthermore, since the wavefront curvature errors are typically much smaIler

in magnitude than those of polar-format defocus, the efficiency of post-filtering is

shown for wavefront curvature correction, whereas Kong failed to demonstrate this

for polar-format defocus.

Consider an experiment in which ideal point targets (IPRs) are synthetically

generated according to the L-Band parameters in Table 5.1. It has been suggested
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L-Band Parameters for SYNTARG Simulation
Parameter

Center Frequency
Wavelength
Aperture Extent
Scale Factor, Cross-range
Scale Factor, Range
Mainlobe Broadening Factor
Resolution, Cross-range
Resolution, Range
Oversimple Value, Cross-range
Oversimple Value, Range
Slant Range at Broadside
Squint Angle
Patch Diameter

Symbol

fo
A, (A= c/fo)

40
s~

2.

Px
Py

0= (oz=pz/sz)

% (%= P!M
ro
0.
DD

Value

1.25 gHz
0.24 m

10°
x 0.65 m/pix
x 0.65 m/pix

1.4
z 1.25 m
~ 1.25 m

z 1.92
z 1.92
4972 m

0°
2400 m

Table 5.1: L-Band Parameters for Broadside, Space-Invariant Experiment

in [12, pp. 435–439][87, 88] that L-Band. SARs, under these imaging scenarios, ex-

hibit the defocus effects associated with wavefront curvature. This is also true of

Ultra-Wideband (UWB) SARs [12, pp. 437–438][83, 89], whose center frequency, at

approximately 500 mHz, is approximately one third that of the L-Band frequency.

Since the resolution in cross-range p. is defined by p== A/(2A4, the UWB S-AR is

able to attain cross-range resolutions equal to that of the L-Band S-ARby subtending

an aperture angle 40 that is three times that which is needed for the. L-Band radar.

Furthermore, the lower UWB frequency can potentially induce much greater defocus

due to wavefront curvature. However, the limited patch sizes of the UWB S.AR, as

compared to L-Band, help constrain this defocus [12, p. 438]. Since the separable,

two-dimensional sine interpolator used for polar reformatting may induce its own

phase errors with the large angular diversities associated with UW-B S-ARs [71, 72],

this dissertation concentrates strictly on L-Band examples so that any phase errors

present are of known origin; specifically, from wavefront curvature.

As was described in Chapter 4, a virtue of synthetic targets formed via SYN-

TARG (as is the case with this example) is that SYNTARG does not assume planar

—., .-.
7..

..— —
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Figure 5.1: W“avefront Curvature Correction of Synthetic Point Targets via a Space-
Invariant Post-Filter Centered at (z& v:)
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wavefronts illuminating the imaged scene [7, pp. 399–414]. Consequently, any per-

ceptible amount of defocus due to wavefront curvature will be evident in the point

targets being generated. The example of Figure 5.1 illustrates synthetically gener-

ated L-Band targets whose parameters are specified in Table 5.1. In part (a) of this

figure, three synthetic targets are shown at far cross-range, along the z’ axis in the

slant plane. The center target is at (z~, y:) = (1000, O), which according to Equa-

tion (5.5), is a location of severe wavefront curvature defocus. As is clearly seen,

these targets exhibit defocus (IPR broadening) in cross-range and the blur is more

severe for targets nearer the edge of the scene, as shown in the expanded view of

part (b). A space-invariant post-filter has been applied to this region of the image

and the result is illustrated in Figure 5.1 (c). The filter parameters were based on

the quadratic phase error equation (5.1). In addition, a 40-dB Taylor window was

applied for sidelobe reduction. For this example, the patch center was chosen at

(z~, g~) = (1000, O), and the quadratic phase error correction calculated from this

single chosen coordinate was applied to the entire target region, as depicted by the

dotted lines in Figure 5.1 (a). This region covers 390 m in cross-range, or 600 pixels

given a scale factor of 0.65 m/pixel. As can be seen in part (c), the center point tar-

get residing at (z~, g~) = (1000, O), is refocused quite well. Those targets to the left

and right of the patch center show improved focus, but not to the same degree as the

center target. Thus, the need for space -variant post-filtering has been demonstrated.

While the quadratic phase correction calculated at some spatial position (xi, y&)pre-

cisely compensates the defocus at that point, it serves only as an approximation

to the quadratic phase error induced by wavefront curvature for points surrounding

(z~: YL). Just how large a patch can be refocused for a given patch center, while still

maintaining an acceptably small residual blur, is the topic of rest of this chapter.

The space-invariant filter of this example is applied to a small patch of the image-

domain scene of Figure 5.1 (a). However, as previously stated, this portion of the im-

age is first Fourier transformed, then conjugate multiplied by the corrective quadratic

phase function before being inverse transformed into a focused patch. The effect of
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Fourier transforming a small patch of the image domain is a resultant Fourier do-

main phase history that supports the full frequency extent of the image, yet at a

less dense (decimated) sampling compareci totheoriginal phase history [7j pp. 140-

144]. Consequently, the phase correction applied in the Fourier domain is a quadratic

function of X’2 (and (zi, y:)) = given by Equations (~.1-~.~), where X’ iS a dis~rete7

decimated representation of the Fourier frequency extent. Specifically, for an n pixel

patch centered at (z~, y:), the sampled frequency extent in the Fourier domain iS

defined as follows:

n—1

x

2ix;
X’ = –A”; + ~, [xJ[ ~ x;. (5.6)

i=cl

The resulting sampled frequency extent consists of n pixels in the frequency range

[–X~..Xj], where X{ is the maximum of the absolute value of X’: and X’ is calculated

from Equation (5.3). The frequency spacing 6X’ between samples is then

2X;
H’= ~, [-x;..x;].

Figure 5.2 presents an enlarged view of the space-invariant,

(5.7)

post-filtered targets

of the previous figure. This enlarged view more clearly illustrates the refocus of

the center target and the less clearly focused adjacent targets. In part (b), the

results are shown for the original defocused targets, except in this case, a space-

variant filter has been incorporated. Specifically, patches 128 pixels in cross-range are

refocused, each with the appropriate (Z~:y:) center coordinate used for the quadratic

phase error calculation. Each filter operation was displaced in cross-range by sixty

four pixels from that of the previous. That is, the filter had a length m of 128

pixels and the space -variant coefficients were recalculated and the filter applied every

64 pixels. This 64 pixel displacement, d, infers a filter overlap region c of 128 –

64 = 64 pixels. For now, it wiIl suffice to say that this particular filter length,

overlap and displacement is appropriate for the proper space-variant refocus of this

L-Band example. The remaining sections of this chapter describe in detail how these

parameters are to be chosen, both for this example and for all imaging scenarios
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Figure 5.2: Space-Invariant Vs. Space-Variant Filtering

in general. As can be seen in 5.2 (b), the filter appears to do an excellent job

of refocusing all the point targets. Just ho-ivwell, in a quantitative sense, these

targets have been refocused and the computational cost incurred, are the subjects

of Chapter 6. While not explicitly shown: the patch is actually two-dimensional

in shape. However, because the quadratic defocus is one-dimensional in nature:

only one-dimensional Fourier transforms, oriented in cross-range, are necessary for

the refocus. Furthermore, no overlap is required in range since there is no quadratic

phase component in this direction. Consequently, this filtering operation is much less

computationally burdensome than would be the case for two-dimensional filtering.
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Cross-Range Overlap Covers Spatial Extent of Blur
/\

filter. / \

~—displacement, d—s
(m-c) &

‘d

overlap, c -––.
x— -------- length, m------- -------~--—~

Figure 5.3: Filter Overlap, Displacement and Length

The illustration of Figure 5.3 shows the relationship between filter length m,

displacement d and overlap c, for two adjacent filter operations. This concept is

extended to the two-dimensional example depicted in Figure 5.4, showing the sub-

division of an image into two patches, which are independently refocused and then

seamed back together. It is important to realize that this particular illustration is

completely fabricated and consists of neither real imagery nor even synthetic (math-

ematically valid) point target data. It is the only illustration not representative of

the synthetic data based on the mathematical model for the phase return from a

point target. However, it is helpfui in depicting the process of space-variant post

filtering in two dimensions. In particular, note that the overlap between patches is

sufficiently wide to capture the worst-case extent of the blur as seen in the image

domain. Furthermore, when two patches displaced by d pixels are seamed back to-

gether, only the innermost d pixels for that patch (as centered around (z~, y~)) are

retained. This process ensures that regardless of the point target position or spatial

extent of the blur, the target is not “missed” or partially encompassed in the process

of applying the space-variant post-filter to the patches.
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Figure 5.4: Implementation of Space-Variant Post-Filter for Two Patches

,’
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5.3 Accounting For Geometric Distortion

148

The tomographic assumption of planar wavefronts leads to a geometric distortion

of the image as well as the more troublesome space-variant defocus discussed here.

As is discussed in Chapter 3, the geometric distortion, based on the presence of

extraneous linear phase terms arising from wavefront curvature, is more prominent

than the space -variant defocus yet is easily compensated via a simple post-warping

procedure. The dominance of this distortion relative to defocus often necessitates

the geometric post-warping procedure for many imaging scenarios not exhibiting

quadratic defocus effects. Consequently: post-warping has long been considered a

standard processing step of PFA, and the post-warping computation time is factored

into the overall processing time of PFA. Fortunately, the post-warping procedure

is based on a simple bilinear interpolation scheme which is not so computationally

burdensome as to render PF.A impractical.

The space -variant post-filtering step for image refocus is performed before the

final geometric-post warping procedure. However, proper refocus depends on filter

coefficients calculated using the point at the patch center, (z~, y~), which is the spatial

coordinate of the geometrically correct target position. That is, while the image

has not yet been geometrically rewarped: proper refocus requires a priori knowledge

of the final, post-warped (proper) position of that point in the slant plane. Based

on this requirement, one might propose to rewarp the image before applying the

space -variant post-filter for wavefront curvature correction. However, this approach

presents a problem in and of itself. The post-warping procedure does not simply

translate the points to their correct position, but instead uncurls them, based on the

degree of wavefront curvature at that point. This is because the warping function

is a continuous, space-variant function. Consequently, geometrically rewarping the

image serves to rotate the targets (and their IPR sidelobes) by an amount equal

to that required to rotate a tangent to the spherical wavefront at that point to be

parallel with the Cartesian cross-range (z?) axis.
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Thankfully, based ontheclosed-form linear phase equations of Chapter4, the

induced geometric distortion can be calculated (and compensated) for all spatial

coordinates in the slant plane, prior to applying the space-variant refocus filter. Once

refocused, the post-warping procedure can be applied to the image, as prescribed by

the polar-format algorithm. Recall Equation (4.12) from Chapter 4, which describes

the total linear phase #lt for a target in the slant plane at (z&,g:):

q$lt= xix’+?&+ h(zj,!/j)x’+fjw?,w-’, (5.8)

where ~t (z~, ~&)X’and ~j (zI, y~)Y’ define the extraneous phase terms in cross-range

and range, respectively, in the presence of wavefront curvature- The effect of the

extraneous phase terms is to distort (warp) a point pi correctly residing on the

Cartesian grid at (z~, y~), to an improper, wavefront curvature-induced position P} =

(z;, Y}) on the polar grid. This situation is illustrated for one specific point in Figure

5.5. The linear shift property of the Fourier transform dictates that the linear phase

coefficients of Equation (5.8) specify actual distances in the spatial image domain,

and that specifically, the coefficients ~~(~1,v~) and ~~(zL, v:) relate to the offset

distances induced by wavefront curvature. Consequently, the target positions pi and

p; in Figure 5.5 can be described as follows:

where pi and p; are the correct and distorted positions, respectively. Thus, the

distorted (warped) position of a point is simply the geometrically correct position pi

offset by the linear displacement due to wavefront curvature and is specified by the

following Cartesian ordered pair:

(+ v;)=P;

= (4I+fMl>d)>24+Whdl)) (5.11)

A problem arises in the calculation of (z&,y~) using Equation (5.11). Specifically,

this equation describes the inverse of the situation encountered in space-variant post
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Figure 5.5: Effect of Geometric Distortion on Target Position

filtering. When post-filtering, one must determine (and derive the filter values for)

the geometrically correct coordinate p~ = (z~, y&)from the given warped coordinate

p} = (z}, y;). This requires the inversion of Equation (5.11) such that it specifies

the correct coordinate as a function of the warped coordinate. Rearranging Equation

(5.9) yields
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and consequently,

(4,d))=Pb

=(+ ?);)- (M4?d),fd424)).

151

(5.13)

Finally, Equation (5.13) can be stated as the Cartesian ordered pair

(4,vi) = Pi

=(+ - M&d),v;- M%)), (5.14)

which is the inverse of Equation (5.11), as desired. This equation can then be used to

determine the geometrically correct coordinate Z&for a point z} that has undergone

geometric displacement due to wavefront curvature, and subsequently: z~ is used to

determine the linear phase error at that point, according to Equation (5.1).

The Equation given by (5.14) is a recurrence relation. This recurrence is due

to the coordinate (z&,gj) being present on both sides of the equation. .An iterative

approach can used to solve this recurrence. Recall that the values ~~(z~, y~) and

jo(z& vi) are the coefficients describing the linear displacement of the point from its

proper position (zi, g~) when wavefront curvature is present. Furthermore, the values

of these coefficients, which directly infer a displacement distance, are also a function

of the proper target position (zb, yj). The recurrence can be approximately solved

by using an estimate of the displacement which is based on the warped coordinate

p) = (z}, y;) instead of the proper coordinate (zi, g:), for which we are trying to

solve:

This approximation of (zi, v(J will become more accurate as successive iterations

are performed, with each using the previously derived (zI, y:) value for the next

calculation of ~k and ~j. This concept can be generalized and stated in the following
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iterative form:
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(5.16)

‘) is a successively better approximation of the “proper” point pi =-where (z:, gn

(z~, vi), to which it eventually converges. Or, more compactly,

where n is the number of iterations required such that (z;, y;) is sufficiently close

to the proper coordinate pi = (zh, y~). It is unknown as to whether a closed-form

solution exists for Equation (5.17), and of course this solution would depend on the

values of ~a and fi. Fortunately, it is not necessary to find a closed-form solution

because in practice, only a few iterations are required to calculate the undistorted

location p~ for each filter center coordinate p}. Furthermore, this coordinate is

not calculated for each pixel location in the image, but instead only once for each

patch center. Consequently, the computational burden associated with this geometric

distortion compensation calculation is negligible.

One caveat remains in the geometric distortion compensation of Equation (5.17).

As was mentioned in Chapter 4 in Sections 4.3.2 and 4.4.2, and described by Equation

(5.8), the total linear phase is represented as a sum of linear phase terms. These

terms include the phase components z$Y’ and y~Y’, which serve to properly place

the point in the spatial domain, as well as the extraneous terms ~&(z&,y~)X’ and

~i(z~, yJ)Y’, which distort the point from its proper position in cross-range and

range, respectively. For example, the geometric distortion for the broadside, small
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patch approximation isgiven by Equation (4.88) and repeated here:

+lt = xix’ + I&’+ f~’x’ + f$y’

XLY;xlx Z;xf + y;Y’ + — – $y’, X;, y; << To, (5.18)
r.

where %X’ and —~ Y’ denote the cross-range and range geometric distortion (er-

ror) phase terms ~aJX’ and ~O~Y’,respectively. Thki equation has the linear form

consisting of the separable phase components, as specified by Equation (5.8). Conse-

quently, the geometrically proper point (zb, y:) can be calculated from the recurrence

relation given by Equation (5.15), where p} = (z}, y}) is the coordinate of the patch

center within the warped image being refocused. Furthermore, fz (xi, y:) = * and

~ define the geometric offset distances from (z6, gj) in cross-rangef?j(xh>Y;) = –2,0

and range, respectively, due to wavefront curvature.

As another example, consider the exact linear phase error equation that represents

all squint angles, first given by Equation (4.126) of Chapter 4:

At= alOX’ + af31Y’

= ~ {tan 6S[rC– To+ g;] + Zj} x’ + (?-IJ– rc)Y’,
rC

where OSspecifies the mid-aperture squint angle measured

the distance from target to platform at mid-aperture. In

(5.19)

from broadside, and r. is

this form, there appears

no straightforward method for the decomposition of Equation (5.19) into its proper

and Iinear distortion components, as specified by Equation (5.8). Instead it is in the

form

(5.20)

where the coefficients alo(.~,Y~)and aol(z, ,, ~ describe the warped location p} of the
o’0

point properly residing at PI = (x;, y&)in cross-range and range, respectively This

form was first given in Equation (4.47) of Chapter 4. In this case, the geometric

displacement (error) terms are not separate from those of xl and y& Thus, the

approach currently being discussed, using the relation of Equation (5.15), can not
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be used to determine the geometrically correct position of the patch center. Still, it

is necessary to calculate the inverse of this relation; that is, to determine the point

pi = (z!, y:) given the point (z;, y;) in the warped image.

An alternative method must be devised for calculating the geometrically correct

point (z~, y:) given the more complicated linear phase expression of Equation (~.19) -

To this end, consider the following mathematical “trick,” which refers to the coor-

dinates depicted in Figure 5.5- By the linear phase shift property of the Fourier

transform, the resultant, geometrically warped location P} for the properly placed

point p: = (z6, yj) is given by the Cartesian expression:

where the terms alo and aol are the linear Taylor series coefficients as derived in

Chapter 4, Section 4.3.1. This development is based on the understanding that

the extraneous linear phase terms defining the offset from (z~, y~) cannot easily be

isolated. Thus, this development does not rely on the separability of the extraneous

linear phase error terms from the proper terms, but instead considers p; as the

inseparable combination of these terms. First, let

p} = –P: + (P}) + Pi

(5.22)= –(4), ?/3)+ (P;) +Pk

where p: specifies the proper coordinate for the point warped to p;. Then, from

Equation (5.21),

(5.23)
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Rearranging yields

This recurrence relation specifies the proper coordinate p~ for the filter calculation,

based onthepatch center given byp}inthe warped image” Aswasthecaseprevi-

OUSly,this recurrence can be solved by the following iteration sequence:

(Adz)= ((~;+4-1-UIO(ZI,,,L_,)), (9;+ Y:-, - aol(=l ,,,i_,)))>n- n-

(5.25)

‘) is a successively better approximation of the “proper” point pi =where (zL, yn

(z~, y:), to which it eventua~ly converges. Or, more comPactly:

{

(z;,Y;) ifn=l,
(x:, Y;) =

((z}+fc~-l -a o1 (=/ ,,,;_,))> (Y;+ IL-1 – aol(zl ,,,~_l))) if n >1>n- n-

(5.26)

.Again, this sequence quickly converges to a very accurate representation of Ph =

(x6, y~). For the generalized squint-mode scenario of Equation (5-19), this recurrence

. .. .—. . .. T-mm -. -——
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ifn=l,

{

(x}: Y;)

(4:30= ((fcj+Z~_l– * {tan~,[T...,–TO+%-1]+4-1}),

(?/}+ 4.-1– (TO – ‘%-l))
ifn>l,

(5.27)

where (z}, g}) is at the center of the patch being refocused (in the warped domain)?

and from Equation (4.67),

rcn = J7’; + X~2 + Y;2 – 2ToY; (5.28)

given the slant range from platform at mid-aperture to scene center of TO.

S.41 Filter Overlap and ‘Width

The computational burden of space-variant post-filtering is reduced by varying the

filter only as often as necessary. In other words, the filter is applied teas largea

patch as possible, but not so large as to degrade the quality of refocus. For each

patch, the corrective quadratic phase function is calculated for the patch center

(z~, y:) according to Equation (5.1), or its simplified approximations, if applicable.

However, the patch center coordinate is first geometrically corrected to account for

wavefront curvature, as described in Section 5.3. Since the filter is not applied to

every spatial location in the image but instead across a given patch, the filter serves to

exactly compensate the wavefront curvature at the center point (z6, yg), but is only an

approximate correction to those points surrounding the center. Points farther from

the center of the patch are not as well focused as those nearer the middle; therefore,

the patch size must be restricted to some maximum size m (and this size varies with

filter location within the image). Furthermore, it is important for adjacent filter

operations to overlap each other in the image domain as to ensure the entire spatial

blur (broadened IPR) is encompassed by a given filter or one of its immediately
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adjacent filter applications. This process is illustrated in Figure 5.4. In this way,

having provided the required minimum filter overlap c, an IPR will be correctly

focused, independent of the IPR’s position in the image and without regard to the

relative position of the IPR to filter. In other words, this overlap ensures proper

refocus over the continuum of point targets in the imaged scene, based on a filter

that is applied at discrete steps. The filter displacement d is the lateral movement of

the filter’s center in cross-range from one filter application to the next. It is simply

the difference between the filter length and the overlap. The relationship between

overlap, length, and displacement is illustrated in Figure 5.3.

How does one go about determining the appropriate filter overlap, length and

displacement for a given imaging scenario? First, consider filter overlap. The over-

lapping region of adjacent filter applications must be sufficiently wide in cross-range

to cover the spatial extent of the blur. This blur can be described as a broadening

of the IPR, and is based on the amount of Fourier domain quadratic phase at that

point in the image. The effect of quadratic phase is to broaden the IPR, in propor-

tion to the amount of peak quadratic phase present. This situation is illustrated in

Figure 3.8 of Chapter 2, for various amounts of induced quadratic phase error. The

mathematical development of Appendix A serves to provide an analytical, closed-

form expression for determining the IPR broadening, as a function of peak quadratic

phase (magnitude of phase at the edge of the signal). The reader is encouraged to

study the IPR broadening argument of Appendix .4, which provides both a frequency

and spatial domain analysis, each coming to the same conclusion. However, in this

chapter, only the results of this analysis will be presented. Based on the analysis of

Appendix A, the IPR mainlobe broadening factor AIPR, also referred to the pixel

spread value An~, is found to be

(5.29)

where #c is the maximum quadratic phase as taken at the edge of the frequency

extent X{, where IX’I S X;, and X’ is given by Equation (5.3). The quadratic phase

&~,Vb(X’)is space-variant and is given by the quadratic phase error Equations (5.1),
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(5.4) and (5.5), depending on the imaging scenario and amount of approximation

that

c, in

is acceptable. Then, based on Equation

pixels, is defined such that

(5.29), the minimum amount of overlap

(5.30)

~l,here~~ is the IpR rnainlobebroadeningfactor due to windowing (sidelobe control)

and o= is the oversimple factor in cross-range.

For example, one might calculate the minimum required overlap cat the edge of

the L-Band patch described by table 5.1. Specifically, assume that an overlap between

adjacent filter operations occurs at the position (z~, g:) = (1000, O). This spatial

location, along the x’ axis at the far scene edge in cross-range, is known to exhibit

significant defocus due to wavefront curvature. The Fourier domain frequency extent

is found to be in the range [–X{..X~], where X’ = (n/pZ) = (3.1415/1.25) H 2.5

rad/m, and IX’I s Xi. Thus, the frequency extent at the quadratic signal edge

7’2 x (2.5)2 = 6.25. Equation (5.1) will be used to calculate the maximumis AI

quadratic phase error at this point. This is the generalized equation which gives

the exact phase for all patch sizes, ranges, squint angles and center frequencies.

When substituting the value (X~2 = 6.25) for X’2 in Equation (5.1), this calculation

yields a peak quadratic phase error ~2t of 3.6r radians, where (xi, vA) = (1000, O),

?-0= 4972m, O. = 0° (broadside), k. = (47r/A) x 52.4, and rC(Z~,yj, To) = 5071

(from Equation (5.28)). It is interesting to note that if the small patch assumption

is applied, then the approximation of Ecluation (5.5) yields a peak quadratic phase

error of @2~= 3.8T, an error of about six percent from the actual value. Thus, this

approximation is not appropriate in this case. However, it is known a priori not to

apply this approximation, since xL,y: ~ To.

Based on the peak quadratic phase error ~z~= 3.6rr just calculated for the L-Band

example, the IPR broadening factor can now be calculated, and subsequently, the

filter overlap at (z!, g:) = (1000, O) can be determined. The broadening factor AIp~

is based on the analysis of .4ppendix.4 and the simple result of Equation (5.29). From
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this equation and the quadratic phase error #zt just calculated, AIP~ = (4#2~/x) =

(4X 3.6) = 14.4. This is a dimensionless broadening ratio based on the ideal IPR

width in the processed image. The ideal IPR width is determined by many factors in

real imagery but in the ideal case, is based. on the theoretical image resolution and the

pixel scale factor (which in this situation, accounts for the specific oversimple ratio

of the image). For the L-Band parameters of Table 5.1, the ideal cross-range IPR

width, in pixels, is found to be (pZ/sZ) = (1.25/0.65) = 1.92, which is the oversimple

value OZ. Multiplied by the broadening factor 41PR = 14.4 yields a cross-range blur

of (14.4 X 1.92) N 28 pixels. Additionally, there is another broadening factor, K.,

which represents the widening of the IPR mainlobe due to Taylor filtering. In this

case, & = 1.4, so the maximum defocus is (28x 1.4) x 40 pixels. Thus, the refocus

filter overlap c at this spatial location in the image must be at least 40 pixels, as

prescribed by Equation (5.30). .4s will be illustrated in Chapter 6, there is additional

computational cost, yet no improvement in quality of refocus when this overlap is

increased. However, should the minimum limit on the overlap be violated, refocus

can not be achieved, and in fact targets will become very distorted once the filter

is applied. The overlap determination is based entirely on analytical, closed form

calculations. Consequently, it is a simple matter to incorporate these calculations into

a computer algorithm that calculates overlaps on an as-needed basis. Furthermore,

the computation time for these calculations is negligible compared to that of the

filtering operation.

Having calculated the appropriate filter overlap, the filter length may now be

considered. In practice, these calculations are independent and may be done in

either order. The filter length is, in essence, dictated by patch width, in cross-

range, to which the filter is applied. Since the refocus filter exactly compensates

only the center pixel of the patch, the patch size must be constrained so as to limit

the residual quadratic phase error at the edges of the patch upon refocus. In this

way, the IPR broadening is constrained to within sub-pixel levels across the patch,

and consequently, the residual defocus after filtering is visually imperceptible. The

.—--. .—
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calculation of maximum patch size is similar to that for maximum scene size, as

described in Section 3.3 of Chapter 3. However, in the case of overall scene size, the

reference point is always the center reference point (CRP), where (xL,yj) = (O,0).

In contrast, the maximum patch size for a filter application is space-variant as a

function of filter center (Zi, y:). Thus, it is convenient to calculate filter length

based on a formula for the rate oj change of the quadratic phase at the filter center.

Then, by knowing this rate of change, the spatial distance (length) of the filter can

be determined so as to maintain a maximum acceptable residual quadratic phase

error at the farthest-most patch edges in cross-range.

As was the case with the overall scene size calculations, the residual quadratic

phase error is to be held to within m/4 radians in order to constrain the residual

defocus to sub-pixel levels- Once having calculated the rate of change of quadratic

phase error at the filter center, it is a simple task to determine if the filter extends

beyond the point where the applied phase correction is not sufficient to adequately

compensate (to within 7r/4 rad) the far-edge points. The quadratic phase error

equation of (5.5) will be used for the rate of change calculation. While this equation

serves as a small patch approximation to the actual phase error, it is sufficiently

accurate for use as a patch size estimator, at least for most imaging scenarios. The

rate of change of the quadratic phase error in cross-range is of the following general

form:

&&@’, y’) =

From Equation (5.5),

J(=&,y&)(x’,Y’)=

=

(5.31)

(5.32)

(5.33)

The partial derivative is taken with respect to Zl because we are concerned with the

rate of change in cross-range. Furthermorej the blur is one-dimensional in cross-range
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only, and the maximum frequency extent of the aperture Xi must be considered,

where ]X’1 ~ X{. Thus, Equation (5.33) is more appropriately stated as

(5.34)

This rate of change in rad/m, referenced from the filter (patch) center (xL,g~), is

multiplied by some maximum patch radius m,, yielding an overall change of phase

from center to patch edge of no more than m/4 radians. In this way, the residual

defocus at the filter edge is maintained to within sub-pixel levels. This concept is

described mathematically by the inequality

(5.35)

Rearranging Equation (5.35), the maximum allowable patch radius m, in cross-range

from the center filter position (z:, y:) is found to be

7r
(5.36)

“ < 4&lz&l)(x;) -

By substitution from Equation (5.34),

“5a[ix~’1

(5.37)

Rearranging,

(5.38)

where mr is the maximum patch radius. The relation may be also be expressed in

terms of image resolution in cross-range, via substitution from Equation (5.3):

(5.39)

The filter length m is then twice the filter radius, or 2m,. Furthermore, the distance

is converted to pixels by the multiplication of the inverse scale factor, l/sz. Thus,

m-oko p~roko
m,<

= 27rszlx; l.
(pixels)

2szlz~lx{2
(5.40)

— -=—.... -..%. .——.. ... .
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.4s would be expected, themaximump azchsizet hat can be refocused necessarily

decreases for reduced slant rangero, reduced center frequency (decreasing ko), im-

proved resolution (increasing .Y~or decre~asingpz): and towards the far edges of the

imaged scene in cross-range (incre=ing z&). These are the scenarios that intensify

the wavefront curvature effects under the planar wavefront assumption. These sce-

narios are consistent with those that increase the overall quadratic phase error as

described by Equations (5.1), (5.4) and (5.5).

The maximum patch diameter m (which is also “the filter length) can now be

calculated for the L-Band example. As before, the parameters for this example are

given in Table 5.1. From Equation (5.40), the maximum patch radius for the filter

applied at (z~g&)= (1000, O) is (1.252x 4972x 52.4)/(2x x x 1000) N 64m. The filter

length in pixels is then found by taking the product of this value with the inverse

scale factor: m x 1/s. = 64/0.65 % 98 pixels. Of course, the phase error function

of Equation (5.5), which is quadratic as a function of the spatial target location

x:, implies a rate of change function that is also space-variant (though linear) with

respect to Zj. This is obvious since the latter function is the derivative of the former.

Thus, one must be cautious when applying the rate of change criteria for filter length

across the image. For example, the rate of change of the quadratic phase error at

the CRP is zero, yet a filter of full image length will not suffice to compensate the

defocus. Consequently, one must “look ahead” when calculating the filter length at

a given point, to ensure the filter is not too wide to adequately compensate the edge-

most pixels, whose rate of change of quadratic phase is different than those nearer

the center of the filter. For squinted scenarios, the above development for maximum

patch radius m, may be repeated using the squint-mode Equation (5.4) instead of

the broadside equation (5.5).
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5.5 Filter Displacement

163

The discussion of the previous section raises the issue of a potential incompatibility

between filter displacement, overlap and length, as prescribed by Figure 5.3. In fact,

the L-Band example being discussed brings to light this very serious contradiction.

Specifically, the minimum filter overlap c for the L-Band example was calculated

from Equation (5.29) and found to be c = 40 pixels. Meanwhile, the maximum patch

diameter m (which is twice the filter radius m,) was determined by Equation (5.40)

to bem= 98 pixels. When implemented within a computer algorithm, typically a

fixed-radix, fast Fourier Transform is implemented. In the case of the typical radix-2

algorithm: FFT lengths are always powers of two. Since the filter operation consists

of an FFT of the patch, complex-conjugate multiply of the corrective quadratic phase

function in the Fourier domain, and an inverse FFT of the refocused patch back into

the spatial domain, the filter lengths are constrained to the FFT radix sizes. If a filter

length of 98 is desired, then the next higher power of two is 128. However, this filter

length is greater than the maximum allowed for proper image refocus! Fortunately,

in this case, one may choose the next smaller power of two, w-hich is 64, and a filter

length of m = 64 is sufficient to provide the required minimum overlap of c = 40

pixels. However, it does so just barely.

In many imaging scenarios, there will be certain (z:, y~) coordinates in an imaged

scene where the maximum allowable filter width is less than the minimum required

overlap, and hence the contradiction. However, this conflict is easily resolved by

slightly rethinking the meaning of “filter length” and tying this definition to filter

displacement d as opposed to filter length m. In this way, except for the possible

higher computational burden associated with a longer filter, there will no longer be

a maximum constraint on filter length. Instead, this maximum constraint is placed

on filter displacement d. Hence, the contradiction will be solved for all imaging

scenarios. This process is described as follows.

A filter’s maximum length m is defined as twice the distance from the filter
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center to the point at which pixels can no longer be adequately focused based on

the filter parameters for that patch. However, a filter may need to be longer than

this maximum in order to provide a sufficient amount overlap with the previous

filter operation, so as to cover the spatial extent of the IPR blur. In this case, only

the innermost d bits (referenced from (zh, vi)) will be retained upon refocusing the

patch. That is, the width of the refocused patch is controlled by retaining no more

refocused pixels, after filtering a specific patch, than the maximum prescribed by

Equation (5.40). So, let the displacement distance d be constrained as follows:

(5.41)

Then, the filter length m must be equal to d + c. That is,

m=c+d, [5.42)

where c is the overlap, whose minimum is defined by Equation (5.30), and d is

the displacement, whose maximum is given by Equation (5.41). Thus, except for

the increased computational burden associated with a larger overlap from one filter

application to the next, there is no longer a maximum limit on filter length m, For

this example, the maximum displacement d is 98 pixels, and the minimum overlap c

is 40 pixels. As was described in Section 5.1 and illustrated in Figures 5.1 and 5.2,

the chosen values of c = 64 for overlap and d = 64 for displacement (m= 128) have

indeed turned out to be appropriate, based on the analysis of this section. liote, too,

that the minimum displacement d must be one pixel, to ensure “forward movement”

of the filter from patch to patch. Equation (5.41) wil~yield (at least) this minimum

displacement for all known imaging scenarios.

The filter is applied to successive patches across the image in cross-range, each

separated from the previous by the displacement distance d. The innermost d re-

focused pixels for each patch, as centered around (z~, y~), are then copied to a new

storage area representing the refocused image. In this way, each pixel will be focused

once and only once. Storing the refocused pixels in a new memory area instead
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of in-place ensures the overlap operations are always performed on the prefocused

Fourier data. The space-variant post-filter design of this chapter will be applied

to the computational examples of Chapter 6, which will be analyzed in terms of

processing burden and quality of refocus.

.—, .. - -=....,.2 . . ——. -
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Chapter 6
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Performance of the Space-Variant

Post-Filter

The previous two chapters presented a geometric model for the phase return of

a point target: and subsequently, the phase errors arising from the faulty planar

wavefront assumption were mathematically quantified. .4 unique contribution of

this dissertation is the generalized phase return model that applies to all squint

scenarios without reIying on small patch approximations. This generalized model is

an extension the broadside-only model originally presented in [7, pp. 355–365] [10, 11],

and Chapter 5 shows that the original broadside-only model is simply a specific case

of the new, generalized model. .41s0 in Chapter 5, the second-order phase error

equation, derived from the generalized phase return model, was used as the basis

for the space -variant post-filter phase correction factor. Furthermore, a corrective

method (algorithm) was proposed for the efficient application of this filter to polar-

formatted imagery defocu~ed by uncompensated wavefront curvature. This method

is efficient in that it changes the filter only as often a-snecessary to constrain residual

defocus to within subpixel levels. This is accomplished by determining an appropriate

(minimum) filter overlap c, maximum displacement d, and filter length m, where

m= c+d. The equations for c, d, and m, as described in the previous chapter, are also

— —-. .—.-
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unique and important contributions of this dissertation, as is the iterative numerical

method which accounts for geometric distortion during the refocus operation. .Adding

to the efficiency of this algorithm is the knowledge that the refocus filter remains

one-dimensional, in cross-range only, even for squint-mode collection scenarios.

What remains to be explored is how well the space-variant post-filter works in

practice, and how efficient it is (in conjunction with the polar-format algorithm),

compared to other image formation algorithms. Thus, at this point, a number of

questions arise regarding the performance of the space-variant post-filter. For exam-

ple, how does filter size, displacement and overlap affect computational performance?

How can these parameters be altered to better the computational efficiency, without

affecting the quality of refocus? How does the computation time of space-variant

post-filtering, in conjunction with polar-formatting, compare to other image for-

mation methods, for both squinted and broadside collection scenarios? Finally, in

practice, just how good is the quality of refocus, anyway? These questions will be

addressed in this chapter. .4s will be shown, space-variant post-filtering provides an

excellent solution to the wavefront curvature problem in polar-formatted spotlight

mode imagery, both in terms of computational burden and quality of refocus, for

both broadside and squinted collection geometries. Furthermore, even with the ad-

ditional computational burden of space-variant post-filtering (which is typically as

little as 30% of PFA time), no other competitive image formation algorithm shows

a clear computational advantage over PFA.

6.1 Quality of Refocus

A number of issues have been discussed which lead one to believe that space-variant

post-filtering does not perfectly compensate the phase errors (and consequent defo-

cus) associated with wavefront curvature. Indeed, the post filter does not provide

perfect compensation. However, it is hoped (and will be demonstrated here) that
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in most imaging scenarios, refocus is performed to within subpixel specifications, as

prescribed by the residual quadratic phase error limit of m/4 radians. That is, the

refocus is “good enough,” at least as perceived by the human eye. Recall from Chap-

ter 4, Equations (4.47) and (4.48), the Taylor series expansion of the phase function

d~~,y~(x’,Y’) expanded around the point (XO,YO):

&&,g&(x y’)= aoo+ aloX’ + aolY’ + azoX’2 (6.1)

+ allX’Y’ + aOzY’2+...

where

( )(1 a~+~(q?-z– 7’J~ij = —
~!j! ~xi~yj ) . (6.2)

X=xo,
Y=YO

For the purpose of post-filtering for wavefront curvature correction, this expansion

has been limited to the second-order, quadratic term in cross-range (remembering

that the quadratic phase error terms in range are always zero). That is, the gener-

alized quadratic phase error g!q~(X’, Y’) for all squint angles is simply

42t(z&14)(x’> y’) = @2t(z&4)(x’) (6.3)

= azOX’2, (6.4)

and by Equation (5.1),

{
#2t(z&,,&)(x’)= ; [“’;” -‘0 ($; ‘c)+ -]

c

2T0tan O.

[

x; y~ro —x~r~
-J- X; +

rCko ~:
1

(6.5)

where k. = ~ = ~ is the nominal phase history radius, r. is the slant range

from platform to CRP at mid-aperture, r= is the distance from the platform at mid-

aperture to the target positioned at (z~, y&),19~is the squint angle (measured from

broadside), and X’ is the cross-range frequency extent.

—. .. . --- m,, ., —
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By nature of the Taylor series expansion of Equations (6.1) and (6.2), the higher-

order terms “fall off” (decay) quickly and hence, the quadratic term given by Equa-

tion (6.5) dominates. However, there still exist higher order phase terms in the

Fourier space due to wavefront curvature. When analyzing the refocused point tar-

gets via their frequency response plots, there is evidence of the higher-order phase

errors which serve to defocus the target. Fortunately, as expected, even for those

systems most sensitive to wavefront curvature defocus, namely the L-Band and UWB

S-4RS, this residual phase error does not induce blur that is visibly noticeable in the

maagnitude-detected image. This is true even of the highest resolution systems known

to date. However, since post-filtering does not compensate higher than second-order

wavefront curvature phase errors, and because radar system specifications are con-

tinually improving, it is safe to say that most imaging scenarios are adequately

refocused, but perhaps not all. The quality of refocus for the most severe scenarios

currently encountered, those in the L-Band frequency spectrum, are considered in

the examples below.

First, consider the SYNT.ARG, squint-mode L-BAND patch, as shown in Figure

6.1. This figure depicts a scene of circularly arranged point targets, formed by

the polar-formatting algorithm, before applying the new space -variant post-filter for

wavefront curvature correction. This scenario represents a patch diameter 12Pof 2400

m, a center frequency of 1.25 gHz and a spatial resolution of 1.25 m in both range

and cross range (see Table 5.1 for a complete list of parameters). In addition, the

radar is squinted 30.5° at mid-aperture towards the CRP. While the targets were

originally placed in a perfectly circular pattern in the ground plane, the geometric

distortion (into an irregular ellipsoid) resulting from the projection into the slant

plane is readily apparent. There is a distortion in both the range and cross-range

direction, due to a tilt in the slant plane induced by the depression angle and degree

of squint. Fortunately, for the purpose of slant plane wavefront curvature correction,

one need not be concerned with the distortion resulting from projecting the ground

plane targets into the slant plane. Instead, the target coordinates (z~, g:) in the slant
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Figure 6.1: L-Band Squint-Mode Collection Geometry with Associated SYiNTARG
Target Patch (No Wavefront Curvature Correction)

plane are sufficient for correcting defocus in the slant plane image, without regard

to how an imaged object is projected from the ground into the slant plane.

Figure 6.2 presents an expanded view of the defocused area bounded by the rect-

angular dashed-line box within Figure 6.1. In Figure 6.2 (a), this area is shown
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Fiegure 6.2: Enlarged View: Squint-Mode Point Targets Before and .4fter Refocus
(0. = 30.5°)

prior to space-variant post-filtering, and in view (b), the filter has been applied and

the patch refocused. These point targets differ from those shown previously in that

the sidelobes have not been reduced through Taylor aperture weighting. The phase

history trimming is performed with respect to the standard (z’, g’) Cartesian coor-

dinate system and consequently, IPR sidelobes are oriented strictly horizontally and

vertically even for this squinted collection scenario. Casual observation of the point

targets before and after filtering helps to reassure oneself, at least in a qualitative

sense, that the equations and method used to refocus the targets are correct, even

for this complicated squint-mode scenario. Figure 6.3 demonstrates in a more quan-

titative manner, the quality of refocus for a squint-mode point target. The impulse

frequency response (IPR) plots of Figure 6.3 (c) represent a point target near the

edge of the scene before and after refocusing, as illustrated in Figure 6.3 (a) and (b),

respectively. Of particular interest are the elevated sidelobes appearing to the left of

the mainlobe in Figure 6.3 (c). While not clearly seen in the refocused, magnitude-

detected image of part (b), the IPR plot of (c) reveals this anomaly, which is due

to the uncompensated higher-order phase errors present in the phase history due to

wavefront curvature. Recall that the Taylor series expansion was carried out only
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through the second order terms. At that time, it was stated (without supporting ev-

idence or mathematical analysis) that the remaining, higher-order phase terms were

dominated by the second order terms. Thus, these higher-order terms were thought

to have a minimal impact on the residual defocus after space-variant post-filtering.

The plot of Figure 6.3 (c) shows that there is some residual higher-order phase error

present in the refocused target; however, even for this severe case of L-Band targets

located near the scene edge, the effect of this residual phase error is imperceptible

to the observer of the imagery, as seen in part (b). Should it ever be necessary to

compensate the third-order (or higher) phase error, this would require the expansion

of the Taylor series to the third-order (or higher) terms, and the consequent integra-

tion of this additional phase correction factor into the space-variant post-filter. It

remains to be seen whether these higher-order terms would also be one-dimensional

in cross-range. This research activity is suggested in the Future Work section of

Chapter 7.

The broadside, L-Band SYP?T.ARG point target scenario has been revisited in

terms of quality of refocus, and the results are shown in Figure 6.4. The imaging

parameters for this scenario are the same as those given in Table 5.1. In this case,

a 40-dB Taylor window has been applied to the Fourier data for sidelobe reduction.

Again, while higher-order residual phase errors are evident in the refocused point

target, as shown in the IPR pIot of Figure 6.4 (c), these are not noticeable in the

magnitude-detected image of the refocused target shown in part (b). In fact, given

the amount of defocus present in Figure 6.4 (a), the degree of correction shown in

part (b) is quite remarkable.

The computationally efficient application of the space-variant post-filter requires

that the filter function be varied only as rapidly as necessary to maintain the residual

defocus at an acceptable level. This is accomplished by sufficiently overlapping ad-

jacent filter operations to ensure that the extent of the spatial blur is compensated,

and by limiting the spatial displacement between adjacent filter applications as to

constrain the residual defocus present after filtering. In essence, this concept is that
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Figure 6.3: Refocused Li-Band Point Target with Associated IPR Plot (Squinted
Collection Geometry, O. = 30.5°)

of a space-variant, spatial-domain convolution filter that is adjusted and applied in

discrete steps across a continuum of image points. The proper selection of the filter

overlap c, displacement d, and length m are dictated by Equations (5.30), (5.41)

and (5.42) of Chapter 5, respectively, and are repeated here for convenience. The
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minimum amount of overlap c, in pixels, is defined such that

~ > 4 @z&,y&(x;) ~aoz
> (pixels)— (6.6)

x

where d~~,y~(x:) is the space-variant quadratic phase error as given by Equation

(5.1), (5.4) or (5.5). The particular imaging scenario and amount of approxima-

tion that is acceptable dictates which phase error equation for &h,V6(Xi) will apply.

Furthermore, K. is the IPR mainlobe broadening factor due to windowing (side-

lobe control) and o. is the oversimple factor in cross-range. The filter displacement

distance d, in pixels, is constrained as follows:

d<
m. k. = P$rOko (pixels)

2szlz~lx{2 2Tsz[z~ I‘
(6.7)

where k. is the nominal phase history radius, To is the slant range at broadside, s=

is the cross-range scale factor, and xi is the spatial filter distance from the CRP in

cross-range. This constraint on d ensures the residual quadratic phase error upon

refocus is limited to m/4 radians, and consequently, the image blur will be held to

subpixel levels. Finally, the filter length m must be equal to d-I- c. That is,

m= c+d. (6.8)

It has been suggested that with the proper selection of filter overlap, displacement

and length parameters, as dictated by the design equations of (6.6), (6.7) and (6.8),

there will be no visual discontinuities in the image data upon refocusing. This is

demonstrated for a set of closely placed point targets, as shown in Figure 6.5 (a). This

figure represents a broadside collection of L-Band point targets whose parameters are

given by Table 5.1, and covers an area of 120 x 120 pixels. The filter calculations are

based on the discussion of Section 5.5 and Equations (6.6) and (6.7). The overlap

is calculated to be c ~ 40 pixels and the displacement is found to be d s 98 pixels.

The filter length m is equal to c + d by Equation 6.8, and since d can be less than

98 pixels, m is chosen such that m = 64 (a power of 2), c = 40, and d = m – c =24

pixels. Thus, a refocus filter of (FFT) length 64, displacement of 24, and overlap of
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Figure 6.4: Refocused L-Band Point Target with .4ssociated IPR Plot (Broadside
Collection Geometry)

40 (all values in pixels) is applied to the crowded point target set of Fiagye 6.5 (a),

and this filter meets all the specified constraints. In this case, the quadratic phase

correction factor is adjusted and reapplied every 24 pixels, as specified by d. Thus,
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six discrete filter operations are applied in a sweeping motion across the image data

in the cross-range direction, each overlapping the previous by 40 pixels, in order to

span the image area which is 120 pixels in cross-range. As is shown in Figure 6.5

(b), the targets are refocused without visible discontinuities. The IPR frequency

response plot of Figure 6.5 (c) shows the quality of refocus, and helps to confirm

(at least for one example) that the parameter calculations are appropriate. As will

be discussed in the Future Work section of Chapter 7, any phase discontinuities

present in the data need still be removed before using the image (as one of a pair)

for an interferometric estimation of terrain height.

6.2 Computational Complexity

6.2.1 General Complexity

Many possible approaches exist to evaluate the computational complexity of the

space -variant post-filter. One approach is the estimation of the number of complex

operations for the algorithm. This approach is consistent with that often used to ana-

lyze the running time of image formation algorithms. Consequently, via the complex

operations count, the additional computational burden of the space-variant post-

filter can be analyzed with respect to the standard PF.4 algorithm. Furthermore, the

performance of PF.A in conjunction with space-variant post-filtering (PF-4/SVPF)

can be compared to other competitive image formation algorithms which compensate

wavefront curvature.

A complex operation

butterfly consists of one

is one radix-2 FFT butterfly, and a single radix-2 FFT

complex multiply and two complex additions. Thus, the

butterfly equates to four floating point multiplies and six floating point additions for

a total often floating point (real) operations. Assuming an equal computational cost

for both multiplies and additions, it is reasonable to use a 10-to-l conversion from

. ---- ....— ,., . ,... .... ----. .,., -.. —.—
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Figure 6.5: Resolvability of Cro~~'dedbBand Targets (Broadside Collection Geome-
try)

complex to floating point operations (flops) for FFTs as well as at all other stages

of evaluation [12, pp. 479]. Thus, it is a simple matter to convert between complex

and floating point operations, if necessary. The complex operation count Cfft for a
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radix-2 FFT of size m is discussed in [90] and found to be

179

()Cfft = ~ logz m.

With regard specifically

(6.9)

to the process of space-variant post-filtering, each filter

kernel of Iength m, where m is typically a power of two: is multiplied, point by point,

by the Fourier transform of the m image data pixels centered at the image location

(zi, y~). The filtered data are then inverse Fourier Transformed into refocused image-

domain data. In terms of complex operations, the forward/inverse Fourier transform

operation in conjunction with the with conjugate-multiply filter operation done in

between yields m Iog2m + m operations according to Equation (6.9). Given a rect-

angular image of nz x ng pixels in the cross-range and range dimension, respectively,

as well as a filter overlap of c pixels and filter displacement of d = m – c pixels, the

overall complex operations count CP for space-variant post-filtering is found to be

Cp = ‘nxny(log, m + 1).
m—c

(6.10)

In terms of complex operations per pixel CPiPiZ,the overall operations count is divided

by the number of image pixels:

~ (log, m + 1).c~lpix = m _ ~ (6.11)

As previously stated, the floating point operations count per pixel, CflPu, is ten

times that of the complex operations count:

Cf~@~= 10 x epi~i.

= ~ (log, m + 1).
m—c

(6.12)

Recall that the filter overlap c has a minimum value dictated by Equation (6.6) and

the displacement d is constrained to the maximum value specified by Equation (6.7).

Consequently, according to Equation (6.8), the filter length m is the sum of c and d.

However, the overlap c can be further increased, and/or the displacement d further

reduced, while still meeting the specified filter criteria, as long as (m —c = d) ~ 1.
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The floating point operations count Cflpit: of Equation (6.12) is at its worst when

the displacement d is minimal; that is, when d = m – c = 1. In this case: the upper

bound on computational complexity, big-oh or 00 [84, pp. 23-41], is found to be

O (Cf/piz) = m logz m, (6.13)

where m is the length of the space-variant post-filter, for some fixed-dimension im-

age of n~ x nu pixels. This complexity is equal to that of the image-wide (and tall) ~

two-dimensional Fourier transform which serves as the basis of the polar-format al-

gorithm. Thus, one may already take comfort in knowing that the space-variant

post-filtering step surely will not dominate the PF.A computation time, particularly

upon considering the additional, costly polar-to-rectangular reformatting step re-

quired of PF-A. Indeed, as will soon be demonstrated, the post-filtering step increases

the overall computational burden of PFA by as little as thirty percent.

As described by Equation (6.12) the floating point operations count cf/Pix varies

as a function of the values m and c. Consequently, a graphical representation of

the operations count consists of a family of curves, each curve representing some

fixed overlap value of c and varying over some range of m. This family of curves,

representing the floating point operations count (per pixel) for a reasonable range of

c and m, is given in Figure 6.6. The computational curves are nested as a function

of c: as observed in Figure 6.6. Thus, in order to reduce computation time: it is

generally desirable to minimize the filter overlap c for a given imaging scenario. The

effect of increasing the overlap c is to move to a higher computational operations

curve, while having no beneficial effect on the quality of refocus of the post-filtered

image. In situations where the filter length m must be increased (to fit a power of

two), and the displacement d has been extended to its maximum, then c may have

to be increased, such that c+ d = m, with no detrimental effect on quality of refocus

but at an additional computational cost.

Once having been chosen, the values of c, d and m may remain fixed as the post-

filter is moved across the image, assuming these values are calculated from Equations
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Figure 6.6: Post-Filter Operations Count asa Function of Filter lVidth and Overlap

(6.6) and (6.7) and are based on the worst case quadratic phase error& for the entire

image, which occurs at points (z~, v(J along the Cartesian axes at the far edges of

the scene (for broadside collections). In this case, the overall computational burden

can be calculated simply by multiplying the appropriate flops/pixel value calculated

from Equation (6.12) (or Figure 6.6) by the total number of pixels in the image. The

overall computational burden can be reduced by varying c, d and m as a function

of filter position (zL,g{), but this computational analysis, based on this scheme of

space-variant overlap adjustment> is beyond the scope of this dissertation. However,

even for a fked filter overlap c, an optimal, fixed filter length m can be chosen so

as to reduce the overall computational cost of space-variant post-filtering, as shown

next.

.— —...- —-—. .__—
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6.2.2 Adjusting Filter Parameters to Reduce Computational

cost

For each overlap value c, an optimal filter length moP~exists which minimizes the

computational cost for that c. This optimal filter length is given by mOPt(c) and is

derived as follows. The filter length calculation of Equation (6.12) is a function of m

and c and is shown to be

(6.14)cf/Piz = cf/7iz(m: C)

= ~ (log,m + 1). (6.15)
m–c

The minimum value of Cf lPiz(m, C) is found by setting its parti~ derivati~7e, with

respect to m, equal to zero. This yields the optimal filter overlap c for some given

filter length m, or coPt(m), as follows: From Equation (6.15),

~ Cjlpiz(w C) = O * (log2m + 1)

6’m i?m
(6.16)

10

()

In m
=

m—c ()~+’ - 10m ‘+1 ‘(m-1~)ln2”(m – c)’ in 2

(6.17)

Setting the RHS of Equation (6.17) to zero and solving for c yields the following:

2(R+’)-F:)’(~+’)+dk=o ‘618m—c

Reducing this yields

. (m-c(~+’)-m(w+’)+==o
(– )in m

‘c in 2
+1 +x_> =().

ln2 ln2

Solving Equation (6.20) for c yields

(

in m 1

)

m
—+1+— –—

‘c in 2 ln2 = ln2’

(6.19)

(6.20)

(6.21)
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and further reducing this relation results in

( )

lnrn+ln2+l 1
=—.

m c

Furthermore,

( m )( m
c=

lnm+ln2+l )= lnm + 1.6931 “

Finally, because this development is based on the

Equation (6.17), then

(cqt(m) = IDm +ml.6931
)

(6.22)

(6+23)

partial derivative expression of

(6.24)

is the optimal filter overlap c for some given filter length m. However: for maximum

computational efficiency, it is desirable to use the minimum value for the overlap c as

calculated from Equation (6.6), and to adjust m to achieve the optimal (minimized)

computational burden while obeying the constraint on displacement d as specified

by Equation (6.7). Consequently, it is necessary to derive the optimal filter length

m for a given overlap q that is, to derive mwt (c). This requires the inversion of

Equation (6.24), such that mqt(c) = cqt “(m). Careful inspection of Equation (6.24)

indicates that the mathematical inversion required to represent m as a function of

c is not straightforward. As an alternative to direct mathematical inversion, one

may fit a curve to the data, whereby the calculated value c@t (m) is considered the

independent value and subsequently, a function is derived (fitted) to determine m.

This curve fits the computational minima of each function of m (for a given overlap

C) and consequently, describes the computationally optimal filter length mopt for a

given overlap c, or mwt (c), as desired. The fitted curve for mwt(c) is described by

the polynomial

mwt (c)= 1.265 X 10-2X2+ 7.43x – 21.393. (6.25)

The filter length m which yields the optimal computation time for a given overlap

c is determined by mwt (c) and is plotted in Figure 6.6. For a given imaging scenario,

—. .-—
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it is desirable to adjust the length of m towards the optimal described by mopt (c),

while keeping c constant (and on the lowest allowable computational curve, as defined

by Equation (6.6)), in an effort to minimize the overall operations count. .111the

~,hile, the displacement value d is equal to m – c and constrained from above by

Equation (6.7), while minimum allowable value for d is one. That is, for a any

fixed value of c, m may be adjusted towards the optimal value mopt (c),providing

(m–c)~landd= (m – c) is less than the maximum prescribed bv Equation.

(6.7). -Additionally, depending on the type of FF’T implemented, there may be a

constraint on the allowable values for the filter length m; for example, a power of

two when a radix-2 FFT is incorporated. In such a case, the values of c and d are to be

adjusted within their allow-ableconstraints to achieve the best possible computational

efficiency, for a value of m which meets the given FFT size constraints.

6.2.3 Additional Computational J3urden of Post-Filtering to

Polar-Formatting

-At this point, it is timely to discuss the additional computational burden imposed

upon the polar-format algorithm by the space-variant post-filtering process. To

this end, the operations count Cf /~iZ of Equation (6.12) (and associated graph of

Figure 6.6) will be further examined. Equation (6.25) defines the optimal filter

length moPt(c) yielding the minimum operations count for some overlap c. Thus, the

optimized floating operations count Cwif,PiZ for this overlap c is

COPtf/@z= Cf/P~ (mOPt(c) , c, (&~(3)

and the associated optimal filter displacement dqt (c) is

Lpt(c)= mwt(c) – C. (6.27)

From Equations (6.12), (6.25) and (6.26), the optimal floating point operations

– cf/pi~(%pt(lO), 10) =count for a filter with an overlap c of 10 pixels IS Cwtf ,@Z—
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Cf/pi~(54.17j 10) = 82.9 flops/pixel. Similarly, for a filter of overlap of c = 80 pixels:

CfJPtf/pix e cf/Piz(~opt(80), 10) H cj/Pi.(653.65: 80) = 118.0 flops/pixel. Thus, for

the range of overlaps and filter lengths representative of typical imaging scenarios,

as shown in Figure 6.6, the floating point operations count ranges from about 83 to

118 flops/pixel, specifically for the post-filtering process. Next, this operations count

must be compared to that of the polar-formatting algorithm in order to determine

the relative computational burden of post-filtering with respect to polar-formatting.

A thorough analysis of the floating point operations count for the polar-format al-

gorithm is presented in Carrara’s textbook [12, pp. 479–482]. Carrara calculates

the operations count to be approximately 280 floating point (real) operations per

pixel, for a full-featured PFA implementation. Consequently, polar-formatting in

conjunction with the new space -variant post-filter yields an overall operations count

ranging from 363 to 398 flops/pixel, resulting in an additional computational burden

of 30 to 42 percent over that of the 280 flop, polar-format algorithm, alone. This

increase in computational burden applies only to broadside collections. The effect

of squint-mode collections, in terms of additional computational burden over those

of broadside, is discussed in Section 6.3. The calculations of this section predict an

increase in overall computational burden as small as thirty percent due to space-

variant post-filtering. In Section 6.4, these calculations will be found to agree with

actual computer simulations.

6.3 Effect of Squint on the Computational Burden

of Space-Variant Post-Filtering

It is well known that squint negatively impacts the computational burden of certain

image formation algorithms. which inherently compensate wavefront curvature effects.

For example, an important attribute of range migration algorithm (RMA) is its abil-

ity to completely compensate migration through range cells, including the geometric

— .— ., -.
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distortion and higher-order phase errors (leading to space-variant defocus) which

are inherent to polar-formatting. However, in squinted scenarios, RM.4 may become

very computationally burdensome. This drawback occurs because RM-\ must op-

erate on azimuth chirped data resulting from motion compensation to a line: and

consequently, in highly squinted scenarios: RMA requires high along-track sampling

rates at the front-end of the RM-4 processor [12, pp. 438]. Methods to alleviate this

problem are discussed in [16, 18], the latter reference introducing jkequencg domain

replication and downsarnphng (FReD), a modified RM.A method that uses replicated

spectrum to mitigate the aliasing effects that occur when using lower along-track

sampling frequencies.

In polar-formatting, data is motion compensated to a point and migration through

range cells (MTRC) is compensated via sampling on a polar grid and subsequent

polar-to-rectangular reformatting. Consecluently, there is no azimuth chirp in squint-

mode scenarios and therefore, no additional computational burden is imposed for

squinted collections since there is no increased upsampling. However, unlike RM-4

and FReD, polar-formatting is based on the planar wavefront assumption of the

tomographic paradigm, such that wavefront curvature defocus effects are not miti-

gated except through space -variant post-filtering. Unfortunately, as will be shown

next, the computational burden of space-variant post-filtering increases with increas-

ing squint. Thus, as with R.MA, full mitigation of wavefront curvature effects via

the polar-formatting algorithm means incurring an additional computational burden

(in the post-filtering step) when dealing with squint-mode data. However, in polar-

formatting, this computational burden is the result of a different phenomenon. Thus,

as opposed to RMA, the additional computational burden associated with process-

ing squint-mode data is not particularly severe for polar-formatting when used in

conjunction with space -variant post-filtering. The additional computational burden

for PFA/SVPF is due an increase in the quadratic phase error induced by wavefront

curvature. This is much less severe than the computational burden of upsampling

azimuth chirped data, as required by RMA in squinted scenarios.
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A consequence of the planar wavefront assumption of tomography is an increase

in the maximum quadratic phase error in squint-mode scenarios. Thus, for a polar-

formatted scene covering some range of spatial locations (z~, y:) over a circle of

illumination given by X’2+ g’2 = (DP/2)2 where (–z’ ~ x{ s z’), (–v’ S g~ S

y’) and DP is the scene diameter, the overall maximum observed quadratic phase

error will be larger (in magnitude) than that seen in a broadside scenario, when

all other parameters remain equal. .At.some specific scene locations, the squint-

mode quadratic phase error is larger than would be found in a broadside scenario:

and at other locations, smaller. However, the overall maximum quadratic phase

error is larger in squint-mode. Both the overlap c and displacement d of the space-

variant post-filter are influenced by the amount of quadratic phase error present. In

situations where the filter overlap and displacement are fixed in value regardless of

scene location, and when these values are breed on the maximum quadratic phase

error present, then the computational performance of the filter suffers.

The effect of squint on the computational performance of the space-variant post-

filter will now be explored. This analysis begins by revisiting the quadratic phase

error equation for wavefront curvature. The approximate form of Equation (4.134),

based the small patch assumption, is sufficiently accurate for this discussion since a

reasonable estimate of the squint-mode computational burden is all that is necessary.

This form of the equation is straightforward and allows for an intuitive analysis of

the squint-mode computational burden. While based on a mathematical approxi-

mation as opposed to an exact expression, additional precision would not lend to

a clearer understanding of the computational burden due to squint. Furthermore:

by their nature, computer algorithms contribute additional uncertainly in computa-

tional burden depending on their specific implementation. Thus, it is hoped that the

decision to use this approximation has been justified to the reader.

The generalized (squint-mode) quadratic phase error #2~for the small patch ap-

proximation is given by Equation (4.134) in Chapter 4, Section 4.4.3: and is reintro-
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duced here:

f&-’2 = &

{
.[=]-tan’os[-]}x’, z,,y,al).1 x~’–y:’ _tano Zxby:

R5—
2 ro ko

(6.28)

This equation is separated into addends which represent their reliance on squint.

The first addend is independent of squint and is the term upon which the post-filter

overlap c and displacement d are based (for the broadside imaging case). The second

and third addends are functions of the squint angle OS- The first squint addend

(with the tan OScoefficient) contains an zj/rO term, while the second squint addend

(with the tan’ O. coefficient) contains an x~2/r02 term. Since this is a small patch

approximation where Z:, VA<< ro, then zj2/r02 << x~/rO. Thus, the first squint

addend dominates the second, and Equation (6.28) can be further approximated:

{ [ 1}

1 X;2 – y;’ _ tan* 2x;y; ~.,’
42t = j s x~,y~ << rO .

r. k. >roko
(6.29)

From Equation (6.29), the squint term is maximal and the non-squint term zero

for points (zL,y{) along the diagonals given by y’ = Iz’I. Conversely, along the

Cartesian axes defined by x’ and y’, the non-squint term is maximal and the squint

term is zero. In order to derive the additional computational burden of squint mode

processing on the space-variant post-filter, the quadratic phase error equation at

broadside must be revisited. Consider Equation (6.29), where 19~= O. This is the

broadside-specific case of the generalized phase error equation, denoted by 42t~,0=~.

In this case, tan 0s = tan(0) = O, and Equation (6.29) reduces to

which is that of the broadside imaging case, first given by Equation (4.135).

(6.30)

For a polar-formatted scene covering some range of spatial locations (zl, y~) over

a circle of illumination given by Z“ + y“ = (DP/2)2 where (-x’ s Zi < z’), (–y’ <
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y{ S y’) and DP is the scene diameter, then

({1 x~2 – y;2
42tma= % max —

2 ro ko -’anos[-l}x’2)2 ‘;>y’<ro- “-31)

Furthermore, by Equations (6.30) and (6.31),

{

2 ‘=(dp~bmd )
[e.1 <45°,

42f%== 5

2 ‘an ‘S ‘=(htbroad) 45°< ]6S.I<90°.

(6.32)

That is, the maximum quadratic phase error at the signal edge for squinted scenarios

42tma= is at most twice the maximum quadratic phase error found for the same sce-

nario imaged at broadside, given squint angles between +45 degrees. When the squint

is between 45° and 90° (or between –45° and –90°) the maximum quadratic phase

error is at most 2 tan(O~) times the maximum phase error when imaged at broad-

side. Thankfully, while the maximum squint-mode phase error may be twice that

(or more) of the equivalent broadside collection, this does not yield a post-filtering

computational burden that is twice that of the broadside scenario. In fact, the over-

all increase in computational burden for the complete polar-formatting process that

includes post-filtering may be as little as 5.5Y0,when considering a squint-mode sce-

nario as opposed to broadside. This increase in burden for the squint-mode scenario

will be discussed now.

The post-filter length, overlap and displacement at a spatial position (zj: y;) are

based on the quadratic phme error present (at the signal edge) hi~~,g;)(~’) a’ that

point in the scene for a given imaging scenario. The basis for calculating the filter

displacement d is a relation incorporating the rate of change of the quadratic phase
.

error, or #(Z~)(X;), as given by Equation (5.35). .Assuming the squint-mode scenario

yields a phase error that is (at most) double the broadside phase error found at

the point (zb, y~) (which is valid for squint a angle OS< 450); then according to

the mathematical development of Equations (5.31)-(5.41), the maximum allowable

displacement d at that point is reduced by a factor of two. W-hen the squint angle is

even larger, the maximum allowable displacement d varies inversely with respect to

I
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2 tan(d~). Similarly, the development of Equations (5.29)–(5.30) reveal that doubling

the phase error (for the squint case compared to the broadside, where 19~s 45°) at

some spatial position (zj, g:) requires a doubling of the minimum allowable overlap

c between adjacent filter applications at (zL, g:). For squint angles OSgreater than

45°, the minimum allowable overlap c between adjacent filter applications increases

in proportion to 2 tan(O~). Assume for simplicity (though not maximum efficiency)

that the filter length, overlap and displacement are chosen to be fixed values across

the entire spatial extent of the image. In this case, the computational operations

count, per pixel, is represented by the curves of Fi~~re 6.6 (or Equation (6.12)), and

the overall operations count is found by multiplying this value by the total number of

image pixels. These curves may represent either a broadside or squint-mode scenario;

the maximum value of d reduced and the minimum value of c increased as appropriate

for squint-mode scenarios.

Calculating the increased computational burden of the post-filter due to squint

can be quite straightforward: given appropriate simplifications. For example, con-

sider a broadside spotlight-mode imaging scenario for a radar of center frequency

~o = ~-o gHz, cross-range resolution p. of 1.25 m, and patch diameter DP of 2000 m.

By equation (6.6), a post-filter overlap of c = 10 is above the minimum required and

thus adequate for proper wavefront curvature correction, given an oversimple value

OZ= 1.92 and mainlobe broadening factor KQ of 1.4. These parameters induce a

mild case of wavefront curvature defocus at the edge of the scene, and this example

is used as the benchmark scenario for the workstation execution time comparisons

of Section 6.4.

For this squint-mode computational burden example, let c~ represent the worst-

case broadside filter overlap. Therefore, cb = 10. By equation (6.25), the optimal

filter length mOP~is found to be mv~ (10) % 53. Furthermore, by Equation (6.8),

db = mw~ – cb = 53 – 10 = 43. This value of displacement (db = 43) is less than

the maximum displacement value d = 812 prescribed by Equation (6.7) for these

particular imaging parameters; therefore, the filter constraints are met. Now, the



Chapter 6. Performance of the Space-Variant Post-.Filter 191

additional computational burden due to squint will be discussed. Consider a squint-

mode scenario where the squint angle Osis constrained by the inequality [OS]<45°.

By Equation (6.32), this yields a maximum quadratic phase error for a circular patch

that is no more than twice that encountered for the same scene imaged at broadside.

Consequently, the maximum allowable displacement d is reduced by a factor of two,

and the minimum allowable overlap c is doubled. Thus: for the squint-mode scenario,

the minimum filter overlap CSis 2 x cb = 20 pixels. .Assuming the filter length m

remains fixed when comparing broadside to squint, then the filter displacement for

the squinted scenario d. is found to be 53 – 20 = 33. This is well under the squint-

mode filter displacement constraint of d/2 = 812/2 = 406 pixels.

The computational operations counts (in flops/pixel) for the broadside and squint

scenarios are given by Equation (6.14). For the broadside scenario, cflp~(m, C) =

cf/piz(53, 10) x 83 flops/pixel for the space-variant post-filter algorithm. In con-

junction with the 280 flops/pixel operations count for the polar-formatting algorithm,

the combined computational burden of PF.A/SVPF is 280 + 83 = 363 flops/pixel.

For the squint-mode scenario, CjiPiZ(m, c) = C~lP~z(53,20) s 108 flops/pixel for

post-filtering, for a combined PFA/SVPF burden of 280 + 108 = 388 flops/pixel.

Consequently, the additional computational burden associated with squint-mode pro-

cessing is only (1 – 388/363) x 100 = 6.9% for this example! In a more general sense:

as the broadside overlap c varies within the range of 10 ~ c s 80 (depending on

frequency, resolution and patch size parameters) and the optimal filter length m is

chosen based on this c, the additional computational burden for the same scenario

imaged at a squint angle ]6SI < 45° ranges from 5.570 to 6.9~0, depending On the

initial, broadside-mode value of c. Thus, while this additional computational burden

for squint-mode with PFA/SVPF is not inconsequential or completely negligible, it

does not make a significant impact on overall computation time. This is in stark

contrast to the RMA algorithm, whose oversampling requirements in squint mode

can create a huge computational burden compared to that of broadside.
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6.4 Computer Simulation Results

6.4.1 Choice of Algorithms

In this section, several popular image formation algorithms are compared to polar-

formatting (with and without post-filtering) with regard to the overall running time

on a common engineering workstation platform. While not a scientific analysis (com-

pared to the operations count), it does help to verif~’,through a practical implemen-

tation, the theory derived and discussed thus far, with regard to computational

burden. It will be shown through these computational simulations that indeed, the

burden involved in performing the’ space-variant image restoration for wavefront cur-

vature is not particularly severe. Furthermore, these benchmarks will demonstrate

that polar-formatting in conjunction with space-variant post-filtering is a viable im-

age formation algorithm when wavefront curvature effects are present. In addition

to polar-formatting, three other well known image formation algorithms are consid-

ered. The seismic migration technique (RMA) is benchmarked as is the newer fre-

quency domain replication and downsampling (FReD) algorithm, a modified version

of RMA designed to reduce the along-track upsampling requirements when imaging

in squint-mode. Furthermore, the convolution back-projection (CBP) algorithm has

been implemented and benchmarked.

While the RM.A and FReD algorithms inherently compensate wavefront curva-

ture, the CBP and PFA algorithms are b~asedon the tomographic paradigm and rely

on the associated planar wavefront assumption. Consequently, additional measures

are required to compensate the wavefront curvature effects in the PF.4 and CBP

implementations. Obviously, space -variant post-filtering is the method of compen-

sation chosen for PFA and is the focus of this dissertation. Similarly, in the recent

past, CBP has been suitably modified by other researchers to compensate wave-

front curvature. ..4s will be shown next, the computational burden of CBP is severe

compared to the other algorithms, even before considering the additional burden as-
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sociated with wavefront curvature correction. This is due to the 0 (n3) computational

complexity of CBP, resulting from the filtering and projection of n aperture samples

across an n x n image grid. .4s such, it was deemed unnecessary to benchmark a vari-

ation of CBP which compensates wavefront curvature. Furthermore> variations of

the aforementioned algorithms, such as the chirp scaling algorithm (CSA) and mod-

ified chirp-Z transform (MCZT), both simplifications (via approximation) of RMA,

have not been benchmarked. Another class of image formation methods, the over-

lapped and tiered subaperture algorithms (OSA and TSA) were originally designed

for high-speed image formation when implemented on specialized VLSI hardware.

Furthermore, their subaperture approach lends to their inherent compensation for

wavefront curvature. While not specifically benchmarked here, the OSA algorithm

has been analyzed in detail and found to be computationalIy competitive with the

algorithms studied here, on a flops/pixel basis for single processor systems [91].

The polar-format algorithm being benchmarked is an in-house (Sandia National

Laboratories) product whose functionality is examined in Section 1.1 of Chapter

1. The reader is also encouraged to review Section 1.3 of Chapter 1, which gives

many details of the various image formation algorithms, and provides a brief com-

parison/contrast of these methods with regard to image formation features. Also

within Chapter 1 (specifically, Section 1.3), a number of important references have

been cited which will assist the reader in the understanding of SAR image formation

fundamentals and algorithms.

6.4.2 Benchmark Results

The spotlight-mode, SAR imaging parameters for all implemented algorithms are

given in Table 6.1. The computer simulation was conducted for a broadside collection

only. All algorithms were implemented in the FORTRAhi programming language

and executed on a Sun Microsystems U-ltratm workstation running at 200 mHz. For

the R-M-Aalgorithm, the required upsampling ratio is approximately 2:1 for this

——-
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Radar Parameters for Vi70rkstation Timing Experiments
Parameter Symbol Value

Center Frequency fo 5.0 gHz
Wavelength A, (A= c/fo) 0.06 m

Resolution, Cross-range Pz
1.25 ~

Resolution, Range P?/ 1.5J~m

Scale Factor, Cross-range Sx 0.65 m/pix

Oversimple Value, Cross-range 0. (0. = pz/.%) 1.92
Mainlobe Broadening Factor K. 1.4

Slant Range at Broadside ro 10000 m
Squint Angle e. 0°
Patch Diameter DP 2000 m
Image Dimensions nz ~nY 4096, 4096 pixels

Table 6.1: Radar Parameters for Workstation-Based Timing Benchmark

Workstation Parameters Specific to Space-Variant Post-Filtering
Parameter Symbol Value

FiIter Length m 64 pixels
Filter Overlap c 10 pixels
Filter Displacement d,(d=m–c) 54 pixels
Image Dimensions nz ~ny 4096, 4096 pixels

Table 6-2: SVPF-Specific Parameters for Workstation-Based Timing Benchmark

scenario. The space -variant post-filter parameters, in terms of overlap, length and

displacement, are given in Table 6.2. These parameters were calculated from the

equations for maximum overlap c and displacement d, given by Equations (6.6) and

(6.7), respectively, and based on the radar parameters of Table 6.1. The optimal filter

length mm~(c) is based on a value of c = 10 and therefore, mqt(lo) = 53 according

to Equation (6.25). Since this is a practical implementation, the filter length m has

been increased to 64 in order to comply with the power-of-two constraints of the

radix-2 FFT being implemented. The value of c remains at 10 in order to stay on

the lowest computational curve (see Figure 6.6) and consequently, d = m – c = 54,

which still satisfies the constraint on the maximum filter displacement d as specified

by Equation (6.7).
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Spotlight-Mode Image Formation Benchmark – Broadside Geometry
Image Formation Algorithm Wavefront Curvature Execution

Defocus Correction? Time: seconds

Polar-Format (PF.A) No 434
Polar-Format with Space-Variant Yes, 569
Post-Filtering (PFA/SVPF) Through 2nd Ordera (PF-A+31%)
Range Migration (RNL4) Yes, Full 1153
Frequency Domain Replication (FReD) Yes, Full 713
(Modified RMA)
Convolution Back-Projection (cBP) Nob 132,000

‘Fixed filter overlap, length and displacement from one filter application to the next.
bWavefront curvature correction for CBP is discussed in [30, 31, 32], but not bench-

marked here.

Table 6.3: Execution Times for Five .41gorithms in FORTR41f on a Sun Ultra-2
Workstation

The running times of RMA, FReD and CBP algorithms were compared to that of

PF-4, both with and without the space-variant post-filter. These running times are

presented in Table 6.3. The wavefront curvature processing time via space-variant

post-filtering is just over two minutes for a 4096 x 4096 pixel image on the Ultra

workstation. This amounts to about 30% of the polar-format image formation time.

Thus, for this imaging scenario, the entire computing time required for generating an

image free of wavefront curvature effects is 569 seconds, when using polar-formatting

in conjunction with the new space-variant post-filter. .4s can be seen from the table,

this time compares very favorably to those of RM.4 and FReD, and is much better

than the running time of CBP.

6.4.3 Observations

Previously, it was determined that the additional computational burden for post-

filtering squint-mode scenarios is minimal relative to that required to refocus a

broadside collection of the same scene. Thus, it is sufficient to benchmark the im-
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age formation algorithms for a broadside scenario only. This is reasonable since the

PFA/SVPF algorithm would remain competitive in squint-mode scenarios, regardless

of the increase in computational burden for the other algorithms being analyzed.

This FORTRAN implementation of PF.A/SVPF would indicate that it is more

computationally efficient than the original version of the seismic migration technique,

RM.4, and also more efficient than the computationally “improved” FReD algorithm.

However, FORTRAN timings are not the final word on algorithm eficiency, espe-

cially in situations such as this, where admittedly, algorithms are not necessarily

implemented efficiently or tuned for maximum computational benefit. Thus, it is

not the intention of this benchmark to prove the “superiority” of polar-formatting to

other image formation algorithms. Instead, these timings demonstrate, in an empir-

ical sense, that polar-formatting in conjunction with space-variant post-filtering is a

viable candidate for image formation when wavefront curvature effects are present.

Furthermore, the benchmark shows that when implemented according to the method-

ology presented in Chapter 4, and with the specified optimizations, that in fact, a

practical implementation of space-variant post-filtering can be expected to perform

(more or less) according to the theoretical predictions. The running time of the basic

PF.A algorithm (without post-filting) is demonstrated to be very similar to that of

the RMA aIgorithm, and this empirical result is consitent with the corresponding

flops/pixel operations counts derived by Carrara for these algorithms [12, pp. 481].

Finally, it is important to note that this algorithm comparison is unfair in the

sense that it “compares apples to oranges.” Specifically, the RM.A and FReD al-

gorithms exactly compensate the wavefront curvature defocus effects. In contrast,

the space -variant post-filter corrects phase errors only through second-order, leaving

higher-order (but usually, visually imperceptible) residuals in the image. Further-

more, the computational efficiency of post-filtering is due, in part, to varying the

filter only as often as necessary to reduce the residual second-order phase errors

such that the remaining defocus in formed imagery is constrained to subpixel levels.

Thus, for most imaging scenarios (except those extreme cases with severe higher-
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order phase components), PF.A/SVPF yields an image free of wavefront curvature

defocus effects, atleast ~perceived bythehuman visual system. In fairness to the

other algorithms, this is not a theoretically perfect correction. However, when com-

paring a perfect correction, as in the case of RMA, to that of an approximation, as

with PFA/SVPF, correcting defocus to the point of being “visually imperceptible”

meets the design goals of the filter: and thus, is close enough to perfect. However,

this design goal is not to be construed as actually being a perfect compensation.

Consequently, at first glance, the benchmark seems to indicate the running-time

“superiority” of PF-A/SVPF as compared to other algorithms, but this must be tem-

pered by taking into account the inherent differences in the corrective capabilities of

the algorithms. Similarly, in the case of CBP, while the high computational burden

seems to discourage its use, this algorithm has unique capabilities that make it very

desirable in some scenarios, despite its burden. For example, the ability of CBP

to form images from very long apertures without polar-to-rectangular interpolation,

thereby eliminating the associated interpolation errors.

..—--—-=-s. —. . . . .. . . . . . . .
—-. —.
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Chapter 7

Conclusion

7.1 Summary

The traditional polar-formatting algorithm, PFA, is a robust, efficient and well

proven method for spotlight-mode SAR image formation. However, the derivation

of this technique relies on the unrealistic assumption of strictly planar wavefronts in

the transmitted pulses, as prescribed by the tomographic framework under which it

was developed. As the radar system resolution increases, or large scenes are imaged

at close range or low center frequencies, the amount of wavefront curvature actually

present in the scene differs considerably from that of the assumed planar wavefront.

Consequently, for these collections, a significant amount of geometric distortion and

space -variant defocus is present. While the geometric distortion is easily removed

via a post-warping procedure, the space-variant defocus due to wavefront curvature

is more problematic.

This dissertation has introduced a general formulation for wavefront curvature

correction in spotlight-mode SAR images formed using the polar-formatting algo-

rithm. This correction is achieved via an efficient, image-domain space-variant filter

applied as a post-processing step to PFA. This formulation is general in that it cor-
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rects for wavefront curvature in both squinted and broadside collection modes, with

little computational penalty for correcting squint-mode images. Furthermore, except

for the most severe cases (which have a significant higher-order residual phase er-

ror), correction is successfully performed without constraints On the SCenesize7 radar

center frequency, resolution or slant-range.

Prior to post-filtering, space-variant defocus was not compensated but simply

reduced to an acceptable level by imposing a restrictive upper limit on the imaged

scene size when using polar-formatting. This was an unreasonable constraint that

Iimited the versatility when imaging large scenes; ironic, given that otherwise, PFA

lends itself nicely to imaging large scenes due to its simplicity. The post-filter for

wavefront curvature correction is precalculated from a theoretical derivation of the

wavefront curvature effect, as based on the geometric model for the phase return

from a point target. This phase return is broken into components via a Taylor

series expansion and the second-order (quadratic) phase error term is considered to

be dominant in inducing the defocus. The quadratic phase error varies depending

on the spatial location within the imaged scene. Consequently, the post-filter is

space -variant to compensate this error as a function of scene location.

The post-filter is made efficient by varying it only as often as necessary to limit the

residual blur to an imperceptible level. This residual blur results from the quadratic

(and higher-order) phase errors remaining after post-filtering. Furthermore, since

the quadratic phase error components are zero in the range direction, the filter need

only be one-dimensional in cross-range, even for squinted scenarios, which further

lends to its efficiency. Also lending to the efficiency of post-filtering is the linear flight

path assumption of the phase model. This assumption yields a closed form phase

error estimate which obviates the need for phase compensation at each aperture point

along the flight path for every spatial image location. Accordingly, the computational

burden is greatly decreased. The linear flight path assumption is restrictive, yet

not unrealistic in that it closely models IS.4R (inverse SAR, which specifies a fixed

antenna imaging rotating objects), valid under the tomographic paradigm. Finally,
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a number of rules have been presented in this dissertation which assist the algorithm

designer in further reducing the computational burden via optimal filter sizing and

movement, while still meeting quality-of-refocus constraints.

This research has shown that traditional polar-formatting in conjunction with

space -variant post-filtering (SVPF) effectively compensates the wavefront curvature

defocus in spotlight-mode imagery. Use of the space-variant post-filter effectively

eliminates scene size restrictions and constraints on squint angle: resolution and

slant-range. Furthermore, SVPF does not require subaperture processing and the

associated patchwork reassembly of the image, nor is it iterative or have any depen-

dence on the visual contents of the scene. Consequently, it is an excellent candidate

for high performance computing environments via parallelization. In many cases, the

computational burden of post-filtering is shown to be as small as thirty percent of

the polar-formatting time, and the additional burden from processing squint-mode

imagery is typically only six percent. This is in stark contrast to the range migration

algorithm (RMA), whose severe along-track upsampling requirements induce a huge

computational burden in squint-mode. Modifications to RM.A, such as the frequency

domain replication (FReD) algorithm, have reduced the squint-mode computational

burden by obviating the need to upsample. However, the intent of this dissertation

is not to discredit or validate any particular image formation algorithm, but instead,

simply to show that PFA in conjunction with space-variant post-filtering is a viable

candidate for spotlight-mode image formation when wavefront curvature effects are

present. The author feels this has now been satisfactorily demonstrated.

7.2 Contributions of this Dissertation

This dissertation makes a number of significant contributions to the concept of space -

variant post-fiItering for wavefront curvature correction in polar-formatted spotlight-

mode SAR. In short, this dissertation provides a comprehensive treatment of space-

-.——— ——.
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variant post-filtering covering the following topics: general motivation, geometric

and phase model construction, phase error derivation and filtering equation devel-

opment, computer implementation, quality of refocus analysis, operations count and

comparative benchmarking against other algorithms. The analysis of space-variant

post-filtering w-as conducted on both broadside and squint-mode scenarios. The in-

dividual contributions are detailed as follows.

● Wavefront curvature effects were demonstrated for polar-formatted imagery

via numerous pictorial examples. Specifically, geometric distortion and defocus

effects were fully demonstrated and the corresponding scene size restrictions

were derived for both geometric distortion and space -variant defocus. (Chapter

3).

. Geometric distortion was described in terms of a geometric model of the actual

curved wavefront, and also presented as a first-order phase error effect via a

model of the phase return from a point target. (Chapters 3 and 4).

. The original broadside-only phase return model for wavefront curvature pre-

viously introduced by Jakowatz, et al [7, pp. 355–360], was expanded into

a generalized squint-mode model. Consequently: as would be expected, the

broadside model and associated equations (representing a squint angle of zero)

were shown to be a specific case of the new, generalized squint-mode model.

Furthermore, the small-patch approximation proposed by Jakowatz was shown

to be yet another special case of the generalized model presented here. (Chap-

ter 4).

. The space-variant post-filtering pro cess, from a comput ational perspective, was

made more efficient by varying the filter only as often as necessary to remain

below a maximum acceptable phase error. Efficiency was further enhanced by

implementing a one-dimensional refocus filter in cross-range, which was shown

to be sufficient for proper compensation. A linear flight path assumption also
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served to reduce the computational burden. It was also demonstrated that the

quadratic phase error due to wavefront curvature remains one-dimensional in

cross-range even for squint-mode scenarios. (Chapter 5).

Consideration was given to the geometric distortion associated with wavefront

curvature, and a refocus (filtering) method proposed that accounted for this

distortion without necessitating its correction. In this way, the traditional

post-warping step of PFA can be retained. (Chapter 5).

Quadratic phase errors were mathematically analyzed with respect to their

effect on IPR width, and a closed form solution was presented (based on [92,

93]) to predict IPR broadening. (Appendix A).

Analytical, closed form solutions were derived for overlap c, displacement d and

length m of the post-filter as a function of (Z: y) location in the scene. These

parameters were based on rate-of-change calculations for quadratic phase and

also the IPR broadening analysis. (Chapter 5).

An analytical operations count and complexity analysis were done for the post-

filter, based on filter overlap, length, and displacement. Suggestions were made

(accompanied by the appropriate mathematical analysis) for optimizing the

operations count. (Chapter 6).

Quality of refocus was examined from both a qualitative and quantitative per-

spective. The SVPF computational burden was calculated to be as little as

thirty percent of the polar-format algorithm burden, based on filter overlap,

displacement and length (as driven by the original radar parameters and imag-

ing geometry). This burden was shown to be consistent with the empirical

running-time workstation benchmarks. (Chapter 6).

The additional post-filter computational burden in squint-mode scenarios was

calculated to be as little as 5.570 over that of broadside, with all other imaging

parameters remaining equal. (Chapter 6).
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7.3 Future Work

As with any interesting, challenging and unique endeavor, this research builds a path-

way to other interesting and challenging problems. This section provides suggestions

for extending this research, thereby improving the utility of the space-variant post-

filter as well as furthering its scope of application.

. Parallelization:

An active area of research in SAR is the high-speed (real-time) formation of spotlight-

mode imagery via parallel processing. To prevent the space-variant post-filter from

becoming the bottleneck in parallel computer implementations of polar-formatting.

the post-filtering algorithm should be parallelized, as well. As previously mentioned,

post-filtering is based on an analytic expression for quadratic phase error as a func-

tion of spatial scene location, and has no dependence on the visual contents of the

scene. Furthermore, the filter is one-dimensional in cross-range. Thus, it lends itself

nicely to parallelization, given data-domain decomposition in range. In fact, this

type of algorithm is the easiest to implement in parallel, and thereby considered

embarrassingly parallel.

. Space-variant filter overlap and displacement:

In Chapter 5, relations were developed for determining the optimal filter displacement

d, overlap c and length m in terms of the floating-point operations count (flops) per

pixel, with respect to a specific image location (z~, y{). Subsequently, in Chapter

6, the overall computational burden for space-variant post-filtering was calculated

based on the optimal values of d, c and m at the worst-case spatial location for

defocus. That is, once chosen for worst-case defocus compensation, these parameters

were fixed and applied throughout the image, although defocus was typically less

severe elsewhere. This provided a straightforward approach for calculating the overall
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computational burden for post-filtering. However, while this simplified the analysis of

the computational burden in this dissertation: in practice, the computational burden

can be further reduced via space-variant adjustment of d, c and m as a function of

spatial image location. This is easily done, given that the analytic expressions for

these parameters are already represented as functions of image location.

. Higher-order phase error compensation:

Given the current state of S.4R technology, the residual, higher-order phase errors

that are left uncompensated upon post-filtering are sufficiently small in magnitude

as not to induce visible image defocus. In the future, as radar systems achieve

ever higher resolutions, at some point it may become necessary to compensate the

third-order (and perhaps higher) phase errors arising from wavefront curvature. .4s

has been demonstrated here for quadratic phase errors, the higher-order correction

would require the calculation of subsequent Taylor series terms of the equation for the

phase return from a point target. At this point, it remains unknown as to whether

these higher-order phase terms will remain one-dimensional in cross-range. If the

filtering problem becomes two dimensional, the computational burden will increase

significantly.

. Compensation of residual phase pistoning effect for lFSAR.

It has been determined, as a rule of thumb, that a residuaI quadratic phase @2~of

less than 7r/4 radians is not sufficiently large to induce visually perceptible defocus

in the formed (and magnitude-detected) imagery. That is, given this upper limit for

residual quadratic phase, defocus is constrained to within subpixel levels (as shown

in Appendix A). Consequently, as a matter of computational efficiency, the space-

variant post-filter is varied only as often as necessary to constrain the defocus to

subpixel levels. However, when these post-filtered images are used in their complex

(phase and magnitude) form for creating interferometric SAR (IFSAR) products,

. -. ..—, —.. —..
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the residual phase errors become significant. In the generation of IFSAR height

map products from the complex-vaiued input images, these phase errors manifest

themselves as phase discontinuities which induce “jumps” in the calculated terrain

height at post-filter boundaries. These jumps, represented as steps (up or down)

in height across the elevation maps, are collectively known as the pistoning eflect.

This pistoning effect is found in other space-variant operations dealing with image

phase, such as space-variant autofocus [94]. As was previously done with autofocus,

the pistoning effects induced by phase discontinuities must be resolved before IF-

SAR processing can be applied to imagery that has been post-filtered for wavefront

curvature correction.

. .41ternate focus planes, three-dimensional platform motion and arbitrary flight

paths:

The phase models for wavefront curvature described herein have been simplified as

to convey only the desired scientific principles, without introducing additional com-

plicating issues. However, to apply these principles to practical, real-world imaging

scenarios, the models need to be further expanded to improve their versatility. For

example, the phase models (and associated equations) should be extended to apply

to alternate focus planes in addition to the slant plane scenarios described in this

dissertation. In this way, the post-filter can be applied to ground plane imagery, for

example, which is considered to provide a visual perspective which is better suited

to human interpretation.

This research included the development of a generalized phase model which as-

sumed a linear platform trajectory. This yielded an analytic, closed-form solution

for quadratic phase error, strictly as a function of spatial image location and without

regard to individual aperture positions. This linear flight path assumption lends to

a greatly reduced computational burden compared to that of a formulation requiring

phase correction at each position along the flight path. This flight path assumption

is restrictive yet not unrealistic, as it models the ISAR scenario of the tomographic
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paradigm, whereby the remote sensing platform remains stationary while the targets

to be imaged rotate within the illuminated field. Similarly, a circular flight path

could have been chosen, or an elliptical, or any alternative flight path that could

be mathematically described, and the phase equations subsequently re-derived to

reflect the chosen flight path for the model. However: in real-world scenarios, arbi-

trary flight paths, or at least those affected by uncompensated motion errors, area

common occurrence. .At the very least, the space-variant filter should be suitably

modified to accommodate out-of-plane motion, via a three-dimensional extensionof

the current model. For optimal versatility, the wavefront curvature compensation

could be extended to apply to phase histories generated by flying an arbitrary flight

path. In this case, the flight path is specified by a set of spatial coordinates (pointing

vectors) which describe the arbitrary motion. For this scenario, it is mathematically

feasible to compensate the wavefront curvature defocus. However, for arbitrary mo-

tion, it is unknown as to whether the computational efficiency could be maintained

at the current level.

.— — —-—..__.... _
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Appendix A

IPR Broadening Due to Quadratic

Phase Errors

The impulse response function (IPR) is used to describe the radar system’s response

to a single isolated point target return and is described mathematically by the dirac

delta function g(u) = J(u), arbitrarily located at u = O. The system is necessarily

bandwidth limited and the IPR is a sine function response. The spatial bandwidth

for a spotlight-mode collection is given by

AllY = AY’ = ~ (2mBC) (range extent) (.4.1)
c

and

AU. =AX’=2
()

~ sin(AO/2) (azimuth extent), (./3.2)

where 13Cis the bandwidth of the linear FM chirp launched by the radar at a center

frequency of Wo,A6’ is the angular diversity of the synthetic aperture, and A is the

signal wavelength at W., Since the angular diversity LA is typically very small in

spotlight-mode SAR collections, the

applied to Equation (A.2), yieldlng

small angle approximation sin(d) = d can be

(A.3)

.—__ —. — —---.—....
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The prime (’) in AX’ and lLY’ signify that these frequency extents apply to the

slant plane reconstruction as opposed to the ground plane projection. The IPR

reconstruction consists of a mainlobe and associated sidelobes with the first zero

crossings occurring at a distance of u = + ~, as shown in Figure -A.1. A full

derivation of Equations (.4.1) and (.A.2) can be found in [7, pp. 22–24, 72-74]. Since

resolution refers to the ability to distinguish between two adjacent IPRs, one can

assume they must be separated by at least the distance u. In fact, while this simplistic

assumption does provide a certain useful and practical measure of resolution, it does

not take into account the relative phases of the reflected point target signals, which

can further degrade resolution. Another commonly used measure of resolution p is

the ha~-power width of the ideal response function such that in general,

and specifically,

r 7i
——

‘y’– Auy = ~

and

(A.4)

(A.5)

7i 7i
pz, = —

A!YZ = ~
(.4.6)

for the range and azimuth resolutions, respectively, where X; and Y; define the

maximum frequency extent of the aperture in the slant plane, where (lAU~I < X;)

and (]AUVI ~ Y;). Again, this measure is optimistic whenever the relative phases of

the reflected point target signals are not considered.

The IPR sidelobes also have an effect on image quality. In SAR imaging, it is

desirable to limit the peak sidelobe levels of the IPR because high sidelobes confuse

the signatures of complex, closely spaced scattering centers, making visual analysis

difficult or confusing. This sidelobe energy is generally concentrated in the range

and azimuth directions only, with little diagonal energy present. This is due to a

phase history which is typically rectangular in shape (after interpolation), with the
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the range and azimuth directions. Furthermore, typical S-ARphase

errors, which increase sidelobe energy, generally impact phase histories in either the

range or azimuth direction with little cross-coupling. However, one exception to

the strict range/azimuth orientation of sidlelobes is image formation by convolution

back-projection (CBP). This method utilizes the spotlight-mode phase history data

in its natural poIar annulus form. When these data are exscribed with a rectangular

window prior to processing, azimuth-oriented sidelobes are diagonalized with respect

to the cross-range axis, at an angle corresponding to the along-track angle subtended

by the synthetic aperture. The sidelobe characteristics in imagery constructed using

CBP are discussed in [33]. The natural impact of a limited aperture, as well as the

effects of phase errors, require us to maintain a certain tolerance of image degradation

due to IPR sidelobes. The sidelobe levels are often reduced or controlled through

the use of aperture weighting (windowing) procedures in the range and azimuth

directions, as discussed in [12, pp. 50’i-524], [7, pp. 159-176], [46, pp. 225-239] and
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[77]. Ho~~7e~'er,these techniques generally require atradeoffbet~veen mainlobe~vidth.

and sidelobe amplitude.

As is the case with many phase errors, the quadratic phase error (QPE) associated

with wavefront curvature serves to attenuate the IPR mainlobe while symmetrically

increasing sidelobe energy, both of which are detrimental effects. W-hen this phase

error is compensated, IPR mainlobe amplitude increases while sidelobe amplitudes

decrease, as desired. In considering the degradation of imagery due to quadratic

phase errors: the IPR width serves as the metric by which this imagery is judged.

While the zero crossing points of the mainlobe may be used as a measure of its

width, more commonly the -3 dB or -15 dB attenuation points are used, as shown

in Figure A.1. Thus, by minimizing quadratic phase errors, a maximum acceptable

IPR width can be maintained. This generally results in acceptably small sidelobe

amplitudes as well, particularly when aperture weighting is incorporated within the

image formation process.

The effects of quadratic phase errors on the ideal IPR are shown in Figure A.2.

For a phase error of ~, ~ 2m, which represents a large time-bandwidth product,

the sidelobe amplitudes overtake those of the mainlobe. If the -15 dB threshold is

chosen to measure IPR width, then it is clear that the IPR broadens with increasing

quadratic phase error. Just how much IPR broadening occurs at a given QPE? All

research to date has relied on empirical data, as shown in Figure .4.2, to determine the

maximum acceptable quadratic phase error based on the IPR broadening observed.

This .4ppendix serves to provide an analytical approach for relating QPE to IPR

broadening. Two different methods are presented, both of which were first proposed

in internal company memos [92, 93]. The first considers the the spectral width of

the IPR in the frequency domain to determine the broadening factor. The second

considers the quadratic shape of the phase error and its rate of change to derive a

spatially-based broadening factor, in pixels. .4s shown, both approaches yield the

same result.



Appendix A. IPRBroadening Dueto Quadratic Ph=e Errors

0

-4

m‘-a -8I
$
.g -12

~ 16

~

Xi7 AU

Figure A.2: Effects of Quadratic Ph~e Errors onthe Ideal IPR

A.1 IPR Broadening Based on Spectral Width

First, consider the following Fourier transform pair, ignoring amplitude factors:

* .at2 3_ ~%~g, (A.7)
~J

where

(A.8)

(.4.9)

and

(-4.10)

(All)
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A pulse of duration AT = Tz – TI has a nominal spectral width, based on the

time-bandwidth product definition, of

Afl) = &. (A.12)

For a signal with quadratic phase error e~”t2, the nominal spectral width based on

Equation (A.7) is

~jQpE _ (Q, - f),)
—

21i
2cAT’

= 2T

= ~AT. (.4.13)
T

The ratio of quadratic to nominal spectral widths is the broadening factor of the

IPR, 41PR. Expressing this as a function of a:

A.fQPE
AIPR =

A f.

= ~(AT)’.
n-

(A.14)

From the left side of Equation (A.7), the quadratic phase error @eat the signal edge

AT/2 is

= a (AT)2 (A.15)
4.

Solving Equation (-4.15) for a in terms of@, yields

44. (A.16)
““m”

Finally, substituting Equation (A-16) into Equation (.4.14) and accounting for the

possibility of (a < O), yields the IPR broadening factor

4 [@cl
AIPR = — -

T
(-4.17)

For example, given the quadratic phase error d~ = ~ radians> the 11’R broadens by

a factor of

(.4.18)
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A.2 Spatial Domain IPR Broadening

An alternative approach considers IPR broadening in terms of the pixel spread in

the spatial domain. Consider the quadratic phase error equation

n= O... IV (A.19)

where n is the sample number, ~ is the total aperture length in samples, and a is

the quadratic coefficient. Let ~i be the the instantaneous frequency (in Hz) of the

phase error at the aperture edges n = Oand n = IV, such that

From Equation (A.19),

firzst =
()

N
&2a n–~

n=hr
n=O

aiV
= k—.

2X

(-4.20)

iNow,the maximum frequency spread, or spectral width, of this quadratic phase error

is

A~~PE = 2 lj~l (-4.22)

and by substitution from Equation (A.21) we have

aAT
AfQPE = — (A.23)

IT .

Analogous to the ratio of spectral widths in the previous case, the pixel spread An

is defined by the following ratio:

An frequency spread

= frequency/pixel

(.4.24)
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and by Equation (.4.23),

](ZI.N2= — pixels.
r

216

(.Q5)

Expressing pixel spread as a function of quadratic phase error at the signal edge

requires a substitution for a, as follows: First, from Equation (-4.19),

aN2 (-~26)=
4

for either n = N or n = O, which represent the right and left edges of the quadratic

phase error function, respectively. Niext, solving for a,

and substitution into the pixel spread Equation (A.25) yields

This result is identical to that of Equation (-4.17).

(A.27)

(.4.28)
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