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Abstract

Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when recon-
structed via the well-known polar-formatting algorithm (PFA) under certain imaging scenar-
ios. These include imaging at close range, using a very low radar center frequency, utilizing
high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from
the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This
dissertation presents a method for the correction of wavefront curvature defocus effects un-
der these scenarios, concentrating on the generalized, squint-mode imaging scenario and its
computational aspects. This correction is accomplished through an efficient one-dimensional,
image domain filter applied as a post-processing step to PFA. This post-filter, referred to
as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and
varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the
imaged scene size in order to avoid defocus effects under these scenarios when using PFA.
The SVPF algorithm eliminates the need for scene size restrictions when wavefront curva-
ture effects are present, correcting for wavefront curvature in broadside as well as squinted
collection modes while imposing little additional computational penalty for squinted images.

This dissertation covers the theoretical development, implementation and analysis of
the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case)
and provides examples of its capabilities and limitations as well as offering guidelines for
maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination
and other spotlight-mode SAR image formation techniques are discussed with regard to
computational burden, image quality, and imaging geometry constraints. It is demonstrated
that other methods fail to exhibit a clear computational advantage over polar-formatting
in conjunction with SVPF. This research concludes that PFA in conjunction with SVPF
provides a computationally efficient spotlight-mode image formation solution that solves the
wavefront curvature problem for most standoff distances and patch sizes, regardless of squint,
resolution or radar center frequency. Additional advantages are that SVPF is not iterative
and has no dependence on the visual contents of the scene, resulting in a deterministic
computational complexity which typically adds only thirty percent to the overall image
formation time.
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Abstract

Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when
reconstructed via the well-known polar-formatting algorithm (PFA) under certain
imaging scenarios. These include imaging at close range, using a very low radar cen-
ter frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront
curvature effects arise from the unrealistic assumption of strictly planar wavefronts
illuminating the imaged scene. This dissertation presents a method for the correc-
tion of wavefront curvature defocus effects under these scenarios, concentrating on
the generalized, squint-mode imaging scenario and its computational aspects. This
correction is accomplished through an efficient one-dimensional, image domain space -
variant filter applied as a post-processing step to PFA. This space-variant post-filter,
referred to as SVPF, is precalculated from a theoretical derivation of the wavefront

curvature effect and varies as a function of scene location. Prior to SVPF, severe



ix

restrictions were placed on the imaged scene size in order to avoid defocus effects
under these scenarios when using PFA. The SVPF algorithm eliminates the need
for scene size restrictions when wavefront curvature effects are present, correcting for
wavefront curvature in broadside as well as squinted collection modes while imposing

little additional computational penalty for squinted images.

This dissertation covers the theoretical development, implementation and analy-
sis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a
special case) and provides examples of its capabilities and limitations as well as of-
fering guidelines for maximizing its computational efficiency. Tradeoffs between the
PFA /SVPF combination and other spotlight-mode SAR image formation techniques
are discussed with regard to computational burden, image quality, and imaging ge-
ometry constraints. It is demonstrated that other methods fail to exhibit a clear
computational advantage over polar-formatting in conjunction with SVPF. This re-
search concludes that PFA in conjunction with SVPF provides a computationally
efficient spotlight-mode image formation solution that solves the wavefront curvature
problem for most standoff distances and patch sizes, regardless of squint, resolution
or radar center frequency. Additional advantages are that SVPF is not iterative and
has no dependence on the visual contents of the scene, resulting in a deterministic
computational complexity which typically adds only thirty percent to the overall

image formation time.
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Chapter 1

Introduction

1.1 Overview

The classic approach to SAR image formation from phase history data collected in
the spotlight-mode has been the polar-format algorithm (PFA). This algorithm was
developed in 1974 by Dr. Jack Walker and served as the basis of his Ph.D. dissertation
[1]. Later, this work was published in the IEEE Transactions on Aerospace and
FElectronic Systems journal [2] and patented in 1980 [3]. The polar-format algorithm
is still popular today because of its straightforward implementation and robustness
in constructing images of large scenes without introducing phase discontinuities. In
contrast to the stripmap-mode SAR, which is a radar with a fixed look angle for a
given collection (see Figure 1.1), the spotlight-mode SAR slews its antenna as the
aperture is flown, thereby staying aimed at the scene center for the entire duration
of the collection, as shown in Figure 1.2. Due to its extended dwell time on a
given scene, the spotlight-mode SAR is capable of higher along-track resolutions and
typically requires less transmit power than the strip-map SAR. The disadvantage of
spotlight-mode SAR is that a smaller ground patch is imaged compared to strip-map
SAR. However, it is possible (and in fact common) to mosaic spotlight-mode images

into larger image patches.
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Figure 1.1: Stripmap-Mode SAR Imaging Geometry

In polar-formatting, the collected phase history data are described in terms of a
slice of the three-dimensional Fourier transform of the scene reflectivity, obtained on
a polar raster, as shown in Figure 1.3 (a). Known as the tomographic approach to
SAR, the analogy between spotlight-mode SAR and tomography was first proposed
by David C. Munson and his colleagues, and presented formally in 1983 [4]. It was
then revisited and recast by Ausherman, et. al. [5]. Munson’s method expounded
on the preliminary work of Walker, vet failed to cover several important points. For
instance, the imaging of three dimensional (elevated) targets was not discussed in
Munson’s paper. A complete three-dimensional tomographic model that was later
developed by Jakowatz and Thompson accounts for range-dependent layover in the

scene [6]. Jakowatz, et al, [7, pp. 355-365] in 1996 addressed the effects of certain
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Figure 1.2: Spotlight-Mode SAR Imaging Geometry for Polar-Formatting

phase errors in polar-formatted imagery that arise from assumptions in the tomo-
graphic spotlight-mode SAR model. The first is deramp residual phase error, which is
a residual of the signal deramp process used in the range compression of LFM (chirp)
radar processing. This phase error induces a geometric distortion on the formed im-
agery (with the effect of distorting a square scene into a keystone) and also some
mild defocus, yet is mitigated through a well-known procedure known as deskew
processing. Deramp processing is discussed in detail in 7, pp. 396-398]. Deskew
processing for mitigating deramp residual phase error is discussed in [7, pp. 363-
365], and alternative methods are presented in [4, 8, 9]. Typically, this phase error is
negligible and can be ignored in nearly all SAR imaging scenarios. A second unde-
sired effect is that of wavefront curvature, which is based on the faulty assumption

of strictly planar wavefronts being transmitted by the radar. These are potentially
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more serious in terms of image degradation than the deramp residual phase errors,
since wavefront curvature phase errors can induce a significant geometric distortion
and a space-variant defocus of the imaged scene for some imaging geometries. These
defocus effects are troublesome to negate due to their space-variant nature. This
dissertation is based on a concept originally proposed by Jakowatz, et al, [10] in
which a geometric model of the phase return from a point target is used to derive
(and ultimately compensate) the phase errors. That concept was further expanded to
include squint-mode imaging, as described by Doren, et al, in [11]. This dissertation
provides a comprehensive treatment of the subject including wavefront curvature
examples, a complete mathematical development of the phase error model, meth-
ods for efficient computer implementations, examples of post-filtered imagery and a
timing analysis comparing PFA with wavefront curvature correction to other image
formation methods. Furthermore, the detailed mathematical analysis presented here
avoids several of the original simplifying assumptions which limited the utility of the

original algorithm.

The traditional polar-format algorithm consists of a polar-to-rectangular interpo-
lation of all complex-valued, phase history data points from a points from a spotlight-
mode collection (see Figure 1.3 (b) and (¢)). This interpolation, in conjunction with
motion compensation to the scene center, negates migration through range cells
(MTRC), also known as range walk (see Figure 1.4). Then, an inverse Fourier trans-
form of these data (as projected onto a chosen two-dimensional plane, based on Mun-
son’s model) forms the SAR image. Since the derivation of this technique relies upon
the unrealistic assumption of strictly planar wavefronts in the transmitted microwave
pulses, the polar-format algorithm cannot compensate these wavefront curvature ef-
fects. Consequently, any actual amount of curvature present in these wavefronts
introduces the geometric distortion and space-variant defocus in the SAR image, as
formed by the polar processor. In some literature, this wavefront curvature (and
the associated distortion and defocus effects) is referred to as differential range cur-

vature, or more simply (and loosely), range curvature. For clarity, this dissertation
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makes a semantic distinction between range curvature, which is the range-oriented
movement of a target during the duration of the aperture (as shown in Figure 1.4
(b)), and wavefront curvature, which induces the distortion and defocus effects asso-
ciated with the faulty assumption of planar wavefronts. The polar-format algorithm,
until now, did not compensate wavefront curvature effects and was considered to
be mostly but not completely range curvature compensating, since it did account for
MTRC but not wavefront curvature. This dissertation deals strictly with negation
of the wavefront curvature effects, and in conjunction with MTRC compensation,

renders the polar-format algorithm as fully range curvature compensating.

In polar-formatted imagery, the geometric distortion induced by wavefront cur-
vature, due to first-order (linear) phase errors, takes on the form of an annulus in
the processed imagery, as shown in Figure 1.5. This distortion can be rectified in a
straightforward manner by appropriate post-warping of the image. The space-variant
defocus is based on second-order (quadratic) phase errors and is not removable via
post-warping. The magnitude of this defocus effect is a function of the range and
cross-range position of the target and becomes greater for those targets placed fur-
ther in range and cross-range from the scene center. Furthermore, the space-variant
defocus is more pronounced for collections taken with radars of low center frequency,
high resolution, at close standoff ranges, or when imaging very large scenes. Figure
1.6 (a) simulates the effects of space-variant defocus due to wavefront curvature on a
PFA processed scene of the US pentagon, while Figure 1.6 (b) has the defocus effects

removed, as well as being geometrically rewarped.

Consider a typical L-Band (fy = 1.25 GHz) airborne spotlight-mode radar, imag-
ing a 5 km diameter patch at range of 5 km and having a cross-range resolution of 0.6
m. The quadratic phase error induced by wavefront curvature at the far range of the
scene is sufficient to severely defocus this point in the scene, thereby rendering that
part of the imagery as useless [12, pp. 437-439]. This is due to the impulse response
(IPR) broadening that occurs because of the quadratic phase error, as analyzed in

Appendix A of this dissertation. This degradation is due to the lack of compensation
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Figure 1.3: Basic Steps to the Polar-Format Processing Algorithm

for wavefront curvature in the polar-format algorithm under these conditions, and
not because of limitations of the radar hardware itself. Clearly, it is not desirable for
a SAR capable of high resolution to be limited by shortcomings in the image forma-
tion algorithm. Perhaps more tragic is that this limitation is not even a shortcoming
of the image formation method, but instead the approximations of the mathematical
model used to derive the polar-format algorithm. As SARs attain ever increasing

resolutions, wavefront curvature effects become more prominent and the resulting
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quadratic, space-variant defocus becomes a major limiting factor in the quality of

polar-formatted imagery.

Prior to this dissertation research (and the initial research by Jakowatz on which

it is based), the only “solution” to avoiding the wavefront curvature defocus effects
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in polar-formatted SAR imagery has been to reduce the size (diameter) of the re-
constructed scene relative to the standoff distance of the platform, or by reducing
cross-range resolution by shortening the synthetic aperture length. A generalized
polar-format processor, first proposed in 1991, serves to reduce the residual phase
errors arising from wavefront curvature, thereby increasing the maximum possible
patch size [13]. However, the generalized polar-format processing approach, while
computationally efficient, still requires restrictions in patch size (though somewhat
relaxed compared to traditional PFA) in order to avoid visible defocus effects in the
formed imagery. This dissertation research “breaks ground” in that it compensates
the effects of quadratic defocus induced by wavefront curvature in polar-formatted
spotlight imagery, with little increase in computational cost and without imposing
arbitrary constraints on scene size, squint, resolution or standoff range. Further-

more, this compensation can be achieved to within sub-pixel accuracy by carefully
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controlling the residual quadratic phase errors, regardless of scene size or resolution,
ensuring there is no visible degradation of the formed imagery due to these errors.
Chapter 2 introduces the wavefront curvature problem and Chapter 3 motivates the

space-variant post-filtering solution for polar-formatted spotlight-mode imagery.

1.2 Introducing the Space-Variant Post-Filter

This research has culminated in a method for minimizing the quadratic defocus effects
associated with wavefront curvature in polar-formatted spotlight-mode SAR imagery
for all squint angles. This method incorporates a space-variant, image-domain filter
which refocuses the formed, complex-valued image. The filtering is performed as a
post-processing step to the polar-format algorithm, and thereby preserves all the ad-
vantages of poiar—format processing including its simplicity, autofocus capabilities,
and effectiveness in forming large images with no subpatch processing. It will be

shown that the quadratic defocus effect of wavefront curvature on a spotlight-mode
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SAR image formed with polar-formatting is a space-varying one which occurs in the
cross-range (azimuth) direction only. Thus, a one-dimensional, space-variant filter
is sufficient for compensating the defocus. This has the advantage of computational
simplicity, as well as being amenable to parallel processing environments. Further-
more, it will be demonstrated that the computational burden involved in performing
the space-variant restoration to remove the wavefront curvature defocusing effects is
not particularly severe. For a certain (significantly large) set of imaging scenarios, it
will be shown to be as small as thirty percent of the polar-format image formation

time.

The image-domain, space-variant post-filter (SVPF) is based upon an analytical
derivation of the phase error that is induced by curved wavefronts, as presented in
Chapter 4. This is accomplished via a geometric model of the imaged scene with
respect to the radar’s flight path, and subsequently deriving an equation for the
phase of the return signal for a given point, (z,y), in the imaged scene. Next, a
two dimensional Taylor series expansion is applied to the phase equation, allowing
the phase return signal to be represented by its polynomial components. The linear,
first-order terms of this series represent the position of the target’s radar return in
the imaged scene, and is consistent with Munson’s tomographic paradigm. However,
included are linear distortion terms that result in a space-variant, geometric warping
of the imaged scene, ignored by Munson. This distortion is normally (and has been
traditionally) removed in a post-processing warping procedure. The second-order
terms, due to the quadratic phase error (QPE) induced by wavefront curvature, are
much more serious in terms of image degradation and account for the space-variant
defocus of targets in the imaged scene. This defocus effect (and its compensation)
serves as the basis of this dissertation. Higher order phase error terms also exist, but
are typically small in magnitude and are ignored since they have little defocusing
effect on the imaged scene, at least given the state of SAR technology today. The
space-variant post-filtering method could be easily extended to deal with higher

order phase errors, if this becomes necessary due to future advances in SAR hardware
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technology that greatly improve upon current system resolutions or spotlight patch

sizes.

Typically, the space-variant post-filter operates on the formed, complex imagery
in the frequency domain, although convolution in the spatial domain is also possible,
and is mathematically (though not computationally) equivalent. In the frequency
domain, the algorithm works by calculating the one-dimensional, quadratic phase
error function for different points along the scene, and multiplying this function by
the complex conjugate of the Fourier domain data at that point in the scene. The
filter function varies as does the (z, y) location of the scene where it is being applied.
The procedure is made computationally efficient by varying the filter function only as
rapidly as required to maintain the residual blur at an acceptable level. Furthermore,
the filter function perfectly compensates the quadratic blur only at (z,y), yet serves
as a reasonable approximation to the phase error for some region of points around
(z,y). Therefore, by carefully choosing the length of the filter, and also its spacing
in (z,y) according to certain criteria as dictated by the imaging geometry and radar
frequency parameters, computational efficiency can be maximized while maintaining

residual blur at an acceptable level, as described in Chapter 5.

1.3 Alternative Spotlight-Mode Image Formation
Methods

The space-variant post-filter for polar-formatted spotlight-mode SAR imagery is gen-
eral in that it corrects for wavefront curvature in broadside as well as squinted data
collections, with no significant computational penalty for correcting squint-mode im-
ages. Other “fashionable” spotlight-mode SAR algorithms, such as the range migra-
tion technique (also known as seismic migration, or RMA), and recent enhancements
such as frequency domain replication (FReD), have been developed to accommodate

these wavefront curvature effects. The range migration algorithm has its roots in
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the field of seismic signal processing for imaging the Barth’s substrata, as described
in [14] and [15), and was originally applied only to stripmap SAR collections. Sub-
sequent papers by Prati, et al, demonstrate the extension of RMA as it applies to
spotlight-mode processing [16, 17], and it was thought to be the logical successor
to polar-format processing due to its inherent ability to compensate for wavefront
curvature. However, the along-track upsampling of the phase history data required
of the original version of RMA can, in certain instances (spotlight-mode), represent

a major computational burden.

The FReD algorithm obviates the need to upsample, and is accordingly more
efficient. It takes advantage of certain characteristics specific to polar-formatted
SAR data. As presented in [18], FReD is based on the fact that when a discrete
aliased spectrum is replicated a sufficient number of times, the resultant spectrum
will contain the desired signal spectrum. Hence, the use of FReD allows the acqui-
sition of data at normal spotlight-mode rates and obviates the need for FF'Ts larger
than those required for normal spotlight-mode processing. However, this dissertation
demonstrates that neither RMA nor FReD exhibit a clear computational advantage
over space-variant post-filtering in conjunction with the traditional polar-format al-
gorithm. Also, it is unknown how efficiently the RMA or FReD methods can be
applied to non-straight-line flight paths [19], or how easily autofocus algorithms can
be integrated into the image formation process. Furthermore, these algorithms are
more sensitive to deramp residual phase errors than the polar-format algorithm. An
efficient approach for applying the polar-format algorithm to non-straight-line paths

is discussed in [20].

The chirp scaling algorithm (CSA) is a simplification of the RMA algorithm in
that the nonlinear Stolt interpolation step (which compensates the range curvature of
all scatterers) is replaced by a linear approximation. Thus, the CSA implementation
requires only FFTs and complex vector multiplies, without any interpolations being
necessary. It is more computationally efficient than RMA, but at a cost. Since this

algorithm implements only the shift and linear components of the Stolt mapping,
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this approach becomes inadequate with the increase in resolution or scene size, and
residual phase errors leading to image defocus become significant in these scenarios.
Thus, the CS algorithm introduces some the same defocus effects that are removed
via post-filtering of polar-formatted imagery formed with PFA. The enhancement
of the CS algorithm is a current research topic that will not be discussed in detail
in this dissertation. See [21, 22, 23] for descriptions of the chirp scaling algorithm,
and (24, 25, 26, 27] for discussions of some ongoing research regarding the CSA.
Additionally, an excellent comprehensive treatment of the CS algorithm is found in

the dissertation of G. Davidson [28], and a massively parallel implementation of the

CSA is discussed in [29].

Yet another image formation method, convolution back-projection (CBP), has
been suitably modified to compensate for wavefront curvature effects. This method
is discussed in two papers by Jerald Bauck {30, 31|, which served as the preliminary
work leading to his Ph.D. dissertation [32]. In discussing the wavefront curvature-
correcting variation of CBP, Bauck states that with his method, “The task can
be fairly easy, although requiring somewhat more computation that Fourier-based
methods which use an FFT but do not correct for wavefront curvature.” In this dis-
sertation, it will be shown that PFA, the most basic and established Fourier-based
method, even with the additional burden of space-variant post-filtering, is still sig-
nificantly better than CBP in terms of overall computational burden, even in the
simpler case when CBP has not been modified to correct for wavefront curvature.
Furthermore, CBP is not considered a computationally efficient algorithm to im-
plement on a parallel computer, as it typically requires the programmer to make
a tradeoff between excessive memory requirements and significant communications
overhead on distributed-memory computers [33]. Additionally, the application of aut-
ofocus algorithms for uncompensated platform motion is difficult when using CBP.
This is due to the lack of an intermediate, Cartesian-coordinate, range compressed
grid on which to apply autofocus algorithms. This pitfall also applies to algorithms
based on the modified chirp z transform (MCZT), which are variations of the chirp
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scaling algorithm [34, 35]. Unlike the CBP and MCZT algorithms, polar-formatting
has been efficiently ported to a parallel processing environment. This topic has been
well researched and covers software implementations on parallel computing platforms
[36, 37, 38], as well as direct silicon implementations in VLSI {39]. In fact, even the
phase-gradient autofocus algorithm, which compensates for unknown platform mo-
tion error, has been successfully ported to the parallel processing environment [40].
In similar fashion, the new SVPF algorithm is also amenable to paralle]l processing,
as is discussed in Chapter 7, providing the opportunity for a complete, high perfor-
mance polar-format image formation algorithm which includes both autofocus and

post-filtering for wavefront curvature correction.

Other spotlight-mode image formation methods are used within the SAR com-
munity, but are less prevalent. For example, the Twin-Otter SAR Testbed at Sandia
National Laboratories, capable of operation on four frequency bands, features real-
time image formation at fine resolutions in both stripmap and spotlight modes using
the overlapped subaperture (OSA) algorithm [41]. Originally designed to take ad-
vantage of customized VLSI hardware, OSA was one of the first algorithms to form
SAR images in real-time, using computing equipment on-board the radar platform
[42, 43]. This image formation algorithm was patented in 1997 by Bryan Burns
and Tom Cordaro of Sandia National Laboratories [44]. While utilized in a number
of radar systems, recent research indicates OSA and its variants such as the tiered
subaperture algorithm (TSA) [45, 46, 47] hold no clear advantage in throughput
over multiple-processor versions of PFA [48]. Furthermore, while OSA does inher-
ently correct for wavefront curvature, it may sometimes have problems correcting
higher-frequency, uncompensated platform motions when large subapertures are im-

plemented.

A comparison of several different spotlight-mode image formation methods, in
terms of computational demands, is presented in Chapter 6. The reader is encouraged
to read the cited reference materials for a full mathematical understanding of these

algorithms, and to refer to Chapter 6 for the run-time analysis and comparison
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of these methods. Specific implementations of image formation algorithms do not
serve as the final word in the computational efficiency or the superiority of one
algorithm to another. However, the comparisons do give a general, ballpark-sense of

the competitiveness of each algorithm in terms of computational burden.

1.4 Dissertation Objectives

The traditional polar-format algorithm, PFA, is a robust, efficient, and well proven
method for spotlight-mode SAR, image formation. However, the derivation of this
technique relies on the unrealistic assumption of strictly planar wavefronts in the
transmitted pulses. As the system resolution increases, or large scenes are imaged
at close range or low center frequencies, the amount of wavefront curvature actually
present differs significantly from the planar wavefront approximation. Consequently,
for these collections, a significant amount of geometric distortion and space-variant
defocus is present. While the geometric distortion is easily removed via a post-
warping procedure, the second-order phase terms leading to space-variant image

defocus are more problematic.

Dating back to Walker’s pivotal paper in 1980, Range-Doppler Imaging of Ro-
tating Objects [2], he presents a method for separating the first and second-order
quadratic phase error terms using a Taylor series expansion, as is presented and fully
developed in this dissertation. However, Walker does so only to quantify the scene
size limitations of polar-formatted SAR data, without attempting to propose a so-
lution to the wavefront curvature problem, as is done in this dissertation. Instead,
he states that the coefficients associated with the second-order phase error terms
depend on both object point location and on processing aperture location, and that,
“In principle, these error terms can be removed by refocusing the data processor...
(but) this approach is generally difficult to implement.” Consequently, prior to this

dissertation and the preliminary papers by the author and his associates [10, 11],
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space-variant defocus due to wavefront curvature was not compensated but simply
reduced to an acceptable level by putting upper limits on the imaged scene size when
using the polar-format algorithm, as suggested by Walker. This was an unreasonably
restrictive constraint that limited the versatility of polar-formatting when imaging
large scenes. Indeed ironic, given that otherwise, PFA lends itself nicely to imaging
large scenes, due to its simplicity, in the absence of wavefront curvature. While it is
true that second-order phase error terms depend on both object point location and
processing aperture location, this dissertation proposes, derives, and demonstrates
methods for space-variant post-filtering that greatly reduce the computational pro-
cessing burden, and they are not difficult to implement. This is true even for squinted
collections, whereby the radar is not looking at the imaged scene from a right angle,

but instead is slewed forward or backward, as shown in Figure 1.7.

The primary contribution of this dissertation is the development of the squint-
mode geometric model, which expands upon the restricted, broadside model proposed
by Jakowatz in {7, pp. 355-365], and demonstrated in {10]. This extension general-
izes the space-variant post-filter and extends its utility to many practical imaging
scenarios, which typically are not restricted to broadside. Furthermore, this disser-
tation focuses upon computer implementation issues which relate to computational
complexity of the filter. The goal is to achieve the highest possible efficiency, while
still maintaining an acceptable quality of refocus. While not providing exact compen-
sation for the second-order phase errors, the residual blur is constrained to sub-pixel
levels while maintaining a very acceptable computational burden. The empirical

running times of SVPF in squint and broadside modes are described in Chapter 6.

1.5 Summary

This dissertation covers the motivation, theoretical development, implementation

and analysis of the new space-variant post-filter in conjunction with the traditional
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Figure 1.7: Squint Modes for Spotlight-Mode SAR Collections

polar-format algorithm. Its primary contributions are the development of the gen-
eralized squint-mode model, and the focus upon computational issues which render
the filter efficient and practical in real imaging scenarios. This post-filter serves
to compensate the space-variant defocus effects of wavefront curvature in polar-
formatted data, which are due to the faulty assumption of planar wavefronts being
transmitted by the radar. The filter is precalculated from the theoretical derivation
of the wavefront curvature effect. It is shown that the defocus effects are based on
second-order phase errors in the cross-range direction only, so that a simple, effi-
cient one-dimensional filter is sufficient for refocus. The implementation of this filter
is discussed, including filter length and overlap issues which effect both computa-
tional burden and restorative quality. Examples of its capabilities and limitations

are provided and guidelines are offered for maximizing its computational efficiency.
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Tradeoffs between this method and other spotlight-mode image formation techniques
are discussed with regard to computational burden, image quality, and imaging ge-

ometry constraints.

This research concludes that space-variant post-filtering, in conjunction with
PFA, provides an effective spotlight-mode image formation solution that solves the
wavefront curvature problem for all standoff distances and patch sizes regardless of
squint, resolution or radar frequency, while constraining residual defocus to subpixel
levels. Additional advantages are that SVPF is not iterative and has no dependence
on the visual contents of the scene. Thus, it has a deterministic computational
complexity which typically adds as little as thirty percent to the overall image for-
mation time. Furthermore, no other image formation technique has been shown
to have a clear computational advantage over polar-formatting with space-variant
post-filtering. Consequently, polar-formatting in conjunction with SVPF should be
considered as a viable candidate for a spotlight-mode image formation processor

when wavefront curvature effects are present.

1.6 Organization of this Dissertation

This dissertation is a combination of background information, illustrative examples,
mathematical theory, and a computer-based demonstration of the results. First, this
dissertation introduces the necessary background information which forms the ba-
sis of the space-variant post-filtering algorithm for polar-formatted SAR imagery.
Subsequently, it includes a theoretical development of space-variant post-filtering,
and for comparative purposes, illustrative examples of wavefront curvature effects
in uncompensated polar-formatted spotlight-mode imagery as well as the corrected
images processed using the space-variant post-filtering algorithm. Empirical timing
tests are provided for the new SVPF algorithm in conjunction with PFA, as well as

those for other popular methods of image formation. Conclusions include the per-
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formance analysis of the space-variant post-filtering method, with a comparison to
some of the well known, competitive techniques for spotlight-mode image formation.
Pitfalls of the approach are discussed as well as suggestions for further work. An
appendix is included which develops the mathematics for the IPR broadening that
occurs in the presence of quadratic phase errors. Every effort has been made to
ensure consistency with regard to terminology, variable names, and labels and axes

within diagrams. Acronyms and variable names are described in the glossary.

The dissertation is organized as follows:

e Chapterl — Chapter one serves as a general introduction to space-variant
post-filtering for wavefront curvature correction in spotlight-mode SAR im-
agery. The dissertation is summarized and a brief historical perspective is
presented. The motivation for this research is given as well as a synopsis of the
significant contributions. The organization of the dissertation is discussed and

a brief research summary is presented.

e Chapter 2 — This chapter presents an overview of spotlight vs. stripmap imag-
ing and presents spotlight-mode SAR in terms of a tomographic process. The
mathematical relationship between SAR and tomography is described in terms
of the projection-slice theorem. A description of the polar-format algorithm
is given, and assumptions and omissions leading to the wavefront curvature

effects are discussed, based on the tomographic framework presented.

e Chapter 3 — A geometric model is presented which serves to explain the wave-
front curvature phenomenon. Illustrations demonstrate the effects of wavefront
curvature distortion and defocus on real SAR imagery. The space-variant be-
haviors are discussed in terms of how they distort and defocus the formed im-
agery. Scene size restrictions are given for traditional polar-formatted imagery,
which does not compensate wavefront curvature. The concept of a space-

variant post-filter for wavefront curvature correction is introduced.
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e Chapter 4 — Chapter four presents the geometric models by which the space-
variant filter is designed. These models are based on the contribution of a point
target to the overall scene reflectivity function in terms of phase returns. Using
these models, the filter parameters are mathematically derived in terms of first,
second and higher order phase error terms via a Taylor series decomposition.
Linear phase error terms in the Taylor series represent geometric distortion,
while quadratic terms induce space-variant defocus. The concept of synthetic

target generation is introduced, which is based on the same geometric models.

e Chapter 5 — This chapter presents a filtering method for the compensation
of the quadratic phase errors quantified in Chapter 4. The concept of space-
variant post-filtering for refocus is instroduced, and the need for space-variant
adjustments is justified. Illustrations show how the filter is applied to the
spatial-domain complex image data, with regard to filter length and overlap,
and how efficiency is improved by varying the filter only as often as necessary.
The geometric distortion of the image is taken into account, though this is not

compensated until after refocus.

e Chapter 6 — In Chapter six, the computational complexity of space-variant
post-filtering is discussed in terms of complex-number multiplies and asymp-
totic compelxity. Computational burden versus the quality of refocus is dis-
cussed, Also, other “fashionable” methods of image formation are introduced
which compensate for wavefront curvature, including range migration (RMA),
frequency domain replication (FReD), overlapped sub-apertures (OSA), and
modified convolution back-projection (CBP). These methods are compared and
contrasted in terms of complex-number operations, with regard to computing
burden and the also the ability to compensate wavefront curvature effects.
Run-time tests are performed on the various algorithms and the empirical per-

formance results are presented.

e Chapter 7 — This is the conclusion chapter. It describes the pitfalls and short-
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comings of space-variant post-filtering. Topics for future work are suggested,
the pursuit of which will extend the utility and performance of the method.
Possible computational improvements are mentioned, including adaptive filter
sizing and computational parallelism. A summary is given regarding significant
contributions of the this work. Conclusions are drawn regarding the value of

space-variant post-filtering to the SAR community.

e Appendix A - Derives the IPR broadening factor, which is a function of resid-
ual quadratic phase errors present in the imagery. This derivation is presented
from the Fourier (frequency) perspective as well as the spatially-based (pixel
spread) perspective. This mathematical derivation helps relate quadratic phase
errors to the associated degradation in image resolution. The two techniques

take a different approach but derive the same result.
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Chapter 2

Aperture Synthesis, Tomography

and Polar-Formatting

The synthesis qf an along-track aperture, as a superposition of scene views along
the flight path, provides for cross-range resolutions similar to those achievable in the
range direction via chirped, wideband signals. Furthermore, for a synthetic aperture
radar as opposed to a real aperture radar, the dependence of resolution on radar
wavelength or standoff range is eliminated. If the radar beam is steered, or slewed,
such that it maintains aim on the imaged scene, this spotlight-mode radar has the
additional advantages of lower transmitted power for a given SNR, lower sampling
rates and higher achievable resolution. When this spotlight-mode data is sampled
on a polar raster, without regard to the instantaneous movement of the platform or
targets, the tomographic paradigm can be used to describe the cross-range resolu-
tion capabilities of the SAR. With a direct analogy existing between computed axial
tomography (CAT) and spotlight-mode SAR and their mathematical ties via the
projection-slice theorem, spotlight-mode SAR can be cast as a tomographic process
and described with the support of a simple signal processing framework. However,
the tomographic paradigm is not without its assumptions or shortcomings, and these

are necessarily (and unfortunately) cast into the spotlight-mode tomographic SAR
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framework. In particular, the assumption of planar wavefronts illuminating the scene,
and the associated distortion and space-variant defocus that appear in polar-format
processed imagery when this assumption is rendered invalid. This chapter serves as a
brief introduction to synthetic aperture radar and presents the spotlight-mode SAR
within the tomographic framework. The collected Fourier-domain phase history is
described as a two-dimensional projection of the three-dimensional scene being im-
aged. The polar-format algorithm is introduced as a robust, yet simple method for
Fourier inversion of the phase history into a image domain representation of the
scene. The difference between the slant plane and ground plane images is described,
as is their relationship to one another. The need for the computationally burden-
some 2D interpolation is justified, with some reassurance given that this method is
still competitive with other popular image formation methods, as will be shown in

Chapter 6.

2.1 The Range Resolution Problem

The goal of a radar system is to distinguish, in both range and cross-range (azimuth),
objects residing within the ground scene being illuminated. A number of range re-
solving techniques have been implemented over the years to achieve the desired range
resolution; namely, continuous wave (CW) processing, and more recently, techniques
incorporating the deramp processing and compression of linear frequency modulated
(LFM) or “chirp” signals. These “complicated” (stretch) signals provide for wide-
band illumination of the target, allowing for finer resolutions than those achievable
from the short-duration CW pulses. Furthermore, acceptable signal-to-noise ratios
are maintained when using LFM systems because of their longer dwell times and
consequently stronger radar returns. On the other hand, the range resolution of the
simpler CW pulse is limited by the duration of the pulse, which must be quite short
in order to avoid range-aliasing of the targets. The CW pulse is processed by de-

modulating the carrier with in-phase and quadrature sinusoids, followed by low-pass
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filtering. The Fourier analysis of the CW echo-ranging processor demonstrates that
the radar transduces a narrowband estimate of the reflectivity function, where the
range resolution depends strictly on radar bandwidth and not on center frequency
or standoff range. The CW range resolution is given by

c

Pu= g (2.1)

where B, is inversely proportional to the CW pulse envelope duration, 7.. That is,
the time-bandwidth product of the CW pulse is unity. Consequently, with CW pulse
transmission, any hope for higher resolution is lost when the pulse width is necessarily

reduced, because the SNR. of the reflected pulse is reduced as a consequence.

Using the FM chirp, a dispersed waveform, greater transmitted energy per pulse
is possible compared to CW, and signal-to-noise ratios increase. An FM chirp pulse
is dispersed in time by a factor equal to its large time-bandwidth product, B,
compared to a CW burst pulse, with its time-bandwidth product of one. While the
notion of the unity time-bandwidth product seems to have been violated, the LEM is
not a simple pulse-like waveform, but instead is frequency modulated. As such, its
bandwidth is not simply limited by the bandwidth of the envelope. The bandwidth
of the FM chirp is given by

B, ===, (2:2)

where « is the chirp rate in radian®sec™? and 7, is the chirp duration. Chirp sig-
nal (deramp) processing consists of the demodulation of the returned signal with
in-phase and quadrature versions of the FM chirp, delayed appropriately by the
round-trip time to the patch center, followed by low-pass filtering and range com-
pression (Fourier processing). This effectively deconvolves the chirp waveform from
the return signal, leaving an estimate of the terrain reflectivity function. The amount
of pulse compression is given by B,r., the time-bandwidth product of the waveform
(in cycles). The utility of the FM chirp waveform in imaging radars is that its signal

duration can be increased relative to that of the CW burst while maintaining the
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same effective bandwidth. In essence, the range resolving capability of the LFM

chirp rests in its very large time-bandwidth product.

2.2 Cross-Range Resolution Via Synthetic Aper-

ture

The previous discussion regards range resolution, yet cross-range (azimuth) resolu-
tion must also be addressed. Unfortunately, the solution to the range resolution
problem via the notion of echo separation using high-bandwidth pulses seems irrele-
vant to the separability of targets in cross-range. However, the notion of interpreting
the deramp-processed LFM chirp returns as direct transductions of certain spatial
frequencies of the terrain reflectivity function is indeed applicable to cross-range reso-
lution. This approach, known as the tomographic paradigm, has its roots in the field
of medical tomographic imaging. The relationship between tomography and SAR
will be detailed in Section 2.3. Unlike other cross-range resolution methods such as
range-Doppler imaging [2, 5, 49, 50, 51, pp. 33-83], which analyze the movement of
the targets during aperture synthesis, the key concept of tomography is that a set
of X’ (cross-range) spatial frequencies are induced as a consequence of integrating
differing views of the scene from the radar platform. Thus, cross-range resolution
can be obtained by the coherent integration of a large number of pulses transmit-
ted and received by the radar as it flies along a path, which becomes its synthetic
aperture. As opposed to the range-Doppler paradigm for cross-range resolution, the
continuous motion of the radar platform is not required to generate the X' spatial

frequency data.

The detailed derivation and development of the tomographic paradigm has been
thoroughly studied, and as such, is not the focus of this dissertation. However,
enough background information on the tomographic paradigm will be presented here

so that the concepts presented in this dissertation are properly motivated. For in-
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stance, given that the tomographic paradigm can be used to describe the generation
of cross-range X' spatial frequency data via aperture synthesis, exactly why is this
process necessary, and what are the real advantages to aperture synthesis, known
as synthetic aperture radar? The object of incorporating a synthetic aperture is to
increase the effective length (diameter) of the radar antenna, thereby increasing the
scene resolution in the cross-range direction, independent of radar center frequency
or standoff range. Prior to synthetic aperture radar (SAR), the azimuth resolution of
the real radar system was the actual cross-range width of the beam, W, which was
a function of the radar wavelength A, the standoff range R from the ground location

to the radar platform, and the physical diameter of the radar antenna, D, such that

A
/e R 2.
W, =R% (2.3)
and
Pw = Wa, (2’4)

where p,, is the real-aperture cross-range resolution. For certain high resolution
imaging scenarios, this could require a real antenna length of thousands of meters,
which would be foolishly impractical. On the other hand, given the ability to syn-
thesize an aperture, a 10 meter antenna mounted to the belly of an aircraft could
achieve the same cross-range resolution in these scenarios. Apparently, the only
way to improve cross-range resolution for the real aperture system is to either re-
duce the platform standoff range or to reduce the angular beamwidth by reducing
the wavelength, given that there are tight constraints (specifically, upper limits) on
antenna diameter. However, because some radar wavelengths should be avoided in
order to eliminate atmospheric effects and because certain radar platform types are
constrained in standoff range, there are severe limitations to the practicality of real
aperture radar. If finer resolutions and/or longer operating ranges are desired, an
alternative to the real-aperture systems must be used, such as synthetic aperture

radar.
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2.2.1 Synthetic Aperture Radar in Stripmap-Mode

Stripmap SAR is perhaps the oldest and most common type of SAR, and is still found
in a variety of modern radar systems. With the radar being flown (approximately)
in a straight line, a series of pulses are transmitted at intervals along the aperture in
the fast time (range) direction, and range processing of the wideband signal is per-
formed using LFM dechirp or another suitable method. As the aperture is flown, the
direction of the radar antenna remains fixed, either at a right angle (broadside) to
the scene being imaged or squinted forward or backward. Range pulses are collected
along the aperture and processed in real-time or stored for future processing. De-
pending on the capabilities of the real-time processor and the capacity of the storage
media, a strip of (theoretically) unlimited length may be imaged. The range-oriented
motion of point scatterers during the time of radar illumination is then considered
when resolving these targets in cross-range. Thus, for a given radar antenna plat-
form position, the sequence of returns obtained along the flight path centered at this
position is collectively processed to form the effective signal from an antenna much
larger than is actually illuminating the ground. In this way, the aperture synthe-
sis can be used to achieve fine cross-range resolution by the coherent integration of
a serles of radar returns transmitted at a number of positions along a flight path,

thereby synthesizing the effects of a large physical antenna via data processing.

For a given point in the imaged scene, the longer this point is illuminated dur-
ing the synthetic aperture collection, the longer the length of space (segment) over
which the cross-range integration occurs. This effectively narrows the synthesized
beamwidth, thereby increasing cross-range resolution. The length of this segment,
which is the synthetic aperture, cannot exceed the real beamwidth of the radar at
the ground since this is the maximum distance for which a given point on the ground
remains illuminated for all points along the aperture. As such, contrary to the theory
of the real aperture radar, whereby the largest possible antenna diameter is desired to

minimize beamwidth, in stripmap mode it is desirable to have the radar beamwidth



Chapter 2. Aperture Synthesis, Tomography and Polar-Formatting 29

(as shown in light gray in Figure 1.1) as wide as possible and to let the aperture
synthesis serve as the basis for cross-range resolution. The paper by Cutrona, et al
[52], was the first to show that the maximum achievable cross-range resolution for a
stripmap-mode SAR is

Ag
== 2
pz 2 ? (-—4-5)

where A, is the actual physical width of the antenna in the along-track (azimuth)
direction. This resolution is independent of either radar frequency or standoff range,
both of which were limiting factors in the earlier real aperture radars. However, it is
important to note that in satisfying the Nyquist sampling criterion, the pluses must
be transmitted with the spacing along the flight path also equal to the resolution;
that is, one half of the physical antenna width, in order to avoid aliasing due to
undersampling. Consequently, the sample rate in cross-range, known as the pulse
repetition frequency (PRF), may be rather high. Furthermore, while decreasing the
antenna width improves cross-range resolution, it reduces the SNR because of the

reduction in transmitted energy.

2.2.2 Synthetic Aperture Radar in Spotlight-Mode

The term “spotlight-mode” precisely describes the concept behind this particular
SAR collection geometry. In spotlight-mode SAR, the radar is continually steered,
or slewed, so as to constantly illuminate the same ground patch from every position
along the synthetic aperture. This geometry is depicted in Figure 2.1. An advantage
of spotlight-mode SAR over stripmap is that only the patch to be imaged is actually
illuminated. Notice in Figure 1.1 that the illuminated area of the stripmap SAR
(total shaded area) is significantly bigger than the area actually being imaged (dark
gray). Since a spotlight-mode collection avoids this unnecessary illumination, the
physical antenna width can be increased and the PRF reduced accordingly, thereby
reducing along-track sampling requirements. Furthermore, because the radar beam

is slewed, the illumination time is no longer dependent on (or limited by) beam width.
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The additional dwell time, in conjunction with the increase in gain from the wider
antenna, reduces the microwave transmitter power requirements while increasing the

system SNR and cross-range resolution.

Of course, the advantages of spotlight-mode over stripmap do not come without
tradeoffs. Specifically, the patch size for a spotlight-mode collection is significantly
smaller than that of stripmap because the radar beam is slewed in order to remain
on a particular portion of the scene for the duration of the aperture. The polar-
format algorithm (PFA), perhaps the oldest and most straightforward approach to
processing spotlight-mode data, has an inherent shortcoming in its ability to deal
with large scene sizes, in certain scenarios such as imaging at close range, at high
resolution, or when utilizing a low center frequency. This shortcoming is based on the
faulty assumption of planar EM wavefronts being transmitted by the radar, leading
to the wavefront curvature degradation in PFA processed imagery. This dissertation
introduces a method for the negation of these wavefront curvature effects for both
squinted and broadside scenarios, thereby lifting the scene size limitations imposed
by the polar-format algorithm. Thus, the necessity is avoided for multiple reference
points, employed to precisely focus smaller spotlight mode patches. Consequently,
the need to mosaic many smaller PFA processed patches into a larger scene is elim-
inated, as is the necessity to abandon the simplicity and advantages of PFA for

another type of processing algorithm.

Note, too, that the length of the aperture, and thereby the aperture angle sub-
tended Af (as shown in Figure 2.1), can not increase without bound. Consider a
change in relative perspective wherein the radar platform is considered stationary
and the imaged scene rotates relative to the platform. This is known as the inverse
SAR (ISAR) model, and is perhaps the simplest model for representing target mo-
tion in a spotlight-mode collection [12, pp. 72-75][53, 54]. As the aperture length
in the spotlight-mode collection increases, points within the imaged scene “rotate”
through a greater angle relative to the radar platform. During this rotation, the

range-directed motion of this point can be plotted as a curve, referred to as the
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range curvature of this point, as is shown for the center reference point in Figure
1.4. When the range-oriented motion of a point exceeds that which is represented
by the appropriate range bin of the digitally processed scene, then image defocus
occurs. The polar-format algorithm compensates this movement in several ways,
including the motion compensation of points in the scene relative to a single point
(mocomp to a point) and by collecting the sampled data on an annular as opposed
to a rectangular grid. In this way, the PFA processor becomes a partially focused
radar system [55, pp. 4-6], and only the residual differential range curvature, or
wavefront curvature, is left to deal with. Interestingly, it is the collection of reflected
spotlight-mode range pulses on the polar annulus that forms the association between
tomography and spotlight-mode imagery. This dissertation will describe an efficient
and effective method for negating the defocus effects of wavefront curvature, via
space-variant post filtering, thereby rendering the polar-format algorithm as a fully

focused approach to spotlight-mode image formation.

The remainder of this dissertation deals strictly with aspects of spotlight-mode
formation as they relate to the tomographic paradigm and its limitations. Specifi-
cally, shortcomings of the polar-format algorithm with regard to wavefront curvature
anomalies, which will be addressed and resolved (hopefully to a satisfactory degree)
within this paper. While in some circumstances, spotlight-mode algorithms are used
to process stripmap collections, in general the paradigm and processing procedures
for stripmap SAR differ substantially from those of spotlight-mode. The reader is
directed to the following textbook references for excellent treatments of stripmap
SAR: (56, 57, 58, pp. 441-482] and [59, pp. 268-284]. The papers [54, 60, 61, 62] also
address stripmap SAR in detail.
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Figure 2.1: Beamwidth, Aperture Extent and Patch Radius in Spotlight-Mode

2.3 Spotlight-Mode Tomography and Polar-
Formatted Data

It is not difficult to imagine a relationship between computerized azial tomography
(CAT), wherein an object is imaged through the processing of projectional views over
a set of measurement angles, and spotlight-mode SAR, which collects the reflected
samples of a scene from different positions along a trajectory. Indeed, while CAT and
spotlight-mode SAR have developed independently, they share a remarkable similar-
ity of principle, namely the projection-slice theorem. The CAT scan, which enables
the imaging of two-dimensional cross sections of solid objects, is used extensively for

the examination of internal organs and the nondestructive testing of manufactured
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items, as well as many other applications [63]. While its roots lie in the integra-
tion of x-ray projections, as first described by Johan Radon (though abstractly and
not related to x-rays) in 1917 (an English translation of which is found in [63]),
the analogy between tomographic imaging and the two-dimensional radar reflectiv-
ity function of spotlight-mode SAR was given by Munson and his colleagues in 1983
[4]. In his paper, Munson states that the spotlight-mode SAR can be interpreted as
a tomographic, band-limited reconstruction problem and that the signal processing
theory is characterized in terms of the projection-slice theorem, as opposed to the

traditional radar view of Doppler filtering.

In order to cast spotlight-mode SAR as a tomographic problem, the projection-
slice theorem must be mathematically described, and more importantly, its meaning
must be understood as it relates to the spotlight-mode SAR concept. First, consider

the two-dimensional (2D) Fourier transform pair:
(o o] o0
G, v) = / f o(z, y)e 2=+ dy dy (2.6)
—00 ¥ —CO
and

(o] o
s@)= [ [ Guue= asa, (27)

-0 v =0
where g(z,y) represents the 2D complex reflectivity function of the ground patch
being imaged and G(U, V) is the Cartesian Fourier transform of g(z,y). Scale factors
are not relevant to the development and are ignored. It can be shown that G (p,6)
is the polar representation of the 2D Fourier transform of g(x,y) for an arbitrary
angle 6 (as proven in numerous references, including [7, pp. 55-57]). Therefore,
the inverse Fourier transform of Equation (2.7) for projection angles spanning 180

degrees (0 < 6 < 7 rad), can be written as
g(a;, y) = / / G(p, 9)6j27r(pzcos(9)+pysin(0)) dp d, (2.8)
0 —00

where 0 is measured with respect to the positive abscissa axis, as shown in Figure

2.2. If a variable u is defined such that

u = z cos(#) + ysin(F), (2.9)
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then Equation (2.8) becomes

o(z,y) = / | / G, 6 dp db. (2.10)
0 —0oC

Next, if the projection function pp(u) is defined as
w .
nw) = [ Glo.00" dp, (211)

then Equation (2.10) becomes

s@) = [ polw) 8, (212)
0
and by Fourier transformation,
w .
Py(U) = / po(w)e=T2 . (2.13)
-0

This is the mathematical development for the projection-slice theorem, which
states that the one-dimensional Fourier transform of a projection function py(u) is
equal to the two-dimensional Fourier transform G(u,v) of the image to be recon-
structed, evaluated along a line in the Fourier plane that lies along the same angle
@ measured with respect to the positive abscissa axis. In other words, Pp(U) is a
one-dimensional (1D) slice at angle 6 of the 2D Fourier transform of g(z, y), as shown
in the geometric projection model of Figure 2.2. This analysis forms the basis of the
convolution back-projection image formation method (CBP), as well as the polar-
format Fourier inversion algorithm (PFA). As projections are taken over a range of
6, the 1D Fourier transform values of the projection data determine values of the
2D Fourier transform G(u,v), along lines of the same angular orientations. The
projections must be taken at sufficiently close intervals along the synthetic aperture
as to obey the Nyquist sampling criteria for the Fourier region of support in the
cross-range direction. This sampling rate is the pulse repetition frequency, or PRF.
Similarly, each projection must adequately sampled in order to support the band-
width in range (typically referred to as the A/D sampling rate). In neither case

is the scene resolution a function of sampling rates, but instead that of the chirp
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bandwidth for range, and the induced bandwidth in terms of the angular extent Af,
for cross-range. Thus, the tomographic view ‘of the scene turns out to be a band-
pass filtered projection of the ground patch reflectivity, where the scene resolution is
determined by the frequency extent of the data, in both range and azimuth, before
Fourier inversion into the reconstructed image. Since the limited duration of the
transmitted radar pulse implies that Py(U) will only be determined on a restricted
interval of spatial frequencies, each radial segment of the Fourier data will be of the
same length. Consequently, the Fourier samples will be constrained to a circular
(polar) annulus, with a nominal radius kq, as offset from the origin, of

ko = 2{52 = %, (2.14)
where wy is the radar center frequency and ) is the corresponding wavelength. The

frequency extent (spatial bandwidth) AY" in the range dimension is found to be

AY' = Z(27B,), (2.15)

ol

where B, is the chirp bandwidth as defined in Equation (2.2). The nominal cross-
range extent, as determined by the radius %’5 and the angular extent Af of the

annulus is
. 7 S
AX =2 (T) sin(A8/2). (2.16)

As is common with spotlight-mode SAR collections, the angular diversity A# is typ-
ically very small, and under the small-angle assumption of sin(f) = 6, the expression

for AX’ can be approximated by

AX'= fii AS. (2.17)

These parameters are depicted in the spotlight-mode, Fourier collection surface of

Figure 2.3.

In the case of a straight-line flight path across the synthetic aperture, the collec-

tion surface swept out in three-dimensional Fourier space is simply a plane, referred
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Figure 2.3: Slant Plane Fourier-Domain Samples and Freqﬁency Extent

to as the slant plane. This straight-line assumption models the situation for a typi-
cal airborne collection where the out-of-plane motion is insignificant, and it will be
adopted throughout this dissertation. In the case of uncompensated platform mo-
tions, or if the collection is spaceborne, the surface swept out is 3D ribbon as opposed
to a plane. The ramifications of this motion on wavefront curvature (and its com-
pensation) are beyond the scope of this dissertation, but will be briefly addressed in
the “Future Work” section of Chapter 7. For the straight-line motion assumption
that has been adopted, the slant plane is determined by the line of the flight path

and the aim point (center reference point, or CRP) of the scene.

As was originally obtained by Walker through Doppler frequency analysis, the

slant plane surface is a two-dimensional Fourier slice of the 3D scene reflectivity
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function [2]. However, this result was also shown by Munson via his tomographic
analysis. Though not analyzed or considered by Munson, Jack Jakowatz and his
colleague Paul Thompson, through a novel 3D tomographic model, demonstrated
the data within the 2D Fourier surface to be the orthogonal projection of the ground
scene onto the slant plane [6]. Since ground plane objects typically have height,
this model predicts the range-dependent layover that affects these 3D objects when
projected into the slant plane. Furthermore, it describes perturbations in the phase
of waves reflected from point targets, which are indicative of terrain height variations.
Such is the foundation for interferometric SAR, as originally proposed in [64], and
further described in the article [65] and the books [12, pp. 367-383] and [7, pp.
273-351]. With regard to plane-to-plane transformations, the 2D annular slice of
Fourier-domain data, often referred to as the phase-history, represents the orthogonal
projection of the ground plane scene into the slant plane, as described by the 3D
model. Thus, the phase-history domain description of a slant plane collection is a set
of samples lying on a polar raster imposed on an annulus in the slant plane, as shown
in the upper plane of Figure 2.4. It may be easiest to consider a set of coordinate axes
(X',Y"), wherein the center pulse of the aperture is used to define the Y” direction
and the X’ axis is orthogonal and lying in the plane. The Y’ dimension corresponds
to the slant range spatial frequencies, and X’ to the cross-range frequencies in the
slant plane, such that the 2D inverse Fourier transform of the data produces an image

in a slant plane domain with axes of 2’ and y/'.

Alternatively, with a change in perspective, the slant plane image data can be pro-
jected onto the ground plane having coordinate axes z and y, and ground-projected
phase history samples are in X and Y, as shown in the bottom plane of Figure 2.4.
In the event of a broadside collection, the projection operation simply imposes a
contraction of phase history data onto the ground plane in the range direction, by a
factor of cos(¢), with no contraction in the cross-range direction. For squinted col-
lections, the slant plane is actually tilted relative to the broadside slant plane surface.

In this case, there exists a squint dependent contraction in both range and azimuth,
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when projecting from the slant plane to the ground plane. This greatly compli-
cates the process of projecting from one of these planes to the other. Furthermore,
the calculation of range dependent layover for 3D targets is less straightforward.
The motivation for forming the SAR image in the ground plane as opposed to the
slant plane is that the ground plane image is orthographically correct for all non-
elevated targets (although targets with height still exhibit range-oriented layover).
This property is often helpful in the human interpretation of imagery. Unless oth-
erwise noted, this dissertation assumes the simpler slant plane perspective, and as
such, this perspective will be used for all calculations and derivations. Consequently,
slant plane to ground plane transformations (and their associated complications)
become unnecessary. While in a practical sense, these projections are important to
the interpretability of imagery, they are ancillary to the wavefront curvature analysis

being presented.

The image domain resolutions in the slant plane are easily obtained from the
spatial-frequency bandwidths of Equations (2.15) and (2.17), as shown in Figure 2.3.
The resulting range resolution is

2 c
] = ————— T e— 2_
Py AY' 2B, (2.18)

while the cross-range resolution (considering the small-angle approximation) is

2 A

Since the radar bandwidth can never exceed twice the center frequency, these resolu-
tion expressions have lower bounds. Specifically, Equation (2.18) dictates that range
resolution can never be better than )\/4, while Equation 2.16 imposes a maximum
AX' of 87/ (for a A of 180°), and by Equation (2.19), the cross-range resolution
is also bounded by A/4. For a number of practical reasons, SAR systems typically
do not achieve resolutions even close to these theoretical bounds. In the case of
ground plane resolution, the uniform contraction of the phase history data in the

range direction (for broadside collections) results in a corresponding ground range
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resolution scaling of cos(¢). The ground range resolution is then

27 c Py

Py =AY T 2B.cos(¥) cos(®)’ (2.20)

while the ground cross-range resolution remains unchanged from its slant plane coun-

terpart and is found to be

2T 27 A

Pe =AY T AX 270

It is important to realize that the difference in value of py and p, does not imply
that the resolvability of the two targets is improved in a slant plane as opposed to
a ground plane reconstruction. This is due to the corresponding reduction in spatial

distance between the targets as imaged in the slant plane. Thus, the only difference
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between ground and slant plane image reconstructions for broadside collections is

the scaling of the range dimension.

As the synthetic aperture is flown, only a limited number of projections can be
acquired. These must be collected at a rate that satisfies the Nvquist criteria for the
cross-range bandwidth, as determined by the total aperture extent Af. Similarly,
each projection must be sampled in range as to satisfy the Nvquist criteria for the
given range chirp bandwidth. Given the distance of the radar platform from scene
center, even a few degrees of aperture translates into very long collection (flight) dis-
tances. Consequently, measurements are possible only for limited angular extents.
Despite these bandlimiting processes, the reconstructed images are observed to con-
tain surprisingly few artifacts of bandlimiting. This is remarkable, given that the
basic considerations of Fourier processing and the limited slice of Fourier data trans-
duced make it hard to imagine any usable image being formed at all. Furthermore,
this is in direct contrast to x-ray tomography, which requires a full circular view of
the object being imaged. However, for SAR, a coherent system in that it considers
both phase and magnitude of the reflectivity function, it is found that an assumed
distribution of point scatters in the image, each having random phase, serves to dis-
perse frequency components over much of the transform plane. That is, the image
domain microwave reflectivity function typically possesses a phase function that is
essentially uncorrelated. This particular effect was first described by Munson and
Sanz in [66], and is attributed to the coherent speckle properties of SAR imagery.
This property states that because of the small slice of Fourier data being considered,
the reconstruction is actually a speckled version of the scene reflectivity that does

not exactly match the true magnitude of the function point-for-point.

Tomographic imaging and SAR bear enough resemblance to each other for both
systems to be explained in terms of the projection-slice theorem. However, perhaps
their biggest difference lies in the bandlimited reconstruction of the SAR image, as
compared to tomography. Furthermore, there exist other distinct differences be-

tween SAR and tomographic imaging. For instance, while x-ray tomography trans-
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duces image-domain, transmissive, real data centered at baseband, SAR transduces
complex, reflective, Fourier data offset in spatial frequency by 47/X (in the slant
plane). Furthermore, the SAR Fourier data are only determined over an annulus
that is angularly narrow, yet the phenomenon of coherent speckle ensures suitable
reconstruction of the bandlimited image. In contrast, views spanning a full 180° are
employed in medical CAT imaging. While Munson’s tomographic model makes these
contrasts and comparisons, it fails to consider the effects of target height and terrain
height variations, as described above. It will be seen next, when spotlight-mode
data is directly Fourier inverted (such as with the polar-format algorithm), that the
planar wavefront assumption of Munson’s model induces serious wavefront curvature
effects in certain imaging scenarios. The rest of this dissertation will address the
affects of the planar wavefront assumption on polar-formatted spotlight-mode SAR
imagery, and will present a method for the compensation of these effects; namely,

the space-variant post-filter.

2.4 The Polar-Format Algorithm

The essence of the polar-format algorithm is the Fourier inversion of the frequency
domain spotlight-mode data (phase-history) collected on a polar raster. As such,
it is considered a direct Fourier inversion method. As described in the previous
section, the annular Fourier data represents the orthogonal projection of the three-
dimensional complex scene reflectivity onto the two-dimensional slant plane. The
beauty of the polar-format algorithm lies in its simplicity, as described by the to-
mographic paradigm, and in its straightforward implementation. However, it also
suffers the shortcomings of this paradigm; namely, the visible effects of wavefront cur-
vature errors in formed imagery, as a consequence of the planar wavefront assumption
on which it is based. Specifically, since the derivation of the PFA technique relies
upon the unrealistic assumption of strictly planar wavefronts in the transmitted

microwave pulses, the polar-format algorithm cannot compensate these wavefront
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curvature effects. Consequently, any actual amount of curvature present in these
wavefronts introduces the geometric distortion and space-variant defocus present in
the formed imagery for certain imaging scenarios, such as those at close range, low
center frequencies, high resolutions, or when imaging large patches. Nevertheless,
the polar-format algorithm one of the most popular Fourier inversion methods of
spotlight mode image formation because of its simplicity, established reputation in
the remote sensing community, and ability to form images of large scenes without

resorting to subpatch processing.

With the addition of space-variant post-filtering for wavefront curvature correc-
tion, as presented in this dissertation, the major factor that has restricted scene size
is finally lifted. The fundamental steps of the polar-format algorithm are outlined in
Figure 2.5, and are briefly described below. For the reader with a deeper interest in
the specifics of the polar-format algorithm, detailed information can be found in a
number of references, including Walker’s original treatment of the subject in [1, 2, 3],
and more recently, a book in which PFA is the focus of its spotlight-mode image for-
mation techniques [7]. In Chapter 6, PFA will be compared to other popular image
formation algorithms in terms of computational burden, and it will be shown that
PFA., in conjunction with space-variant post-filtering for wavefront curvature correc-
tion, is competitive with (or superior to) other popular methods for many imaging

scenarios.

Before Fourier inversion into the image domain, interpolation of the annular
Fourier data onto a Cartesian rectangular grid is typically performed. This is neces-
sary because there currently exists no efficient, fast Fourier transform (FFT) routine
that operates directly on polar-oriented data (although some efficient polar approx-
imations to the Cartesian FFT have been proposed in [67, 68]). Without prior
interpolation to a grid, the Fourier transformation of polar raster data results in sig-
nificant space-variant defocus for imaging scenarios where the data are not already
near-Cartesian, as in the case of high resolution imagery or when using low center

frequencies (due to the shortened nominal annular radius, ko, as shown in Figure
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2.3). While in general, very low resolution imagery over small patches can be formed
without first performing polar-to-rectangular resampling, this technique becomes im-
practical at best for the high resolution imaging situations for which spotlight-mode
is intended. Without this resampling, a gradual loss of focus is observed as a func-
tion of distance from the patch center, and for most practical SAR applications this

approach is totally inappropriate.

The book by Jakowatz, et. al [7] derives an equation for the maximum imaged
patch size as a function of radar wavelength and resolution, when the polar-to-
rectangular interpolation (polar-formatting) step is avoided. For a given slant plane
range and cross-range resolution of p, and p,, respectively, the maximum allowable

slant plane patch radius zj is defined by the inequality

o] < 22222 (2.22)

where A is the radar wavelength and 7 /4 is the maximum allowable quadratic phase
error leading to the defocus. This phase error limit is such that defocus is kept to
within subpixel levels (see Appendix A). Other authors arrive at the same constraints
using somewhat different methods. One such alternative derivation is presented in
[2] and another in [69]. An example of the severity of this constraint is a SAR at 10
Ghz (A = 3 cm) with sufficient bandwidth and angular diversity to resolve 1 meter
in range and cross-range (py = p = 1 m). Based on Equation (2.22), this system’
can only image a patch of 130 meters square, without exceeding the 7/4 quadratic
phase error limit when polar-formatting is not implemented. Thus, unacceptable
restrictions are required when not polar-formatting the phase history data. This is
because the polar-to-rectangular interpolation preserves the mitigation of range cell

migration as accomplished via sampling the original phase history on a polar raster.

While the polar-to-rectangular interpolation lifts these scene size restrictions, this
flexibility does not come without a price, as interpolation requirements are severe in
terms of required accuracy as well as computational burden. The reason that the

interpolation requirements are so severe is due to the nature of the Fourier domain
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in which the data are interpolated. Every point in the Fourier domain contributes
to the spatial reconstruction and consequently, single errors in the Fourier domain
affect the entire spatial domain. Therefore, it is important that the interpolator be
as accurate as possible, particularly in the spectral regions where energy is concen-
trated. One notion of the theory of resampling and interpolation is that the process
can be viewed as a linear digital filtering operation. The interpolation process must
maintain the underlying signal integrity and not introduce significant errors of its
own. Specifically, since data are interpolated in the complex-valued phase history
domain, the interpolation filter must be linear in its phase response so as not to
introduce phase errors, and it must also meet certain bandwidth and Nyquist con-
ditions. In the particular instance of spotlight-mode SAR, the resampling process is
that of a 2D interpolation of the polar-format data to Cartesian coordinates, so that

fast Fourier data inversion methods may be implemented to form the images.

Although the ideal solution (in terms of interpolation accuracy) is to perform
true two-dimensional interpolations, this approach is computationally intensive. In-
stead, a less computationally burdensome method exploits separability, whereby
one-dimensional interpolations are performed in the range direction (along radial
samples) for each radar pulse, followed by one-dimensional interpolations in the
cross-range dimension for each range line of the Fourier data [5, 36, 49]. Known as
the keystone method [70], the data are first interpolated in range, from their original
uniformly spaced sample grid onto a new uniformly spaced grid to form a keystone,
as shown in Figure 2.5(b). Next, the data are interpolated in the cross-range direc-
tion, resulting in the rectangular sample grid as shown in Figure 2.5(c) This step
is identical to that for the range-oriented samples, except that the data lying along
any given cross-range line are unequally spaced. These keystone samples are more
closely spaced at the samples near mid-aperture and increase in separation towards
the outer edges of the phase history. Furthermore, the sample separation increases
with distance from the polar origin. These are the consequences of using separable 1D

resampling, when in reality, the process is only separable in the polar Fourier domain
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(r,8) and not in the rectangular domain of (U, V). Thus, while more computationally
efficient as a result of separability, this interpolation approach is not without its own
inherent inaccuracies, and the interpolation filters must carefully accommodate this

space-varying sample spacing during 1D cross-range interpolation.

In practice, for most spotlight-mode SAR data collections, the variation in sample
spacing along an individual cross-range record is small because the angular extent of
the phase history is only a few degrees. As such, on an individual cross-range record,
the interpolation filters can act as if the sample spacing is uniform without introduc-
ing intolerable errors. This is in contrast to CAT imaging, whereby large viewing
angles (typically 180°) prohibit the use of separable 2D interpolation. In these CAT
imaging scenarios, convolution back-projection is often implemented as the image
formation algorithm of choice. Furthermore, while SAR image formation may be
considered a tomographic process, the polar-format algorithm is often unfairly criti-
cized for having unreasonable interpolation errors [71, 72], which is not the case when
applied to most SAR imagery (the exception being UWB SAR, as described further
in Chapter 6). It is important to realize that for spotlight-mode SAR, whereby the
angle of aperture extent A6 is typically small and the Fourier data are offset signifi-
cantly from baseband, the less computationally burdensome polar-format algorithm
can very effectively form images since the polar-to-rectangular interpolation step re-
sults in a negligible amount of interpolation error [33]. It has been pointed out in
several papers including [71, 73], the resampling portion of the polar-format algo-
rithm can be computationally burdensome. In fact, since very precise interpolations
are required to maintain image quality, the 2D interpolation is typically the dominant
factor in the overall computational complexity of the polar-format algorithm. How-
ever, in spite of the burden of the 2D interpolation, the polar-formatting algorithm

still has a lower overall computational complexity than convolution back-projection.

It has been suggested that the problem of interpolation and resampling can be
reduced to a digital filtering operation. The sinc function can be thought of as the

impulse response of the ideal digital filter. However, the sinc impulse response must
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be approximated with one that is realizable in that it has no infinite sums, yet pre-
serves phase and provides suitable passband and stopband characteristics. Typically,
truncated versions of infinite length sampling functions are utilized, with the num-
ber of zero crossings (in the case of the sinc) selected to form a tradeoff between
interpolation error and computational burden. Specifically, the rate of falloff of pass-
band and stopband ripple is determined by the filter length, as is the transition band
steepness. Stopband attenuation must be sufficient to mask the Nyquist aliasing that
occurs from the folding of energy back into the filter. Meanwhile, the magnitude of
the ripple is a result of windowing (truncating) the filter function with a rectangular
window. Consequently, in order to reduce this ripple, tapered window functions (eg:
Hamming or Taylor) are typically implemented. This is referred to as the weighted
interpolator. Alternative interpolator designs, based on polynomial or higher order
functions, are also applicable to SAR. The design of such filters is beyond of the
scope of this paper, though their computational burden will be discussed (in a most
general sense, for the weighted sinc interpolator) in Chapter 6. Furthermore, Fourier
data interpolation in SAR imagery is a heavily researched topic and the reader is
directed to the following excellent references on the subject: [7, pp. 133-171],{74, pp.
117-162], and [75, 76].

The interpolation process, in conjunction with Fourier transformation, comprise
the essential elements of polar-format spotlight-mode image formation. However,
from a practical sense, there are often a number of additional steps that are taken
to ensure satisfactory image quality. Obviously, the issue of wavefront curvature
correction takes center stage in this dissertation as one of the few remaining hurdles
in polar-formatted SAR imagery. In fact, while it is a difficult problem which has
motivated this dissertation research, other serious image quality issues exist in polar-
formatted spotlight-mode SAR imagery. These are attributable to assumptions in
the tomographic paradigm on which it is based, as well as geometric and atmospheric
anomalies that occur in real imaging scenarios. However, research has led to many

practical and efficient solutions to these problems, and as such, these will issues will
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not be treated extensively here, but still deserve brief mention. These steps are

shown in Figure 2.5 and are as follows:

e Phase history acquisition — The phase history data are acquired on a polar
raster with the necessary angular extent, chirp bandwidth and sample rates to

achieve the desired resolution and patch size.

e Phase history trim — The polar phase history data are trimmed to a rectangle
(though still in polar format), either by inscribing, exscribing, or a combination

of the two. This process helps to control the IPR sidelobe structure.

e Range deskewing — A deskewing of range pulses is performed to remove the
effects of the residual video deramp phase term, if required. This compensates
the geometric distortion and defocus in scenarios where residual deramp phase

is significant.

e Motion compensation to a point — The phase history pulses are properly
demodulated and have been properly motion compensated so that the phase of
a hypothetical target at the patch center is constant over the entire synthetic

aperture time.

e Geometric transformation — The phase history is geometrically transformed
to the desired imaging plane, and known three-dimensional (out of plane) mo-
tion is compensated on a pulse by pulse basis, given knowledge of the platform

position (via the pointing vector generated during the collection).

e Two-dimensional interpolation — A 2D interpolation is performed, as pre-
viously described, with the appropriate filtering/downsampling to end up with

Cartesian samples at the desired density over the rectangular area selected.

e Windowing (aperture weighting) Fourier data — The appropriate window

functions (eg: Taylor, Hamming or apodization) are applied to the Cartesian
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Fourier data so that the desired sidelobe reduction will be achieved in the final

image [12, pp. 507-524] [46, pp. 225-239] [77].

e Fourier transformation — A 2D FFT is applied to Fourier invert the phase
history data, thereby producing the complex-valued reconstructed spotlight-
mode image. Appropriate zero padding of the phase history prior to inversion
helps to achieve the desired image domain oversampling ratio. This helps in

“pleasing” the human visual system during interpretation.

e Autofocus - A focus procedure is applied, typically after range Fourier trans-
formation (compression) and prior to cross-range Fourier transformation, to
compensate unknown platform errors and certain propagation errors. One
typical procedure is phase gradient autofocus (PGA) [78, 79], and another is
subaperture autofocus [80], both of which operate in the range-compressed,

Cartesian domain.

e Geometric warping — A simple geometric warp is performed on the complex

image data to mitigate the distortion induced by wavefront curvature.

e Detection — The complex, image-domain data are magnitude-detected (via a
square root or logarithmic procedure) and a viewable, grayscale binary image
is produced. This image is then contrast-adjusted, equalized, or gray-scale

mapped as required for visual interpretation.

e New: Wavefront curvature defocus compensation — A Space-variant
post-filter is applied to the complex-valued image to mitigate the defocus effects
of wavefront curvature (if necessary). The post-filtered, complex-valued image

is then magnitude-detected so it can be displayed.

The book by Jakowatz, et. al [7, pp. 105-270] gives more detailed information on all

the PFA steps previously mentioned.
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Chapter 3

The Planar Wavefront Assumption

in Polar-Formatted Imagery

The tomographic paradigm for spotlight-mode SAR imaging, as previously described,
presents the concepts of SAR in a clear and concise way within a signal processing
framework. However, there are certain limitations to the scope of the tomographic
description of spotlight-mode SAR. In fact, such would be the case for any description
of the SAR imaging process that portrays the collected SAR data as some 2D Fourier
projection of the 3D scene function. This is true of Walker’s original spotlight-mode
SAR description [1, 2, 3], and extends to the analogy of spotlight-mode SAR as a
tomographic process, as presented by Munson [4] and later Ausherman [5]. This
chapter describes the most significant current limitation of the polar-format algo-
rithm as it relates to the tomographic paradigm. That is, the faulty assumption of
planar wavefronts illuminating the imaged scene. A simple model will be presented
which explains the geometric distortion induced by this assumption, with an accom-
panying analysis to describe the conditions under which this behavior is troublesome.
Examples of geometrically distorted images are also presented. An introduction to
the associated quadratic defocus is given, as well as illustrative examples, with appro-

priate scene size limitations being discussed. All this serves as an introduction to the



Chapter 3. The Planar Wavefront Assumption in Polar-Formatted Imagery 52

sophisticated point target phase-return model of Chapter 4, which accurately models
the effects wavefront curvature for all imaging scenarios and squint angles. With this
model, an efficient, image-domain space-variant post-filter will be designed, thereby

lifting scene size restrictions when wavefront curvature is present in polar-formatted

imagery.

3.1 The Planar Wavefront Assumption — A Limi-

tation of the Tomographic Paradigm

Certain limitations of the tomographic paradigm, such as failing to predict the range-
oriented layover effects of three-dimensional targets into two-dimensional space, have
been carefully addressed by 3D extensions to the tomographic model [6]. Perhaps
the most significant limitation to this model, and ironically, the most recent to be
addressed (this dissertation being the first to propose a complete solution), is based
on the assumption of planar wavefronts in the construction of the projection functions
of the scene reflectivity function. See Figure 3.1 for a comparison of the illuminated
scene with realistic spherical wavefronts, as shown in part (a), to that of the planar
wavefront assumption in part (b). This assumption leads to an annular-shaped
geometric distortion of the formed imagery, as well as a more problematic space-
variant defocus (blurring) of the imaged scene. Mentioned by both Walker and
Munson, the potential effects of this assumption on the quality of SAR imagery were
noted, yet no solution was proposed, beyond restricting the imaging scenarios to
those which closely followed the assumption. While the geometric distortions could
be compensated through a geometric rewarping process after image formation, the
scene size restriction was suggested in order to minimize the effects of the space-

variant defocus.

The polar-format algorithm can be described in terms of a tomographic process,

and it is this analogy that lends explanation to the simplicity of the polar-format al-
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gorithm. Unfortunately, as a tomographic process, PFA-processed imagery degrades
in quality (in terms of space-variant defocus) when the planar wavefront assump-
tion no longer holds. As radars achieve ever increasing resolutions, this assumption
breaks down, particularly at lower center frequencies and when imaging large patches
at close range. Consequently, the planar wave assumption is not valid under these
scenarios, yet it is no longer reasonable to restrict radars to collection scenarios for
which the assumption is valid. When the assumption is violated, the deleritous ef-
fects on PFA-processed imagery are often referred to as range curveture or wavefront
curvature effects. However, to be precise, range curvature is the range-oriented mo-
tion of scene targets, relative to the radar platform, as the aperture is being flown
(see Figure 1.4). When this motion exceeds the distance represented by a single

range bin in the formed imagery, then defocus occurs.

It is important to note that the polar-format algorithm compensates this range
migration motion via the acquisition of samples on a polar grid, additional mocomp
to the scene center if necessary, and the 2D interpolation of the phase history onto
a Cartesian grid prior to inverse Fourier transformation. Otherwise, scene size must
be severely restricted, as discussed in the previous chapter. What remains after
this range migration compensation is actually residual, differential range curvature,
which is based on the faulty assumption of planar EM wavefronts being transmitted
by the antenna. This is specifically what is meant by the term wavefront curva-
ture. While other image formation methods inherently compensate for wavefront
curvature, this dissertation proposes a method for compensation in polar-formatted
imagery, thereby extending the utility (with little additional computational cost) of
the proven, straightforward polar-format algorithm, to produce high quality imagery
in the presence of wavefront curvature. Furthermore, as will be shown in Chapter 6,
polar-formatting is typically no more computationally burdensome (and for certain

scenarios far more efficient) than other popular image formation methods.
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Figure 3.1: Actual Spherical Wavefront Curvature Versus the Planar Assumption for
Spotlight-Mode SAR

3.2 The Cost of Ignoring Spherical Wavefronts

This section describes the effects of wavefront curvature on polar-formatted spotlight-
mode SAR imagery. The wavefront curvature effects that appear in reconstructed
imagery can be discovered by deriving an exact expression for the radar return signal
as dictated by the actual spatial geometry (incorporating spherical wavefronts) and
comparing this result with that obtained by the sampling of the Fourier domain as
per the tomographic model. This derivation involves a single point target in the
scene, with the realization that any scene may be considered to be the superpo-
sition of a large number of point targets. Ultimately, it will be revealed precisely

how the assumption of spherical wavefronts renders invalid the relationship between
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the phase history and image domain reconstruction, as based on the tomographic
paradigm. Furthermore, via this model, which will be presented in detail in Chapter
4, it will be shown that wavefront curvature leads to both a geometric distortion of
the reconstructed scene, as well as a space-variant defocus which can be severe in

some imaging scenarios.

3.2.1 Geometric Distortion

It is instructive to describe the geometric distortion effects using a more intuitive
model than that which will be presented in Chapter 4, even though it is incomplete
in terms of describing quadratic defocus. This model will serve as the introduction
to (and later it will be shown that the results are in agreement with) the sophisti-
cated phase model of Chapter 4. This simple model will now be presented, as will

illustrative examples of geometric distortion and defocus effects on real SAR imagery.

A simple slant plane model depicting the curved EM wavefronts is shown in Figure
3.2, for a broadside collection. This model depicts the wavefront as it crosses the
scene center, as transmitted (emanating) from mid-aperture. At first, it appears an
incomplete wavefront curvature model for predicting the overall geometric distortion
across the entire extent of the aperture. However, the MTRC compensation, which
is based on the polar-coordinate acquisition of the phase history and any additional
motion compensation to the scene center, ensures that the coherent integration of
all Fourier slices over the aperture is represented by the single wave depicted. That
is, the scene center serves as the phase center for the imaged scene, and the wave
depicted through this point is sufficient to represent the distortion behavior across

the scene.

For the slant plane model represented by Figure 3.2, let L be the radius at range
1y = 0 of the imaged scene, and 6y, be the angle formed at the platform by the edges
extending to the scene center at (z',y’) = (0,0) and the scene edge at (2, y") = (L, 0).




Chapter 3. The Planar Wavefront Assumption in Polar-Formatted Imagery 56

Center of
Aperture

|

Arc of Constant
Range rO A]Yl
|
O, ¢t | —— " i : >
R -

Figure 3.2: Broadside Model for Derivation of Geometric Distortion When Neglecting
Spherical Wavefront Characteristics

Furthermore, 7g is the radius of the arc that defines the curvature of the wave through
both the scene center and patch edge. The difference in range between the actual
curved wavefront and the planar assumption is Ay’ at the scene edge. The value
Ay’ defines the geometric distortion, or sag in the range direction at the edge of the

scene. The range sag is defined as follows:
, 0L
Ay = by sm(-;)—), (3.1)

where the approximation ro > L is applied. Furthermore, when this approximation
holds, 4, is very small and consequently sin(8;/2) = 8;, so that Equation (3.1)

becomes

L? L?
Ay~ 2g 202 2 3.2
y L 27'02 27‘0 ( )
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Thus, the range sag at the patch edge is a function of the slant plane standoff
range (slant range) 7o, as well as the patch radius L. Interestingly, it is not a function
of radar center frequency, bandwidth or image resolution, but instead strictly based
on the degree of physical curvature of the transmitted EM pulse where it reaches
the scene. The effect of this sag, in terms of geometric image distortion, is shown in
Figure 3.3. Ironically, this approximation is least accurate when the patch is large or
the slant range is short, which are precisely the conditions leading to large range sag.
However, the approximation is accurate for many imaging scenarios, and gives an
intuitive feel for the way in which the processed image is geometrically distorted when
planar wavefronts are assumed, but in which the curvature is actually significant. As
will be shown in Chapter 4, via the more complete phase model presented there,
the geometric sag in range for any point (not just at the patch edge) is based on
the linear phase error terms derived from that model. Specifically, a point in the

slant plane image at some point zj will actually end up being displaced in range an
0

amount of
zh?
Ay = -2%0 (3.3)

when significant wavefront curvature is present. Again this equation assumes rg > L.
When the point is at the patch edge, that is, zj = L, Equations (3.2) and (3.3) are

the same. Similarly, the same point will be displaced in azimuth from yg by

ol
Ag' = 20 (3.4)

- ?

To
given the same assumption of a large ratio between slant range and patch radius.
As will be shown in the phase model of Chapter 4, these position translations are a
direct result of the Fourier transform shift property, which states that linear phase
terms in the Fourier domain are represented as translations in the processed image
domain. Of course, linear translation is necessary to properly place the target in the
proper position in the processed image. However, the phase terms and translations
of Equations (3.3) and (3.4) specify residual terms representing wavefront curvature

errors that are in addition to those for proper placement of the target in the imaged
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scene. It is these terms (in addition to the quadratic terms to be described next)
that render invalid the inverse Fourier transformation of the polar-formatted data
into a image-domain scene. Consequently, these linear phase terms, based on the
invalid planar wavefront assumption, induce translations of the reconstructed points
in both dimensions of the image domain, resulting in a position-dependent shifts that
distort a square image patch into an annulus. These effects are depicted in Figure
3.3. As expected, the amount of distortion prescribed by the linear phase terms ends
up placing a point in the reconstructed image along the actual circular arc of the
wavefront, as opposed to the straight line assumed to be representing the wavefront.
As the planar wavefront assumption becomes increasingly inaccurate, as prescribed
by an increase in patch radius or decrease in slant range, the resulting geometric
distortion becomes more severe. When comparing the orientation of the spherical
wavefront of Figure 3.2 to that of the corresponding image distortion in Figure 3.3,
one notes that they are in opposite directions. This is because the curved wavefront
“falls short” of a point in the scene (displaced from the center) compared to the
planar wavefront prediction. Consequently, the point seems farther than is actually
the case, and the imagery formed under the planar wavefront assumption distorts as
to bend away from the radar platform’s aperture center. The model of Chapter 4 is
much more complete in that it gives an exact description of geometric distortion at

all ranges and patch radii, for both squinted and broadside collections.

Figure 3.4 illustrates the effects of wavefront curvature on actual spotlight-mode
SAR imagery. It is important to note that while the imagery is real, the geometric
distortion has been induced by artificially applying severe linear phase errors to the
formed imagery; more severe than was actually present in the imagery at the time
of collection. This serves to illustrate the geometric distortion that would actually
have been present had this been a much larger scene, or taken at much closer range
than was actually the case. This distortion is based on predicted translations of
Equations (3.2) and (3.3), yet for the unrealistically close slant range of a few hundred

meters, thereby exaggerating the distortion effects. The lower portions of Figure 3.4
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Figure 3.3: Geometric Image Distortion From Wavefront Curvature - Broadside Col-
lection

(parts (c) and (d)) represent enlarged views of the pentagon scene, before and after
geometric correction, respectively. The geometric sag is evident in part (c), where
the straight edges of the building are noticeably distorted, and corrected in part (d)

via a post-warping procedure.

While Figure 3.4 serves as an illustrative example with an exaggerated case of
geometric distortion, this phenomenon is indeed a serious issue in real imagery. Take
for example, the imagery presented in Figure 3.5. The geometric distortion present
in this image is that which has occurred naturally, as a consequence of neglecting
the effects spherical wavefronts during polar-format processing. This image is of a
test track area at Sandia National Labs in Albuquerque, New Mexico. The rails of

this sled track are made to be very straight, as rocket powered test sleds moving
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(c) Q)

Figure 3.4: Simulated Geometric Distortion Effects of Wavefront Curvature

at extremely high velocities are launched down the rails. This sled track is ideal
in demonstrating the effects of wavefront curvature since it is known to be a long,
straight object and also a very good radar reflector. The specific imaging parameters
for this scene are as follows: The nominal standoff range ry is 6000 meters, the
range and cross-range resolutions p, and p, are both 1 foot (0.33 meters), and the
radius of the patch from scene center L is 175 meters. This scene was imaged
from Sandia’s high resolution testbed spotlight-mode SAR [41] at Ku band (14-16

GHz), and processed using the polar-format algorithm. Interestingly, for such a
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Figure 3.5: Actual Ku-Band SAR Image of Sled Track With Wavefront Curvature
Distortion (1 Ft. Res.)

Ku Band SAR, fy = 14-16 GHz, rp = 6000 m
Patch Radius, L (m) | Range Sag, Ay’ (m)

100 0.83

200 3.33

300 7.50

400 13.33

500 20.83

600 30.00

Table 3.1: Range “Sag” at Scene Edge for Ku Band Sled Track Example

small scene radius (I = 175 m), the observed geometric sag at the patch edge is
quite significant. Based on Equation (3.2) for L = 175 and r¢ = 6000, the predicted
sag is L?/2rg = 2.55 meters. This corresponds to approximately 8 range resolution
cells, given the range resolution of p, = 0.33 meters and assuming no additional
oversampling (zero padding) during Fourier inversion. For this example, the range

sag at the scene edge for various patch radii is given in Table 3.1.

The geometric distortion is easily removed by post-warping the reconstructed

image. Since the amount of translation for each point can be predicted by the linear
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phase terms of Equations (3.3) and (3.4), each point can be correctly restored to its
“proper” location. A second-order polynomial can be generated from these equations
to describe the geometrically correct placement for any point in the distorted scene.
It is important to note that these equations predict the amount of linear displacement
that occurs in the distortion of a scene to its “improper” place in the warped image.
Geometric correction requires the inverse operation; that is, the movement from a
point from a position in the distorted image to that which is geometrically correct.
Consequently, the polynomial warping function must represent the inverse of the
translations specified by Equations (3.3) and (3.4). This is discussed in great detail
in Chapter 5. Once the proper positions of the points have been determined, an
interpolation of the image domain values using a simple bilinear interpolator is all
that is necessary to correct the geometric distortion. This is in contrast to the
two-dimensional polar-to-rectangular reformatting of the phase history data, which

requires a more complicated sinc (or equivalent) interpolation scheme.

This dissertation presents geometric distortion as a prominent consequence of ig-
noring wavefront curvature effects in PFA processed, spotlight-mode SAR. imagery.
The model of Figure 3.2 was presented to explain the nature of the geometric dis-
tortion, and was used to derive a relation for predicting range sag in terms of patch
radius and slant range. Furthermore, as will be shown in Chapter 4, the robust
model representing the phase return from a point target will describe this geomet-
ric distortion in terms of linear phase errors, which render invalid the tomographic
relationship between the Fourier phase history and the imaged scene. However, the
geometric distortion, prominent in many SAR imaging scenarios, has been dealt with
since the inception of the PFA algorithm. Specifically, the necessary post-warping of
the image under these scenarios has always been incorporated as a routine step in the
polar-format algorithm processing sequence. This discussion, and that of Chapter
4, provides valuable insight as to the nature of this distortion. However, the unique
contribution of this work is the characterization and compensation of the problem-

atic space-variant defocus that appears when severe wavefront curvature is present,
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and not the geometric distortion.

3.2.2 Space-Variant Defocus

Wavefront curvature defocus effects occur in certain spotlight-mode collection modes
that include imaging at close range or using low center frequencies, especially when
imaging large ground patches. These defocus effects are particularly troublesome
in that they effectively lower scene resolution (and greatly hinder interpretability),
while their space-variant nature makes them difficult to compensate. They occur
in conjunction with the geometric distortion effects described previously, vet are
less visibly- prominent when wavefront curvature is minimal. In fact, as shown in
Figure 3.5, geometric sag is evident but there is no visible image blurring. However,
given other specific imaging scenarios in which wavefront curvature becomes more
severe, the corresponding increase in defocus causes significant visual degradation to

processed imagery.

In contrast to the induced geometric distortion, the defocus effects can not be re-
moved via a post warping procedure. Instead, it will be shown that a one-dimensional
space-variant convolution (deblurring) filter, applied as a post-processing step to the
image domain data, can adequately compensate the defocus effects induced by wave-
front curvature. As will be derived in detail in Chapter 4, these blurring effects are
mostly due to quadratic phase error terms present in the specific scenarios for which
the planar wavefront assumption does not hold. The magnitude of this defocus ef-
fect is a function of the range and cross-range position of the target, and becomes
greater for those targets placed further from the scene center. For the simplest case,
a broadside collection whereby the slant range is much greater the patch radius; that
is, assuming 1o > L, the quadratic, Fourier domain phase error is found to be

o = H(X') = Mxﬂ (3.5)
2t — ~ 27'0k0 ) -0

where ko = 47/ is the nominal annular radius in the Fourier domain, 7, is the slant
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range of the radar platform, (z,yp) is the location of a target in the reconstructed
slant-plane image, and X’ is the phase-history (Fourier domain) frequency extent
associated with the cross-range dimension. The X’ term appears squared and this
indicates the phase error @o; is indeed quadratic in nature, and the relation is also
represented as H(X'), indicating it is a Fourier domain blurring filter as well. Note
that there is no Y term in the relation, and therefore, no range frequency-dependent
blurring. That is, the filter is one-dimensional in the cross-range direction only. This
observation will be confirmed, as will the validity of Equation (3.5), via the robust

phase model for a point target to be presented in Chapter 4.

The effect of the quadratic phase term in the phase history is to convolve the
image with a kernel consisting of the Fourier transform of a complex exponential
having that quadratic phase. Consequently, the image will be blurred (in the cross-
range direction given the approximation in this case) by an amount commensurate
with the width of the convolving kernel, which in turn depends on the peak amplitude
of the quadratic. The actual amount of image defocus that occurs in the processed
imagery, as a function of peak quadratic phase error, is derived in Appendix A, and

its application is carefully discussed in Chapters 4 and 5.

The amount of quadratic defocus is spatially variant, as indicated by Equation
(3.5). In particular, along the pair of diagonal lines in the image plane given by
y' = |2'| (assuming the point has been correctly rewarped to eliminate geometric
distortion), the amount of defocus is exactly zero. The defocus is maximal at the
image locations (z',y') = (0,L) and (z',y") = (L,0). Also, this relation reveals
that the quadratic phase error increases with decreasing slant range. as indicated
by 7y in the denominator, and with decreasing radar frequency, as indicated by the
correspondingly increasing A in the denominator of ky. These quadratic phase errors
are not represented in the simple spherical curvature model of Figure 3.2, vet will
be quantified in the point target phase return model of the next chapter. In essence,
Equation (3.5) represents the Fourier transform of the space-variant blur function

(ie: the transform of the blurring convolution kernel), and is shown to be phase-only
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(without regard to magnitude), and one-dimensional in the cross-range direction.

Without yet delving into implementation details, it is still reasonable to assume
(for now, if only intuitively) that the conjugate multiplication of this blur function
with the appropriate Fourier data will result in the deconvolution (refocus) of a por-
tion of the imaged scene when those data are inverse Fourier transformed. Indeed,
by spatially varying this deconvolution filter as appropriate, it will be shown in the
following chapters that the image can be efficiently post-filtered to compensate the
defocus effects of wavefront curvature. As with the previously presented pentagon
illustrations for geometric distortion, examples will now be presented that simulate
the defocus effects as prescribed by Equation (3.5). That is, a space-variant con-
volution kernel, as specified by this equation, has been applied to focused imagery
and shown in Figures 3.6 and 3.7. These illustrations demonstrate the space-variant
defocus associated with the faulty assumption of planar wavefronts. As with the pre-
vious geometric distortion example, the amount of defocus exhibited in these figures
is greatly exaggerated for illustrative purposes. However, the space-variant behavior
is exactly which is found in real imagery exhibiting this defocus, though of greater
magnitude in this example. In particulaf, parts (c) and (d) of Figure 3.6 are ex-
panded views, before and after “correction,” of defocus in a severely affected region.
In reality, the corrected version is simply that which does not have the phase error of
Equation (3.5) applied to it. That is, it has not actually been post-filtered for wave-
front curvature compensation (though it could be). In this particular illustration,
the expanded views are of a point in the region of (z',3") = (L, 0), where defocus is
stated to be most severe. In contrast, the expanded views of Figure 3.7 are in the
neighborhood of ¥ = |z'|, where defocus is said to be minimal. These two examples
illustrate the space-variant nature of the defocus induced by the faulty assumption

of planar wavefronts illuminating the scene.

It must be emphasized that this space-variant defocus phenomenon is not re-
stricted to artificial dissertation examples, and it is not a theoretical behavior to

be found only in mathematical analyses. In fact, defocus effects due to faulty pla-
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nar wavefront assumptions occur in a number of real SAR imaging systems under
certain scenarios. Of particular interest are the ultra-wideband (UWB) SAR and
L-Band SAR, as described in [12, pp. 435-439]. These radars are known for their
foliage penetrating ability [81, 82, 83], which is a phenomenon associated with their
relatively low center frequencies. The large imaged patch sizes associated with these
radars, in conjunction with the low center frequencies and close-in slant ranges,
clearly render the planar wavefront assumption invalid. Consequently, these particu-
lar SARs generate imagery that suffers from significant space-variant defocus when
their polar-formatted phase histories are processed via the polar-format algorithm.
Furthermore, particularly in the case of the L-Band collection, the patch diameter is
on the order of the slant range distance, rendering invalid the approximation rp > L,
on which Equation (3.5) is based. Fortunately, the robust phase model to be pre-
sented in Chapter 4 has no reliance on this approximation. As a verification of this
model, Chapter 5 will present synthetically generated spotlight-mode SAR imagery,
based on the radar parameters of the UWB and L-Band SAR, and exhibiting the
wavefront curvature defocus effects exactly as are produced with the actual SAR
systems. The performance of the new space-variant post-filter will be considered for
these practical examples via the synthetic target generator, which is void of all other

phase error effects except those associated with wavefront curvature.

Of course, while fine for illustrative purposes, the approach of artificially applyving
(and removing) quadratic phase errors to the imagery of Figures 3.6 and 3.7 begs
the question as to whether Equation (3.5) is correct. Clearly, if applying a faulty
defocus convolution filter, the conjugate multiplication in the Fourier domain by
the transform of this same filter will correctly remove the induced blur, even if the
filter is not an appropriate representation of the space-variant defocus induced by
wavefront curvature. However, the reader can rest assured in knowing that the
defocus phase error terms will soon be derived using a realistic model for the phase
return of a point target, and confirmed by analyzing the performance of the space-

variant post-filter which is based on this model, by way of synthetic target imagery
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Figure 3.6: Simulated Wavefront Curvature Effects Before and After Removal -
Severely Defocused Region

that has been generated via the tomographic model for the ideal phase return from
a point scatterer. In essence, synthetic imagery will be generated which, by the very
nature of the tomographic paradigm, includes the extra phase terms which induce
distortion and space-variant defocus in the processed imagery. For the practical,

real-world scenarios to be presented, these phase error terms are particularly large.
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3.3 Scene Size Limitations Due to Wavefront Cur-

vature Defocus Effects

The faulty assumption of planar wavefronts in certain imaging scenarios leads to
linear, quadratic, and higher order phase error terms that negatively affect the polar-
format processed imagery. The linear phase terms lead to a geometric distortion
that is easily corrected via a post warping procedure. The quadratic phase term, as
described by Equation (3.5), induces a position-dependent (space-variant) defocus
that degrades the image in the cross-range direction. The amount of quadratic
phase (and the defocus induced as a consequence) becomes increasingly severe at the
edges of large patches near the axes, and subsides along the diagonals of the scene.
Furthermore, the defocus increases as the slant-range or the radar center frequency
decrease, or as the cross-range resolution increases. The quadratic defocus effects are
less prominent than the geometric distortion for a given scenario, as will be further
explored in the sled track defocus analysis of this section. However, there also exist
cubic and higher order terms that serve to further defocus and degrade the imagery

in the presence of significant wavefront curvature.

Fortunately, as in the case where the quadratic phase term is small compared to
the linear range sag term, the cubic phase errors (and their associated defocus effects)
are significantly less prominent than the quadratic phase error. This is due to the
inverse factorial scaling of each subsequent phase error (with respect to polynomial
order), when the phase return from a point target is represented by the Taylor series
decomposition. This mathematical analysis is given in the next chapter. Regardless,
in practice, the visual image degradation from these higher order terms (larger than
second order) is negligible and can be ignored. In chapter 6, the residual, higher
order phase errors for the L-Band SAR example will be plotted and shown to be

negligible.

The plots of Figure 3.8 show the cross-range defocus effects for quadratic phase
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Figure 3.8: Cross-Range Defocus for Various Values of Peak Quadratic Phase

errors of varying amplitudes (peak quadratic phase). The plot corresponding to a
zero-amplitude phase error is the ideal point-target response function, or impulse
response function (IPR). Quadratic phase errors of various peak amplitudes have
been applied to this complex function (in the Fourier domain). After inverse Fourier
transformation, the magnitude responses of the various functions are as shown. The
data has been properly zero-shifted, via alternate row/column multiplex (or proper
linear phase ramp multiplication) so that the DC (zero) component is in the center
of the plot. It is evident from these plots that a quadratic phase error of sufficient
amplitude can significantly degrade image quality. As a rule of thumb, the space-

variant defocus associated with a quadratic phase error of /4 radian or less is

considered to be negligible.

The value of 7/4 is a somewhat objective limit on the peak magnitude of the
quadratic phase error, and is based on the visual distortion of a point target. How-
ever, the development included in Appendix A ensures (from a mathematical per-

spective) that this phase error limit prevents visible broadening of the IPR. That
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is, by limiting the peak quadratic phase error to 7 /4 radians, the defocus is kept to
within subpixel levels and the visual smear remains negligible. Based on this peak
limit, a relation can be derived that specifies the largest possible patch size allowable
for this phase limit. This is accomplished by relating the phase error calculation of
Equation 3.5 to the maximum allowable peak error for negligible target smearing,
and solving for the maximum patch size:

12 12
o — Y

12 T
<= .
Sroke X (3.6)

1—47

where X] is the cross-range frequency extent defining the maximum extent of the
aperture (|X'| < X}), and ~2X < X' < AX where AX’ is defined by Equation
(2.17). The nominal cross-range resolution of the image formed from such an aperture
is py = w/X}, which is known as the half-power width of the ideal response function
and is based on Equation (2.19). Furthermore, from Equation (2.14), ko = 2wp/c =
47 /), and from Equation (3.5), recall that the defocus is maximal at the locations
(z',4") = (0, L) and (z',3') = (L,0). Consequently, the patch size restrictions are in

terms of both range and cross-range radius limits and are found to be
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and by substituting for X} and k, these restrictions can be expressed in terms of p

and A:

)
A (3.8)
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Thus, the maximum image dimensions in both range yy and cross-range g, relative
to the cross-range resolution p,s, must be restricted to maintain good focus. These
restrictions are most severe at close range (small ro) and at low frequencies (large

), as implied by Equation (3.5), on which they are based. Also, note the patch size




Chapter 3. The Planar Wavefront Assumption in Polar-Formatted Imagery 72

restrictions increase linearly as a function of increasing (ie: smaller valued) cross-
range resolution. Recall from Equation (2.19) that the cross-range resolution py
can be represented in terms of the extent of the synthetic aperture Af; specifically,
px = AJ2A0. Thus, the patch radius limits can be alternatively expressed in terms

of the synthetic aperture extent. From Equation (3.8),

\/—ZT \/—f \/ 2A9 270 ‘\/ 2(A9 (3.9)

and by substitution back into Equation (3.8),

AT‘O
, —————
%o < 2(A0)%
(3.10)
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'
<
Y0 =1/ 2000

As would be expected, an increase in aperture extent improves the cross-range reso-
lution p,r and consequently reduces the maximum allowable patch size. In the case of
Equation (3.10), it appears that reducing radar center frequency fp, thereby increas-
ing wavelength A, is actually relazing the patch size requirement, which is contrary
to what is implied by Equation (3.8). However, this is not the case, as one must
realize that resolution is not held constant in the case of Equation (3.10) unless the
aperture extent is increased in proportion with the wavelength. This results in the
denominator outgrowing the numerator (because of the squared denominator term)
and the maximum patch size shrinks, as expected, in the case where resolution is

held constant.

These simple equations for deriving patch size limits, as well as Equations (3.3)
and (3.5) which specify the respective geometric range sag and quadratic phase error,
are powerful in their ability to predict the geometric distortion and space-variant
defocus effects induced by wavefront curvature. This is true when the assumption is
valid of a large slant-range to patch radius (ro > zf). For example, recall that there
was significant geometric distortion, yet no visible defocus in the sled track example

of Figure 3.5. Assuming a center frequency fo of 14 GHz (where A = ¢/f) and a
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slant-range of 6000 m, by the prediction of Equation (3.8), quadratic defocus for this
scenario would not become noticeable until the scene radius exceeds 250 m. Thus,
one would not expect visible defocus in this example since the patch radiusis only 175
m, and indeed no defocus is apparent anywhere in the scene. It is interesting to note
that the radius of the scene where defocus would just become evident; specifically,
at a radius of 250 m, the geometric sag in range would be over 5 m (or more than

15 range cells).

Clearly, in the presence of wavefront curvature, the amount of geometric sag is
usually quite significant compared to the amount of space-variant defocus present in
the scene. However, by no means does imply that defocus is not a significant problem
in real imagery. Take for example, the UWB SAR mentioned in the previous section.
This foliage penetrating SAR typically operates at a center frequency fo of 469.5 MHz
and a slant range r¢ of 6240 m [12, pp. 437-439]. Based on- these parameters and
a cross-range resolution of 0.66 m, Equation (3.8) predicts a maximum allowable
scene radius of only 93 m, if defocus effects are to be avoided. However, scene
sizes for this radar are typically 600 m in cross-range radius. At this maximum
radius, Equation (3.5) predicts a quadratic phase error of ¢o; = 32.7 radians, and
consequently, Appendix A (Egs. (A.17) or (A.28)) can be called upon to determine
that resolution degrades at the scene edges by a factor of nearly 42! Thus, for this
radar, the scene radius must limited to 15.5 percent of the desired size in order to
avoid noticeable space-variant defocus. If this limit is ignored and instead the full
600 m patch is imaged, the degradation due to defocus is such that closely placed
targets near the scene edges are indistinguishable. Indeed, space-variant defocus
arising from the faulty assumption of planar wavefronts can be quite significant in

certain scenarios of polar-formatted spotlight-mode SAR.

Table 3.2 lists scene size restrictions for some common SAR parameters, based
on Equation (3.8). As is shown, in order to constrain the defocus to subpixel levels
(A rad), the patch radius must be reduced as resolution increases or center

frequency decreases, for a given fixed slant range. These patch size limits are based on
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| Maximum patch radius = 1200 m, Slant Range, ro = 10,000 m |
Cross-range Wavelength, Center Frequency fp
Resolution || 0.01m, 30 GHz | 0.03m, 10 GHz | 0.2m, 1.5 GHz | 0.6m, 0.5 GHz
10 m Full Patch Full Patch Full Patch Full Patch
3m Full Patch Full Patch 948 548
1lm Full Patch 816 316 183
0.3m 424 245 95 55
0.15m 212 122 47 27

Table 3.2: Scene Radius Limits (meters) From Wavefront Curvature Quadratic Phase
Errors

the assumption of a large slant-range relative to patch radius (rp > xj), which leads
to the approximation of Equation (3.5). However, this assumption is not a necessary
condition of the detailed phase models to be introduced next, and consequently, the

calculated phase errors will not necessarily be approximations, except where noted.

3.4 The Space-Variant Post-Filtering Approach to

Wavefront Curvature Correction

The expression of Equation (3.5) is a closed-form, analytic expression for the space-
variant defocus in terms of the known imaging parameters. It is a small-patch ap-
proximation that represents a broadside-mode aperture synthesis only. However,
as will be shown in the following chapter, an analytical expression can be derived
without these restrictions. That is, a general quadratic phase error expression can
be derived that represents all patch sizes and slant ranges, for squinted as well as
broadside collections. This analytic expression suggests that it is not necessary to
live with the patch size restrictions suggested by Equation (3.8). Indeed, Equation
(3.5) represents the Fourier transform of the approximated space-variant blur func-
tion (ie: the transform of the blurring convolution kernel) at a point (zj,yg) for

the given slant range, frequency extent (resolution), and radar wavelength specified
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by the imaging scenario. The conjugate multiplication of this blur function with
the appropriate Fourier extent at (zf, yg) results in the space-variant deconvolution

(refocus) of that portion of the imaged scene upon inverse Fourier transformation.

The full specification of this filter is based on the sophisticated point target phase
return model, the analysis of which describes the geometric distortion and defocus
in terms of linear and higher order terms. These are the terms which render invalid
the tomographic relationship between the polar-formatted phase history data and
the imaged scene. The negation of these terms compensates the defocus induced by
the assumption of planar wavefronts in the tomographic model. These coﬁcepts will
be described in chapter 4. Furthermore, it will be necessary to apply this filter such
that the computation is not overly burdensome, while still adequately compensating
the defocus effects. The application of this filter, in terms of tradeoffs between the
quality of refocus and computational burden, will be covered in Chapter 6. Given
enough computation time, any scene can be adequately rid of wavefront curvature
defocus effects, regardless of the imaged patch size. Fortunately, as will be shown,
adequate refocus can be accomplished in many imaging scenarios with as little as
thirty percent additional computation time. This puts the polar-format algorithm
in the playing field with many other spotlight-mode imaging algorithms in terms
of wavefront curvature compensation, as well as computational load. For certain
imaging scenarios, particularly those requiring squinted collections, PFA may be

particularly advantageous in terms of computational burden.




Chapter 3. The Planar Wavefront Assumption in Polar-Formatted Imagery 76

This page intentionally left blank



-1
~}

Chapter 4

Analysis of Phase Errors Arising

From Wavefront Curvature

The tomographic paradigm, first proposed by Munson [4, 5], has been used to de-
scribe the spotlight-mode phase history data as a two-dimensional (planar) annulus
representing the Fourier transform of the three-dimensional scene reflectivity, as pro-
jected onto this plane [6). Consequently, after proper polar-to-rectangular interpo-
lation, the Fourier inversion of this data yields a complex-valued, two-dimensional
image domain representation of the illuminated scene. This representation is not an
exact portrayal of the imaged scene since several assumptions have been made in
the tomographic model which carry over from Walker’s original spotlight-mode SAR
formulation [2]. These assumptions, when violated, render invalid the direct Fourier
relationship between the phase history data and the image domain reconstruction
via the tomographic paradigm. One assumption is that the residual quadratic phase
error arising from the range-deramp process is insignificant and can be ignored. In
fact, this is not the case in the range-dechirp processing of high bandwidth range
pulses (large chirp rate o), particularly when imaging at close range and in conjunc-
tion with large patch sizes and high cross-range resolutions [4, 9]. The effect of this

deramp residual phase error is to distort and defocus the imagery in a similar fashion
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as wavefront curvature phase errors. While the models introduced in this chapter
can be used to derive the deramp residual phase errors, these are typically small
and are usually ignored [2] [7, pp. 363-365]. Instead, the focus of this chapter is to
quantify the wavefront curvature phase errors arising from the other shortcoming
of the tomographic model; namely, the faulty assumption of planar EM wavefronts
illuminating the imaged scene. As opposed to the deramp residual phase errors,
the wavefront curvature defocus effects can not be ignored in many common SAR

imaging scenarios [12, pp. 435-439].

The previous chapter previewed the nature of the phase errors leading to the
distortion and defocus of polar-formatted spotlight mode imagery exhibiting signif-
icant wavefront curvature. It was shown that the geometric distortion results from
targets lying along the actual arc of the EM wavefront as opposed to residing on the
planar wavefront being approximated. In certain imaging scenarios where the differ-
ential wavefront curvature is significant, the resultant geometric distortion is severe.
However, the planar wavefront model presented was insufficient for the analysis of
the defocus due to quadratic phase errors. In certain imaging scenarios, the defo-
cus effects are significant and their space-variant nature makes them troublesome
to negate. The analysis of the higher-order phase errors that induce space-variant
defocus requires the modeling of the Fourier domain phase history as the collective
integration of phase returns from all the targets in the scene. This model will be
introduced next and it will reveal the effects of the faulty planar wavefront assump-
tion in terms of residual phase terms that increase in value as the planar wavefront
assumption becomes less suitable. From this model, the Fourier domain linear phase
terms will be derived; the presence of which serve to place the target in its cor-
rect location within the image domain scene. In addition, the residual linear phase
terms that induce geometric distortion will be determined, as well as the quadratic
term (an approximation of which was given in Equation (3.5)), which leads to the
space-variant defocus of the imaged scene. Once these values have been quantified,

a method is introduced for the space-variant post-filtering of the imaged scene in
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order to compensate the space-variant defocus, as described in Chapter 5. The effect
of this filter is to negate the residual quadratic phase error, thereby refocusing the

image.

4.1 Point Target Contribution to Fourier Domain

Reflectivity Function

The tomographic paradigm states that the demodulated (range) echo of each trans-
mitted pulse evaluates the three-dimensional Fourier transform of the scene reflectiv-
ity function, along a line determined between the scene center and platform position.
It has been argued, via the projection-slice theorem, that the combined effect of many
such projections collected along a straight-line aperture is a two-dimensional (slant)
plane representing a slice of the Fourier domain that depicts an orthogonal projec-
tion of the three-dimensional scene onto this plane. These ideas will be formalized to
arrive at an expression for the phase of this two-dimensional Fourier data collection,
as predicted by the tomographic model. Subsequently, this expression will be repre-
sented in terms of its Taylor series expansion, and the residual phase error terms will
be revealed. Before hand, it is instructive to consider the contribution of a target
to the overall scene reflectivity function. That is, to understand the relationship be-
tween a target’s spatial scene position and its behavior in the Fourier domain. Then,
the concept of Fourier domain phase error and its effect on the imaged scene can be

fully understood.

This discussion first considers the orthogonal projection of a scene point p into
the two-dimensional Fourier slant plane. The contribution of the ideal point target
p to the two-dimensional slant plane scene reflectivity can be represented in terms

of a delta function as follows:

3P($,= yl) = Apa(xl - 376’ y’ - y())a (4'1)
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where A, represents a complex-valued scalar denoting the amplitude and phase of
the radar return. At this point, A, is assumed as having some value, without yet
knowing the exact derivation of its phase. In the slant plane Fourier domain, this

point target contributes a two-dimensional complex sinusoid of the form

Sp(X', Yy = F{sp(z',9')}
= F{Apd(z' — z5,%" — %)}

= Ay fEX ) (4.2)

where X' and Y signify the spatial frequency extent in cross-range and range, respec-
tively. An equivalent vector expression for this Fourier domain point target response

18
5p (k) = A,e’?*, (43)

where k represents position in the Fourier domain and p is a position vector for the
point in the image domain, as projected into the slant plane. These position vectors
will now be described in detail. Consider the notion that each demodulated pulse
consists of evaluating the Fourier transform of the scene function along a line of the
slant plane. A vector denoting a position in this Fourier space and oriented along

the line in question can be written in the form

The vector ug is a unit length pointing vector with a directional orientation as shown
in Figures 4.1 (a) and (b), which is coincident with the pulse being transduced by
the radar platform at the aperture position 8. This vector is then qualified as a point
by the specification of the subscript ¢, which denotes time variation within a given
return pulse. The magnitude of the unit vector ug at a particular intra-pulse time ¢
is

2 4
kt=-%+—§(t—,~o), [t — o] < T/2 (4.5)
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where w, is the radar center frequency, « is the chirp rate, and 7 is the time delay
used to demodulate the return signal of period T'. One source for the derivation of &,
(Equation (4.5)) is [7, pp. 16-26]. During the SAR collection, the vector kjp, sweeps
out a two-dimensional surface within the three-dimensional Fourier domain as its
angle 6 and magnitude k; vary. Since the flight path is assumed to be linear, this
surface is planar and its orientation analogous to the spatial slant plane defined by
the flight line and point at the scene center. The two-dimensional collection geometry
and corresponding Fourier domain for this situation are depicted in Figures 4.1 (a)
and (b), respectively. It follows from Equation (4.3) that the demodulated return
signal sampled at aperture position § and time ¢ due to a point target at scene

position p is of the form
dp (0,1) = Ape? For . (4.6)

Here, the target position vector p = zj{z’ + y4y' is the projection of p into the slant
0 0
plane. By expressing p’ and &’ in terms of their respective Cartesian z-y coordinates

via Equation (4.2), the point target response can be written as

Qo (X', 17) = Apl@X+5Y") (47)

0%

This result shows that the phase function is linear in each of the slant plane spa-
tial frequency coordinates X’ and Y”, representing azimuth and range, respectively.
Furthermore, the phase function is proportional to the target location (zg,yp) in the
slant plane coordinates of the scene. According to the tomographic paradigm, the
SAR data from a point target consists of a complex sinusoid whose frequency in two
dimensions corresponds to the location of the target projected into the slant plane.
This statement is consistent with the known Fourier transform of an ideal impulse
response function, which corresponds to the sinusoid of a frequency proportional to
the spatial displacement of the impulse from the origin. Thus, it should now be clear
that the linear phase terms of the Fourier domain phase history serve to identify the

position of the particular target inducing those phase terms. By the simple inverse
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Figure 4.1: Slant Plane Imaging Geometry for Point Target Return

Fourier transform of the phase history data, an image is produced of this target
and, by extension via superposition, the entire scene is formed. This is assuming,
of course, the interpolation of the annular phase history data onto the Cartesian
grid specified by X’ and Y”, prior to Fourier inversion. The previous discussion and

mathematical development has been adapted from [7, pp. 355-358]

As the prior discussion points out (and is summarized in Equation (4.7)), the

linear Fourier phase terms of the form
b1 05X Y) = 20X + oY (4.8)

serve to place the target in its correct position within the imaged slant plane scene.

More simply, the relation may be expressed as
¢ = 2p X' + yY’ (4.9)
and from Equation (4.7), the point target position is

dop g (X', Y") = Ape?® (4.10)
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However, as will be shown next, the assumption of planar wavefronts in the tomo-
graphic paradigm leads to extraneous linear terms. These are the terms which render
invalid the direct Fourier relationship between the phase history and the scene be-
ing illuminated. Depending on the particular imaging scenario, any increase in the
residual differential wavefront curvature leads to larger extraneous linear phase terms
and the geometric distortion present in the processed image increases accordingly.
The linear distortion phase terms arising from the planar wavefront approximation,

if they are present, are noted as
$1e = f2(20, Yo) X' + f3(0, ¥0)Y” (4.11)
and the total linear phase is

b1t = @1 + P1e
= 2o X" +ypY" + e
=z X' + yoY' + fz(zg, yo) X' + f3(z0,v0)Y"- (4.12)

It is assumed that all linear phase terms, including those for correct placement of the
target as well as the extraneous error terms leading to distortion, are a function of
the slant plane point target location (zf, yp). Thus, Equation (4.12) can be expressed

as

b1 = 2o X + Y + fu X'+ fpY. (4.13)

The assumption of planar wavefronts also leads to quadratic (and higher order)
phase terms, which serve to defocus the imagery processed via the polar-format
algorithm. This defocus is space variant and can not be compensated via a post-
warping procedure. The higher order phase terms serve to broaden the IPR of
the point target, and consequently degrade the image resolution. As is shown in
Appendix A, the degree of IPR broadening can be expressed in terms of the peak
quadratic phase error at the point of the IPR. Since this phase error will be shown

to be a space-varying one with respect to point target location, the overall effect of
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the quadratic phase error is to spatially vary the defocus of the image. As opposed
to the linear phase case, there are no quadratic (or higher order) phase terms that
serve to specify the point target position. In fact, eny higher order phase terms that
are present serve only to defocus the image. If these terms are significant, they must
be adequately compensated in order to avoid noticeable defocus of the processed

imagery. Since any second-order phase term is an error term,
Pot = G2e = P2 (4.14)

and the quadratic phase error can be represented in terms of its individual contribu-

tions

¢2t — ﬁlXIXI + fﬁ’}{,yl 4 f@:Y'Y'
= fa X7 + fg X'V + [V, (4.15)

where fo, fzy and f;; are unique functions of the target point (zp,y) for the

phase history frequency extent (X', Y”). The total phase contribution of all first and

second-order terms is

Pr = 1t + ot
= ¢1t + o
= @1 + P1e + P2
=%X+%W+EX+@w+bxW+WXW+@yﬂ (4.16)

while keeping in mind that ¢, = (X' +y,Y" correctly places the point in the imaged
scene and that all other terms are error terms. Thus, the total phase error (through

second-order) is ¢; — ¢; and is found to be

Pte = D1 + Pt
= ¢le + ¢2e
= fo X'+ fg V' + fr X2 f XY + ¥, (4.17)
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4.2 The Phase Return From a Point Target

The relationship between phase and point target location is now known. Equation
(4.7) conveys in a simple and concise way, the very essence of the SAR imaging pro-
cess. Further analysis has shown that the first-order (linear) phase history terms z{ X"
and y3Y” of Equation (4.16) serve to correctly place the target in the imaged scene in
cross-range and range, respectively. However, according to the tomographic develop-
ment, the approximation of spherical wavefronts contributes to linear, quadratic, and
higher order phase terms that serve to distort and defocus the imagery. The residual
linear terms fz X' and fyY' arise from the planar wavefront assumption and serve
to distort the processed imagery in cross-range and range, respectively. The residual
linear range term serves to induce the slant plane range sag Ay’ as described in the
previous chapter, such that Ay’ = fi. The quadratic phase terms (if present) serve
to defocus the image and it will soon be shown that this defocus is space-variant and
in the cross-range only, because all quadratic phase terms are zero except f;,«_,:X’Q,

the cross-range quadratic term.

The examples of Chapter 3 served to illustrate the effects of these phase error
terms in a qualitative and behavioral manner. However, what is the actual phase
generated by a target for a given imaging scenario? The impact of the phase terms has
been observed and analyzed, though no attempt has yet been made to quantify the
phase errors, as based on actual imaging scenarios. Without knowledge of the amount
of phase error present, these errors can not be compensated, and consequently the

imagery can not be geometrically rewarped or refocused.

4.2.1 Broadside Phase Error Modeling

The derivation of a closed-form solution for the linear and quadratic phase requires
a revisit to the point target contribution model of the previous section. This time,

an emphasis is put on the precise radar echo in the context of the actual imaging
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geometry involved. This section describes the work of Jakowatz, et al [7, pp. 355~
360], who takes the following approach to phase error model. Consider the slant
plane imaging geometry of Figure 4.2. The target position designated by p' is again
the projection of the actual target location from its native three-space into the slant
plane. It is important to realize that this projection is not an orthogonal projection,
as implied earlier. Instead, it is a projection along a circular arc in three dimensions
centered on and normal to the flight path. That is, centered along a contour of con-
stant range and range rate. The consequence of assuming an orthogonal projection is
the a slight geometric distortion of this image with respect to the proper, circularly
arced projection. This distortion is easily corrected after image formation, assuming
a geometrically proper slant plane image is required, relative to the ground plane.
This distortion arises from the assumption of an orthogonal projection of the three-
dimensional imagery into the slant plane. It is independent of the two-dimensional,
slant plane geometric distortion due to wavefront curvature that is addressed here.
Consequently, it will be ignored since this discussion deals with wavefront curvature
compensation in the slant plane, and not those errors associated with the 3D to 2D

projection of the ground plane imagery to the slant plane.
Assume the radar transmits a linear FM chirp pulse of duration 7" and represented
by
s:(t) = R{e/*0}, < T/2 (4.18)
whose phase function is a quadratic of the form
b2(t) = wot + at?, (4.19)

where wy is the radar center frequency and « is the chirp rate. Consider a point
target p' in the scene at distance r; from the radar at a certain point in the aperture,
as denoted by angle & and distance 2’ in Figure 4.2 (a). The phase of the radar return
or echo from this target at aperture position @ is simply an appropriately delayed

replica of the transmitted phase of Equation (4.19), and is expressed by

b, (£,6) = wo(t — 2ri/c) + a(t — 2r:/c)>. (4.20)
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Figure 4.2: Broadside Geometric Model for Derivation of Wavefront Curvature Phase
Errors

The time delay is represented as a function of distance from the platform to the
target point, r;. This distance is inferred to be a function of the platform position
‘6. By definition, as a phase coherent SAR imaging system, the local reference used
to demodulate the return signal has exactly the same phase function as the return
from a hypothetical target at the scene center (CRP). When the platform is at an
aperture position 6 and corresponding distance r, from the CRP, as shown in Figure

4.2 (a), the reference phase is a variation of Equation(4.20) and is given by

br, (t,0) = wo(t — 2rz/c) + a(t — 2r./c)?. (4.21)

The process of quadrature demodulation forms a complex video signal represented

in separate / and @ components. The phase of this signal is the difference of the
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return and the reference signal phases:

¢ (t: 6) = ¢Tt (t: 6) - é‘f‘x (t7 9) (422)

2 4
== (wo + 20t) (re — 1) + 5— (rf - rﬁ)

2 2 4o
= —— [wo +2a (t - —Ti)] (rs — 12) + = (re — 72)°
c c c?

w

(4.23)

This equation is an exact expression for the phase of the complex video signal ob-
tained at aperture angle 4 in terms of the radar parameters and the relative geometry

of the target and platform. The equation can be rewritten in the form

n 4o
(0,k) = —k(re — ) + _6-2—(Tt —12)?, (4.24)
where
c c c

denotes a scaled and offset measure of intra-pulse time ¢. This equation for £ is
identical to that given by Equation (4.5) except in this case, the time index % is a
function of imaging geometry; specifically, the distance of the platform from scene

center. This mathematical development has been adapted from [7, pp. 358-360]

Consider a certain sample of the video signal, with phase ¢(6, k), at a time index
k in a return pulse at aperture angle §. This sample (X,Y’) is laid down in a two-
dimensional array at angular coordinate § and radial position k, as shown in Figure
4.2 (b). As 0 spans the extent of the aperture and as k varies throughout the duration
of each return pulse, a polar annulus is swept out in the two dimensional phase space.
By the tomographic paradigm, as discussed in Chapter 2, this space is known to
represent the band-limited Fourier transform of the scene reflectivity function for the
illuminated patch. By the very same paradigm, this phase space is also understood to
contain certain phase components that render invalid the direct relationship between
this phase history and Fourier transformation of the reflectivity function. However,

for many imaging scenarios, this phase history estimate is precise enough to allow the
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use of the mathematically convenient and numerically efficient Fourier techniques to
form an acceptable image, if within the patch size limits specified by Equation (3.8)

in Chapter 3.

For those scenarios in which the patch size limits are violated, significant dif-
ferential wavefront curvature is present. Consequently, the assumption of strictly
planar wavefronts illuminating the scene is rendered invalid; thus linear, quadratic,
and higher order residual phase terms appear. The nature of these phase errors
and their mathematical representation is now well understood, as are their visual
effects on the polar-format processed imagery. What remains to be determined are
the specific values of these phase errors in the Fourier domain as a function of the
point target position in the imaged scene, given a particular imaging scenario. With
this knowledge, a filter can be designed and implemented to compensate the residual

quadratic phase error and its associated space-variant defocus.

The second addend of Equation (4.24); specifically, the term (4a/c?)(ry — r2)2,
represents a phase error resulting from a residual of the deramp process. This term
leads to the deramp residual phase error of the scene, which in fact is based on linear
and higher order phase terms which serve to distort and defocus the image, in a
similar manner as wavefront curvature. As with wavefront curvature, the deramp
residual phase error is ignored in the tomographic model. However, since deramp
phase errors are scaled by a factor of 1/¢?, they are typically small in magnitude
and can be ignored, except for particularly high chirp bandwidths or very short slant
range collections. The derivation and subsequent compensation of deramp residual
phase errors are not the subject of this dissertation, although the process is quite
similar to that which will be discussed for wavefront curvature compensation. The
reader is directed to the following references for details on deramp residual phase
errors and their compensation, which is known as deskew processing or deskewing:
[2, 4, 7, pp- 363-365) and [8, 9]. The analysis of phase errors associated with wavefront
curvature is independent of the deramp analysis. Consequently, ignoring the deramp

residual phase errors, the expression of Equation (4.24) representing the phase of the
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complex video signal is now

d) (9, k) = _k(rt - Tz:)

= k('rm - Tt)a (426)
where k is unchanged from before and shown to be
k= [&’Bﬂu-‘l—o‘-(tﬂ—"f—)]. (4.27)
c c c

4.2.2 Phase of Video Signal with Respect to Imaging Geom-
etry

At this point, nothing more has been done than to arrange the two-dimensional phase
space of Figure 4.2 (b) according to the aperture position 8 of the radar platform at
the time index k, which is a function of the distance 7, from the scene center to the
platform and the distance r; from the platform to the target. These parameters define
the phase space ¢(6,k) as given by Equation (4.26), which appropriately neglects
deramp residual phase errors. However, in order to design the space-variant post-
filter for compensating the defocus due to wavefront curvature, is desirable to express
the Fourier phase history domain (X’,Y”’) in terms of a hypothetical point target
(2, %0)- That is, to represent the phase in the form of ¢, ,x (X', Y"), as was presented
in Section 4.1. This requires the further coupling (relation) of Figures 4.2 (a) and
(b), as follows. From Figure 4.2 (b), let the phase history radius £ be represented
by its Cartesian frequency coordinates (X,Y) such that

E=vX2+Y? (4.28)
and the aperture position 6 relative to the scene center is given by
X
—tan~1 [ 2
§ = tan (Y) . (4.29)
Consequently,
X
tan(d) = v Y >0. (4.30)



Chapter 4. Analysis of Phase Errors Arising From Wavefront Curvature 91

As usual, this analysis is performed in the slant plane. The prime is dropped at this
point in the mathematical development since the point (X,Y) actually represents a
Cartesian point in the Fourier space of (X', Y”). The analogous spatial representation

of the aperture position 6 is shown in Figure 4.2 (a) and is given by

ZI
6 = tan™* (—) . (4.31)
To
Consequently,
Z = To tan(e), To > 0, (432)

and from Equation (4.30),

X
I = 71)}7—, To > 0, Y> 0, (4’33)
and
X 2
2 _ 2
z _r"(Y) . (4.34)

The complex video signal phase of Equation (4.26) is represented in terms of &, r, and
r:. The k term represents the scaled and offset measure of intra-pulse time ¢ and is
represented by Equation (4.27) in terms of the radar center frequency wg, range LFM
chirp rate a, and the distance from platform to radar scene center, 7,. This distance
is measured from the scene center to the radar platform at a arbitrary aperture point.
In order to represent the complex video phase in terms of this arbitrary point in the
scene, the distances r, and r; must be defined relative to the aperture position # and
the point target location p', where p' = (p,y). The distance r, is defined as follows:
A right triangle exists between the edges r,, 7 and 2’ in Figure 4.2 (a). The distance
o is the broadside range from platform to scene center. By the Pythagorean relation,

r2 =22 4172, (4.35)

c —
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and by substitution from Equation (4.34),
2
ri=rg (i) +75
{1 + } , (4.36)

rz = Toj [1+ (%—)2 (4.37)

Furthermore, from Equation (4.30),

=194/ 1 + tan?(6). (4.38)

The distance r; is defined from an arbitrary platform position along the aperture to
the target position p’ in the slant plane. From Figure 4.2 (a), this distance can be
derived using the law of cosines on the triangle defined by the edges 7z, p and ry:
r2 =12 + p* — 2prg cos(a). (4.39)
However, cos(e) £ sin(Z — o) = sin(6 + 7v), so
2

r2 =712+ p? ~ 2prysin(f + ), (4.40)

and taking the square root of both sides,

= /12 + p% — 2pr,sin(6 + 7). (4.41)

From Equation (4.29), 7; can also be represented by

X
Ty = \/ T2 + p? — 2prgsin (arctan (—Y:) + 'y) . (4.42)

At this point, the phase of the complex video signal ¢(6, k) is defined as a function

of the imaging aperture position 8, the time index &, and a target in the imaged scene

at a polar point ' = (p, 7). In summary.

Gp (0, k) = k(ry — 1¢) (4.43)
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where

2 4 21y
k= [—L:—O + _cg (t — L)} , (Equation (4.27))

Tz = Toy/ 1 + tan?(), (Equation (4.38))

and

T = /T2 + p% — 2pr;sin(f + 7). (Equation (4.41))

The phase history swept out as 8 and %k are varied represents the Fourier space for
the target p' located at (p,7y), as shown in Figure 4.2 (a). The frequency extent
in range and azimuth, AX’ and AY’, are determined by the aperture extent Af
and chirp bandwidth, respectively, as described in Chapter 2. Furthermore, these
frequency extents dictate the scene resolution as described by Equations (2.18) and
(2.19). A complete Fourier space representing all targets present in an imaged scene
would consist of the superposition of the phase histories for each individual point

target.

4.2.3 Synthetic Target Generation

The synthetic target generator (SYNTARG), described in [7, pp. 391-414], emulates
the motion of the SAR and mathematically transmits, receives, and demodulates
the returns of a number of point reflectors. It creates a two-dimensional phase his-
tory from this collection of point targets, based on Equation (4.43), which closely
matches the signals that an actual SAR would obtain under similar circumstances.
The synthesized dataset can then be processed in various ways as to quantify the im-
age properties obtained by various image formation methods. Specifically, as will be
shown next, the synthetic target generator phase history includes the terms respon-
sible for the distortion and space-variant defocus of the imaged scene resulting from
the planar wavefront assumption. Consequently, SYNTARG can be used to simulate

the close-in, low frequency, high resolution, or wide patch scenarios that exhibit these
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significant wavefront curvature anomalies. Furthermore, the space-variant post-filter
for wavefront curvature correction can be applied to these synthetic data sets, and
the effectiveness of this filter can be analyzed on a number of different scenarios with-
out actually using a real aircraft and SAR to generate these data sets. An added
benefit of processing SYNTARG data is the avoidance of the atmospheric effects and
platform motion errors that occur in actual SAR imaging scenarios. Also, the IPRs
generated by SYNTARG are theoretically ideal; therefore, the ability of the space-
variant post-filter to compensate wavefront curvature effects can be analyzed more
quantitatively. Most of the remaining examples in this dissertation use SYNTARG
data and help to illustrate the benefits of synthetic target generation for testing SAR

algorithms.

One disadvantage of SYNTARG is its high computational burden. For example,
a phase history of n X n points is generated from the superposition of p point target
phase histories, where p is the number of targets and n? complex phase history points
are generated for each target. Clearly, as the number of point targets being simulated
increases, the computational burden increases significantly. Thus, the growth of the
computational burden is bounded from above by O(pn?). This asymptotic measure
of growth, denoted by O() (big-oh) notation, is described in detail in [84, pp. 23-41].
In Chapter 6, this notation will also be used to describe the computational burden
of the space-variant post-filter. At first, the computational burden associated with
SYNTARG seems prohibitive. However, SYNTARG obviates the need to acquire real
SAR data and furthermore, the synthetic phase histories are ideal in many respects.
These advantages generally outweigh the disadvantage of SYNTARG’s computing
time, as well as eliminating the expense of flying a real SAR. Furthermore, while
beyond the scope of this dissertation, it can be shown that the SYNTARG algorithm
is quite amenable to parallel processing, thereby reducing computation time. The
space-variant post-filter for wavefront curvature correction is based on Equation
(4.43), as is SYNTARG, yet SVPF is made more computationally efficient through a

number of simplifications, as will be described in the remainder of this chapter and
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in Chapter 5.

Prior to analyzing Equation (4.43) in terms of its first-order, quadratic, and
higher-order phase terms, it is useful to form an analogous representation in terms of
the frequency extent (X', Y’). This precisely matches the domain of the Fourier phase
history; namely, its spatial bandwidth, and allows for the use of the computational
simplifications when compensating the wavefront curvature effects. Furthermore,
provided the actual flight path of the SAR does not violate the assumption of a
linear flight path and that the image is motion compensated to the scene center,
it is not necessary to know the geometric position of the sample points along the
aperture. That is, the linear flight path assumption leads to a closed-form solution
that does not rely on knowledge of individual aperture positions. The slant plane,
Fourier domain phase history (X’,Y”) in terms of a hypothetical Cartesian.point

target (z5,%,) is shown to be
g 02 Y0

bt gt (X', V') = k(rz — 1) (4.44)
where
k= [g? + il-c— (t - 2%)] ) (Equation (4.27))

X\* :
Te =Top[1+ —}-,—> ) (Equation (4.37))

X
Ty = \ﬁg + p? — 2pryzsin <arctan (?> + 'y) . (Equation (4.42))

Furthermore, the Cartesian slant plane representation (zg,y) of the point target

p=(p,7) is given by

Ty = pCosy (445)
and

Yp = psin7y. (4.46)
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4.3 Polynomial Phase Term Representation

Section 4.1 describes how the linear phase terms of Fourier domain phase history
serve to identify the position of the of the particular point target inducing those
terms. By nature of the Fourier transform relationship, these Fourier phase terms
represent a complex sinusoid whose frequency in the two-dimensional space (X', Y")
are proportional to the target position (zj},yp) in the transformed image space. Fur-
thermore, additional residual phase terms in both X’ and Y’ appear in the presence of
differential wavefront curvature, and serve to geometrically distort the image. These
are accompanied by higher order phase terms that induce a space-variant defocus
of the image. In [7, pp. 360-363|, Equation (4.41) is simplified via the small patch
approzimation, which assumes the dimensions of the scene being imaged are small
compared to the SAR standoff distance, such that p < rg. Consequently, the sim-
plified equation for r;, the distance from platform to target, is substituted directly
into Equation (4.43) to yield the first and second-order phase terms, for a broadside
collection under the small patch constraints. However, it is desirable to derive these
phase terms without patch size constraints. To this end, in order to isolate these
phase terms, a two-dimensional Taylor series expansion will now be applied to the

Fourier domain phase history described by Equation (4.44).

The Taylor series decomposition serves to represent the phase return from a target
in terms of an infinite series of linear, quadratic, and higher order components. This
method was first used by Walker in 1980 [2] to describe the patch size limitations
of wavefront curvature in broadside collections, and it does not require small patch
approximations. The unique contribution of this dissertation is the application of
the Taylor series decomposition to both squinted and broadside collection geometries,
without regard to patch size or standoff range. The broadside case is discussed here,
with the generalized, squint-mode scenario presented in Section 4.4. From Equation

(4.44), the Taylor series expansion of the phase function ¢z . (X',Y”) expanded
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around the point (Xy, ¥p) is

Py (X", Y") = ago + a10X' + ap Y’ + aze X 2 (4.47)

+ auX,YI + (ZozY’Q + ...

where
o 1 6i+j k(Tz - Tf_)
“ =\ XiQY

4.3.1 Linear Phase Terms

(4.48)

X=Xo, )
Y=Y,

The constant phase term agg is of no consequence. The terms which are linear in X’
and Y’ are image translation terms and specify the linear displacement in azimuth
and range in proportion to a;o and ag;, respectively. In the presence of wavefront
curvature, these terms contain extraneous linear components that induce the geo-
metric distortion. The second-order terms, namely as, @13 and ags, represent the
space -variant defocus associated with wavefront curvature. These terms, which arise
from the faulty planar wavefront assumption in tomography, will be compensated via
the space-variant post-filter. The second-order coefficients rely both on point target
location (zf,ys) and processing aperture position (6, k), and historically, this has
been considered a computationally difficult post-filtering problem [2, 32]. Alterna-
tively, some have suggested the generation of small patches [85, pp. 274] (and the
associated mosaicking, which may prove to be inefficient [12, pp. 483]) in order to
avoid wavefront curvature defocus effects. However, the relation of Equation (4.44)
associates the motion of the target relative to the platform in terms of the linear
aperture shown in Figures 4.2 (a) and (b). Assuming a linear trajectory and that
out of plane motion is adequately phase compensated, the coherent phase return
from a point target can be represented strictly in terms of its location in the scene
and no longer has dependence on the specific aperture positions in the scene, pro-
vided the aperture encompasses an angular interval which is sufficiently small. That

is, for an angular interval that is much less than 360°, as is typical in SAR but not
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Figure 4.3: Aperture Center Geometric Model for Derivation of Wavefront Curvature
Phase Errors

CAT, only a portion of the phase error ¢, . will contribute to the impulse response

broadening and consequent loss of resolution [2].

If the center of the processing aperture is located at (6, k) = (0, ko), where kq is

the nominal (spatial frequency) phase history radius, then from Equation (4.38),

Tz = T4/ 1 + tan?(0) (4.49)

e (4.50)
and

ri=\/r3+ ¢ = 2prasin(7) (451)

=7 . (4.52)

This represents the geometry at aperture center for a broadside (non-squinted) col-

lection and is shown in Figure 4.3. The distance 7, represents that from the radar



Chapter 4. Analysis of Phase Errors Arising From Wavefront Curvature 99

platform at mid-aperture to the point target. Since the processing aperture is as-
sumed to encompass a sufficiently small angle, the two-dimensional Taylor series of

Equations (4.47) and (4.48) can be expanded around the aperture center such that

= (0, ko), (4.54)
where
ko = 4{ (4.55)

Now, calculating the Taylor terms a;g and ao; will yield the linear phase terms, while
o0, 011 and agy will yield the quadratic. Cubic and higher terms are smaller and for
sufficiently small processing apertures can be safely ignored. It will be shown via
UWB and L-Band SAR examples in Chapter 6 that in fact the higher order terms
contribute little to the defocus and can be ignored. The image distortion effects
caused by ¢z 40 (X', Y") will be examined now. The coefficient a;o represents the
target position in azimuth. Therefore, this coefficient specifies the proper cross-
range position for the target as well as describing the geometric distortion. This

coefficient is calculated as follows. From Equation (4.48),

0 (XY
a0 = ¢”°’*‘5§{ ) (4.56)
1 3 2 3.2,/
= — me (X2+Y2) . {—2b10X To — 2b10XY To +2X Ty X2 +Y2

+2XYr2VX2+ Y2 + XY2 PV X2+ Y2
0

— 3X3Y prosin (arctan % + 7)

— 3XY?3prysin (arcta,n % + '7)

X
— X2Y?prg cos (arctan v+ ’y)

—Y*prg cos (arctan ; + 'y> } , (4.57)
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where

>

bio = \/X%% + Y22+ Y2p2 ~ 2Y provV X2+ Y?2sin (arctan% + 7) . (4.58)

Next, the Taylor series coefficient ay is evaluated at the aperture center; that is,

where (X,Y) = (0, ko). First, solving for bo:

bio = {XQ'rg + Y2+ V2
X=0,
Y=ko
1
X 7
—2Y proV X% + Y2sin (arctan v + 7> } Yo (4.59)
Y=ko
= 4/r8k3 + p*k3 — 2rokipsin(y) (4.60)
= k‘o\/:g + p% — 2prgsin(y), (4.61)
and by substitution from Equation (4.52),
bm X=0, = Tcko . (462)
Y=ko

Next, evaluating the linear phase coefficient ajo given by Equation (4.56) at the

aperture center yields

1

a0 e, = ; I kopro cos(y) (4.63)
Y=ko 10} x =g,
Y=ko
and by Equation (4.62),
_ koprocos(v)
G0l o = oo (4.64)
Y=ko
_ Topcos(y) (4.65)

Te

Finally, from Equation (4.45),

_ ToTo
x=0, 1o (4.66)

Y=ko

aio
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where, rewriting Equation (4.52) in terms of the target location (zg, %p),

Te = /T8 + p? — 2prosin(7y)

= /13 + zh? + ¥ — 2royp. (4.67)

Thus, the linear cross-range coefficient a, is found to be:

!
a0 = ”’:“’. (4.68)
c

This Taylor coefficient, multiplied by the cross-range frequency extent X' as shown in
Equation (4.12), determines the linear cross-range Fourier domain phase component
of a point target at (2, v)). Consequently, upon Fourier transformation of the phase
history, this phase component determines the spatial location in azimuth of the point

in the imaged scene. That is, from Equation (4.12), the linear cross-range phase term

P1e, 1s
b1t = 010X’ (4.69)
!
= ‘”7‘{"°X', (4.70)

where X’ is the Fourier frequency extent in cross-range. This phase term contains the
linear phase component z3 X' that serves to correctly place the target in cross-range
within the scene, and the phase error component fz(zg,yp)X', which is a consequence
of the planar wavefront assumption and displaces the target from its correct posi-
tion. This phase error component causes the cross-range geometric distortion that

is induced by wavefront curvature.

As of yet, the value for linear phase given in Equation (4.70) has not been de-
composed into its separate linear and error components. Specifically, it must be
in the form zh X’ + fz(zp, yo) X', where fz(zg,yp) X’ specifies the cross-range distor-
tion. In this way, the geometric distortion can be quantified and removed via a
post-warping procedure. This decomposition will be discussed in Section 4.3.2. It

should be noted here, however, that it is not trivial to represent Equation (4.70) in
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terms of its “correct” linear displacement and the additional distortion term. A rea-
sonable approximation can be used to simplify this task, or alternatively, an elegant
mathematical trick can be used to perform the decomposition, as will be presented
in Chapter 5. The latter method is particularly attractive in determining the linear
distortion terms for squint-mode geometries, which are more mathematically com-
plicated than those for broadside. Phase errors for squint-mode collections will be

discussed in Section 4.4.

An approach identical to the above is used to determine the linear range coefficient
ao1, which will serve to place the point target in range. In this case, from Equation
(4.48), ag; is calculated as follows:

8 ot (X', Y")
oY

1
= boly2 (X2 T YZ) . {601y47'0 — 601X47'0 __ Ysrgm

4,2
+ Z KTV v RTEY

X
— X*prysin (arctan =+ 7)

ao1 = (4.71)

Y
— X3Y pry cos (a,rctan =+ /)

+ X?Y?prysin (arctan =+ ’y)
— XY3prg cos (arctan % +y

+2Y*prg sin (arctan =+ 'y) } (4.72)

where

bor = — . (4.73)

= ?\/X%'g + Y2+ Y2p? — 2Y proVX2 + Y2sin (arctan %{— + ’y).

(4.74)
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Solving for by; at the aperture center (0, ko):

1
b(n x=0, = ?{erg + Y27'g + Y2p2
=ko
X 3
—2Y prgV X2 + Y?2sin (arctan v + 'y) } ‘o (4.75)
Y=ko
1
=% 3kt + p2k3 — 2rok3psin(y) (4.76)
= /78 + p? — 2prosin(y), (4.77)
and by substitution from Equation (4.52),
b01 X=0, =Tc. (478)
Y=ko

Having determined bg; at aperture center, the linear phase coefficient ag; given

by Equation (4.71) can also be evaluated at the aperture center, as follows:

1 . Yo
Gorf _, T To~ (rg — p° — 2prosin(v)) (4.79)
Y=ko bo1 |y =,
Y=ko
and by Equation (4.78),
2_ 2 ;
wo| =g — 8T £ = 2presin(y) (4.80)
X=0, Te
Y=ko

Finally, again by Equation (4.52),

7”2
[+
Qo1 =To— — =To—Tc, (4-81)
X=0, Te
Y=ko

where, as previously shown,

re =\/T8 + 20" + ¥y — 270%; (Equation (4.67))

for the slant plane target position (zg,yp) and range 1o from the scene center to

radar platform at mid-aperture. The Taylor coefficient ag;, when multiplied by the

P —— S ’ - A
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range frequency extent Y”, determines the linear phase component in range of a point

target at (z},vh). That is, from Equation (4.12), the linear range phase term Pt 18

$11, = ann Y’ (4.82)
= (1o — 7)Y, (4.83)

where Y is the Fourier frequency extent in range. As with the linear cross-range
component, this phase term contains the linear phase component yoY’ that serves
to correctly place the target in range within the scene, as well as the phase error
component fzY?’, which is a consequence of the planar wavefront assumption and
displaces (geometrically distorts) the target from its correct position. In the next
section, the linear range and cross-range phase terms will be broken into their com-
ponents, identifying the specific linear phase error terms which induce the wavefront

curvature distortion.

4.3.2 Decomposition of Linear Phase Terms

The linear phase terms of a point target constitute the two-dimensional complex
sinusoid e/®'* which determines the spatial placement of the point in the imaged
scene. Ideally, of course, in the absence of significant wavefront curvature, the linear
phase ¢y, is specified by Equation (4.8) to be 23X’ +1,Y’. That is, the displacement
in cross-range and range is proportional to the linear phase in those directions. In
the previous discussion, a Taylor series expansion was performed on the equation
describing the phase return from a point target with respect to the linear (first-

order) components. The the sum of these phase terms ¢;; was found to be

X'+ (o — o) V™. (4.84)

While these terms completely describe the position of the target in the imaged scene,
they are not yet a form which describes the target in terms of its correct position in

the scene, and its displacement in the presence of wavefront curvature. In describing
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the linear phase components in this new way, the specific geometric distortion can be
quantified. That is, one can determine (and ultimately correct, as will be shown) the
erroneous displacement of a point target from its correct position due to wavefront

curvature. Thus, the desired form for the linear phase terms, as given by Equation

(4.13), is
b1 = 2o X' +yY + fo X'+ f3Y, (Equation (4.13))
where fz X’ and fyY” denote the cross-range and range distortion terms, respectively.

When the scene size is much smaller than the slant range at mid-aperture; that
is, when z, < 7o and y§ < 7o (small paich assumption), then from Figure 4.3,
yh = psin(7y) =~ ro — .. Consequently, the linear phase terms can be decomposed as

follows. From Equation (4.84), consider the cross-range linear term first:

ZyTo

b1, = X'
Te
ToTo
~ ——-—,X,
To— Y
~ 11?6 (TO + y(I)) XI
(ro +¥5) — o

— {.'1767'0 + x()y(’)}X/

7o To
xl yl
=1y X' + —:.—QX’, Ty KL To, Yo K To (4.85)
0

and furthermore, given the Taylor series approximation

re = 4/78 + p? — 2prosin(y)

zh2
Sro-th+ (450

then for the linear term in range,

$1e, = (ro — )Y’
Y)Y — 2y, (4.87)
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Thus, by Equation (4.13),

o1 = 2o X' +yoY' + fo X'+ fpY'

’ 51 1yt xi)?j{) ’ 3362 ’ o
=~ .'IZOX + on + 'T—"X - 9—-7‘—}/ s Ty, Yo K 7o, (488)
0 410

where f:quéX’ and —%;%Y’ denote the cross-range and range geometric distortion
(error) phase terms fz X' and fyY”, respectively. Note that these terms (and con-
sequently the distortion) decrease with increasing slant range 79, as expected, and
that this distortion is independent of radar wavelength . Equation (4.88) is most
accurate under the small patch assumption zj,y, < 79, which ironically, is when
geometric distortion is minimal anyway. However, this approximation allows the ex-
pression of linear phase as the sum of terms which represent the proper placement
of the target and the space-variant distortion terms which displace it. In the ab-
sence of significant wavefront curvature, the error terms are (nearly) zero and the
linear phase specifies the proper point target location of (z3,y;). In the presence of
wavefront curvature, the error terms specify the displacement in range and azimuth
of a point that would otherwise be placed at (zf,y;). By the linear shift property
of the Fourier transform, the linear phase error coefficients f; and fy, when ex-
pressed in meters, relate directly to target translations, in meters. Consequently,
these phase error coefficients are used to generate the appropriate warping function
for the post-processing procedure to correct for image distortions due to wavefront
curvature. Thus, in addition to being independent of radar wavelength, the geomet-
ric distortion is also independent of radar resolution, and therefore relies only on
patch size and standoff range 3. The application of the space-variant post-filter for
image refocusing also requires knowing the proper undistorted location of targets in
the imaged scene. As will be shown in Chapter 5, an elegant mathematical trick,
as opposed to the small patch approximation given here, will be applied to precisely
determine the geometrically correct target points, with no restrictions on standoff

range or patch size.

In Chapter 3, the geometric distortion in range Ay’, or range sag, was derived
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from a geometric model that represented the physical characteristics of spherical
wavefronts. The range sag equation is given again here for convenience.

L

=50 (Equation (3.2)) (4.89)

Ay

where L is the patch radius at the edge of the scene, and the approximation ro > L
is applied. Consequently, the angle 8, from aperture center to scene edge is small.
These assumptions of the physical model exactly parallel the small patch approxi-
mation of this chapter. Similarly, there is a direct parallel between the range sag
equation of Chapter 3 (Equation (4.89)) and the phase analysis model discussed here,
which represents geometric distortion in terms of linear phase errors. Specifically,

for range distortion,

L2
Ay = o LKLy (geometric model)
0
and
)’
fy = 2—;’.0, T, Yo K To - (phase model)

Since the models are equivalent when L = zj and y; = 0; that is, when considering

range distortion at the edge of the patch, then
Ay = fy (4.90)

and the models are in perfect agreement. A similar argument can be made for Az’

and fz‘:l .

The linear Taylor series terms dominate those of higher order. Consequently,
geometric distortion is the prominent and first observable indication of wavefront
curvature. As wavefront curvature becomes more severe and higher-order phase
terms become significant, a space-variant defocus begins to emerge, along with the
increasing geometric distortion. This distortion is prominent even when wavefront
curvature is minimal, and consequently, the post-warping, geometric correction step

of PFA has always been a standard part of the algorithm. The space-variant defocus
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effects induced by higher-order phase errors are observed only in the more severe
cases of wavefront curvature. However, these defocus effects are significantly more

troublesome to negate than those of geometric distortion.

4.3.3 Quadratic Phase Terms

The quadratic phase terms are the next to be derived from the Taylor series expan-
sion. As previously shown, the linear phase consists of terms that correctly place
the point in the image domain as well as extraneous linear distortion terms. In con-
trast, any quadratic phase that is present serves only to degrade the image by way of
space-variant defocus. There is no “good” quadratic phase. From Equation (4.15),
the quadratic phase error ¢y is described in terms of its components and is defined

to be
¢ = fy X7 + frp X'V + fFY"". (4.91)

In terms of the Taylor series expansion, the quadratic phase is equivalently ex-

pressed as
G2 = a2 X" + auX'Y' + apY”, (4.92)

where the coefficients are based on Equation (4.48) and found to be

1\ (% k(ry — 1)
Qog = (5) (T) X=Xo, s (4.93)
Y=Y
ayy = M (4.94)
H aXoY ) |x=xo,’ '
Y=Yo
and _
_ 1 82 k(’f’z - ’I‘t)
ag2 = (‘2') <——6'YT—> Xe¥o,’ (4.95)
Y=Y

given the slant plane, broadside-only phase return from a point target ¢ur 4 (X', Y") =

k(ry — ) (Equation (4.44)). It will be shown in Section (4.4) that the range-only
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and range-azimuth quadratic terms a;; X'Y’ and ag2Y"?, respectively, are zero for
all slant-ranges, squint angles, radar wavelengths, patch sizes and resolutions. That
is, the quadratic defocus is one-dimensional in cross-range only, regardless of the
imaging scenario or squint mode. This is one of the most important results of this
dissertation, as one-dimensional filtering is more computationally efficient that two-
dimensional. Furthermore, it will be shown the broadside case described thus far
is simply a specific case of the generalized squint mode scenario, where the squint
angle 6 happens to be zero. Given that quadratic phase error is one-dimensional is

cross-range only, Equation (4.92) reduces to the following description of quadratic

phase:
ot = ag X", a1 X'Y' =0, apY" =0. (4.96)

From Equations (4.44) and (4.93), the quadratic phase coefficient in cross-range is

calculated as follows, when evaluated at the aperture center (X,Y") = (0, ko):

()%

X=0,
Y=ko
1 (ro—7. 70 3’62"'(2) _ TS
2 ko ko rﬁ’ko ko
_lfro—7rc _To (ro — ) " 6°73 , (4.97)
2 ]{70 Tcko 7}3;]90

where kp = i“;\E is the nominal phase history radius, r¢ is the slant range at broadside,

and from Figure 4.3, the distance r, from the platform at mid-aperture to the target

at (5, Yo) is

Te = \/1% + p? — 2prosin(y) (Equation (4.52))
= /78 + zh” + yh? — 2rogh - (Equation (4.67))

Finally, from Equations (4.96) and (4.97), the total quadratic phase for a broadside
collection is found to be
o = Az X"

1fro—7c 7o (7’0 - Tc) 356 ’l”g 2
_1 _ X2, 4,
2 { ]{,‘0 7 ckg Tgko ( 98)

2
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where X'? is the spatial frequency extent in cross-range and the maximum value of

X'1is equal to 2= (the half-power width), given a cross-range resolution of ps.

The relation of Equation (4.98) describes the total quadratic phase for a broadside
collection, without introducing approximations. Thus, it applies to all patch sizes
at all resolutions and slant ranges. It is a closed-form, deterministic measure of
quadratic phase that is based on the specific imaging geometry and the point of
interest in the scene. As shown above, this equation hardly resembles (in terms
of simplicity) that of Equation (3.5), which described the quadratic phase error
given the small patch assumption, where zj,yy < ro. However, by applying the
approximations associated with the small patch assumption, as was done in Section

4.3.2 for the linear phase terms, in addition to the Taylor series approximation 7, =
2

ro — Yg + %%, Equation (4.98) can be approximated by Equation (3.5). Specifically,
1 _ _ 12 12
oy = To—Tc _ To(ro =) " x(?sro X2
2 ko T‘Cko ’Icko
2 2

o T Y0 g (4.99)
2(ro — yo)ko
$I2 _ y12 .

S . £y K 7o, Yo K To- (4.100)

27‘0]’60

It is evident from Equation (4.100) that the quadratic phase error ¢o; increases
with better resolution (increasing X'?), decreasing slant range ro, lower center fre-
quency (decreasing ko) and larger imaged patches (increasing zf, and yg). Further-
more, as was demonstrated in Chapter 3, defocus is space-variant and greater along
the 2’ and y' axes and minimized along the diagonals given by 3y’ = |z'|. Equa-
tion (4.99) is a slightly better approximation than that of (4.100). According to
these approximations, the quadratic phase error is exactly zero along the diagonals.
However, when considering the exact relation of Equation (4.98), the phase error is
nearly zero along the diagonals, but exactly zero only at the precise center of the
patch. Given the small patch approximations, Equation (4.99) is equivalent to that
of (3.5), which was derived via an alternative method in [7, pp. 361-363], and yet

again in [12, pp. 220-234]. These consistencies are important (and in fact necessary)
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in order to validate the geometric model presented here. Next, this model will be
extended to consider squinted collections, thereby removing the broadside restriction

and generalizing space-variant post-filtering to all spotlight-mode imaging scenarios.

4.4 Generalized Phase Error Model for all Squint
Modes

The previous discussion considers only the broadside-mode spotlight imaging sce-
nario. While this is the most fundamental case and the easiest to model and analyze,
it is not suitable for most real world imaging scenarios since these are usually squinted
collections. Consequently, without the ability to compensate wavefront curvature in
squinted modes, the space-variant post-filter is little more than an academic ex-
ercise. Given the theoretical nature of this SAR research, this is not a negative.
However, by generalizing the geometric model to cover squint-mode scenarios, the
space-variant post-filter extends beyond the theoretical bounds. In doing so, the
contribution of this research is of much greater significance. In fact, the major con-
tribution of this dissertation is the generalized, squint-mode phase error equations
to be introduced next, which serve to compensate wavefront curvature errors in all
squint modes, and at all ranges for all patch sizes. Also of major significance are
the computer implementation details of Chapter 5, which provide an effective and
efficient means of applying these equations to compensate the effects of wavefront

curvature in polar-formatted, spotlight-mode images.

4.4.1 Squint-Mode Geometry

Squint-mode imaging consists of “looking backwards or forwards” at the scene being
imaged. As with the broadside case, the radar antenna is slewed as the aperture

is flown so as to stay aimed at the scene center. However, unlike the broadside
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case, the scene being imaged is not at a right angle (perfectly side-looking) to the
radar platform at aperture center. Consequently, the image is motion compensated
to the scene center, yet the motion of this point (range curvature of the CRP) is
not symmetric relative to the midpoint of the aperture. Within the tomographic
paradigm, this means the generation of a Fourier slant plane that is tilted in both
range and cross-range, due to the difference in starting depression angle 1, relative
to the ending depression angle ¥y at the end of the aperture. This results in the
projection of ground plane targets into the slant plane such that the ground scene is
distorted in both range and cross-range when viewed in the slant plane. However,
as did the previous discussion, this section considers the slant plane Fourier space
without regard to the geometric projection of points into this plane from the ground.
As such, the wavefront curvature model, phase derivation, distortion correction and

refocus techniques will apply strictly to the slant-plane imagery.

It is important to note that the squint-mode case is not simply a rotated version
of the broadside case, since the CRP movement is not symmetric relative to the aper-
ture center. Thus, the asymmetric motion must be appropriately accounted for in the
squint-mode model. As will be shown, this model is significantly more complicated
than that of the broadside scenario, yet the mathematical reductions yield relations
that are nearly as elegant. Perhaps the most pleasant surprise is that space-variant
defocus remains one-dimensional in the cross range direction, even for squinted col-
lections, thereby providing the segue for efficient computer implementations. One
should also note that the broadside-mode scenario previously discussed is simply a
special case of squint-mode, where the squint angle 6; happens to be zero. Thus,
as would be expected, it will be shown that the new, generalized geometric model
“collapses” to that of the previous, simpler broadside model when the squint angle is
zero. Similarly, the relations derived which represent the linear and quadratic phase
errors also reduce to the previous broadside-mode phase equations when the squint

angle is zero.

Prior to introducing the model representing the phase return from a point target
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Figure 4.4: Squint Angle and Standoff Range Definitions for Spotlight-Mode

in squint-mode, the coordinate system and polarity of the squint must be defined.
As shown in Figure 4.4, when the radar platform is looking forward towards the
scene, this is considered positive squint, or +6;. When looking backwards (behind
the shoulder), this is negative squint, —6,. If the platform is traveling in the direction
opposite to that shown, then what was previously considered “looking backward” is
now the opposite, and it is a simple matter of reversing the sign of the squint value to
compensate. Regarding the coordinate system, the traditional perspective has been
to align the X" axis (of both the imaged scene and the phase history) with the flight

path so they are parallel. This axial orientation is also shown in Figure 4.4.

The geometric model for the phase return from a point target is shown in Figure
4.5, and applies to the generalized squint-mode case. This model is an extension

of the broadside model of Figure 4.2, and their similarities are apparent. Part (a)
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represents the traditional view of the squinted collection, while part (c¢) is the cor-
responding Fourier space. Both are shown with the flight path parallel to the X'
axis. In the squinted case, the mid-aperture point is no longer aligned on the Y’
axis, as shown in Figure 4.2, but instead at some angular offset 6; from the Y axis.
Consequently, the Fourier space is “rotated” the same amount, with the center of
the frequency extent also found at an angle of §;. When the squint angle is zero
(broadside collection), it is easily seen that parts (a) and (c) are in agreement with
Figure 4.2. That is, the generalized squint geometry is equivalent to that of the

broadside case when the squint angle is zero.

Unfortunately, the traditional view of the squinted scenario is not the appropri-
ate perspective if a computationally efficient model is to be derived for wavefront
curvature correction. Specifically, the rotation of the phase history, as shown in part
(c), is relative to the arbitrary, Cartesian axis of reference and is not in agreement
with the orientation of the SAR platform collecting the data. In fact, the squinted
Fourier data are actually acquired and stored as shown in Figure 4.5 (d); that is,
with respect to the platform, which slews toward the scene center as the aperture is
flown. The actual range axis lies along the line defined by the CRP and the platform
at mid-aperture, which is consistent with the simplified, broadside model of the pre-
vious section. Using the traditional view would require the costly (and unnecessary)
rotation of the entire phase history by an amount of 8s, in order be consistent with
the flight path as shown in part (a). Consequently, the modified flight path perspec-
tive shown in Figure 4.5 (b) is offered as an equivalent alternative to the traditional

view, and it does not require the global rotation of the Fourier phase history data.

While the imaging geometry of Figure 4.5 (b) is seemingly more complicated
than that of part (a), this modified view allows the use of the Fourier phase history
in-situ, without a costly global rotation and the interpolations associated with it.
As will be shown next, the geometry associated with the modified view in part (b)
does lead to some cumbersome mathematics; however, the simplified phase error

equations are elegant, straightforward to implement and computationally efficient,
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Figure 4.5: Geometric Model for Derivation of Squinted-Collection Wavefront Cur-
vature Phase Errors

even in their exact form without approximations. Thus, what was once thought to

be a complicating transformation; that is, the selection of the modified perspective
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for the squint-mode mbdel, in fact turns out to be its saving grace. Again, when
considering the modified view of parts (b) and (d), it is clear that when the squint
angle @, is zero, then the flight path becomes parallel to the X' axis, r, = rz, and

the model is identical to that of the previous broadside scenario.

A procedure identical to that of the broadside case will now be used to derive
the phase error equations for the generalized squint-mode scenario. Specifically,
the phase return of a point target must be determined in Fourier space based on
its spatial (zf,y4) position in the imaged scene and the relative platform position.
Based on a-priori knowledge that the platform trajectory is linear (as depicted in
the model), as well as the subsequent evaluation of the Taylor terms at the spectral
center of the processing aperture, a closed-form solution for the linear and quadratic
phase error terms can be found strictly as a function of the scene position, without
regard to individual aperture positions along the flight path. This approach lends
itself to efficient computer implementations. Thus, as with the previous broadside
model, it is desirable to express the Fourier phase history domain (X', Y”) in terms
of a hypothetical point target (zg,yp)- That is, to represent the phase in the form
of @gp 4 (X', Y'). Again, this requires the further coupling (relation) of the spatial
position and phase models for the squinted case, as shown in Figures 4.5 (b) and
(d), respectively. This model is an extension of the previous broadside scenario, and
consequently, several of the broadside relations are still applicable and are restated

here for convenience. From Section 4.2, but now referring to Figures 4.5 (b) and (d),

Gup (X, Y') = k(1 — 11), (Equation (4.44))
where
2wy 4 o,
k= [—% + —CCE (t — —Z—)] . (Equation (4.27))

Also, reflecting a minor change in symbols, Equation (4.33) becomes

_ X

7 o >0, Y > 0. (4.101)

z
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and (4.37) becomes

X 2
ry = 1ot |1+ <?) , (4.102)

Additionally,

X
Ty = \/ T2 4+ p? — 2pry sin <arctan (—}7> + 'y) . (Equation (4.42))

Furthermore, the Cartesian slant plane representation (o, 7o) of the point target
p = (p,7) is given by

Ty = PCOSY (Equation (4.42))
and

Yo = psiny. (Equation (4.42))

Now, additional trigonometric relations are required to fully describe the new
model in terms of its Fourier phase space, with respect to the target position in the
imaged scene. These relations are specific to the squint-mode model of Figure 4.5
and are described as follows.

cosf = r—o, (4.103)
Tp

and from Equation (4.102),

To
cosf = ———'——2
To 14 (%)
S S— . (4.104)
1+ (%)
Similarly,
sinf = =, (4.105)

Tp
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and from Equations (4.101) and (4.102),

X
sinf = = 2
roy/1+ (£)
X

=t (4.106)

1+ ()

The distance 75 is defined as the sum of n and 7, in the squinted model:

Ty = Tp+ N (4.107)

When the squint angle §; is zero, n = 0, r, = 7 and 2’ = 2z, which is consistent
with the broadside model. In the case of nonzero squint, a new, irregular (non-right)

triangle is defined by the edges z, 2’ and n. In this case, the angle As is found to be
As=90°— (0; +6)
=90°~06; -0, (4.108)
and by the law of sines,

sinf, sinAs
n

(4.109)

z
__sin(90° — 6, — 0)
= - )

(4.110)

It is desired to represent the distance n strictly in terms of the angle subtended at
mid-aperture, 8, the squint angle 65, and the point in Fourier space, (X,Y). In this
way, the phase error can eventually be specified by the position in the image (g, ¥p),
as was the case with the broadside-only collection, in addition to the new squint

angle parameter, §;. To this end, reducing Equation (4.110),
sinf; _ sin(90°) cos(fs + 8) — cos(90°) sin(6; + )

n z
_cos(fs +0)
== (4.111)
It follows that
ing,
n= D0 (4.112)
cos(fs + 0)
_ zsind; (4.113)

cosfBscosf —sinfssinf ’
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and by substitution from Equations (4.101), (4.104) and (4.106),

roX sin 6,
n= =
cos §,——1— — sin f,—L—
Vi (3) Vir(E)
_ %sin 0,
- L (cosf, — & sinb;)

(3

B rov/1+ (%)22}5— sin O (4.114)

cosf; — & sin b,

Now, by substitution from Equation (4.102),

’"—’Yﬁsin 9,
n= X

. 4.115
cos s — 37 sin f; ( )

Having expressed n in terms of the appropriate parameters, all that remains is to

define the distance r; from platform to scene center (CRP) in terms of these same

parameters 6, §; and (X,Y). Recalling Equation (4.107),
Ty =Tp+ M. (Equation (4.107))

By substitution from Equation (4.115),

TpX 2
=22 sin 6
Tz =Tp+ Y % s
cos s — 3 sin s
X -
£ sin 0,
=7, |1+ —F 4.116
i ( cosf; — % sin 95) . ( )
where
X 2
rp=roA/l+ | =] - (Equation (4.102))
P Y
For simplicity, let
£ sin 6,

—90° < 6, < 90°. (4.117)

s = "
cosfs — Zsinf,’

Then, from Equation (4.116),

re =1 (1+). (4.118)
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Having described k, 7; and 75 in terms of a specified point target for squint-mode
scenarios (Equations (4.27), (4.42) and (4.118), respectively), the phase return from
a point target g 4 (X', Y") = k(ry ~ 1) has been fully specified. Consequently, the
Taylor series expansion can now be applied to find the linear and quadratic phase
error terms. First, however, it is important to verify that the generalized squint-
mode model reduces to that of the specific broadside model under the appropriate
circumstances. From Figures 4.5 (b) and (d), note that when the platform is at
mid-aperture; that is, when 8 = 0, then X = 0, 7, = 79, and {; = 0 (from Equation

(4.117)). Therefore, r, = 7o for all squint angles §; at mid-aperture. Consequently,

re = /T8 + p? — 2prosiny at mid-aperture, which is consistent with the broadside

model of Figure 4.2 and Equation (4.52) for 7.

Furthermore, the squint-mode model must reduce to the specific broadside case
when the squint angle 6, is zero. In this case, when 6; = 0, then n = 0 from
Equation (4.115), and 7, = 1, = r94/1 + (£)? from Equations (4.102) and (4.116).
Thus, the squint-mode model reduces to that of broadside when 8, = 0, at least
for the equations derived thus far. The generalized linear and quadratic phase error
equations will be derived next, and it remains to be shown that these equations will

(and must) also reduce to the broadside case when the squint is zero.

4.4.2 Polynomial Phase Terms for Squint-Mode

As was the case with the broadside collection, a Taylor series expansion will be
applied to the point target phase return of Equation (4.44), given the value of r; in
Equation (4.42) (which applies to either squint or broadside collections), as well as
the new squint-specific relation for r, given by Equation (4.118). Thus, as before,

the Taylor series of the phase function ¢.: ,» (X', Y”) is expanded around the aperture



Chapter 4. Analysis of Phase Errors Arising From Wavefront Curvature

center point (Xp, ¥5) = (0, ko) such that

¢$6,y6 (X,’ Y/) = Qpo + alOXI +anY’ + azoXl2
+anX'Y +apY” +... (Equation (4.47))

where

. 4
X=Xo,, *XO'—O’ %—LO_T
Y=Y

(1 O k(ry — 1)
“ = \ilj! 5Xi0Y7

(Equation (4.48))

121

The constant phase term agp is of no consequence. The terms which are linear in

X' and Y’ are image translation terms and specify the linear target displacement

in cross-range and range in proportion to a;o and ae;, respectively. In the presence

of wavefront curvature, these terms contain extraneous linear components that in-

duce the geometric distortion. Thus ajo and ag; fully describe the target position

in range and cross-range, including the displacement (geometric distortion) due to

wavefront curvature. The linear phase coefficient ag; for target placement in range

for a generalized, squinted collection is defined as follows. From Equation (4.48),

_ (6 ¢z{),y{) (XI,Y,))
o1 = oY

where

¢m6,y{, (X,: YI) =k (Ta: - Tt) s

(4.119)

(4.120)
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given
k=vX?2+Y?2, (Equation (4.28))
Ty = 4[ T2 + p? — 2prysin <arctan (—?) + 7) , (Equation (4.42))
re =15 (14+8), (Equation (4.118))
X\ 2
Tp =To4/1+ (?) , (Equation (4.102))
.& .
Q, = ¥ SH;_QS. , —90° < 6, <90°, (Equation (4.117))
cosfs — 3 sin 0s
Ty = pCoOsy (Equation (4.45))
and
Yo = psiny. (Equation (4.46))

Evaluating Equation (4.119) for the generalized, squint-mode range coefficient
ag; vields the following:

0 ot (X', Y")
do1 = E3%

=0,
Y=ko

= TO — Tc (4.121)

which is the same result as for the broadside-only case, given by Equation (4.81).

Consequently, as previously shown,

re = /18 + 24" + 45" — 2royp (Equation (4.67))
z}?

R — Y+ 2—0‘, (Equation (4.86))
To

where 7y is the slant range at mid-aperture and (zf,y) specifies the point in the
imaged slant plane scene for which the phase return is being calculated. Similarly,

for the squint-mode case, the linear cross-range phase coefficient a;¢ is calculated
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from Equations (4.48) and (4.120):
(3 Gap (X Y) )
a0 =

X ‘=0,
° =
T
=2 {tanb;[ro—ro+y] + o}, : (4.122)
c

where 6, is the squint angle at mid-aperture, at which point the slant range is defined

as rg. From Equations (4.69) and (4.122), the linear cross-range phase term ¢y, is

P11, = @10 X’
= %{tan B [re — ro + 5] + Th} X', —90° < 8, < 90°. (4.123)

When the squint angle 6; is zero, then the broadside scenario applies and this equa-

tion reduces to

.’1767’0

0.0 = p_ X' (broadside scenario) (4.124)

¢1t,,-

which agrees with (4.70), the broadside model equation. From Equations (4.82) and

(4.121), the squint-mode linear phase term in range ¢y, is

¢, = anY’

= (ro — 1o)Y", (4.125)

which is identical to Equation (4.83) for the broadside model. This is true for all
squint angles (not just 8; = 0), since the equation is independent of the squint angle
g,. By linear combination of Equations (4.123) and (4.125), the total linear phase

¢1; for the generalized squint-mode scenario is found to be

b1t = P, + P11,
= ang' + ao1YI
= :—" {tan b, [re — ro + yo] + 20} X' + (ro — 7)Y, (4.126)

where X’ and Y’ represent the spatial frequency extents in cross-range and range,

respectively. This equation describes the total linear phase including the components
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zh X' +yhY” that properly place the target in the imaged spatial-domain scene, as well
as the extraneous linear distortion terms fz X’ and fY”, which serve to misplace
the target in cross-range and range, respectively. Hence, the total linear phase could

be represented by the form of Equation (4.13), namely
01 = .’II:)X, + y{,Y’ + fa X'+ fle'.
In fact, this was done for the broadside-only linear phase equation of (4.84). As will

be discussed in Chapter 5, it necessary to isolate the distortion terms so that the

space-variant post-filter can be correctly applied.

However, in its current form, there appears no straightforward method for the
decomposition of Equation (4.126) into its “correct” and distorted terms. This re-
lation is composed of both range and cross-range terms, the combination of Equa-
tions (4.123) and (4.125). Since the range term is independent of squint, it can be
decomposed as was shown in Equation (4.87) for the broadside-only case. Unfortu-
nately, the cross-range linear phase term of Equation (4.123) is more problematic.
There appears no obvious way to isolate the geometric distortion term because of
the trigonometric function that is involved. Consequently, the total linear phase ¢y,
of Equation (4.126) can not be decomposed in terms of geometric distortion and
“proper placement” components, as will be required in Chapter 5. Furthermore,
even for the simpler broadside-only case of Section 4.2, this decomposition required
the application of a small patch assumption which was not always appropriate. For-
tunately, as will be shown in the next chapter, an elegant mathematical trick can
be employed which serves to isolate the geometric distortion component of a given
point (z{,y,) in the presence of wavefront curvature. This is true even when using
the exact relation for linear phase; consequently, it applies to all patch sizes and slant
ranges with no approximation errors being introduced. Equally fortunate is that the
trick is appropriate for the generalized squint-mode linear phase equation and not
just the specific broadside relation. Hence, it will be possible to apply space-variant
post-filtering to all polar-formatted spotlight-mode imaging scenarios regardless of

patch size, squint angle, slant range or resolution.
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4.4.3 Quadratic Phase Error Term for Squinted Collections

The Taylor series expansion has been applied to derive the linear components of
the phase return from a point target. Earlier, in Section 4.2, this expansion was
applied to the broadside-only imaging model, and in this section to the generalized,
squint-mode model of which the broadside scenario is a specific case. Next, the
quadratic phase error terms for the squint-mode model will be calculated. As was
the case for the linear terms, it will be shown that the broadside-mode quadratic
terms derived earlier are a special case of the more general squint-mode terms to be
derived now. As one would expect, for squinted cases (95 # 0) there are additional
quadratic phase components which are a function of the squint angle at mid-aperture,
6,. When the squint is zero, the generalized squint-mode quadratic equations reduce
to those of the broadside case, as expected. In all cases, quadratic phase serves to
defocus the image via IPR broadening, and is space-variant in nature. Perhaps the
most surprising (and pleasant) result for the generalized squint-mode scenario is that
the defocus remains strictly cross-range only, regardless of the degree of squint. This
cross-range-only defocus is observable in squinted imagery where wavefront curvature
is significant, yet this is only a qualitative observation. The one-dimensionality of
the defocus, even for squinted collections, will now be verified mathematically by
showing that the quadratic phase terms X'Y”’ and Y’ 2 are indeed zero, regardless of
squint angle. Furthermore, in Chapter 6, it will be demonstrated via SYNTARG-
based computer simulations that the space-variant defocus is effectively removed for
squinted scenarios via the post-filter derived from the new, generalized squint-mode

model.

The quadratic terms of the phase return from a point target are calculated from
the Taylor series derivation of the generalized, squint-mode phase equation (4.120),

where ¢, (X', Y") = k(r; — 1), and are expressed as the sum ¢,;, where

' 'l
0:%0

ot = foy X"?+ Tz X'V + f;sz’z (Equation (4.91))

= apX? + anX v ag Y. (Equation (4.92))
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From Equation (4.48), the specific quadratic coefficients ao, a1 and age are defined

as
1\ [8%k(ry — 1) )
asy = <§> (__—_8)(2 ko, (Equation (4.93))
Y=Yy
O k(ry — 1) .
= = Equat 4.94
Y=Y
and
1\ [(8%k(ry — 1) .
agy = <§> <__—8?2__> x=o, , (Equation (4.95))
=Ig

and the coefficients are evaluated at the aperture center, (Xo,Ys) = (0, kp). First,

calculating the quadratic range coefficient ags,

()55

X=0,

=Ko

1
__2_2_0 <T0 _ \/;3_,_/)2 — 2pTOSiIl’7> +2—kg (7‘0 - \/r§+p2 — 2prosin7>

1 1 .
T (ro—7e) + T (ro —7e) (from Equation (4.52))

=0. (4.127)

Thus, for the generalized squint-mode scenario, the range oriented quadratic

phase error term f;ﬁ:Y’? is found to be
fa V" =apY"” = oY% =0 (4.128)

for all squint angles, slant ranges, center frequencies and resolutions. However, it has
not yet been shown that defocus due to quadratic phase is strictly one-dimensional
in cross-range. This requires the quadratic cross term fz X'Y" to be zero, as well.

Since fm XY’ = a;: X'Y”, the coefficient term a;; can be calculated from Equations
)
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(4.94) and (4.120) as follows:

o = O k(ry —ry)
U=\ axey

X=0,

T 1
=2 {tan fs — — [ro tan s — yp tan bs — zg)
kO Te

1
— tanf; — . [—ro tan 8, + yg tan b, + :1:6]}
[

=0. (4.129)

Thus, for the generalized squint-mode scenario, the quadratic cross term for phase

error, @IY’Z, is found to be
XY =anX'Y' =0X'Y? =0 (4.130)

for all squint angles, slant ranges, center frequencies and resolutions. Consequently,
there are no quadratic phase error components with range orientation, regardless of
squint. This is a remarkable result which greatly reduces the computational burden
because one-dimensional filtering is sufficient when compensating wavefront curva-

ture defocus effects via a space-variant post-filter.

All that remains is to calculate the quadratic phase term f;;X "2 and algebraically
combine and rearrange the terms. Since f;;:X’z = ag0X" (from Equations (4.91)
and (4.92)), the coefficient term ag can be calculated from Equations (4.93) and

(4.120) at the aperture center, (Xo,Yp) = (0, ko):

e (22572

_ 1 { 1 (ro — 1) + =2 [1+ 2tan’6,]

(Equation (4.93))

X=0,
Y=ko

2) ko ko
2
% [-273 (rotanfs — yy tands — :c{))]

- —FT;C— [0 + 3rq tan® 6, — 2y tan® 6, — 2z( tan ;] } ) (4.131)
ch
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Finally, after some algebraic manipulation to combine and rearrange the terms of

ag0, the quadratic phase term f;?X'? can be expressed by the following relation:

2 2
f;;le = a:_)gX,

_ 1 [ro—rc ro(ro—re) + TRL (2)
- 2 ko ’I'cko 'I‘gko
9rotan b Thybro — Thr2
+ 0 S 3:6 + oYoT0 - 0'0 (b)
TckO T

tan? @ rd — 2yt + yt2r
reko 2

(4.132)
where kg = i*icfﬂ = %\C is the nominal phase history radius, 7o is the slant range to
CRP at mid-aperture, and from Figure 4.5 (a), the distance r, from the platform at

mid-aperture to the target at (zg, yp) is

Te = /78 + p% — 2prg sin(7y) (Equation (4.52))

= /7% + 25” + v5° — 2r0%; (Equation (4.67))
12

Ty —Yp+ T (Equation (4.86))
27"0

Equation (4.132) is a complete, exact specification of the quadratic phase error for
the generalized, squint-mode scenario. This closed-form solution, based on the linear
flight path model of Figure 4.5, describes the quadratic phase error in Fourier space
as a function of the target position (z(,y;) as imaged in the slant plane. This phase
error is one-dimensional in cross-range ounly and is valid for every resolution, center
frequency, slant range, squint angle and patch diameter, where the spotlight-mode
aperture is constrained to an angular interval much less than 360° [2]. Equation
(4.132) is arranged such that the first bracketed addend (a) is independent of squint,
while the second and third bracketed addends, (b) and (c), respectively, are functions
of the squint angle ;. When 6, is zero, then the broadside case applies since at mid-
aperture, the platform is looking at a right angle towards the scene center. In this

case, tanf; = tan(0) = 0, and squint addends (b) and (c) of Equation (4.132)
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disappear. This results in the following broadside-specific relation. From Equation

(4.132),

fX '2| pomo = 020X ! 2[ 6,20 (broadside scenario)
L)ro—re 7o (TO - Tc) $62T(2) 12
=_ — . 4.
2 { ko Tcko + 7"2]{,‘0 X ( 133)

This is identical to the broadside-only quadratic phase error equation given in (4.98),
as would be expected. Thus, as was shown earlier for the geometric distortion terms,
the broadside scenario is a specific case of the generalized squint-mode scenario with

respect to the quadratic phase error term, as well.

It is useful to present a simplified approximation of the quadratic phase error of
Equation (4.132), based on the small patch assumption where zg, 35 < ro. Although
this simplified relation will allow faster phase error calculations (in terms of CPU
multiplies) given the specific scenarios for which the approximation holds, this is
not the main benefit of a simpler mathematical form. Instead, it helps us to better
visualize and understand the precise effect (detriment) of squint-mode scenarios on
quadratic phase error, compared to imaging the same scene without squint. When
the small patch assumption is applied, some additional mathematical manipulation

yields the following relation for squint-mode quadratic phase error:
for X7 =
12,1

1 (=5 =y’ 2rhyf b2y 2
~-8 0 tand 0501 _tan?@, |ZL=0| $ X", zh,yb < 1o -
2 { Toko s Toko s ’f‘gko 0: Yo To

(4.134)

As before, the equation is separated into addends which represent their reliance on
squint. The first addend is independent of squint while the second and third are
functions of the squint angle 8;, as shown. When squint is zero, only the first term

remains, as shown.

f;;:X ! 2|95=0 = ¢2tles=o (broadside scenario approximated)

1 (zh%—9)?
zg{"ro—kf"}xﬂ, T, Yy K To - (4.135)
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In this broadside-specific case, this equation reduces such that it is identical to that

of the small-patch approximated, broadside-only scenario described by Equation

(4.100).

The quadratic phase error approximation given by Equation (4.134) is simple
and revealing. It helps to aid in the understanding of how squint affects the overall
quadratic phase; specifically, how the new squint terms contribute (additively) to
the overall phase error, relative to the broadside phase term. When considering
the contribution of just the two squint addends, note that the first (with the tan @
coefficient) contains an z5,/7o term. The second squint addend (with the tan®#;
coefficient), an z,?/r2 term. The first squint addend dominates the second because
when z < 7p, then a:62 /¢ < zf/ro- Consequently, the second can be ignored
when considering the contribution of squint to the overall phase error. The effect
of the first squint addend is to double the maximum quadratic phase error in a
scene covering a square (or circular) ground patch, over the same patch imaged at
broadside. However, by no means does this double computation time, as will be

discussed in Chapter 6.

As one might suspect (but has not yet been shown), a higher quadratic phase
error is more costly in terms of computation time when post-filtering. The additional
squint addends do increase the overall quadratic phase error and consequently, the
computation time. However, as will be shown in Chapter 6, Section 6.3, even for
moderately severe squint angles (—45° < 6, < 45°), the overall post-filtering compu-
tational burden is increased by as little as 5.5% over that of the same scene imaged at
broadside. This is in stark contrast to some other image formation algorithms such
as RMA, whose oversampling requirement in squinted scenarios drastically increases

computation time (12, pp. 401-438].
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4.5 Summary of Phase Error Analysis

Spotlight-mode image formation via the polar-formatting algorithm has traditionally
assumed that planar wavefronts illuminate the imaged scene. This assumption is
faulty in certain imaging scenarios; specifically, when the scene is large, the radar
center frequency low, the resolution high or the slant range short. In these scenarios,
the actual spherical wavefronts differ sufficiently from the planar assumption such
that linear, quadratic, and higher-order residual phase terms appear. The linear
terms lead to a geometric distortion of the imaged scene, while the higher-order

terms lead to a space-variant defocus of the scene.

The spotlight-mode SAR formulation, first introduced by Walker in [2], describes
these phase errors in terms of a Taylor series expansion and discusses the limita-
tions of the spotlight-mode approach with respect to these phase errors. Walker also
mentions the possibility of compensating the phase errors arising from wavefront cur-
vature, yet deems the problem “difficult to implement” because the errors depend
on both aperture position and target position in the scene, rendering the problem
computationally inefficient. Later, Munson [4] and Ausherman [5] cast spotlight-
mode image formation as a tomographic process and describe the planar wavefront
assumption as a shortcoming of this tomographic paradigm. Specifically, when the
planar wavefront assumption is violated, there no longer exists a direct Fourier re-
lationship between the phase history data and the reconstructed image. Instead,
extraneous phase terms are present and lead to the geometric distortion and space-

variant defocus.

In this dissertation, a geometric model was presented in Sections 4.1 and 4.2
that represents the phase return from a point target for a linear flight trajectory,
from a tomographic perspective. This model was first proposed by Jakowatz in
(7, pp. 355-365] and applies to broadside (non-squint) spotlight-mode collections.
Jakowatz makes no assumptions regarding the spherical nature of the wavefronts, and

a mathematical analysis of the phase return from a point target yields an expression
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for the linear and quadratic phase errors in closed-form (eg: for a linear flight path),
via a small patch approximation. These phase errors arise from the faulty assumption
of planar wavefronts illuminating the scene. Jakowatz then demonstrates in [10]
that a space-variant post-filter, based on the closed-form phase error equations,
adequately compensates the defocus for the specific case of a small patch, broadside
collection. In that paper, polar-formatting with spaée—variant post-filtering was
demonstrated to be competitive with other image formation methods, all of which
inherently compensate wavefront curvature. However, computational parameters for
the space-variant post-filter were picked ad hoc and no emphasis was placed on
optimizing computational efficiency. Furthermore, no model had yet been developed

to deal with squint-mode collections.

The unique contribution of this dissertation chapter, detailed in Section 4.4 and
briefly introduced by Doren in [11], is a closed-form description of the linear and
quadratic phase errors that apply not only to broadside collections, but also the more
general squinted collection scenarios. It was shown here that the original broadside-
mode equations of Jakowatz are a special case of the general squint~-mode equations.
Furthermore, these generalized relations describe the linear and quadratic phase
errors for all patch sizes, resolutions, slant ranges and resolutions, without requiring
a small patch assumption, as did Jakowatz. Thus, they are applicable to many
practical imaging scenarios, without unduly restricting the collections to broadside-
only or introducing approximation errors into the phase equations. These equations
are based on a new, generalized point target phase return model based on that of
Jakowatz, in conjunction with a Taylor series expansion of the phase return equation,

as proposed by Walker in [2] for broadside scenarios.

It has now been shown that the quadratic phase term induces a one-dimensional
defocus in cross-range only, regardless of squint angle, for the linear trajectory being
modeled. In spite of Walker’s predictions, Chapters 5 and 6 will demonstrate how
this equation can be applied to a space-variant post-filter which efficiently and effec-

tively compensates wavefront curvature in squinted spotlight-mode imagery formed
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via polar-formatting. At this point, in spite of Walker’s claims, it has already been
demonstrated via the linear trajectory model of Figure 4.5 that there is no need to
calculate the phase error at individual aperture points. That is, the model yields a
closed-form solution that is independent of aperture position. Furthermore, Walker
failed to realize that the defocus is one dimensional in cross-range, even for squinted
scenarios. In the following chapters, it will be shown that wavefront curvature com-
pensation need not be calculated for every individual point in the imaged scene, as
Walker prescribes. Instead, the space-variant post-filter is varied only as often as
necessary to maintain a minimal residual phase error, which results in impercep-
tible image defocus. Consequently, the space-variant post-filter will be shown to
be computationally efficient, such that PFA will remain competitive with other im-
age formation algorithms even when compensating the defocus effects of wavefront

curvature.

In summary, the concepts of this chapter and the results of Equations (4.47),
(4.126) and (4:132) lead to the following equation describing the phase return from
a point target, without the approximations associated with planar wave or small-
patch assumptions. It is general in that it applies to all squint angles, slant ranges,
resolutions, frequencies and patch sizes.

bop (X', Y') = ago + @10X’ +aqY’ + a2 X"
+an X'V +apY"? + ...

= ;3 {tan b, [r. — 1o + yp] + 76} X' + (ro — 1c)Y”
[

1 { ['ro ~71c _ To(ro— 1) + xgzrg]

2 ko T ckO Tgko
orotands [ ,  Thybro — zhrd
rcko 0 2
To tan? f, , T — 22+ yh’ro 2
— |21, -3 2 X
F. (4.136)

This equation is a Taylor series representation of the total Fourier domain phase as
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a function of spatial position the image domain, and includes the linear distortion
terms and quadratic cross-range defocus term that arise from the planar wavefront
assumption when used in the presence of wavefront curvature. While higher-order

error terms exist, they are typically inconsequential, as discussed in Chapter 6.
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Chapter 5

Space-Variant Post-Filter Design

In the previous chapter, a closed-form, analytic expression was developed to describe
the quadratic phase error in the presence of wavefront curvature. This phase error,
due to the faulty planar wavefront assumption in the tomographic paradigm, renders
invalid the direct Fourier relationship between the polar-formatted phase history and
the scene being illuminated. Without proper quadratic phase compensation, a space-
variant, cross-range defocus is induced in the formed imagery, and for some imaging
scenarios, is severe enough to significantly reduce resolution. This degradation is
particularly severe along the Cartesian axes at the far edges of large scenes, when
imaging at close range, using low center frequencies or at high spatial resolutions.
The expression previously derived for quadratic phase (Equation (4.132)) accurately
describes this error for all scene sizes, slant ranges, center frequencies, resolutions and
squint angles, for a specified linear platform trajectory. Furthermore, it was shown
that the defocus remains one-dimensional in cross-range even for squinted scenarios,
which greatly reduces computational burden. Also, it was suggested that the overall
computational burden is reasonable because phase corrections need not be applied
at every aperture point, and that the additional burden associated with squinted

scenes is typically less than 6.9% (as will be verified in Chapter 6).

Exactly how is the quadratic phase error compensated? That is, based on the
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space-variant quadratic phase error equation presented previously, by what process
is the polar-formatted spotlight-mode image refocused when degraded by wavefront
curvature defocus effects? That is the topic of this chapter. The space-variant
defocus effects are compensated in the image domain by what is considered an image
domain deconvolution process. The beauty of this process is that it is performed
as a separate post-processing step to PFA, and therefore, is independent of the
image-formation process. Only basic radar parameters and simple imaging geometry
descriptions are required to satisfy the analytic quadratic phase error equation, and
consequently, image refocus is accomplished based strictly on these parameters and
the spatial position in the scene, without dependence on the original collected Fourier
phase history or knowledge of scene content. This deconvolution process, also known
as a restoration filter or inverse filter, and referred to here as a space-variant post-
filter, frees us from the severe scene size restrictions imposed by polar-formatting in
the presence of wavefront curvature, as discussed in Chapter 3. Furthermore, space-
variant post-filtering is straightforward to implement and computationally efficient,

as it adds as little as an additional 25% to the polar-format computation time.

5.1 The Concept of Wavefront Curvature Correc-

tion Via Space-Variant Post-Filtering

The one-dimensional, cross-range defocus (IPR broadening) in spotlight-mode im-
agery processed via polar-formatting will be compensated via a space-variant post-
filter, whose parameters are specified by the quadratic phase error equations of Chap-
ter 3. While this process may be thought of as an image domain deconvolution
process, it may equivalently be considered a Fourier-domain phase correction pro-
cess. Since the phase return models and subsequent quadratic phase error equations
derived in Chapter 3 are in terms of Fourier space, it is convenient to discuss the

space-variant post-filter in terms of a frequency domain phase correction process.
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Furthermore, except for the smallest of spatial domain convolution kernels, this in-
verse filtering process is often more computationally efficient in the Fourier domain.
The filter, as applied to a location in Fourier space, is a quadratic phase function
derived from the phase error equation at that particular (zj,yp) Cartesian location
in the spatial domain. Since this equation specifies the Fourier phase error contri-
bution at that given point, a complex-conjugate multiply of the filter values with
the complex-valued Fourier data results in the appropriate compensation (negation)
of the phase error within the Fourier data. Alternatively, in the spatial domain,
wavefront curvature correction consists of a deconvolution process whereby the con-
volution kernel is the inverse Fourier transform of the quadratic phase error function

for that point in the scene.

The corrective post-filter values are based on the quadratic phase error equa-
tion (or its approximation, as appropriate), as derived in Chapter 3. This equation
is repeated here for convenience. The Fourier domain quadratic phase error due
to wavefront curvature ¢oyat ) (X', Y"), which is a function of spatial slant range

position (zh, yh), was given in Equation (4.132) and found to be

Botat ) (X', Y') = Dot(ap ) (X g (One-dimensional)
(5.1)
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where kg = 4"c° = 47“ is the nominal phase history radius, ro is the slant range
from platform to CRP at mid-aperture, 7. is the distance from the platform at mid-
aperture to the target positioned at (zg,%p), and 8, is the squint angle (measured

from broadside). Furthermore, X' is the cross-range frequency extent. The half-
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power width of the IPR, X7, defines the maximum frequency extent of the aperture
such that (|X'| < X7), where

X = (5.3)

™
Pz

and p, is the image resolution in cross-range. Thus, it is obvious that the quadratic

phase error of Equation (5.1) increases as the square of the resolution in cross-range.

When the patch being imaged is small compared to the slant range; that is, when
zh,yh < 19, then the small patch assumption applies, and Equation (5.1) can be

approximated by

1 .’17'2 _ yl2 20 y/ z 2yl 5
(XN =20 0 gang |00 4an2g |20 Z0) L xE
¢$07y0( ) 2 { Toko an o, i Tokg an” o, T‘gko 3
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When the squint angle 8, is zero, then the broadside-specific case applies and the

approximation of Equation (5.4) reduces to

1 -'1;62"'3]62 2 ro -
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Equations (5.4) and (5.5) represent Equations (4.134) and (4.135), respectively, and
are repeated here for convenience. The design of the space-variant post-filter, as
presented in the remainder of this chapter, is based on these equations, as is much of
the computational analysis of Chapter 6. Specifically, filter length (patch size), to be
discussed next, is derived from Equation (5.5). While this equation is an appropriate
quadratic phase error approximation only when small patches are considered, it will
serve as the basis for all filter patch size estimates, regardless of patch size of slant
range. That is, Equation (5.5), while not an exact expression, is sufficiently accurate

to serve as the basis for these calculations.



Chapter 5. Space-Variant Post-Filter Design 139

5.2 Space Invariance — Scope of Application

The quadratic phase relation of Equation (5.1) produces different values as a function
of spatial position in the image domain. As such, it is space-variant, dependent on
image location in both range and cross-range. By applying an appropriate spatially-
varying filter to the image that is formed by the polar-format processor, the defocus
effects induced by Equation (5.1) are compensated. In theory, Equation (5.1) spec-
ifies the filter to be applied to each Cartesian coordinate in the polar-formatted
Fourier space. If the filter were changed at every pixel in strict accordance with
the expression of (5.1), the computational burden associated with the filter imple-
mentation could become excessive. Thus, as was pointed out by Walker in [2], this
procedure is computationally inefficient. However, the key to computational effi-
ciency, as proposed in this dissertation, is to vary the post-filter only as often as
necessary to maintain a tolerable (ie: imperceptible) amount of residual blur. That
is, by applying the space-variant post-filter to patches of imagery, as opposed vary-
ing it for each individual (zf, y§) location, the computational burden is significantly
decreased while defocus is. constrained to an acceptable level. Specifically, an image
patch size is calculated such that the residual quadratic phase error at the edges,

after correction, is within subpixel levels.

Since the filter is applied to complex-valued spatial imagery, yet is specified in
terms of the Fourier domain quadratic phase error, the specified image patch is first
Fourier transformed, then conjugate multiplied by the filter coefficients, as calculated
at the patch center (zf,y;). This patch is then inverse Fourier transformed into
a refocused portion of the formed image. In order to avoid visually perceptible
discontinuities at the junctions of imaged patches, the refocus filter must overlap the
previous to some degree. In other words, there is overlap in the image patches. The
amount of filter overlap, and patch size in general, is the focus (no pun intended) of
the remainder of this chapter. Assuming the patch size is fairly large, and the overlap

reasonably small, then refocus is accomplished with an acceptable computational
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burden. As will be shown, this is indeed the case for space-variant post-filtering for

wavefront curvature correction.

The idea of a closed-form phase correction model for compensating quadratic
phase errors is not new and not necessarily limited to wavefront curvature issues.
However, only for wavefront curvature, as demonstrated in this dissertation (and also
the preliminary work of Jakowatz [7, pp. 355-365|[10] and Doren [11] on which it is
based), has this method been shown to be computationally efficient. For example, in
a paper by K. Kong [86], a quadratic phase correction is applied to compensate the de-
focus that results when the polar-formatting step of spotlight-mode image formation
is omitted. It is hoped that the space-variant polar-format blur is more efficiently
compensated via post-filtering, as opposed to the costly two-dimensional sinc interpo-
lation required for polar-formatting. However, as Kong points out, the large amount
of polar-format defocus present, in addition to its two-dimensional nature, renders
post-filtering to be very inefficient for this type of phase error, except for the smallest
of angular extents subtended by the radar platform. However, as will be demon-
strated in Chapter 6 of this dissertation, the one-dimensional nature of wavefront
curvature defocus, in conjunction with a space-variant post-filter that is varied only
as often as necessary, yields an effective method for the removal of wavefront curva-
ture defocus from polar-formatted imagery. Consequently, while Kong demonstrated
the mathematical validity of space-variant post-filtering for polar-format defocus,
the large magnitude of those errors offset the potential computational advantage of
post-filtering. In the remainder of this dissertation, the mathematical theory given
for wavefront curvature correction will be (partially) validated via SYNTARG exam-
ples. Furthermore, since the wavefront curvature errors are typically much smaller
in magnitude than those of polar-format defocus, the efficiency of post-filtering is
shown for wavefront curvature correction, whereas Kong failed to demonstrate this

for polar-format defocus.

Consider an experiment in which ideal point targets (IPRs) are synthetically

generated according to the L-Band parameters in Table 5.1. It has been suggested
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L-Band Parameters for SYNTARG Simulation

Parameter Symbol Value
Center Frequency fo 1.25 gHz
Wavelength A (A=c/fo) 0.24 m
Aperture Extent Ab 10°
Scale Factor, Cross-range Sz ~ 0.65 m/pix
Scale Factor, Range Sy ~ 0.65 m/pix
Mainlobe Broadening Factor K, 1.4
Resolution, Cross-range P ~1.25m
Resolution, Range Py ~1.25m
Oversample Value, Cross-range | 05 (0, = pz/5z) ~ 1.92
Oversample Value, Range 0y (0y = py/sy) =~ 1.92
Slant Range at Broadside To 4972 m
Squint Angle 05 0°
Patch Diameter D, 2400 m

Table 5.1: L-Band Parameters for Broadside, Space-Invariant Experiment

in [12, pp. 435-439][87, 88] that L-Band SARs, under these imaging scenarios, ex-
hibit the defocus effects associated with wavefront curvature. This is also true of
Ultra-Wideband (UWB) SARs [12, pp. 437-438][83, 89], whose center frequency, at
approximately 500 mHz, is approximately one third that of the L-Band fréquency.
Since the resolution in cross-range p, is defined by p, = A/(2A6), the UWB SAR is
able to attain cross-range resolutions equal to that of the L-Band SAR by subtending
an aperture angle A@ that is three times that which is needed for the IL-Band radar.
Furthermore, the lower UWB frequency can potentially induce much greater defocus
due to wavefront curvature. However, the limited patch sizes of the UWB SAR, as
compared to L-Band, help constrain this defocus [12, p. 438]. Since the separable,
two-dimensional sinc interpolator used for polar reformatting may induce its own
phase errors with the large angular diversities associated with UWB SARs [71, 72,
this dissertation concentrates strictly on I-Band examples so that any phase errors

present are of known origin; specifically, from wavefront curvature.

As was described in Chapter 4, a virtue of synthetic targets formed via SYN-

TARG (as is the case with this example) is that SYNTARG does not assume planar
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Figure 5.1: Wavefront Curvature Correction of Synthetic Point Targets via a Space-
Invariant Post-Filter Centered at (g, ¥p)
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wavefronts illuminating the imaged scene [7, pp. 399-414]. Consequently, any per-
ceptible amount of defocus due to wavefront curvature will be evident in the point
targets being generated. The example of Figure 5.1 illustrates synthetically gener-
ated L-Band targets whose parameters are specified in Table 5.1. In part (a) of this
figure, three synthetic targets are shown at far cross-range, along the 2’ axis in the
slant plane. The center target is at (z§,y4) = (1000,0), which according to Equa-
tion (5.5), is a location of severe wavefront curvature defocus. As is clearly seen,
these targets exhibit defocus (IPR broadening) in cross-range and the blur is more
severe for targets nearer the edge of the scene, as shown in the expanded view of
part (b). A space-invariant post-filter has been applied to this region of the image
and the result is illustrated in Figure 5.1 (c). The filter parameters were based on
the quadratic phase error equation (5.1). In addition, a 40-dB Taylor window was
applied for sidelobe reduction. For this example, the patch center was chosen at
(zf,y5) = (1000,0), and the quadratic phase error correction calculated from this
single chosen coordinate was applied to the entire target region, as depicted by the
dotted lines in Figure 5.1 (a). This region covers 390 m in cross-range, or 600 pixels
given a scale factor of 0.65 m/pixel. As can be seen in part (c), the center point tar-
get residing at (z},y5) = (1000, 0), is refocused quite well. Those targets to the left
and right of the patch center show improved focus, but not to the same degree as the
center target. Thus, the need for space-variant post-filtering has been demonstrated.
While the quadratic phase correction calculated at some spatial position (24, yp) pre-
cisely compensates the defocus at that point, it serves only as an approximation
to the quadratic phase error induced by wavefront curvature for points surrounding
(z}, y5)- Just how large a patch can be refocused for a given patch center, while still

maintaining an acceptably small residual blur, is the topic of rest of this chapter.

The space-invariant filter of this example is applied to a small patch of the image-
domain scene of Figure 5.1 (a). However, as previously stated, this portion of the im-
age is first Fourier transformed, then conjugate multiplied by the corrective quadratic

phase function before being inverse transformed into a focused patch. The effect of
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Fourier transforming a small patch of the image domain is a resultant Fourier do-
main phase history that supports the full frequency extent of the image, yet at a
less dense (decimated) sampling compared to the original phase history [7, pp. 140-
144]. Consequently, the phase correction applied in the Fourier domain is a quadratic
function of X'% (and (x4, 7)) as given by Equations (5.1-5.5), where X' is a discrete,
decimated representation of the Fourier frequency extent. Specifically, for an n pixel
patch centered at (zf,vh), the sampled frequency extent in the Fourier domain is

defined as follows:

,—n—l ! 27:X]I. ’ ! 56
X'=3 -X{+— X' < X (5.6)
=0

The resulting sampled frequency extent consists of n pixels in the frequency range
[-X!..X!], where X} is the maximum of the absolute value of X', and X" is calculated
from Equation (5.3). The frequency spacing 6.X' between samples is then

2X}
n—1’

<t
~I
~—

§X' = (- X7..X]1) (5.

Figure 5.2 presents an enlarged view of the space-invariant, post-filtered targets
of the previous figure. This enlarged view more clearly illustrates the refocus of
the center target and the less clearly focused adjacent targets. In part (b), the
results are shown for the original defocused targets, except in this case, a space-
variant filter has been incorporated. Specifically, patches 128 pixels in cross-range are
refocused, each with the appropriate (xj, y5) center coordinate used for the quadratic
phase error calculation. Each filter operation was displaced in cross-range by sixty
four pixels from that of the previous. That is, the filter had a length m of 128
pixels and the space-~variant coefficients were recalculated and the filter applied every
64 pixels. This 64 pixel displacement, d, infers a filter overlap region ¢ of 128 —
64 = 64 pixels. For now, it will suffice to say that this particular filter length,
overlap and displacement is appropriate for the proper space-variant refocus of this
L-Band example. The remaining sections of this chapter describe in detail how these

parameters are to be chosen, both for this example and for all imaging scenarios
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Figure 5.2: Space-Invariant Vs. Space-Variant Filtering

in general. As can be seen in 5.2 (b), the filter appears to do an excellent job
of refocusing all the point targets. Just how well, in a quantitative sense, these
targets have been refocused and the computational cost incurred, are the subjects
of Chapter 6. While not explicitly shown, the patch is actually two-dimensional
in shape. However, because the quadratic defocus is one-dimensional in nature,
only one-dimensional Fourier transforms, oriented in cross-range, are necessary for
the refocus. Furthermore, no overlap is required in range since there is no quadratic
phase component in this direction. Consequently, this filtering operation is much less

computationally burdensome than would be the case for two-dimensional filtering.
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Figure 5.3: Filter Overlap, Displacement and Length

The illustration of Figure 5.3 shows the relationship between filter length m,
displacement d and overlap ¢, for two adjacent filter operations. This concept is
extended to the two-dimensional example depicted in Figure 5.4, showing the sub-
division of an image into two patches, which are independently refocused and then
seamed back together. It is important to realize that this particular illustration is
completely fabricated and consists of neither real imagery nor even synthetic (math-
ematically valid) point target data. It is the only illustration not representative of
the synthetic data based on the mathematical model for the phase return from a
point target. However, it is helpful in depicting the process of space-variant post
filtering in two dimensions. In particular, note that the overlap between patches is
sufficiently wide to capture the worst-case extent of the blur as seen in the image
domain. Furthermore, when two patches displaced by d pixels are seamed back to-
gether, only the innermost d pixels for that patch (as centered around (zj, %)) are
retained. This process ensures that regardless of the point target position or spatial
extent of the blur, the target is not “missed” or partially encompassed in the process

of applying the space-variant post-filter to the patches.
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5.3 Accounting For Geometric Distortion

The tomographic assumption of planar wavefronts leads to a geometric distortion
of the image as well as the more troublesome space-variant defocus discussed here.
As is discussed in Chapter 3, the geometric distortion, based on the presence of
extraneous linear phase terms arising from wavefront curvature, is more prominent
than the space-variant defocus yet is easily compensated via a simple post-warping
procedure. The dominance of this distortion relative to defocus often necessitates
the geometric post-warping procedure for many imaging scenarios not exhibiting
quadratic defocus effects. Consequently, post-warping has long been considered a
standard processing step of PFA, and the post-warping computation time is factored
into the overall processing time of PFA. Fortunately, the post-warping procedure
is based on a simple bilinear interpolation scheme which is not so computationally

burdensome as to render PFA impractical.

The space-variant post-filtering step for image refocus is performed before the
final geometric-post warping procedure. However, proper refocus depends on filter
coefficients calculated using the point at the patch center, (zj, y5), which is the spatial
coordinate of the geometrically correct target position. That is, while the image
has not yet been geometrically rewarped, proper refocus requires a priori knowledge
of the final, post-warped (proper) position of that point in the slant plane. Based
on this requirement, one might propose to rewarp the image before applying the
space-variant post-filter for wavefront curvature correction. However, this approach
presents a problem in and of itself. The post-warping procedure does not simply
translate the points to their correct position, but instead uncurls them, based on the
degree of wavefront curvature at that point. This is because the warping function
is a continuous, space-variant function. Consequently, geometrically rewarping the
image serves to rotate the targets (and their IPR sidelobes) by an amount equal
to that required to rotate a tangent to the spherical wavefront at that point to be

parallel with the Cartesian cross-range (z') axis.
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Thankfully, based on the closed-form linear phase equations of Chapter 4, the
induced geometric distortion can be calculated (and compensated) for all spatial
coordinates in the slant plane, prior to applying the space-variant refocus filter. Once
refocused, the post-warping procedure can be applied to the image, as prescribed by
the polar-format algorithm. Recall Equation (4.12) from Chapter 4, which describes

the total linear phase ¢y; for a target in the slant plane at (g, ¥p):
$1e = 2 X" + Y + fe(wo, o) X' + f3(o, %6) Y (5.8)

where f;(zg, vp) X' and fz(zg, yo)Y’ define the extraneous phase terms in cross-range
and range, respectively, in the presence of wavefront curvature. The effect of the
extraneous phase terms is to distort (warp) a point pp correctly residing on the
Cartesian grid at (=, y)), to an improper, wavefront curvature-induced position p}; =
(%, y'f) on the polar grid. This situation is illustrated for one specific point in Figure
5.5. The linear shift property of the Fourier transform dictates that the linear phase
coefficients of Equation (5.8) specify actual distances in the spatial image domain,
and that specifically, the coefficients f:(zg,v5) and f3(zg, yg) relate to the offset
distances induced by wavefront curvature. Consequently, the target positions p; and

p; in Figure 5.5 can be described as follows:

P = (20, 90) + (Fa(20, 0)s fa(0, %)) (5.9)

= po + (f2(=0,%0), f3(%0:%0)) (5.10)

where pj and p/; are the correct and distorted positions, respectively. Thus, the
distorted (warped) position of a point is simply the geometrically correct position py
offset by the linear displacement due to wavefront curvature and is specified by the

following Cartesian ordered pair:
(z},97) = P

= (25 + fa(20, %0)> Yo + fa(20, %)) (5.11)

A problem arises in the calculation of (23, ¥4) using Equation (5.11). Specifically,

this equation describes the inverse of the situation encountered in space-variant post
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Figure 5.5: Effect of Geometric Distortion on Target Position

filtering. When post-filtering, one must determine (and derive the filter values for)
the geometrically correct coordinate pf = (zf, o) from the given warped coordinate
Py = (2%, y})- This requires the inversion of Equation (5.11) such that it specifies
the correct coordinate as a function of the warped coordinate. Rearranging Equation

(5.9) yields

(b, %) = P — (f2(20,%0)> f3(z0,%0)) (5.12)
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and consequently,

(%0, %0) = Po
= (2, 97) — (Ffa(20, %), F5(20,%0))- (5.13)
Finally, Equation (5.13) can be stated as the Cartesian ordered pair
(20, %0) = Po
= (2} — S0 %0)> Y5 — fa(20, %)), (5.14)

which is the inverse of Equation (5.11), as desired. This equation can then be used to
determine the geometrically correct coordinate z; for a point z; that has undergone
geometric displacement due to wavefront curvature, and subsequently, zj is used to

determine the linear phase error at that point, according to Equation (5.1).

The Equation given by (5.14) is a recurrence relation. This recurrence is due
to the coordinate (zg,y;) being present on both sides of the equation. An iterative
approach can used to solve this recurrence. Recall that the values fz(zg,yp) and
f3(xg, yp) are the coefficients describing the linear displacement of the point from its
proper position (zf,yp) when wavefront curvature is present. Furthermore, the values
of these coefficients, which directly infer a displacement distance, are also a function
of the proper target position (zj,y;). The recurrence can be approximately solved
by using an estimate of the displacement which is based on the warped coordinate
Py = (%,y}) instead of the proper coordinate (zg,%p), for which we are trying to

solve:
(z0, vh) = (& — Fa (=, ¥5), ¥r — falah, v5))- (5.15)

This approximation of (zg,y4) will become more accurate as successive iterations
are performed, with each using the previously derived (zf,v;) value for the next

calculation of fz and f;. This concept can be generalized and stated in the following
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iterative form:

Let: (z1,y1) = (25, ¥f)-
Then: (z5,y5) = (3«"} — fa(=1: 91)s y} — fa(21s yi)),

(x.{iv yé) =~ (:L‘} - fi(xlmy;): y_,f - fz}(xf‘z, y;)):

(@, Uh) = (2 = fo(@neys Unoa)s U7 = f3(Tnors ¥nr)), (5.16)
where (z!,%) is a successively better approximation of the “proper” point p, =
(x4, y4), to which it eventually converges. Or, more compactly,

(. 5) tn=1,
(apoy)={ (5.17)

(-’1"} — f3(Tn1s Yn1)s y'f — f3(zn1, y:z—l)) ifn>1,

where n is the number of iterations required such that (z},,y;) is sufficiently close
to the proper coordinate py = (zp,¥g)- It is unknown as to whether a closed-form
solution exists for Equation (5.17), and of course this solution would depend on the
values of f; and f;. Fortunately, it is not necessary to find a closed-form solution
because in practice, only a few iterations are required to calculate the undistorted
location py for each filter center coordinate p;. Furthermore, this coordinate is
not calculated for each pixel location in the image, but instead only once for each
patch center. Consequently, the computational burden associated with this geometric

distortion compensation calculation is negligible.

One caveat remains in the geometric distortion compensation of Equation (5.17).
As was mentioned in Chapter 4 in Sections 4.3.2 and 4.4.2, and described by Equation
(5.8), the total linear phase is represented as a sum of linear phase terms. These
terms include the phase components z4.X’ and y;Y”, which serve to properly place
the point in the spatial domain, as well as the extraneous terms fz(zg,y()X' and
fa(zh,v5)Y’, which distort the point from its proper position in cross-range and

range, respectively. For example, the geometric distortion for the broadside, small
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patch approximation is given by Equation (4.88) and repeated here:

¢t = 2o X' + Y + fo X'+ fpY’
xl ! $l2
~ opX +yY' + —2[3)/—0){’ - —é:—OY’, zp, Yo <K To, (5.18)

7 el ’ 2
where 2222 X" and —32-Y” denote the cross-range and range geometric distortion (er-
0 7o
ror) phase terms fz X' and fpY’, respectively. This equation has the linear form
consisting of the separable phase components, as specified by Equation (5.8). Conse-
quently, the geometrically proper point (zg, ¥g) can be calculated from the recurrence
relation given by Equation (5.15), where p; = (z,y}) is the coordinate of the patch
center within the warped image being refocused. Furthermore, fz(zg,yg) = ﬂi;—oy"l and
12
fi(zg,9) = —3% define the geometric offset distances from (x5, ) in cross-range

and range, respectively, due to wavefront curvature.

As another example, consider the exact linear phase error equation that represents

all squint angles, first given by Equation (4.126) of Chapter 4:

b1: = a10X’ + anlY’

= ? {tan @ [r. — ro + yo] + 2o} X' + (ro — 7)Y, ’ (5.19)
[+

where 8, specifies the mid-aperture squint angle measured from broadside, and r is
the distance from target to platform at mid-aperture. In this form, there appears
no straightforward method for the decomposition of Equation (5.19) into its proper
and linear distortion components, as specified by Equation (5.8). Instead it is in the

form

—_ ! ! -
$1 = Q1o o X 01 Y (5.20)

vy)~ ?
where the coefficients a; = ) and ag; e describe the warped location p’f of the
Zo:%0 Z0°%0
point properly residing at py = (zj,yg) in cross-range and range, respectively. This
form was first given in Equation (4.47) of Chapter 4. In this case, the geometric
displacement (error) terms are not separate from those of zy and y;. Thus, the

approach currently being discussed, using the relation of Equation (5.15), can not
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be used to determine the geometrically correct position of the patch center. Still, it

is necessary to calculate the inverse of this relation; that is, to determine the point

Py = (4, ¥o) given the point (z%,y}) in the warped image.

An alternative method must be devised for calculating the geometrically correct
point (x}, y}) given the more complicated linear phase expression of Equation (5.19).
To this end, consider the following mathematical “trick,” which refers to the coor-
dinates depicted in Figure 5.5. By the linear phase shift property of the Fourier
transform, the resultant, geometrically warped location p’ for the properly placed

point py = (zp, yp) is given by the Cartesian expression:

Py = (zf,¥})

= (alo(zalya) ’ aOl(za’ya))7 (521)
where the terms ajg and ag, are the linear Taylor series coefficients as derived in
Chapter 4, Section 4.3.1. This development is based on the understanding that
the extraneous linear phase terms defining the offset from (zf,y}) cannot easily be
isolated. Thus, this development does not rely on the separability of the extraneous

linear phase error terms from the proper terms, but instead considers py as the

inseparable combination of these terms. First, let

Py = —po + (p}) + 14
= —(20,%0) + (p}) + 1o, (5.22)

where pg specifies the proper coordinate for the point warped to p'f. Then, from
Equation (5.21),

plf - —(3::), yé)) + (0410(:6'%): aOl(za'yG)) +p6- (5.23)
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Rearranging yields

po = Py + (0, %) — (G104, 015 01 1))
= () 4)) + (Th, 98) — (@10, 0> Q01 1)
= ((x,,f + ‘7'.6 - alﬂ(za_ya)): (y_,f + y(I] - aOl(zB‘ya)))

= (20 ¥0)- (5.24)

This recurrence relation specifies the proper coordinate pg for the filter calculation,
based on the patch center given by p} in the warped image. As was the case previ-

ously, this recurrence can be solved by the following iteration sequence:

Let: (z1,91) = (2}, 95)-
Then: (b, 5) ~ ((«s + 2} — 0101 1)) (W + 91 — o )
= ((2xff - alO(:ll,yi)), (2y} - aol(zi’yi)))i

(x;, y.'{’;) ~ ((xff + xl2 - a'lo(xlz'ylz))a (y_lf + ?/é - aOl(zlz‘y/z)))7

));

(5.25)

(:L‘;” y;z) ~ ((x} -+ x;'z—l - alo(:-,n-—l'y, ))7 (y_’f + y:l—]. - a’Ol(x;

'
n~1 —1'¥n-1)

where (z,1) is a successively better approximation of the “proper” point Py =

z!), yh), to which it eventually converges. Or, more compactly,
00 %

(Z',y’) 1fn=1,
CAAES i
' ' .
((xf T Tp1— alo(,;_l'y;_l))’ (yf + Yp-1 — am(z;_x-y;_l))) ifn>1,
(5.26)

Again, this sequence quickly converges to a very accurate representation of py =

z4, yh). For the generalized squint-mode scenario of Equation (5.19), this recurrence
0 Yo
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becomes

(25 95) = § (@ + Ty = 72— {tan by [re,, — 70+ tpa] + 701 });

Te

(Y + Ynor — (To—Tc,._,)) ifn>1,
(5.27)

where (z,}) is at the center of the patch being refocused (in the warped domain),

and from Equation (4.67),

Fen = \[73 + T2+ 1,2 — 2n0, (5.28)

given the slant range from platform at mid-aperture to scene center of rg.

5.4 Filter Overlap and Width

The computational burden of space-variant post-filtering is reduced by varying the
filter only as often as necessary. In other words, the filter is applied to as large a
patch as possible, but not so large as to degrade the quality of refocus. For each
patch, the corrective quadratic phase function is calculated for the patch center
(x5, yg) according to Equation (5.1), or its simplified approximations, if applicable.
However, the patch center coordinate is first geometrically corrected to account for
wavefront curvature, as described in Section 5.3. Since the filter is not applied to
every spatial location in the image but instead across a given patch, the filter serves to
exactly compensate the wavefront curvature at the center point (2, y3), but is only an
approximate correction to those points surrounding the center. Points farther from
the center of the patch are not as well focused as those nearer the middle; therefore,
the patch size must be restricted to some maximum size m (and this size varies with
filter location within the image). Furthermore, it is important for adjacent filter
operations to overlap each other in the image domain as to ensure the entire spatial

blur (broadened IPR) is encompassed by a given filter or one of its immediately
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adjacent filter applications. This process is illustrated in Figure 5.4. In this way,
having provided the required minimum filter overlap ¢, an IPR will be correctly
focused, independent of the IPR’s position in the image and without regard to the
relative position of the IPR to filter. In other words, this overlap ensures proper
refocus over the continuum of point targets in the imaged scene, based on a filter
that is applied at discrete steps. The filter displacement d is the lateral movement of
the filter’s center in cross-range from one filter application to the next. It is simply
the difference between the filter length and the overlap. The relationship between

overlap, length, and displacement is illustrated in Figure 5.3.

How does one go about determining the appropriate filter overlap, length and
displacement for a given imaging scenario? First, consider filter overlap. The over-
lapping region of adjacent filter applications must be sufficiently wide in cross-range
to cover the spatial extent of the blur. This blur can be described as a broadening
of the IPR, and is based on the amount of Fourier domain quadratic phase at that
point in the image. The effect of quadratic phase is to broaden the IPR, in propor-
tion to the amount of peak quadratic phase present. This situation is illustrated in
Figure 3.8 of Chapter 2, for various amounts of induced quadratic phase error. The
mathematical development of Appendix A serves to provide an analytical, closed-
form expression for determining the IPR broadening, as a function of peak quadratic
phase (magnitude of phase at the edge of the signal). The reader is encouraged to
study the IPR broadening argument of Appendix A, which provides both a frequency
and spatial domain analysis, each coming to the same conclusion. However, in this
chapter, only the results of this analysis will be presented. Based on the analysis of
Appendix A, the IPR mainlobe broadening factor A;pp, also referred to the pixel

spread value An,, is found to be

Arpr="2 'fe' (5.29)

)

where ¢, is the maximum quadratic phase as taken at the edge of the frequency
extent X, where |X’| < X{, and X' is given by Equation (5.3). The quadratic phase

¢zt 41, (X') is space-variant and is given by the quadratic phase error Equations (5.1),
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(5.4) and (5.5), depending on the imaging scenario and amount of approximation
that is acceptable. Then, based on Equation (5.29), the minimum amount of overlap

¢, in pixels, is defined such that

4 'zl oy X’ Ka T -
c> |¢ o 1)l 2 , (pixels) (5.30)
T

where K, is the IPR mainlobe broadening factor due to windowing (sidelobe control)

and o, is the oversample factor in cross-range.

For example, one might calculate the minimum required overlap ¢ at the edge of
the L-Band patch described by table 5.1. Specifically, assume that an overlap between
adjacent filter operations occurs at the position (z},y;) = (1000,0). This spatial
location, along the z’ axis at the far scene edge in cross-range, is known to exhibit
significant defocus due to wavefront curvature. The Fourier domain frequency extent
is found to be in the range [—X]..X]], where X' = (7/p;) = (3.1415/1.25) =~ 2.5
rad/m, and |[X'| < X]. Thus, the frequency extent at the quadratic signal edge
is X!? ~ (2.5)®> = 6.25. Equation (5.1) will be used to calculate the maximum
quadratic phase error at this point. This is the generalized equation which gives
the exact phase for all patch sizes, ranges, squint angles and center frequencies.
When substituting the value (X;* = 6.25) for X** in Equation (5.1), fhis calculation
yields a peak quadratic phase error ¢y of 3.67 radians, where (2},y;) = (1000, 0),
ro = 4972m, §;, = 0° (broadside), ky = (47/A) =~ 52.4, and r.(z}, ¥, 7o) = 5071
(from Equation (5.28)). It is interesting to note that if the small patch assumption
is applied, then the approximation of Equation (5.5) yields a peak quadratic phase
error of ¢9; = 3.8, an error of about six percent from the actual value. Thus, this
approximation is not appropriate in this case. However, it is known a priori not to

apply this approximation, since zj, yj <K 7o-

Based on the peak quadratic phase error ¢o; = 3.67 just calculated for the L-Band
example, the IPR broadening factor can now be calculated, and subsequently, the
filter overlap at (zg, ) = (1000,0) can be determined. The broadening factor Arpr
is based on the analysis of Appendix A and the simple result of Equation (5.29). From
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this equation and the quadratic phase error @o; just calculated, A;pp = (4¢por/7) =
(4 x 3.6) = 14.4. This is a dimensionless broadening ratio based on the ideal IPR
width in the processed image. The ideal IPR width is determined by many factors in
real imagery but in the ideal case, is based on the theoretical image resolution and the
pixel scale factor (which in this situation, accounts for the specific oversample ratio
of the image). For the L-Band parameters of Table 5.1, the ideal cross-range IPR
width, in pixels, is found to be (p,/s;) = (1.25/0.65) = 1.92, which is the oversample
value 0,. Multiplied by the broadening factor A;pr = 14.4 yields a cross-range blur
of (14.4 x 1.92) ~ 28 pixels. Additionally, there is another broadening factor, K,
which represents the widening of the IPR mainlobe due to Taylor filtering. In this
case, K, = 1.4, so the maximum defocus is (28 x 1.4) = 40 pixels. Thus, the refocus
filter overlap ¢ at this spatial location in the image must be at least 40 pixels, as
prescribed by Equation (5.30). As will be illustrated in Chapter 6, there is additional
computational cost, yet no improvement in quality of refocus when this overlap is
increased. However, should the minimum limit on the overlap be violated, refocus
can not be achieved, and in fact targets will become very distorted once the filter
is applied. The overlap determination is based entirely on analytical, closed form
calculations. Consequently, it is a simple matter to incorporate these calculations into
a computer algorithm that calculates overlaps on an as-needed Basis. Furthermore,
the computation time for these calculations is negligible compared to that of the

filtering operation.

Having calculated the appropriate filter overlap, the filter length may now be
considered. In practice, these calculations are independent and may be done in
either order. The filter length is, in essence, dictated by patch width, in cross-
range, to which the filter is applied. Since the refocus filter exactly compensates
only the center pixel of the patch, the patch size must be constrained so as to limit
the residual quadratic phase error at the edges of the patch upon refocus. In this
way, the IPR broadening is constrained to within sub-pixel levels across the patch,

and consequently, the residual defocus after filtering is visually imperceptible. The
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calculation of maximum patch size is similar to that for maximum scene size, as
described in Section 3.3 of Chapter 3. However, in the case of overall scene size, the
reference point is always the center reference point (CRP), where (zf,%) = (0,0).
In contrast, the maximum patch size for a filter application is space-variant as a
function of filter center (z§,%h). Thus, it is convenient to calculate filter length
based on a formula for the rate of change of the quadratic phase at the filter center.
Then, by knowing this rate of change, the spatial distance (length) of the filter can
be determined so as to maintain a maximum acceptable residual quadratic phase

error at the farthest-most patch edges in cross-range.

As was the case with the overall scene size calculations, the residual quadratic
phase error is to be held to within #/4 radians in order to constrain the residual
defocus to sub-pixel levels. Once having calculated the rate of change of quadratic
phase error at the filter center, it is a simple task to determine if the ﬁh':er extends
beyond the point where the applied phase correction is not sufficient to adequately
compensate (to within 7/4 rad) the far-edge points. The quadratic phase error
equation of (5.5) will be used for the rate of change calculation. While this equation
serves as a small patch approximation to the actual phase error, it is sufficiently
accurate for use as a patch size estimator, at least for most imaging scenarios. The
rate of change of the quadratic phase error in cross-range is of the following general

form:

] 1 6¢ﬂ3',' (XI,YI)
Blapap (X, Y") = — °zg’)x, : (5.31)
0

From Equation (5.5),

y ! ! a [
Dt ) (X Y) =

= B0y 5.33
—’I‘oko ’ (E). )

The partial derivative is taken with respect to zj because we are concerned with the

rate of change in cross-range. Furthermore, the blur is one-dimensional in cross-range
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only, and the maximum frequency extent of the aperture Xj must be considered,
where | X'| < X!. Thus, Equation (5.33) is more appropriately stated as

; N .

Plap) (X1) = %X1 : (5.34)
This rate of change in rad/m, referenced from the filter (patch) center (zp,p), is
multiplied by some maximum patch radius m,, yielding an overall change of phase
from center to patch edge of no more than /4 radians. In this way, the residual
defocus at the filter edge is maintained to within sub-pixel levels. This concept is

described mathematically by the inequality

: T
Bz (K1) X e < (5.35)

Rearranging Equation (5.35), the maximum allowable patch radius m;, in cross-range

from the center filter position (zg,yp) is found to be

4z (X1)

By substitution from Equation (5.34),

4[]
Rearranging,
oo (5.38)

m e i
aEEAb G
where m, is the maximum patch radius. The relation may be also be expressed in

terms of image resolution in cross-range, via substitution from Equation (5.3):

’I'I'Tokg pgToko -
_ , 5.39
S Fal(y  anlg) (539

The filter length m is then twice the filter radius, or 2m,. Furthermore, the distance

is converted to pixels by the multiplication of the inverse scale factor, 1 /8z. Thus,

wroky p2roko ) _
m = . ixels 5.40
S Tl IXE  Znsglay] (pixels) (5.40)
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As would be expected, the maximum patch size that can be refocused necessarily
decreases for reduced slant range ro, reduced center frequency (decreasing ko), im-
proved resolution (increasing X or decreasing p.), and towards the far edges of the
imaged scene in cross-range (increasing xp). These are the scenarios that intensify
the wavefront curvature effects under the planar wavefront assumption. These sce-
narios are consistent with those that increase the overall quadratic phase error as

described by Equations (5.1), (5.4) and (5.5).

The maximum patch diameter m (which is also the filter length) can now be
calculated for the L-Band example. As before, the parameters for this example are
given in Table 5.1. From Equation (5.40), the maximum patch radius for the filter
applied at (zhyh) = (1000, 0) is (1.25% x 4972 x 52.4) /(2 x 7 x 1000) ~ 64m. The filter
length in pixels is then found by taking the product of this value with the inverse
scale factor: m x 1/s, = 64/0.65 =~ 98 pixels. Of course, the phase error function
of Equation (5.5), which is quadratic as a function of the spatial target location
xy, implies a rate of change function that is also space-variant (though linear) with
respect to zy. This is obvious since the latter function is the derivative of the former.
Thus, one must be cautious when applying the rate of change criteria for filter length
across the image. For example, the rate of change of the quadratic phase error at
the CRP is zero, yet a filter of full image length will not suffice to compensate the
defocus. Consequently, one must “look ahead” when calculating the filter length at
a given point, to ensure the filter is not too wide to adequately compensate the edge-
most pixels, whose rate of change of quadratic phase is different than those nearer
the center of the filter. For squinted scenarios, the above development for maximum
patch radius m, may be repeated using the squint-mode Equation (5.4) instead of

the broadside equation (5.5).
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5.5 Filter Displacement

The discussion of the previous section raises the issue of a potential incompatibility
between filter displacement, overlap and length, as prescribed by Figure 5.3. In fact,
the L-Band example being discussed brings to light this very serious contradiction.
Specifically, the minimum filter overlap ¢ for the L-Band example was calculated
from Equation (5.29) and found to be ¢ = 40 pixels. Meanwhile, the maximum patch
diameter m (which is twice the filter radius m,) was determined by Equation (5.40)
to be m = 98 pixels. When implemented within a computer algorithm, typically a
fixed-radix, fast Fourier Transform is implemented. In the case of the typical radix-2
algorithm, FFT lengths are always powers of two. Since the filter operation consists
of an FFT of the patch, complex-conjugate multiply of the corrective quadratic phase
function in the Fourier domain, and an inverse FF'T of the refocused patch back into
the spatial domain, the filter lengths are constrained to the FFT radix sizes. If a filter
length of 98 is desired, then the next higher power of two is 128. However, this filter
length is greater than the maximum allowed for proper image refocus! Fortunately,
in this case, one may choose the next smaller power of two, which is 64, and a filter
length of m = 64 is sufficient to provide the required minimum overlap of ¢ = 40

pixels. However, it does so just barely.

In many imaging scenarios, there will be certain (zp, yg) coordinates in an imaged
scene where the maximum allowable filter width is less than the minimum required
overlap, and hence the contradiction. However, this conflict is easily resolved by
slightly rethinking the meaning of “filter length” and tying this definition to filter
displacement d as opposed to filter length m. In this way, except for the possible
higher computational burden associated with a longer filter, there will no longer be
a maximum constraint on filter length. Instead, this maximum constraint is placed
on filter displacement d. Hence, the contradiction will be solved for all imaging

scenarios. This process is described as follows.

A filter’s maximum length m is defined as twice the distance from the filter
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center to the point at which pixels can no longer be adequately focused based on
the filter parameters for that patch. However, a filter may need to be longer than
this maximum in order to provide a sufficient amount overlap with the previous
filter operation, so as to cover the spatial extent of the IPR blur. In this case, only
the innermost d bits (referenced from (z},y4)) will be retained upon refocusing the
patch. That is, the width of the refocused patch is controlled by retaining no more
refocused pixels, after filtering a specific patch, than the maximum prescribed by
Equation (5.40). So, let the displacement distance d be constrained as follows:

wroka _ piroke
T 2s,|zh| X12 2msg|zh|

(pixels) (5.41)
Then, the filter length m must be equal to d + ¢. That is,
m=c+d, (5.42)

where ¢ is the overlap, whose minimum is defined by Equation (5.30), and d is
the displacement, whose maximum is given by Equation (5.41). Thus, except for
the increased computational burden associated with a larger overlap from one filter
application to the next, there is no longer a maximum limit on filter length m. For
this example, the maximum displacement, d is 98 pixels, and the minimum overlap ¢
is 40 pixels. As was described in Section 5.1 and illustrated in Figures 5.1 and 5.2,
the chosen values of ¢ = 64 for overlap and d = 64 for displacement (m = 128) have
indeed turned out to be appropriate, based on the analysis of this section. Note, too0,
that the minimum displacement d must be one pixel, to ensure “forward movement”
of the filter from patch to patch. Equation (5.41) will yield (at least) this minimum

displacement for all known imaging scenarios.

The filter is applied to successive patches across the image in cross-range, each
separated from the previous by the displacement distance d. The innermost d re-
focused pixels for each patch, as centered around (7, yg), are then copied to a new
storage area representing the refocused image. In this way, each pixel will be focused

once and only once. Storing the refocused pixels in a new memory area instead
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of in-place ensures the overlap operations are always performed on the prefocused
Fourier data. The space-variant post-filter design of this chapter will be applied
to the computational examples of Chapter 6, which will be analyzed in terms of

processing burden and quality of refocus.
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Chapter 6

Performance of the Space-Variant

Post-Filter

The previous two chapters presented a geometric model for the phase return of
a point target, and subsequently, the phase errors arising from the faulty planar
wavefront assumption were mathematically quantified. A unique contribution of
this dissertation is the generalized phase return model that applies to all squint
scenarios without relying on small patch approximations. This generalized model is
an extension the broadside-only model originally presented in [7, pp. 355-365][10, 11],
and Chapter 5 shows that the original broadside-only model is simply a specific case
of the new, generalized model. Also in Chapter 5, the second-order phase error
equation, derived from the generalized phase return model, was used as the basis
for the space-variant post-filter phase correction factor. Furthermore, a corrective
method (algorithm) was Qroposed for the efficient application of this filter to polar-
formatted imagery defocused by uncompensated wavefront curvature. This method
is efficient in that it changes the filter only as often as necessary to constrain residual
defocus to within subpixel levels. This is accomplished by determining an appropriate
(minimum) filter overlap ¢, maximum displacement d, and filter length m, where

m = c+d. The equations for ¢, d, and m, as described in the previous chapter, are also
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unique and important contributions of this dissertation, as is the iterative numerical
method which accounts for geometric distortion during the refocus operation. Adding
to the efficiency of this algorithm is the knowledge that the refocus filter remains

one-dimensional, in cross-range only, even for squint-mode collection scenarios.

What remains to be explored is how well the space-variant post-filter works in
practice, and how efficient it is (in conjunction with the polar-format algorithm),
compared to other image formation algorithms. Thus, at this point, a number of
questions arise regarding the performance of the space-variant post-filter. For exam-
ple, how does filter size, displacement and overlap affect computational performance?
How can these parameters be altered to better the computational efficiency, without
affecting the quality of refocus? How does the computation time of space-variant
post-filtering, in conjunction with polar-formatting, compare to other image for-
mation methods, for both squinted and broadside collection scenarios? Finally, in
practice, just how good is the quality of refocus, anyway? These questions will be
addressed in this chapter. As will be shown, space-variant post-filtering provides an
excellent solution to the wavefront curvature problem in polar-formatted spotlight
mode imagery, both in terms of computational burden and quality of refocus, for
both broadside and squinted collection geometries. Furthermore, even with the ad-
ditional computational burden of space-variant post-filtering (which is typically as
little as 30% of PFA time), no other competitive image formation algorithm shows

a clear computational advantage over PFA.

6.1 Quality of Refocus

A number of issues have been discussed which lead one to believe that space-variant
post-filtering does not perfectly compensate the phase errors (and consequent defo-
cus) associated with wavefront curvature. Indeed, the post filter does not provide

perfect compensation. However, it is hoped (and will be demonstrated here) that
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in most imaging scenarios, refocus is performed to within subpixel specifications, as
prescribed by the residual quadratic phase error limit of 7/4 radians. That is, the
refocus is “good enough,” at least as perceived by the human eye. Recall from Chap-
ter 4, Equations (4.47) and (4.48), the Taylor series expansion of the phase function
&z 41, (X', ") expanded around the point (Xo, Yo):

¢"’6ry6 (XI, Y’) = Qgp + amX' + a01YI -+ a20XI2 (61)

+ CL11XIY’ + a02Y’2 + ...

where

o —1_ 6i+j k('f'z - Tt)
% =\ iij! 8X0Y?

For the purpose of post-filtering for wavefront curvature correction, this expansion

(6.2)

X=Xo,
Y=Y,

has been limited to the second-order, quadratic term in cross-range (remembering
that the quadratic phase error terms in range are always zero). That is, the gener-

alized quadratic phase error ¢2:(X’,Y") for all squint angles is simply

Boria 1) (X5 Y') = Paraty ) (X) (6.3)
= ag X", (6.4)

and by Equation (5.1),

1 To—Te To (7'0 - Tc) Th’r?
!y XI = = [ - + T
¢2t(zo,yo)( ) 2{ ko reko 7‘2 ko
2rotanfs [, . ToYoTo = Lo7g
——_Tcko 0 r2
[+
7o tan® 0 3 — 2y + w0
Rl [2rc — 8ro + 20 + 2 Wg o TO] X",
Tck’o Te

(6.5)

where ko = 4—";& = 4—/{’- is the nominal phase history radius, r¢ is the slant range
from platform to CRP at mid-aperture, 7, is the distance from the platform at mid-
aperture to the target positioned at (z§,y}), 0 is the squint angle (measured from

broadside), and X’ is the cross-range frequency extent.
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By nature of the Taylor series expansion of Equations (6.1) and (6.2), the higher-
order terms “fall off” (decay) quickly and hence, the quadratic term given by Equa~
tion (6.5) dominates. However, there still exist higher order phase terms in the
Fourier space due to wavefront curvature. When analyzing the refocused point tar-
gets via their frequency response plots, there is evidence of the higher-order phase
errors which serve to defocus the target. Fortunately, as expected, even for those
systems most sensitive to wavefront curvature defocus, namely the L-Band and UWB
SARs, this residual phase error does not induce blur that is visibly noticeable in the
magnitude-detected image. This is true even of the highest resolution systems known
to date. However, since post-filtering does not compensate higher than second-order
wavefront curvature phase errors, and because radar system specifications are con-
tinually improving, it is safe to say that most imaging scenarios are adequately
refocused, but perhaps not all. The quality of refocus for the most severe scenarios
currently encountered, those in the L-Band frequency spectrum, are considered in

the examples below.

First, consider the SYNTARG, squint-mode L-BAND patch, as shown in Figure
6.1. This figure depicts a scene of circularly arranged point targets, formed by
the polar-formatting algorithm, before applying the new space-variant post-filter for
wavefront curvature correction. This scenario represents a patch diameter D, of 2400
m, a center frequency of 1.25 gHz and a spatial resolution of 1.25 m in both range
and cross range (see Table 5.1 for a complete list of parameters). In addition, the
radar is squinted 30.5° at mid-aperture towards the CRP. While the targets were
originally placed in a perfectly circular pattern in the ground plane, the geometric
distortion (into an irregular ellipsoid) resulting from the projection into the slant
plane is readily apparent. There is a distortion in both the range and cross-range
direction, due to a tilt in the slant plane induced by the depression angle and degree
of squint. Fortunately, for the purpose of slant plane wavefront curvature correction,
one need not be concerned with the distortion resulting from projecting the ground

plane targets into the slant plane. Instead, the target coordinates (zj, yp) in the slant
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Figure 6.1: L-Band Squint-Mode Collection Geometry with Associated SYNTARG
Target Patch (No Wavefront Curvature Correction)

plane are sufficient for correcting defocus in the slant plane image, without regard

to how an imaged object is projected from the ground into the slant plane.

Figure 6.2 presents an expanded view of the defocused area bounded by the rect-

angular dashed-line box within Figure 6.1. In Figure 6.2 (a), this area is shown
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Figure 6.2: Enlarged View: Squint-Mode Point Targets Before and After Refocus
(8s = 30.5°)

prior to space-variant post-filtering, and in view (b), the filter has been applied and
the patch refocused. These point targets differ from those shown previously in that
the sidelobes have not been reduced through Taylor aperture weighting. The phase
history trimming is performed with respect to the standard (z',y’) Cartesian coor-
dinate system and consequently, IPR sidelobes are oriented strictly horizontally and
vertically even for this squinted collection scenario. Casual observation of the point
targets before and after filtering helps to reassure oneself, at least in a qualitative
sense, that the equations and method used to refocus the targets are correct, even
for this complicated squint-mode scenario. Figure 6.3 demonstrates in a more quan-
titative manner, the quality of refocus for a squint-mode point target. The impulse
frequency response (IPR) plots of Figure 6.3 (c) represent a point target near the
edge of the scene before and after refocusing, as illustrated in Figure 6.3 (a) and (b),
respectively. Of particular interest are the elevated sidelobes appearing to the left of
the mainlobe in Figure 6.3 (c). While not clearly seen in the refocused, magnitude-
detected image of part (b), the IPR plot of (c) reveals this anomaly, which is due
to the uncompensated higher-order phase errors present in the phase history due to

wavefront curvature. Recall that the Taylor series expansion was carried out only
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through the second order terms. At that time, it was stated (without supporting ev-
idence or mathematical analysis) that the remaining, higher-order phase terms were
dominated by the second order terms. Thus, these higher-order terms were thought
to have a minimal impact on the residual defocus after space-variant post-filtering.
The plot of Figure 6.3 (c) shows that there is some residual higher-order phase error
present in the refocused target; however, even for this severe case of L-Band targets
located near the scene edge, the effect of this residual phase error is imperceptible
to the observer of the imagery, as seen in part (b). Should it ever be necessary to
compensate the third-order (or higher) phase error, this would require the expansion
of the Taylor series to the third-order (or higher) terms, and the consequent integra-
tion of this additional phase correction factor into the space-variant post-filter. It
remains to be seen whether these higher-order terms would also be one-dimensional
in cross-range. This research activity is suggested in the Future Work section of

Chapter 7.

The broadside, L-Band SYNTARG point target scenario has been revisited in
terms of quality of refocus, and the results are shown in Figure 6.4. The imaging
parameters for this scenario are the same as those given in Table 5.1. In this case,
a 40-dB Taylor window has been applied to the Fourier data for sidelobe reduction.
Again, while higher-order residual phase errors are evident in the refocused point
target, as shown in the IPR plot of Figure 6.4 (c), these are not noticeable in the
magnitude-detected image of the refocused target shown in part (b). In fact, given
the amount of defocus present in Figure 6.4 (a), the degree of correction shown in

part (b) is quite remarkable.

The computationally efficient application of the space-variant post-filter requires
that the filter function be varied only as rapidly as necessary to maintain the residual
defocus at an acceptable level. This is accomplished by sufficiently overlapping ad-
jacent filter operations to ensure that the extent of the spatial blur is compensated,
and by limiting the spatial displacement between adjacent filter applications as to

constrain the residual defocus present after filtering. In essence, this concept is that
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Figure 6.3: Refocused L-Band Point Target with Associated IPR Plot (Squinted
Collection Geometry, 8, = 30.5°)

of a space-variant, spatial-domain convolution filter that is adjusted and applied in
discrete steps across a continuum of image points. The proper selection of the filter
overlap ¢, displacement d, and length m are dictated by Equations (5.30), (5.41)

and (5.42) of Chapter 5, respectively, and are repeated here for convenience. The
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minimum amount of overlap ¢, in pixels, is defined such that

41y o (X])| Ko0z
c> I¢z°’y°( l)l ° , (pixels) (6.6)

—

n

where @ . (X]) is the space-variant quadratic phase error as given by Equation
(5.1), (5.4) or (5.5). The particular imaging scenario and amount of approxima-
tion that is acceptable dictates which phase error equation for @ . (X7) will apply.
Furthermore, K, is the IPR mainlobe broadening factor due to windowing (side-
lobe control) and o, is the oversample factor in cross-range. The filter displacement
distance d, in pixels, is constrained as follows:

2
71'7‘0]{70 _ pxrgkg

= ixel T
—_ 2SI|$6IX{2 27‘-Sa;|$6l ? (plxe S) (6 )

where kg is the nominal phase history radius, ry is the slant range at broadside, s,
is the cross-range scale factor, and zj is the spatial filter distance from the CRP in
cross-range. This constraint on d ensures the residual quadratic phase error upon
refocus is limited to /4 radians, and consequently, the image blur will be held to

subpixel levels. Finally, the filter length m must be equal to d - ¢. That is,

m=c+d. (6.8)

It has been suggested that with the proper selection of filter overlap, displacement
and length parameters, as dictated by the design equations of (6.6), (6.7) and (6.8),
there will be no visual discontinuities in the image data upon refocusing. This is
demonstrated for a set of closely placed point targets, as shown in Figure 6.5 (a). This
figure represents a broadside collection of L-Band point targets whose parameters are
given by Table 5.1, and covers an area of 120 x 120 pixels. The filter calculations are
based on the discussion of Section 5.5 and Equations (6.6) and (6.7). The overlap
is calculated to be ¢ > 40 pixels and the displacement is found to be d < 98 pixels.
The filter length m is equal to ¢+ d by Equation 6.8, and since d can be less than
98 pixels, m is chosen such that m = 64 (a power of 2), c=40,andd=m—-c=24

pixels. Thus, a refocus filter of (FFT) length 64, displacement of 24, and overlap of
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Figure 6.4: Refocused L-Band Point Target with Associated IPR Plot (Broadside
Collection Geometry)

40 (all values in pixels) is applied to the crowded point target set of Figure 6.5 (a),
and this filter meets all the specified constraints. In this case, the quadratic phase

correction factor is adjusted and reapplied every 24 pixels, as specified by d. Thus,
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six discrete filter operations are applied in a sweeping motion across the image data
in the cross-range direction, each overlapping the previous by 40 pixels, in order to
span the image area which is 120 pixels in cross-range. As is shown in Figure 6.5
(b), the targets are refocused without visible discontinuities. The IPR frequency
response plot of Figure 6.5 (c) shows the quality of refocus, and helps to confirm
(at least for one example) that the parameter calculations are appropriate. As will
be discussed in the Future Work section of Chapter 7, any phase discontinuities
present in the data need still be removed before using the image (as one of a pair)

for an interferometric estimation of terrain height.

6.2 Computational Complexity

6.2.1 General Complexity

Many possible approaches exist to evaluate the computational complexity of the
space-variant post-filter. One approach is the estimation of the number of complex
operations for the algorithm. This approach is consistent with that often used to ana-
lyze the running time of image formation algorithms. Consequently, via the complex
operations count, the additional computational burden of the space-variant post-
filter can be analyzed with respect to the standard PFA algorithm. Furthermore, the
performance of PFA in conjunction with space-variant post-filtering (PFA/SVPF)
can be compared to other competitive image formation algorithms which compensate

wavefront curvature.

A complex operation is one radix-2 FFT butterfly, and a single radix-2 FFT
butterfly consists of one complex multiply and two complex additions. Thus, the
butterfly equates to four floating point multiplies and six floating point additions for
a total of ten floating point (real) operations. Assuming an equal computational cost

for both multiplies and additions, it is reasonable to use a 10-to-1 conversion from
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Figure 6.5: Resolvability of Crowded L-Band Targets (Broadside Collection Geome-
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complex to floating point operations (flops) for FE'Ts as well as at all other stages
of evaluation [12, pp. 479]. Thus, it is a simple matter to convert between complex

and floating point operations, if necessary. The complex operation count Cpy: for a
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radix-2 FFT of size m is discussed in [90] and found to be

Cipr = (%) log, m. (6.9)

With regard specifically to the process of space-variant post-filtering, each filter
kernel of length m, where m is typically a power of two, is multiplied, point by point,
by the Fourier transform of the m image data pixels centered at the image location
(x5, yp)- The filtered data are then inverse Fourier Transformed into refocused image-
domain data. In terms of complex operations, the forward/inverse Fourier transform
operation in conjunction with the with conjugate-multiply filter operation done in
between yields m log, m + m operations according to Equation (6.9). Given a rect-
angular image of n; X n, pixels in the cross-range and range dimension, respectively,
as well as a filter overlap of ¢ pixels and filter displacement of d = m — ¢ pixels, the

overall complex operations count C, for space-variant post-filtering is found to be

C, = ’:L"z”j (log, m +1). (6.10)

In terms of complex operations per pixel Cp/piz, the overall operations count is divided

by the number of image pixels:

(log,m+1). (6.11)

Cp iz =
p/piz m—c

As previously stated, the floating point operations count per pixel, Cf/piz, is ten

times that of the complex operations count:

Crpiz =10 X Cp/pia
10m
m—-c

(logom +1). (6.12)

Recall that the filter overlap ¢ has a minimum value dictated by Equation (6.6) and
the displacement d is constrained to the maximum value specified by Equation (6.7).
Consequently, according to Equation (6.8), the filter length m is the sum of ¢ and d.
However, the overlap ¢ can be further increased, and/or the displacement d further

reduced, while still meeting the specified filter criteria, as long as (m —c=d) > 1.
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The floating point operations count C/piz of Equation (6.12) is at its worst when
the displacement d is minimal; that is, when d =m —c¢= 1. In this case, the upper

bound on computational complexity, big-oh or O() [84, pp. 23-41], is found to be
O(Cyjpia) = mlogym, (6.13)

where m is the length of the space-variant post-filter, for some fixed-dimension im-
age of ny x n, pixels. This complexity is equal to that of the image-wide (and tall),
two-dimensional Fourier transform which serves as the basis of the polar-format al-
gorithm. Thus, one may already take comfort in knowing that the space-variant
post-filtering step surely will not dominate the PFA computation time, particularly
upon considering the additional, costly polar-to-rectangular reformatting step re-
quired of PFA. Indeed, as will soon be demonstrated, the post-filtering step increases

the overall computational burden of PFA by as little as thirty percent.

As described by Equation (6.12) the floating point operations count Cfpi, varies
as a function of the values m and c¢. Consequently, a graphical representation of
the operations count consists of a family of curves, each curve representing some
fixed overlap value of ¢ and varying over some range of m. This family of curves,
representing the floating point operations count (per pixel) for a reasonable range of
¢ and m, is given in Figure 6.6. The computational curves are nested as a function
of ¢, as observed in Figure 6.6. Thus, in order to reduce computation time, it is
generally desirable to minimize the filter overlap ¢ for a given imaging scenario. The
effect of increasing the overlap c¢ is to move to a higher computational operations
curve, while having no beneficial effect on the quality of refocus of the post-filtered
image. In situations where the filter length m must be increased (to fit a power of
two), and the displacement d has been extended to its maximum, then ¢ may have
to be increased, such that ¢+ d = m, with no detrimental effect on quality of refocus

but at an additional computational cost.

Once having been chosen, the values of ¢, d and m may remain fixed as the post-

filter is moved across the image, assuming these values are calculated from Equations
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Figure 6.6: Post-Filter Operations Count as a Function of Filter Width and Overlap

(6.6) and (6.7) and are based on the worst case quadratic phase error ¢; for the entire
image, which occurs at points (zp,y;) along the Cartesian axes at the far edges of
the scene (for broadside collections). In this case, the overall computational burden
can be calculated simply by multiplying the appropriate flops/pixel value calculated
from Equation (6.12) (or Figure 6.6) by the total number of pixels in the image. The
overall computational burden can be reduced by varying ¢, d and m as a function
of filter position (zp,yg), but this computational analysis, based on this scheme of
space-variant overlap adjustment, is beyond the scope of this dissertation. However,
even for a fixed filter overlap ¢, an optimal, fixed filter length m can be chosen so
as to reduce the overall computational cost of space-variant post-filtering, as shown

next.
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6.2.2 Adjusting Filter Parameters to Reduce Computational
Cost

For each overlap value ¢, an optimal filter length m,y exists which minimizes the
computational cost for that ¢. This optimal filter length is given by mept(c) and is
derived as follows. The filter length calculation of Equation (6.12) is a function of m

and c and is shown to be

Cf/pi:z = Cf/piz(m, c) (6.14)
10m
= (log,m+ 1). (6.15)

The minimum value of Cj/piz(m, c) is found by setting its partial derivative, with
respect to m, equal to zero. This yields the optimal filter overlap c for some given

filter length m, or c,pe(m), as follows: From Equation (6.15),

0 Cf/p,-z(m, C) _ 0 ,},?_7.7:; (logz m+ 1)

om - am (6.16)
10 (lnm +1> __10m lnm_*_1 4 10
T m—c\ In2 (m—¢)2 \ In2 (m—c)ln2 "’
(6.17)

Setting the RHS of Equation (6.17) to zero and solving for ¢ yields the following:

10 (lnm +1) - 10m Inm +1) 4+ 10 —0 6.18
m—c \ In2 (m—c)2 \ In2 (m—c)ln2 (6.18)
Reducing this yields
Inm Inm m—c
(m—c¢) (m+1> —m<m+l>+ s =0. (6.19)
Y SN I S
In 2 In2 In2 (6:20)

Solving Equation (6.20) for ¢ yields

e lnm+1+ 1 . m
2 m2)~ "Im2 (6.21)
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and further reducing this relation results in

Inm+m2+1\ 1
(nm net ):-. (6.22)
m C
Furthermore,
m m
= = 2
¢ (lnm+ln2+1) <1nm+1.6931>' (6.23)

Finally, because this development is based on the partial derivative expression of

Equation (6.17), then

m
Copt(m) = (mﬁ) (624)

is the optimal filter overlap ¢ for some given filter length m. However, for maximum
computational efficiency, it is desirable to use the minimum value for the overlap c as
calculated from Equation (6.6), and to adjust m to achieve the optimal (minimized)
computational burden while obeying the constraint on displacement d as specified
by Equation (6.7). Consequently, it is necessary to derive the optimal filter length
m for a given overlap ¢; that is, to derive myp(c). This requires the inversion of
Equation (6.24), such that mgp:(c) = copt 1 (m). Careful inspection of Equation (6.24)
indicates that the mathematical inversion required to represent m as a function of
¢ is not straightforward. As an alternative to direct mathematical inversion, one
may fit a curve to the data, whereby the calculated value cope(m) is considered the
independent value and subsequently, a function is derived (fitted) to determine m.
This curve fits the computational minima of each function of m (for a given overlap
c) and consequently, describes the computationally optimal filter length m,p; for a
given overlap ¢, or myy(c), as desired. The fitted curve for mgp(c) is described by

the polynomial

Mept(€) = 1.265 x 10722% + 7.43z — 21.393. (6.25)

The filter length m which yields the optimal computation time for a given overlap

¢ is determined by m,p:(c) and is plotted in Figure 6.6. For a given imaging scenario,
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it is desirable to adjust the length of m towards the optimal described by mp(c),
while keeping ¢ constant (and on the lowest allowable computational curve, as defined
by Equation (6.6)), in an effort to minimize the overall operations count. All the
while, the displacement value d is equal to m — ¢ and constrained from above by
Equation (6.7), while minimum allowable value for d is one. That is, for a any
fixed value of ¢, m may be adjusted towards the optimal value mgy(c), providing
(m—c¢) > 1and d = (m—c) is less than the maximum prescribed by Equation
(6.7). Additionally, depending on the type of FFT implemented, there may be a
constraint on the allowable values for the filter length m; for example, a power of
two when a radix-2 FFT is incorporated. In such a case, the values of ¢ and d are to be
adjusted within their allowable constraints to achieve the best possible computational

efficiency, for a value of m which meets the given FF'T size constraints.

6.2.3 Additional Computational Burden of Post-Filtering to

Polar-Formatting

At this point, it is timely to discuss the additional computational burden imposed
upon the polar-format algorithm by the space-variant post-filtering process. To
this end, the operations count Cf/pie of Equation (6.12) (and associated graph of
Figure 6.6) will be further examined. Equation (6.25) defines the optimal filter
length moy(c) yielding the minimum operations count for some overlap c. Thus, the

optimized floating operations count Cop fpiz for this overlap c is
Copt flpiz = Ct/pia (mopt (c), C) (6.26)
and the associated optimal filter displacement dy(c) is

dopt(€) = Mept(c) — c. (6.27)

From Equations (6.12), (6.25) and (6.26), the optimal floating point operations
count for a filter with an overlap ¢ of 10 pixels is Cop i iz = C' ppiz(mope (10),10) =
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C'piz(54.17,10) = 82.9 flops/pixel. Similarly, for a filter of overlap of ¢ = 80 pixels,
Copt  piz = C piz(Mopt(80), 10) = Crpiz(653.65,80) = 118.0 flops/pixel. Thus, for
the range of overlaps and filter lengths representative of typical imaging scenarios,
as shown in Figure 6.6, the floating point operations count ranges from about 83 to
118 flops/pixel, specifically for the post-filtering process. Next, this operations count
must be compared to that of the polar-formatting algorithm in order to determine
the relative computational burden of post-filtering with respect to polar-formatting.
A thorough analysis of the floating point operations count for the polar-format al-
gorithm is presented in Carrara’s textbook [12, pp. 479-482]. Carrara calculates
the operations count to be approximately 280 floating point (real) operations per
pixel, for a full-featured PFA implementation. Consequently, polar-formatting in
conjunction with the new space-variant post-filter yields an overall operations count
ranging from 363 to 398 flops/pixel, resulting in an additional computational burden
of 30 to 42 percent over that of the 280 flop, polar-format algorithm, alone. This
increase in computational burden applies only to broadside collections. The effect
of squint-mode collections, in terms of additional computational burden over those
of broadside, is discussed in Section 6.3. The calculations of this section predict an
increase in overall computational burden as small as thirty percent due to space-
variant post-filtering. In Section 6.4, these calculations will be found to agree with

actual computer simulations.

6.3 Effect of Squint on the Computational Burden
of Space-Variant Post-Filtering

It is well known that squint negatively impacts the computational burden of certain
image formation algorithms which inherently compensate wavefront curvature effects.
For example, an important attribute of range migration algorithm (RMA) is its abil-

ity to completely compensate migration through range cells, including the geometric
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distortion and higher-order phase errors (leading to space-variant defocus) which
are inherent to polar-formatting. However, in squinted scenarios, RMA may become
very computationally burdensome. This drawback occurs because RMA must op-
erate on azimuth chirped data resulting from motion compensation to a line, and
consequently, in highly squinted scenarios, RMA requires high along-track sampling
rates at the front-end of the RMA processor [12, pp. 438]. Methods to alleviate this
problem are discussed in [16, 18], the latter reference introducing frequency domain
replication and downsampling (FReD), a modified RMA method that uses replicated
spectrum to mitigate the aliasing effects that occur when using lower along-track

sampling frequencies.

In polar-formatting, data is motion compensated to a point and migration through
range cells (MTRC) is compensated via sampling on a polar grid and subsequent
polar-to-rectangular reformatting. Consecuently, there is no azimuth chirp in squint-
mode scenarios and therefore, no additional computational burden is imposed for
squinted collections since there is no increased upsampling. However, unlike RMA
and FReD, polar-formatting is based on the planar wavefront assumption of the
tomographic paradigm, such that wavefront curvature defocus effects are not miti-
gated except through space-variant post-filtering. Unfortunately, as will be shown
next, the computational burden of space -variant post-filtering increases with increas-
ing squint. Thus, as with RMA, full mitigation of wavefront curvature effects via
the polar-formatting algorithm means incurring an additional computational burden
(in the post-filtering step) when dealing with squint-mode data. However, in polar-
formatting, this computational burden is the result of a different phenomenon. Thus,
as opposed to RMA, the additional computational burden associated with process-
ing squint-mode data is not particularly severe for polar-formatting when used in
conjunction with space-variant post-filtering. The additional computational burden
for PFA/SVPF is due an increase in the quadratic phase error induced by wavefront
curvature. This is much less severe than the computational burden of upsampling

azimuth chirped data, as required by RMA in squinted scenarios.
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A consequence of the planar wavefront assumption of tomography is an increase
in the maximum quadratic phase error in squint-mode scenarios. Thus, for a polar-
formatted scene covering some range of spatial locations (zf,y4) over a circle of
illumination given by z> + ¢ = (D,/2)? where (-2’ < z) < 2'), (~¢' < ¥} <
y') and D, is the scene diameter, the overall maximum observed quadratic phase
error will be larger (in magnitude) than that seen in a broadside scenario, when
all other parameters remain equal. At some specific scene locations, the squint-
mode quadratic phase error is larger than would be found in a broadside scenario,
and at other locations, smaller. However, the overall maximum quadratic phase
error is larger in squint-mode. Both the overlap ¢ and displacement d of the space-
variant post-filter are influenced by the amount of quadratic phase error present. In
situations where the filter overlap and displacement are fixed in value regardless of
scene location, and when these values are based on the maximum quadratic phase

error present, then the computational performance of the filter suffers.

The effect of squint on the computational performance of the space-variant post-
filter will now be explored. This analysis begins by revisiting the quadratic phase
error equation for wavefront curvature. The approximate form of Equation (4.134),
based the small patch assumption, is sufficiently accurate for this discussion since a
reasonable estimate of the squint-mode computational burden is all that is necessary.
This form of the equation is straightforward and allows for an intuitive analysis of
the squint-mode computational burden. While based on a mathematical approxi-
mation as opposed to an exact expression, additional precision would not lend to
a clearer understanding of the computational burden due to squint. Furthermore,
by their nature, computer algorithms contribute additional uncertainly in computa-
tional burden depending on their specific implementation. Thus, it is hoped that the

decision to use this approximation has been justified to the reader.

The generalized (squint-mode) quadratic phase error ¢s; for the small patch ap-

proximation is given by Equation (4.134) in Chapter 4, Section 4.4.3, and is reintro-
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duced here:
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This equation is separated into addends which represent their reliance on squint.
The first addend is independent of squint and is the term upon which the post-filter
overlap c and displacement d are based (for the broadside imaging case). The second
and third addends are functions of the squint angle §;. The first squint addend
(with the tan @ coefficient) contains an zj/ro term, while the second squint addend
(with the tan?8, coefficient) contains an zj°/re? term. Since this is a small patch
approximation where zj,y; < 70, then x{,z/roz & zf/ro. Thus, the first squint

addend dominates the second, and Equation (6.28) can be further approximated:
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From Equation (6.29), the squint term is maximal and the non-squint term zero
for points (zg,y4) along the diagonals given by y' = |2/|. Conversely, along the
Cartesian axes defined by 2’ and v/, the non-squint term is maximal and the squint
term is zero. In order to derive the additional computational burden of squint mode
processing on the space-variant post-filter, the quadratic phase error equation at
broadside must be revisited. Consider Equation (6.29), where §; = 0. This is the
broadside-specific case of the generalized phase error equation, denoted by ¢, ,-
In this case, tan 6; = tan(0) = 0, and Equation (6.29) reduces to
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which is that of the broadside imaging case, first given by Equation (4.135).

For a polar-formatted scene covering some range of spatial locations (zj, yg) over

a circle of illumination given by z'° + > = (D,/2)? where (—2' < ) < 2'), (—y' <
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yh < y') and D, is the scene diameter, then
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Furthermore, by Equations (6.30) and (6.31),
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2tan 0, max(day,,,,,) 45° < [0s] < 90°.
That is, the maximum quadratic phase error at the signal edge for squinted scenarios
bat,,,. is at most twice the maximum quadratic phase error found for the same sce-
nario imaged at broadside, given squint angles between +45 degrees. When the squint
is between 45° and 90° (or between —45° and —90°) the maximum quadratic phase
error is at most 2tan(d;) times the maximum phase error when imaged at broad-
side. Thankfully, while the maximum squint-mode phase error may be twice that
(or more) of the equivalent broadside collection, this does not yield a post-filtering
computational burden that is twice that of the broadside scenario. In fact, the over-
all increase in computational burden for the complete polar-formatting process that
includes post-filtering may be as little as 5.5%, when considering a squint-mode sce-
nario as opposed to broadside. This increase in burden for the squint-mode scenario

will be discussed now.

The post-filter length, overlap and displacement at a spatial position (x5, yp) are
based on the quadratic phase error present (at the signal edge) B 47)(X') at that
point in the scene for a given imaging scenario. The basis for calculating the filter
displacement d is a relation incorporating the rate of change of the quadratic phase
error, or é(za)(X 1, as given by Equation (5.35). Assuming the squint-mode scenario
yields a phase error that is (at most) double the broadside phase error found at
the point (z}, %)) (which is valid for squint a angle §; < 45°), then according to
the mathematical development of Equations (5.31)—(5.41), the maximum allowable
displacement d at that point is reduced by a factor of two. When the squint angle is

even larger, the maximum allowable displacement d varies inversely with respect to
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2tan(d,). Similarly, the development of Equations (5.29)—(5.30) reveal that doubling
the phase error (for the squint case compared to the broadside, where 0 < 45°) at
some spatial position (z},y5) requires a doubling of the minimum allowable overlap
¢ between adjacent filter applications at (z},yj). For squint angles f; greater than
45°, the minimum allowable overlap ¢ between adjacent filter applications increases
in proportion to 2tan(d;). Assume for simplicity (though not maximum efficiency)
that the filter length, overlap and displacement are chosen to be fixed values across
the entire spatial extent of the image. In this case, the computational operations
count, per pixel, is represented by the curves of Figure 6.6 (or Equation (6.12)), and
the overall operations count is found by multiplying this value by the total number of
image pixels. These curves may represent either a broadside or squint-mode scenario;
the maximum value of d reduced and the minimum value of ¢ increased as appropriate

for squint-mode scenarios.

Calculating the increased computational burden of the post-filter due to squint
can be quite straightforward, given appropriate simplifications. For example, con-
sider a broadside spotlight-mode imaging scenario for a radar of center frequency
fo = 5.0 gHz, cross-range resolution p, of 1.25 m, and patch diameter D, of 2000 m.
By equation (6.6), a post-filter overlap of ¢ = 10 is above the minimum required and
thus adequate for proper wavefront curvature correction, given an oversample value
oz = 1.92 and mainlobe broadening factor K, of 1.4. These parameters induce a
mild case of wavefront curvature defocus at the edge of the scene, and this example
is used as the benchmark scenario for the workstation execution time comparisons

of Section 6.4.

For this squint-mode computational burden example, let ¢, represent the worst-
case broadside filter overlap. Therefore, ¢, = 10. By equation (6.25), the optimal
filter length mg, is found to be m,,;(10) ~ 53. Furthermore, by Equation (6.8),
dy = Mep: — ¢y = 53 — 10 = 43. This value of displacement (d, = 43) is less than
the maximum displacement value d = 812 prescribed by Equation (6.7) for these

particular imaging parameters; therefore, the filter constraints are met. Now, the
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additional computational burden due to squint will be discussed. Consider a squint-
mode scenario where the squint angle 6, is constrained by the inequality 6] < 45°.
By Equation (6.32), this yields a maximum quadratic phase error for a circular patch
that is no more than twice that encountered for the same scene imaged at broadside.
Consequently, the maximum allowable displacement d is reduced by a factor of two,
and the minimum allowable overlap c is doubled. Thus, for the squint-mode scenario,
the minimum filter overlap ¢; is 2 x ¢, = 20 pixels. Assuming the filter length m
remains fixed when comparing broadside to squint, then the filter displacement for
the squinted scenario d; is found to be 53 — 20 = 33. This is well under the squint-

mode filter displacement constraint of d/2 = 812/2 = 406 pixels.

The computational operations counts (in flops/pixel) for the-broadside and squint
scenarios are given by Equation (6.14). For the broadside scenario, Cy/piz(m,c) =
Cy/piz(53,10) ~ 83 flops/pixel for the space-variant post-filter algorithm. In con-
junction with the 280 flops/pixel operations count for the polar-formatting algorithm,
the combined computational burden of PFA/SVPF is 280 + 83 = 363 flops/pixel.
For the squint-mode scenario, Cj/piz(m,c) = Cf/piz(53,20) ~ 108 flops/pixel for
post-filtering, for a combined PFA/SVPF burden of 280 -+ 108 = 388 flops/pixel.
Consequently, the additional computational burden associated with squint-mode pro-
cessing is only (1 — 388/363) x 100 = 6.9% for this example! In a more general sense,
as the broadside overlap c varies within the range of 10 < ¢ < 80 (depending on
frequency, resolution and patch size parameters) and the optimal filter length m is
chosen based on this ¢, the additional computational burden for the same scenario
imaged at a squint angle |05| < 45° ranges from 5.5% to 6.9%, depending on the
initial, broadside-mode value of ¢. Thus, while this additional computational burden
for squint-mode with PFA/SVPF is not inconsequential or completely negligible, it
does not make a significant impact on overall computation time. This is in stark
contrast to the RMA algorithm, whose oversampling requirements in squint mode

can create a huge computational burden compared to that of broadside.
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6.4 Computer Simulation Results

6.4.1 Choice of Algorithms

In this section, several popular image formation algorithms are compared to polar-
formatting (with and without post-filtering) with regard to the overall running time
on a common engineering workstation platform. While not a scientific analysis (com-
pared to the operations count), it does help to verify, through a practical implemen-
tation, the theory derived and discussed thus far, with regard to computational
burden. It will be shown through these computational simulations that indeed, the
burden involved in performing the space-variant image restoration for wavefront cur-
vature is not particularly severe. Furthermore, these benchmarks will demonstrate
that polar-formatting in conjunction with space-variant post-filtering is a viable im-
age formation algorithm when wavefront curvature effects are present. In addition
to polar-formatting, three other well known image formation algorithms are consid-
ered. The seismic migration technique (RMA) is benchmarked as is the newer fre-
quency domain replication and downsampling (FReD) algorithm, a modified version
of RMA designed to reduce the along-track upsampling requirements when imaging
in squint-mode. Furthermore, the convolution back-projection (CBP) algorithm has

been implemented and benchmarked.

While the RMA and FReD algorithms inherently compensate wavefront curva-
ture, the CBP and PFA algorithms are based on the tomographic paradigm and rely
on the associated planar wavefront assumption. Consequently, additional measures
are required to compensate the wavefront curvature effects in the PFA and CBP
implementations. Obviously, space-variant post-filtering is the method of compen-
sation chosen for PFA and is the focus of this dissertation. Similarly, in the recent
past, CBP has been suitably modified by other researchers to compensate wave-
front curvature. As will be shown next, the computational burden of CBP is severe

compared to the other algorithms, even before considering the additional burden as-
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sociated with wavefront curvature correction. This is due to the O(n®) computational
complexity of CBP, resulting from the ﬁlteriqg and projection of n aperture samples
across an n X n image grid. As such, it was deemed unnecessary to benchmark a vari-
ation of CBP which compensates wavefront curvature. Furthermore, variations of
the aforementioned algorithms, such as the chirp scaling algorithm (CSA) and mod-
ified chirp-Z transform (MCZT), both simplifications (via approximation) of RMA,
have not been benchmarked. Another class of image formation methods, the over-
lapped and tiered subaperture algorithms (OSA and TSA) were originally designed
for high-speed image formation when implemented on specialized VLSI hardware.
Furthermore, their subaperture approach lends to their inherent compensation for
wavefront curvature. While not specifically benchmarked here, the OSA algorithm
has been analyzed in detail and found to be computationally competitive with the

algorithms studied here, on a flops/pixel basis for single processor systems [91].

The polar-format algorithm being benchmarked is an in-house (Sandia National
Laboratories) product whose functionality is examined in Section 1.1 of Chapter
1. The reader is also encouraged to review Section 1.3 of Chapter 1, which gives
many details of the various image formation algorithms, and provides a brief com-
parison/contrast of these methods with regard to image formation features. Also
within Chapter 1 (specifically, Section 1.3), a number of important references have
been cited which will assist the reader in the understanding of SAR image formation

fundamentals and algorithms.

6.4.2 Benchmark Results

The spotlight-mode, SAR imaging parameters for all implemented algorithms are
given in Table 6.1. The computer simulation was conducted for a broadside collection
only. All algorithms were implemented in the FORTRAN programming language
and executed on a Sun Microsystems Ultra®™ workstation running at 200 mHz. For

the RMA algorithm, the required upsampling ratio is approximately 2:1 for this
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Radar Parameters for Workstation Timing Experiments
Parameter Svmbol Value

Center Frequency fo 5.0 gHz
Wavelength A (A=c¢/fo) 0.06 m
Resolution, Cross-range Oz 1.25 m
Resolution, Range Py 1.25m
Scale Factor, Cross-range Sz 0.65 m/pix
Oversample Value, Cross-range | 05 (0z = pz/5z) 1.92
Mainlobe Broadening Factor K, 14
Slant Range at Broadside To 10000 m
Squint Angle 05 0°
Patch Diameter D, 2000 m
Image Dimensions Ng, Ny 4096, 4096 pixels

Table 6.1: Radar Parameters for Workstation-Based Timing Benchmark

Workstation Parameters Specific to Space-Variant Post-Filtering
Parameter Symbol Value

Filter Length m 64 pixels

Filter Overlap c 10 pixels

Filter Displacement | d, (d = m — ¢) 54 pixels

Image Dimensions Tig, Ty 4096, 4096 pixels

Table 6.2: SVPF-Specific Parameters for Workstation-Based Timing Benchmark

scenario. The space-variant post-filter parameters, in terms of overlap, length and
displacement, are given in Table 6.2. These parameters were calculated from the
equations for maximum overlap ¢ and displacement d, given by Equations (6.6) and
(6.7), respectively, and based on the radar parameters of Table 6.1. The optimal filter
length mep(c) is based on a value of ¢ = 10 and therefore, m,,;(10) ~ 53 according
to Equation (6.25). Since this is a practical implementation, the filter length m has
been increased to 64 in order to comply with the power-of-two constraints of the
radix-2 FFT being implemented. The value of ¢ remains at 10 in order to stay on
the lowest computational curve (see Figure 6.6) and consequently, d = m — ¢ = 54,
which still satisfies the constraint on the maximum filter displacement d as specified

by Equation (6.7).
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Spotlight-Mode Image Formation Benchmark — Broadside Geometry
Image Formation Algorithm Wavefront Curvature | Execution
Defocus Correction? | Time, seconds

Polar-Format (PFA) No 434
Polar-Format with Space-Variant Yes, 569
Post-Filtering (PFA/SVPF) Through 2nd Order® | (PFA + 31%)
Range Migration (RMA) Yes, Full 1153
Frequency Domain Replication (FReD) Yes, Full 713
(Modified RMA)
Convolution Back-Projection (CBP) No? 132,000

%Fixed filter overlap, length and displacement from one filter application to the next.
bWavefront curvature correction for CBP is discussed in [30, 31, 32], but not bench-
marked here.

Table 6.3: Execution Times for Five Algorithms in FORTRAN on a Sun Ultra-2
Workstation

The running times of RMA, FReD and CBP algorithms were compared to that of
PFA, both with and without the space-variant post-filter. These running times are
presented in Table 6.3. The wavefront curvature processing time via space-variant
post-filtering is just over two minutes for a 4096 x 4096 pixel image on the Ultra
workstation. This amounts to about 30% of the polar-format image formation time.
Thus, for this imaging scenario, the entire computing time required for generating an
image free of wavefront curvature effects is 569 seconds, when using polar-formatting
in conjunction with the new space-variant post-filter. As can be seen from the table,
this time compares very favorably to those of RMA and FReD, and is much better
than the running time of CBP.

6.4.3 Observations

Previously, it was determined that the additional computational burden for post-
filtering squint-mode scenarios is minimal relative to that required to refocus a

broadside collection of the same scene. Thus, it is sufficient to benchmark the im-
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age formation algorithms for a broadside scenario only. This is reasonable since the
PFA /SVPF algorithm would remain competitive in squint-mode scenarios, regardless

of the increase in computational burden for the other algorithms being analyzed.

This FORTRAN implementation of PFA/SVPF would indicate that it is more
computationally efficient than the original version of the seismic migration technique,
RMA, and also more efficient than the computationally “improved” FReD algorithm.
However, FORTRAN timings are not the final word on algorithm efficiency, espe-
cially in situations such as this, where admittedly, algorithms are not necessarily
implemented efficiently or tuned for maximum computational benefit. Thus, it is
not the intention of this benchmark to prove the “superiority” of polar-formatting to
other image formation algorithms. Instead, these timings demonstrate, in an empir-
ical sense, that polar-formatting in conjunction with space-variant post-filtering is a
viable candidate for image formation when wavefront curvature effects are present.
Furthermore, the benchmark shows that when implemented according to the method-
ology presented in Chapter 4, and with the specified optimizations, that in fact, a
practical implementation of space-variant post-filtering can be expected to perform
(more or less) according to the theoretical predictions. The running time of the basic
PFA algorithm (without post-filting) is demonstrated to be very similar to that of
the RMA algorithm, and this empirical result is consitent with the corresponding

flops/pixel operations counts derived by Carrara for these algorithms [12, pp. 481].

Finally, it is important to note that this algorithm comparison is unfair in the
sense that it “compares apples to oranges.” Specifically, the RMA and FReD al-
gorithms exactly compensate the wavefront curvature defocus effects. In contrast,
the space-variant post-filter corrects phase errors only through second-order, leaving
higher-order (but usually, visually imperceptible) residuals in the image. Further-
more, the computational efficiency of post-filtering is due, in part, to varying the
filter only as often as necessary to reduce the residual second-order phase errors
such that the remaining defocus in formed imagery is constrained to subpixel levels.

Thus, for most imaging scenarios (except those extreme cases with severe higher-
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order phase components), PFA/SVPF yields an image free of wavefront curvature
defocus effects, at least as perceived by the human visual system. In faifness to the
other algorithms, this is not a theoretically perfect correction. However, when com-
paring a perfect correction, as in the case of RMA, to that of an approximation, as
with PFA/SVPF, correcting defocus to the point of being “visually imperceptible”
meets the design goals of the filter, and thus, is close enough to perfect. However,
this design goal is not to be construed as actually being a perfect compensation.
Consequently, at first glance, the benchmark seems to indicate the running-time
“superiority” of PFA/SVPF as compared to other algorithms, but this must be tem-
pered by taking into account the inherent differences in the corrective capabilities of
the algorithms. Similarly, in the case of CBP, while the high computational burden
seems to discourage its use, this algorithm has unique capabilities that make it very
desirable in some scenarios, despite its burden. For example, the ability of CBP
to form images from very long apertures without polar-to-rectangular interpolation,

thereby eliminating the associated interpolation errors.
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Chapter 7

Conclusion

7.1 Summary

The traditional polar-formatting algorithm, PFA, is a robust, efficient and well
proven method for spotlight-mode SAR image formation. However, the derivation
of this technique relies on the unrealistic assumption of strictly planar wavefronts in
the transmitted pulses, as prescribed by the tomographic framework under which it
was developed. As the radar system resolution increases, or large scenes are imaged
at close range or low center frequencies, the amount of wavefront curvature actually
present in the scene differs considerably from that of the assumed planar wavefront.
Consequently, for these collections, a significant amount of geometric distortion and
space-variant defocus is present. While the geometric distortion is easily removed
via a post-warping procedure, the space-variant defocus due to wavefront curvature

is more problematic.

This dissertation has introduced a general formulation for wavefront curvature
correction in spotlight-mode SAR images formed using the polar-formatting algo-
rithm. This correction is achieved via an efficient, image-domain space-variant filter

applied as a post-processing step to PFA. This formulation is general in that it cor-
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rects for wavefront curvature in both squinted and broadside collection modes, with
little computational penalty for correcting squint-mode images. Furthermore, except
for the most severe cases (which have a significant higher-order residual phase er-

ror), correction is successfully performed without constraints on the scene size, radar

center frequency, resolution or slant-range.

Prior to post-filtering, space-variant defocus was not compensated but simply
reduced to an acceptable level by imposing a restrictive upper limit on the imaged
scene size when using polar-formatting. This was an unreasonable constraint that
limited the versatility when imaging large scenes; ironic, given that otherwise, PFA
lends itself nicely to imaging large scenes due to its simplicity. The post-filter for
wavefront curvature correction is precalculated from a theoretical derivation of the
wavefront curvature effect, as based on the geometric model for the phase return
from a point target. This phase return is broken into components via a Taylor
series expansion and the second-order (quadratic) phase error term is considered to
be dominant in inducing the defocus. The quadratic phase error varies depending
on the spatial location within the imaged scene. Consequently, the post-filter is

space-variant to compensate this error as a function of scene location.

The post-filter is made efficient by varying it only as often as necessary to limit the
residual blur to an imperceptible level. This residual blur results from the quadratic
(and higher-order) phase errors remaining after post-filtering. Furthermore, since
the quadratic phase error components are zero in the range direction, the filter need
only be one-dimensional in cross-range, even for squinted scenarios, which further
lends to its efficiency. Also lending to the efficiency of post-filtering is the linear flight
path assumption of the phase model. This assumption yields a closed form phase
error estimate which obviates the need for phase compensation at each aperture point
along the flight path for every spatial image location. Accordingly, the computational
burden is greatly decreased. The linear flight path assumption is restrictive, yet
not unrealistic in that it closely models ISAR (inverse SAR, which specifies a fixed

antenna imaging rotating objects), valid under the tomographic paradigm. Finally,
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a number of rules have been presented in this dissertation which assist the algorithm
designer in further reducing the computational burden via optimal filter sizing and

movement, while still meeting quality-of-refocus constraints.

This research has shown that traditional polar-formatting in conjunction with
space-variant post-filtering (SVPF) effectively compensates the wavefront curvature
defocus in spotlight-mode imagery. Use of the space-variant post-filter effectively
eliminates scene size restrictions and constraints on squint angle, resolution and
slant-range. Furthermore, SVPF does not require subaperture processing and the
associated patchwork reassembly of the image, nor is it iterative or have any depen-
dence on the visual contents of the scene. Consequently, it is an excellent candidate
for high performance computing environments via parallelization. In many cases, the
computational burden of post-filtering is shown to be as small as thirty percent of
the polar-formatting time, and the additional burden from processing squint-mode
imagery is typically only six percent. This is in stark contrast to the range migration
algorithm (RMA), whose severe along-track upsampling requirements induce a huge
computational burden in squint-mode. Modifications to RMA, such as the frequency
domain replication (FReD) algorithm, have reduced the squint-mode computational
burden by obviating the need to upsample. However, the intent of this dissertation
is not to discredit or validate any particular image formation algorithm, but instead,
simply to show that PFA in conjunction with space-variant post-filtering is a viable
candidate for spotlight-mode image formation when wavefront curvature effects are

present. The author feels this has now been satisfactorily demonstrated.

7.2 Contributions of this Dissertation

This dissertation makes a number of significant contributions to the concept of space-
variant post-filtering for wavefront curvature correction in polar-formatted spotlight-

mode SAR. In short, this dissertation provides a comprehensive treatment of space-
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variant post-filtering covering the following topics: general motivation, geometric
and phase model construction, phase error derivation and filtering equation devel-
opment, computer implementation, quality of refocus analysis, operations count and
comparative benchmarking against other algorithms. The analysis of space-variant
post-filtering was conducted on both broadside and squint-mode scenarios. The in-

dividual contributions are detailed as follows.

e Wavefront curvature effects were demonstrated for polar-formatted imagery
via numerous pictorial examples. Specifically, geometric distortion and defocus
effects were fully demonstrated and the corresponding scene size restrictions
were derived for both geometric distortion and space -variant defocus. (Chapter

3).

e Geometric distortion was described in terms of a geometric model of the actual
curved wavefront, and also presented as a first-order phase error effect via a

model of the phase return from a point target. (Chapters 3 and 4).

e The original broadside-only phase return model for wavefront curvature, pre-
viously introduced by Jakowatz, et al [7, pp. 355-360], was expanded into
a generalized squint-mode model. Consequently, as would be expected, the
broadside model and associated equations (representing a squint angle of zero)
were shown to be a specific case of the new, generalized squint-mode model.
Furthermore, the small-patch approximation proposed by Jakowatz was shown
to be yet another special case of the generalized model presented here. (Chap-

ter 4).

e The space-variant post-filtering process, from a computational perspective, was
made more efficient by varying the filter only as often as necessary to remain
below a maximum acceptable phase error. Efficiency was further enhanced by
implementing a one-dimensional refocus filter in cross-range, which was shown

to be sufficient for proper compensation. A linear flight path assumption also
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served to reduce the computational burden. It was also demonstrated that the
quadratic phase error due to wavefront curvature remains one-dimensional in

cross-range even for squint-mode scenarios. (Chapter 3).

¢ Consideration was given to the geometric distortion associated with wavefront
curvature, and a refocus (filtering) method proposed that accounted for this
distortion without necessitating its correction. In this way, the traditional

post-warping step of PFA can be retained. (Chapter 5).

e Quadratic phase errors were mathematically analyzed with respect to their
effect on IPR width, and a closed form solution was presented (based on [92,

93]) to predict IPR broadening. (Appendix A).

e Analytical, closed form solutions were derived for overlap ¢, displacement d and
length m of the post-filter as a function of (z,y) location in the scene. These
parameters were based on rate-of-change calculations for quadratic phase and

also the IPR broadening analysis. (Chapter 5).

e An analytical operations count and complexity analysis were done for the post-
filter, based on filter overlap, length, and displacement. Suggestions were made
(accompanied by the appropriate mathematical analysis) for optimizing the

operations count. (Chapter 6).

e Quality of refocus was examined from both a qualitative and quantitative per-
spective. The SVPF computational burden was calculated to be as little as
thirty percent of the polar-format algorithm burden, based on filter overlap,
displacement and length (as driven by the original radar parameters and imag-
ing geometry). This burden was shown to be consistent with the empirical

running-time workstation benchmarks. (Chapter 6).

e The additional post-filter computational burden in squint-mode scenarios was
calculated to be as little as 5.5% over that of broadside, with all other imaging

parameters remaining equal. (Chapter 6).



Chapter 7. Conclusion 204

7.3 Future Work

As with any interesting, challenging and unique endeavor, this research builds a path-
way to other interesting and challenging problems. This section provides suggestions
for extending this research, thereby improving the utility of the space-variant post-

filter as well as furthering its scope of application.
e Parallelization:

An active area of research in SAR is the high-speed (real-time) formation of spotlight-
mode imagery via parallel processing. To prevent the space-variant post-filter from
becoming the bottleneck in parallel computer implementations of polar-formatting.
the post-filtering algorithm should be parallelized, as well. As previously mentioned,
post-filtering is based on an analytic expression for quadratic phase error as a func-
tion of spatial scene location, and has no dependence on the visual contents of the
scene. Furthermore, the filter is one-dimensional in cross-range. Thus, it lends itself
nicely to parallelization, given data-domain decomposition in range. In fact, this
type of algorithm is the easiest to implement in parallel, and thereby considered

embarrassingly parallel.
e Space-variant filter overlap and displacement:

In Chapter 5, relations were developed for determining the optimal filter displacement
d, overlap c and length m in terms of the floating-point operations count (flops) per
pixel, with respect to a specific image location (zg,yp). Subsequently, in Chapter
8, the overall computational burden for space-variant post-filtering was calculated
based on the optimal values of d, ¢ and m at the worst-case spatial location for
defocus. That is, once chosen for worst-case defocus compensation, these parameters
were fixed and applied throughout the image, although defocus was typically less

severe elsewhere. This provided a straightforward approach for calculating the overall
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computational burden for post-filtering. However, while this simplified the analysis of
the computational burden in this dissertation, in practice, the computational burden
can be further reduced via space-variant adjustment of d, ¢ and m as a function of
spatial image location. This is easily done, given that the analytic expressions for

these parameters are already represented as functions of image location.
e Higher-order phase error compensation:

Given the current state of SAR technology, the residual, higher-order phase errors
that are left uncompensated upon post-filtering are sufficiently small in magnitude
as not to induce visible image defocus. In the future, as radar systems achieve
ever higher resolutions, at some point it may become necessary to compensate the
third-order (and perhaps higher) phase errors arising from wavefront curvature. As
has been demonstrated here for quadratic phase errors, the higher-order correction
would require the calculation of subsequent Taylor series terms of the equation for the
phase return from a point target. At this point, it remains unknown as to whether
these higher-order phase terms will remain one-dimensional in cross-range. If the
filtering problem becomes two dimensional, the computational burden will increase

significantly.
e Compensation of residual phase pistoning effect for IFSAR:

It has been determined, as a rule of thumb, that a residual quadratic phase @9 of
less than 7 /4 radians is not sufficiently large to induce visually perceptible defocus
in the formed (and magnitude-detected) imagery. That is, given this upper limit for
residual quadratic phase, defocus is constrained to within subpixel levels (as shown
in Appendix A). Consequently, as a matter of computational efficiency, the space-
variant post-filter is varied only as often as necessary to constrain the defocus to
subpixel levels. However, when these post-filtered images are used in their complex

(phase and magnitude) form for creating interferometric SAR (IFSAR) products,
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the residual phase errors become significant. In the generation of IFSAR height
map products from the complex-valued input images, these phase errors manifest
themselves as phase discontinuities which induce “jumps” in the calculated terrain
height at post-filter boundaries. These jumps, represented as steps (up or down)
in height across the elevation maps, are collectively known as the pistoning effect.
This pistoning effect is found in other space-variant operations dealing with image
phase, such as space-variant autofocus [94]. As was previously done with autofocus,
the pistoning effects induced by phase discontinuities must be resolved before IF-
SAR processing can be applied to imagery that has been post-filtered for wavefront

curvature correction.

e Alternate focus planes, three-dimensional platform motion and arbitrary flight

paths:

The phase models for wavefront curvature described herein have been simplified as
to convey only the desired scientific principles, without introducing additional com-
plicating issues. However, to apply these principles to practical, real-world imaging
scenarios, the models need to be further expanded to improve their versatility. For
example, the phase models (and associated equations) should be extended to apply
to alternate focus planes in addition to the slant plane scenarios described in this
dissertation. In this way, the post-filter can be applied to ground plane imagery, for
example, which is considered to provide a visual perspective which is better suited

to human interpretation.

This research included the development of a generalized phase model which as-
sumed a linear platform trajectory. This yielded an analytic, closed-form solution
for quadratic phase error, strictly as a function of spatial image location and without
regard to individual aperture positions. This linear flight path assumption lends to
a greatly reduced computational burden compared to that of a formulation requiring
phase correction at each position along the flight path. This flight path assumption

is restrictive vet not unrealistic, as it models the ISAR scenario of the tomographic
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paradigm, whereby the remote sensing platform remains stationary while the targets
to be imaged rotate within the illuminated field. Similarly, a circular flight path
could have been chosen, or an elliptical, or any alternative flight path that could
be mathematically described, and the phase equations subsequently re-derived to
reflect the chosen flight path for the model. However, in real-world scenarios, arbi-
trary flight paths, or at least those affected by uncompensated motion errors, are a
common occurrence. At the very least, the space-variant filter should be suitably
modified to accommodate out-of-plane motion, via a three-dimensional extension of
the current model. For optimal versatility, the wavefront curvature compensation
could be extended to apply to phase histories generated by flying an arbitrary flight
path. In this case, the flight path is specified by a set of spatial coordinates (pointing
vectors) which describe the arbitrary motion. For this scenario, it is mathematically
feasible to compensate the wavefront curvature defocus. However, for arbitrary mo-
tion, it is unknown as to whether the computational efficiency could be maintained

at the current level.
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Appendix A

IPR Broadening Due to Quadratic

Phase Errors

The impulse response function (IPR) is used to describe the radar system’s response
to a single isolated point target return and is described mathematically by the dirac
delta function g(u) = 6(w), arbitrarily located at u = 0. The system is necessarily
bandwidth limited and the IPR is a sinc function response. The spatial bandwidth

for a spotlight-mode collection is given by

AU, =AY’ = % (27 B.) (range extent) (A1)
and
AU, =AX"'=2 (4—;) sin(A6/2) (azimuth extent), (A.2)

where B, is the bandwidth of the linear FM chirp launched by the radar at a center
frequency of wg, A@ is the angular diversity of the synthetic aperture, and A is the
signal wavelength at wg. Since the angular diversity A@ is typically very small in
spotlight-mode SAR collections, the small angle approximation sin(f) = 6 can be

applied to Equation (A.2), yielding

AU, ~ %Ae. (A.3)
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The prime (") in AX’ and AY” signify that these frequency extents apply to the
slant plane reconstruction as opposed to the ground plane projection. The IPR
reconstruction consists of a mainlobe and associated sidelobes with the first zero
crossings occurring at a distance of u = +2%, as shown in Figure A.l. A full
derivation of Equations (A.1) and (A.2) can be found in [7, pp. 22-24, 72-74]. Since
resolution refers to the ability to distinguish between two adjacent IPRs, one can
assume they must be separated by at least the distance u. In fact, while this simplistic
assumption does provide a certain useful and practical measure of resolution, it does
not take into account the relative phases of the reflected point target signals, which
can further degrade resolution. Another commonly used measure of resolution p is

the half-power width of the ideal response function such that in general,

w
=1 (A.4)

and specifically,

T

= AT ST (A.5)
and
T T
Pz = Kl/_z = '}?{ (A.6)

for the range and azimuth resolutions, respectively, where X] and Y] define the
maximum frequency extent of the aperture in the slant plane, where (JAU;| < X7)
and (|AU,| < Y{). Again, this measure is optimistic whenever the relative phases of

the reflected point target signals are not considered.

The IPR sidelobes also have an effect on image quality. In SAR imaging, it is
desirable to limit the peak sidelobe levels of the IPR because high sidelobes confuse
the signatures of complex, closely spaced scattering centers, making visual analysis
difficult or confusing. This sidelobe energy is generally concentrated in the range
and azimuth directions only, with little diagonal energy present. This is due to a

phase history which is typically rectangular in shape (after interpolation), with the
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Figure A.1: IPR Response for Point Target with Spatial Bandwidth AU

edges oriented in the range and azimuth directions. Furthermore, typical SAR phase
errors, which increase sidelobe energy, generally impact phase histories in either the
range or azimuth direction with little cross-coupling. However, one éxception to
the strict range/azimuth orientation of sidlelobes is image formation by convolution
back-projection (CBP). This method utilizes the spotlight-mode phase history data
in its natural polar annulus form. When these data are exscribed with a rectangular
window prior to processing, azimuth-oriented sidelobes are diagonalized with respect
to the cross-range axis, at an angle corresponding to the along-track angle subtended
by the synthetic aperture. The sidelobe characteristics in imagery constructed using
CBP are discussed in [33]. The natural impact of a limited aperture, as well as the
effects of phase errors, require us to maintain a certain tolerance of image degradation
due to IPR sidelobes. The sidelobe levels are often reduced or controlled through
the use of aperture weighting (windowing) procedures in the range and azimuth

directions, as discussed in [12, pp. 507-524], [7, pp. 159-176], [46, pp. 225-239] and



[S)
F2
(S

Appendix A. IPR Broadening Due to Quadratic Phase Errors

[77). However, these techniques generally require a tradeoff between mainlobe width

and sidelobe amplitude.

As is the case with many phase errors, the qguadratic phase error (QPE) associated
with wavefront curvature serves to attenuate the IPR mainlobe while symmetrically
increasing sidelobe energy, both of which are detrimental effects. When this phase
error is compensated, IPR mainlobe amplitude increases while sidelobe amplitudes
decrease, as desired. In considering the degradation of imagery due to quadratic
phase errors, the IPR width serves as the metric by which this imagery is judged.
While the zero crossing points of the mainlobe may be used as a measure of its
width, more commonly the -3 dB or -15 dB attenuation points are used, as shown
in Figure A.1. Thus, by minimizing quadratic phase errors, a maximum acceptable
IPR width can be maintained. This generally results in acceptably small sidelobe
amplitudes as well, particularly when aperture weighting is incorporated within the

image formation process.

The effects of quadratic phase errors on the ideal IPR are shown in Figure A.2.
For a phase error of ¢, > 2w, which represents a large ftme-bandwidth product,
the sidelobe amplitudes overtake those of the mainlobe. If the -15 dB threshold is
chosen to measure IPR width, then it is clear that the IPR broadens with increasing
quadratic phase error. Just how much IPR broadening occurs at a given QPE? All
research to date has relied on empirical data, as shown in Figure A.2, to determine the
maximum acceptable quadratic phase error based on the IPR broadening observed.
This Appendix serves to provide an analytical approach for relating QPE to IPR
broadening. Two different methods are presented, both of which were first proposed
in internal company memos [92, 93]. The first considers the the spectral width of
the IPR in the frequency domain to determine the broadening factor. The second
considers the quadratic shape of the phase error and its rate of change to derive a
spatially-based broadening factor, in pixels. As shown, both approaches yield the

same result.
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Figure A.2: Effects of Quadratic Phase Errors on the Ideal IPR

A.1 TIPR Broadening Based on Spectral Width

First, consider the following Fourier transform pair, ignoring amplitude factors:

gFiot? L it (A7)
where
(Tl S t S T2)) (‘AS)
(Ql S w S Qz), (.A..g)
and
Ql = :t20lT1, (A.].O)
(A.11)

QQ = iZaTg.




Appendix A. IPR Broadening Due to Quadratic Phase Errors 214

A pulse of duration AT = T, — T has a nominal spectral width, based on the

time-bandwidth product definition, of
1
Afo = —. A12

fo AT (A.12)
For a signal with quadratic phase error ee® the nominal spectral width based on
Equation (A.7) is
Q2 — )
A =
fopE o

_ 2aAT

oo

= 2AT. (A.13)

T
The ratio of quadratic to nominal spectral widths is the broadening factor of the

IPR, A;pr. Expressing this as a function of oz

_ Afgre
Arpr= "} 1
= %(AT)Q. (A.14)
From the left side of Equation (A.7), the quadratic phase error ¢, at the signal edge
AT/2 is
AT\?
Pe =0 (—2—)
_a(aTy’ -
=—7 (A.15)
Solving Equation (A.15) for o in terms of ¢, yields
49,
o= — (A.16)

(AT)*
Finally, substituting Equation (A.16) into Equation (A.14) and accounting for the
possibility of (& < 0), yields the IPR broadening factor

4
Arpr = Ifel . (A.17)

For example, given the quadratic phase error ¢, = 3 radians, the IPR broadens by

a factor of

Arpr = G) (g) = 2. (A.18)
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A.2 Spatial Domain IPR Broadening

An alternative approach considers IPR broadening in terms of the pixel spread in

the spatial domain. Consider the quadratic phase error equation

o(n) = a(n — %)2, n=0...N (A.19)

where 7 is the sample number, N is the total aperture length in samples, and a is
the quadratic coefficient. Let f; be the the instantaneous frequency (in Hz) of the

phase error at the aperture edges n = 0 and n = N, such that

1 d¢

finst = 55~ o (A.20)
From Equation (A.19),
. i%i\r_’_ (A.21)

Now, the maximum frequency spread, or spectral width, of this quadratic phase error

is
Afore = 2|fil (A.22)

and by substitution from Equation (A.21) we have

aN
Afors = |—|- (A.23)

Analogous to the ratio of spectral widths in the previous case, the pixel spread An
is defined by the following ratio:
_ frequency spread

" frequency/pixel
_ Afgrr
- 1

An

(A.24)

:

N
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and by Equation (A.23),

aN

An = l ;l
N
|a| N2

IS

pixels. (A.25)

ﬁ

Expressing pixel spread as a function of quadratic phase error at the signal edge

requires a substitution for a, as follows: First, from Equation (A.19),

¢e = ¢(TL)
n=N
n=0
N 2
=qagln——
< 2 > n=N
n=0
V2
- a—;— (A.26)

for either n = N or n = 0, which represent the right and left edges of the quadratic

phase error function, respectively. Next, solving for a,

4¢. .
a= <5 (A.27)

and substitution into the pixel spread Equation (A.25) yields

4|d| N?
An, = ————7‘_;\[2
4|dei .
= 4lod pixels. (A.28)

—

This result is identical to that of Equation (A.17).
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