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Abstract

Max-min fairness is often used in the performance modeling of intercon-
nection networks. Existing methods to compute max-min fair rates for multi-
commodity flows have high complexity and are computationally infeasible for
large networks. In this work, we show that by considering topological features,
this problem can be solved efficiently for the fat-tree topology that is widely
used in data centers and high performance compute clusters. Several efficient
new algorithms are developed for this problem, including a parallel algorithm
that can take advantage of multi-core and shared-memory architectures. Using
these algorithms, we demonstrate that it is possible to find the max-min fair
rate allocation for multi-commodity flows in fat-tree networks that support
tens of thousands of nodes. We evaluate the run-time performance of the
proposed algorithms and show improvement in orders of magnitude over the
previously best known method. We further demonstrate a new application of
max-min fair rate allocation that is only computationally feasible using our
new algorithms.
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1. Introduction

The fat-tree topology is a popular candidate for both
compute- and data-intensive networked systems. Its variants
have been widely used in high-performance computing (HPC)
clusters. Many supercomputers, including the Tianhe-2, which
ranks No. 2 in the November 2016 list of the world’s fastest
supercomputers [1], are interconnected using this topology.
The fat-tree topology is also widely deployed in data cen-
ters [2], [3]. As such, the ability to analyze and model
the performance of large-scale fat trees is important and of
practical significance. There are some qualitative differences,
however, between fat-tree usage in Internet-facing data centers
and in HPC data centers. In the former case, a substantial
fraction of the total traffic goes between data-center nodes
and the Internet. In the latter case, all communication is local
to a single computer cluster. This paper focuses exclusively
on that second, HPC, case, which presents a more controlled
environment for modeling and analysis.

Max-min fairness (MMF) is commonly assumed in the
modeling of network performance [4], [5]. Informally, for a
given network and a pattern of traffic flows, an allocation of

rates to the flows is said to be max-min fair if it is impossible
to increase the allocated rate for any flow while decreasing
only the rates of flows that have larger rates. MMF has gained
wide acceptance in the networking community. It forms the
basis for rate allocation and resource management in networks
and is actively used as a benchmarking measure in a range of
applications such as routing, congestion control, and perfor-
mance evaluation. MMF is also viewed as an approximate
presentation of the behavior of real networks [6].

Algorithms have been developed for calculating MMF rates
in different settings. Gallager describes a progressive filling
algorithm that computes MMF rates for networks with single-
path routing [5]. A more general MMF multi-commodity flow
problem (MMF-MCF), which assumes any multi-path routing
with splittable flows (the packets in a flow may follow different
paths), has also been studied [7]. The solution to an MMF-
MCF problem is particularly interesting since it represents the
theoretically optimal aggregate throughput performance that
can be achieved for a given network and a given communica-
tion pattern while satisfying max-min fairness, as the results
are obtained assuming optimal routing. Hence, solutions to
MMF-MCF problems are often used to measure the quality of
routing algorithms and the aggregate throughput performance
of network designs.

While an algorithm exists for solving MMF-MCF for any
arbitrary network topology [7], this algorithm has a high com-
putational complexity because it requires iteratively solving
linear programming (LP) problems in which the number of
variables is proportional to the product of the number of flows
and the number of links in the network. For a current or next
generation fat-tree network, if one were to scale it to tens
of thousands of processing nodes, the LP formulation can
easily have more than 1 billion variables. LP problems of such
sizes are computationally infeasible to solve with the current
technology

In this work, we consider algorithms for solving MMF-MCF
specifically for fat-tree topologies. We consider Parallel Ports
Generalized Fat Trees (PGFT), which are extended from the
family of Extended Generalized Fat Trees (XGFT) [8] and
cover almost all fat-tree interconnects in HPC clusters [9]. By
taking topological features into account, we develop three new
algorithms for solving MMF-MCF on the fat trees. The first



algorithm is based on linear programming with a much simpler
formulation than that in the generic solution [7]. The second
algorithm improves over the first algorithm by removing linear
programming and following the progressive-filling approach
that is used in the algorithm for single-path routing [5].
Our third algorithm applies further optimization techniques to
the second algorithm to significantly reduce the computation
complexity. The third algorithm, which is already the most
efficient of the three newly proposed schemes, lends itself
easily to parallelization using OpenMP [10]. Our empirical
evaluation of the run-time performance of the three algorithms
indicate that all three proposed algorithms achieve orders of
magnitude speedups over the existing algorithm. Moreover,
our algorithms are able to compute MMF rate allocation for
current and next-generation fat-tree networks that support tens
of thousands of processing nodes in a reasonable length of
time. For example, the rate allocation for multiple permutation
communication patterns on a fat tree with 11,664 processing
nodes is computed on average in only a fraction of a second
using a one-node server. We also demonstrate an application
of the algorithms by calculating the LANL-FSU Throughput
Indices (LFTI) [11], a recently proposed performance metric
that requires fast calculation of the aggregate throughput under
various communication patterns.

The rest of the paper is organized as follows. In Section 2
we summarize the background needed to understand our work,
including the preliminaries of XGFT and PGFT, max-min fair-
ness, and the generic LP-based algorithm for solving MMF-
MCF. In Section 3 we show how fat-tree topological features
can be explored to facilitate fast solutions of MMF-MCF on
fat trees and then, we describe our proposed algorithms. We
present our experimental results in Section 4 and present an
application of our algorithms in Section 5. Finally, Section 6
draws some conclusions from our evaluations.

2. Background

2.1. XGFT and PGFT

Fat-tree topologies were first introduced by Leiserson
as efficient ways to interconnect processors in parallel
computers [12]. In a fat-tree network, the processing
elements are located at the leaf nodes and the switching
elements/routers make up the internal nodes. The family of
fat-tree topologies are unified by Öhring [8] into Generalized
Fat Tree (GFT) and Extended Generalized Fat Tree (XGFT)
representations. Throughout this paper we use XGFT,
which can represent most fat-tree variations, to describe
fat trees. XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1)
denotes a tree structure of height h, which consists of
h + 1 levels of nodes. The node levels are labeled from
0 to h in a bottom-up fashion with processing nodes
at level 0. Each node in level i, 0 ≤ i ≤ h − 1, has wi
parents; and each node in level i, 1 ≤ i ≤ h, has mi−1
children. XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1)
has (∏h

i=k+1 mi−1) × (∏k
i=1 wi−1) switches at level k,

XGFT(0; ; ) XGFT(1; 4; 1) XGFT(2; 4,4; 1,2)

switches

processing nodes

Level 2 link

Level 1 link

Level 2 sub−tree Level 1 sub−tree Level 0 sub−tree

XGFT(3; 4,4,3; 1,2,2)

Fig. 1: XGFT examples

1 ≤ k ≤ h, and ∏
h
i=1 mi−1 processing nodes at level

0. XGFT(h + 1;m0,m1, . . . ,mh;w0,w1, . . . ,wh) can be
recursively constructed by having w0 × w1 × ·· · × wh
top level switches and mh copies of sub-fat-tree
XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1). Each top
level switch is connected to one outgoing link from each sub-
fat-tree. XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1),
in turn, has mh−1 copies of sub-fat-tree XGFT(h −
1;m0,m1, . . . ,mh−2;w0,w1, . . . ,wh−2). We will call sub-
fat-trees with h levels of nodes level h sub-fat-trees. On
a generalized fat-tree, no assumption is made on the
bandwidth(capacity) of the links and as such, different links
can have different bandwidths. However in practice, the same
bandwidth is typically used for all links [13]. More details of
constructing XGFT can be found in Öhring’s paper [8].

Figure 1 illustrates the structure as well as the recursive con-
struction of XGFT(3;4,4,3;1,2,2), where h= 3, m0 = 4, m1 =
4, m2 = 3, w0 = 1, w1 = 2 and w2 = 2. XGFT(3;4;4;3;1;2;2)
is constructed with w0 × w1 × w2 = 4 top level switches
and m2 = 3 copies of level 2 sub-fat-tree XGFT(2;4,4;1,2).
Each level 2 sub-fat-tree XGFT(2;4,4;1,2) has 4 copies of
level 1 sub-fat-tree XGFT(1;4;1). Each XGFT(1;4;1) has four
XGFT(0; ;) sub-fat-trees, each being a single node.

As can be seen from this example, the level k nodes are
the root nodes in the level k sub-fat-trees. Links in a fat tree
can also be classified based on their levels. In general, we will
refer to the downlinks into a level k sub-fat-tree and the uplinks
from a level k sub-fat-tree as level k links (uplinks/downlinks).
Clearly, in XGFT(h+1;m0,m1, . . . ,mh;w0,w1, . . . ,wh), each
level k sub-fat-tree, 0 ≤ k ≤ h, has ∏

k
i=0 wi uplinks from the

sub-fat-tree (and ∏
k
i=0 wi downlinks into the sub-fat-tree). We

will call the total link capacity of all level k uplinks from
a level k sub-fat-tree the total outgoing capacity of the sub-
fat-tree; and the total link capacity of all level k downlinks
into a level k sub-fat-tree the total incoming capacity of the
sub-fat-tree.

Due to the tree structure in the fat-tree topology, the
(shortest) path from a source processing node s to a destination
processing node d always consists of an upward path to
one of the nearest common ancestors (NCAs) of both s
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Fig. 2: Routing in a fat-tree (XGFT(3;4,4,3;1,2,2))

and d, and a unique downward path from the NCA to d.
Let the NCAs of both s and d be level k nodes of an
XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1). Then, the total
number of NCAs is ∏

k−1
i=0 wi. Each NCA connects the source

and the destination nodes through a unique path. Therefore,
the total number of paths between a source-destination (SD)
pair having NCAs at level k is also ∏

k−1
i=0 wi. Figure 2 illustrates

the possible data paths for two SD pairs: (s, t) and (u,v) on
an XGFT(3;4,4,3;1,2,2). Any traffic from s needs to reach
a level 3 NCA before a downward path towards t may be
found. Between s and t, there are a total of 1× 2× 2 = 4
paths shown in dotted arrows and the same number of NCAs
shown in solid gray rectangles. Similarly, the nearest common
ancestors of u and v is located at level 2 and the number of
paths available to route for (u,v) is thus, 1×2 = 2, shown in
bold arrows. The two NCAs corresponding to those paths are
shown in solid black rectangles. Routing on fat trees mostly
focuses on deciding the upward paths to carry traffic for each
SD pair.

In XGFT, it is assumed that all links have the same
bandwidth. A more realistic variation, Parallel Ports
Generalized Fat Trees (PGFT), represents the same
topologies as XGFT but allows multiple parallel links
to connect pairs of switches [9]. This is equivalent
to providing different bandwidths between different
layers of switches. PGFT describes a fat-tree as
PGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1; p0, ..., ph−1)
where pi, i = 0,1, ..,h − 1, specifies the number of
parallel links between switches in layer i and layer i + 1:
PGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1; p0, ..., ph−1)
has the same topology as
XGFT(h;m0,m1, . . . ,mh−1;w0,w1, . . . ,wh−1) with
each connection between switches in layers i
and i + 1 having pi parallel links. Clearly, in
PGFT(h + 1;m0,m1, . . . ,mh;w0,w1, . . . ,wh; p0, p1, . . . ph),
each level k sub-fat-tree, 0≤ k ≤ h, has ∏

k
i=0 wi× pk uplinks

from the sub-fat-tree (and ∏
k
i=0 wi × pk downlinks into the

sub-fat-tree). Note that in PGFT, all links have the same
bandwidth, different bandwidth between switches is achieved
through parallel links. XGFT is a special case of PGFT with
the number of parallel links between all adjacent switch
layers being 1.

2.2. Max-min Fairness (MMF)

Max-min fairness deals with fair rate allocation among a set
of connections (flows) in a network with given link capacities.
Let PE be the set of N processing nodes, and SE be the set
of switching nodes in a system; V = PE ∪ SE is the set of
nodes. Let E be links in the network with their corresponding
capacities C = {Ci|i ∈ E}. We will call a set of connections
(flows) a communication pattern, which is represented by a
set of source-destination (SD) pairs (s, t) where both s and t
are processing nodes (s, t ∈ PE). Let the N processing nodes
be numbered from 0 to N− 1. If S is a set then |S| denotes
the size of the set.

Given a communication pattern D with |D| flows, a
rate allocation algorithm decides an allocation vector γ =
(γ0, . . . ,γ|D|−1). γd is the rate allocated to flow d ∈ D. For a
communication pattern D, an allocation γ vector is said to be
feasible if γd ≥ 0 for all d ∈D, and all link capacity constraints
are satisfied. A feasible allocation γ is max-min fair if and
only if an increase of any rate within the domain of feasible
allocations must be at the cost of a decrease of some already
smaller rates [5]. The formal definition of max-min fairness is
as follows.

Definition 1 (Max-min fair rate allocation): A feasible
allocation γ is max-min fair if and only if for any other feasible
allocation γ ′, if γ ′s > γs for some flow s, then there must exist
some flow s1 such that γs1 < γs and γ ′s1

< γs1 .
In all MMF rate allocation schemes, rates are determined

for flows in the order from low to high MMF rates. During the
MMF rate allocation, a link is said to be saturated when its
capacity is fully allocated. A flow is said to be saturated when
its rate cannot be further increased (without requiring a flow
with a lower rate to decrease its rate), and is thus determined.

When a network uses single-path routing with only one path
associated with each flow, the MMF rate allocation problem
is referred to as the MMF Simple Routing Problem (MMF-
SRP), and an iterative filling algorithm has been given in [5].
The algorithm works as follows. When the algorithm starts, all
flows have a 0 rate. The algorithm then uniformly increases the
rate for all flows until some link is saturated. The MMF rate
of the flows that use any saturated link is determined; such
flows are saturated (as its rate cannot be further increased)
and removed from consideration; and the link capacities are
modified. The algorithm repeats the process until the rates
for all flows are determined. In each iteration, the algorithm
decides the MMF rate for the most limiting flows among all
flows under consideration.

The MMF multi-commodity flow problem (MMF-MCF)
considers more general multi-path routing with splittable
flows [7]. For a given traffic pattern, MMF-MCF considers
all possible paths to route each flow and the solution is
the rate allocation assuming the best routing scheme for the
pattern. Unlike the MMF-SRP counterpart, the MMF-MCF
rates are achieved without routing constraints, and thus, are the
performance upper bound for any multi-path routing scheme:
single path routing and multi-path routing with non-splittable



flows are special cases of multi-path routing with splittable
flows.

An algorithm for solving MMF-MCF for a general network
has been developed [7]. The generic algorithm (GEN), which
is described in Figure 3, follows a similar structure as that
for the algorithm to solve MMF-SRP. The algorithm finds
the MMF rate allocation iteratively. In each iteration, the
maximum rate for all flows under consideration, as well as
the set of flows that saturate, is computed by solving a
multi-commodity flow linear programming formulation, which
covers the best possible multi-path routing with splittable
flows. The rate for the saturated flows are then fixed for the
next iteration. This process continues until the rates for all
flows are determined.

Data: A capacitated network (V,E,C) and a set of flows D
Result: A max-min fair allocation vector λ of size |D|

1 Set k = 0 and L0 = φ ;
2 while Lk 6= D do

• Set k = k+1;
• Solve the LP problem Generick, and compute the

maximum rate α for saturated flows;
• Identify the set Dk of saturated flows; set λd = α for

all d ∈ Dk;
• Lk = Lk−1∪Dk;

3 end
4 The flow vector λ obtained at the last step is the max-min fair

allocation of rates for the flows in D

Fig. 3: Generic algorithm (GEN) to calculate MMF rates for
multi-commodity flows

In Figure 3, Dk is the set of flows saturated at iteration k
and Lk is the set of flows saturated in the first k iterations. The
LP formulation, Generick for identifying saturated flows and
computing the rate at iteration k, is shown in Figure 4. f d

i j is
rate for flow d on link (i, j). sd and td represent the source and
the destination node of the flow d respectively. Constraints (1)
are capacity constraints; Constraints (2) are flow conservation
constraints; Constraints (3) are traffic constraints for the flows
whose rates have been determined; Constraints (4) and (5)
are traffic constraints for the flows whose rates have not been
determined; Constraints (6) indicate that the flow values must
be non-negative. This LP formulation does not assume any
specific routing scheme.

We note that when the maximum number of iterations
in (GEN) is limited to one (k=1), then the corresponding
LP formulation Generic1 represents the maximum attainable
throughput by all flows of the traffic pattern. This is equivalent
to solving the maximum concurrent flow problem [14] that
finds the maximum rate uniformly across all flows. The first
iteration of the MMF algorithm would obtain the solution for
the corresponding maximum concurrent flow problem. Each
iteration of the MMF algorithm solves a maximum concurrent
flow problem for the unsaturated flows on the graph with
remaining link bandwidths.

In principle, GEN can be used to compute MMF rates for
any network and any traffic pattern. However, the compu-

Maximize α

Subject to:
∑d∈D f d

i j ≤Ci j, ∀(i, j) ∈ E (1)
∑ j:(i, j)∈E f d

i j−∑ j:(i, j)∈E f d
ji = 0,∀d ∈ D,∀i /∈ {sd , td} (2)

∑ j:(i, j)∈E f d
i j−∑ j:(i, j)∈E f d

ji

=

{
λ d , i = sd

−λ d , i = td ∀d ∈ Lk−1,∀i ∈V (3)

∑ j:( j,i)∈E f d
ji−∑ j:(i, j)∈E f d

i j +α ≤ 0,∀d ∈ D\Lk−1, i = sd (4)
∑ j:(i, j)∈E f d

i j−∑ j:( j,i)∈E f d
ji +α ≤ 0,∀d ∈ D\Lk−1, i = td (5)

f d
i j ≥ 0,∀d ∈ D,∀(i, j) ∈ E (6)

Fig. 4: The linear programming formulation Generick

tational complexity for this algorithm is high. In particular,
the algorithm can require solving O(|D|) Generick’s; each
Generick can have |D||E| variables f d

i, j, where (i, j) ∈ E and
d ∈ D. For practical large fat-tree networks, this is compu-
tationally prohibitive. For example, consider computing the
MMF rate allocation for a 2-dimensional nearest neighbor
(2DNN) communication pattern where each node commu-
nicates with four of its neighbors. In a 3-level 36-port full
bisection bandwidth tree (XGFT(3;18,18,36;1,18,18)) that
supports 11,664 processing nodes and has 58,320 links, a
2DNN pattern will have 46,656 flows and each LP formulation
for the problem will have 46,656× 58,320 = 2,720,977,920
variables. Solving LP problems of this size is not feasible
using current technology. Due to the lack of available tools
that can be applied to find exact solutions for large networks,
approximate algorithms have been developed [15], [16]. In
contrast, our algorithms can obtain exact solutions for very
large fat-tree networks.

3. MMF-MCF on fat trees

The generic MMF rate allocation algorithm, GEN, does not
make any assumption about the topology and computes the
MMF rates for the best multi-path routing with splittable flows.
A multi-commodity flow problem must be solved in each
iteration, which results in high computation complexity. In the
following, we will show that by exploiting fat-tree features and
routing schemes, MMF-MCF on fat trees can be solved much
more efficiently.

3.1. Fat-tree routing and topological features

We consider a general PGFT(h;m0, . . . ,mh−1;w0, . . . ,wh−1;
p0, . . . , ph−1) network and a given communication pattern (a
set of flows), D. For each flow d ∈ D in the communication
pattern, we denote the set of all paths used for routing as
Pd = {P1

d ,P
2
d , . . . ,P|Pd |

d }, and the fraction of the traffic routed
through each path as qd = {qk

d | k = 1,2, . . . , |Pd |}.
A routing algorithm, which we call uniform all-shortest

paths routing (UAPR), is the base of our new formulations
for solving MMF-MCF on fat trees. UAPR works as follows.
For each SD pair (s, t), UAPR uses all of the shortest paths



from s to t, each of the paths goes through an NCA to reach
t. Let the NCAs be in at layer h. Using UAPR, the number
of paths for (s, t) is equal to the number of NCAs of s and
t multiplying Π

h−1
i=0 pi×Π

h−1
i=0 pi, to account for the parallel up

and down links in PGFT. Let the number of paths for (s, t)
be X , the traffic from s to t is distributed evenly among all
the paths. That is, qi

d = 1
X , for all i = 1,2, . . . , X . Note that

the number of paths for (s, t) can be easily determined: if the
NCAs of s and t are at level h, the number of NCAs is ∏

h−1
i=0 wi,

and the number of paths is ∏
h−1
i=0 wi×Π

h−1
i=0 pi×Π

h−1
i=0 pi

UAPR is interesting because of the topological features of
fat trees: a fat-tree topology consists of multiple levels of sub-
fat-trees; and for a processing node inside a level i sub-fat-
tree to communicate with a node outside the sub-fat-tree, the
traffic must go through the level i uplinks from the sub-fat-
tree regardless of the routing scheme. Let SUB be any level k,
0 ≤ k ≤ h− 1, sub-fat-tree of the XGFT. We define the total
outgoing rate of SUB to be the total rate going out of SUB, and
the total incoming rate of SUB to be the total rate going into
SUB. More specifically, let γ be a rate allocation vector for
the communication pattern D; let O be the set of all outgoing
flows from SUB, that is, O = {(s, t)|(s, t) ∈ D and s ∈ SUB
and t 6∈ SUB}. Let I be the set of all incoming flows to SUB,
that is, I = {(s, t)|(s, t) ∈ D and s 6∈ SUB and t ∈ SUB}. Let
Ro be the total outgoing rate of SUB, Ro = ∑d∈O γd ; and Ri
be the total incoming rate into SUB, Ri = ∑d∈I γd . Clearly, a
precondition for γ to be feasible (for any routing scheme) is
that the outgoing rate of any sub-fat-tree must be no more than
the outgoing capacity of the sub-fat-tree and that the incoming
rate of any sub-fat-tree must be no more than the incoming
capacity of the sub-fat-tree. Using UAPR, for every sub-fat-
tree, all uplinks from a sub-fat-tree are evenly loaded to carry
outgoing traffic from the sub-fat-tree; and all downlinks to a
sub-fat-tree are evenly loaded to carry incoming traffic into
the sub-fat-tree. This is formally proved in Lemma 1.

Note that since using UAPR, all uplinks (downlinks) of
a sub-fat-tree are evenly loaded, in computing MMF rate
allocation for UAPR on PGFT, treating parallel links between
a pair of switches as independent links that may form different
paths is the same as treating the parallel links between a
pair of switches as one aggregate link. In the discussion in
this section, we assume different links are independent and
thus, there are ∏

h−1
i=0 wi×Π

h−1
i=0 pi×Π

h−1
i=0 pi paths between two

nodes whose NCAs are in level h. In our implementation of
the proposed algorithms, we treat the parallel links as one
aggregate link (with the appropriate bandwidth).
Lemma 1: Given a PGFT(h;m0, . . . ,mh−1;w0, . . . ,wh−1;
p0, . . . , ph−1), a communication pattern D and a feasible rate
allocation vector γ for D, let SUB be any level k sub-fat-tree of
the PGFT with 0≤ k≤ h−1, Ro be the total outgoing rate of
SUB and Ri be the total incoming rate of SUB. Using UAPR,
the load on each level k uplink from SUB is Ro

w0×...×wk×pk
and

the load on each level k downlink to SUB is Ri
w0×...×wk×pk

.
Proof: This is straightforward from the definitions. Let us
consider the load on uplinks. The logic to prove the load

on downlinks is similar. As discussed in Section 2.1, for the
general PGFT(h;m0, . . . ,mh−1;w0, . . . ,wh−1; p0, . . . , ph−1),
the level k sub-fat-tree SUB has ∏

k
i=0 wi × pi outgoing up-

links (and ∏
k
i=0 wi× pi incoming downlinks). Consider a flow

(s, t) ∈ D with s ∈ SUB and t 6∈ SUB. The NCAs of s and t
are all outside SUB. From the definition of UAPR, the traffic
is evenly distributed among all of the outgoing uplinks from
SUB. Hence, this flow contributes

γ(s,t)
w0×...×wk×pk

to each of the
outgoing uplinks from SUB. Summing the rates of all flows
going out of SUB, the load for all level k uplinks from SUB
is Ro

w0×...×wk×pk
. 2

Lemma 2: Given a traffic pattern D and a PGFT where the
capacity is the same for all links, if a rate allocation vector
γ for D is feasible for any routing scheme r, then γ is also
feasible for UAPR.

Proof: Let the capacity of each link be c in a generic
PGFT(h;m0, ...,mh−1;w0, ...,wh−1; p0, ..., ph−1). Let us con-
sider the load on an arbitrary uplink l. The proof for the load
on the downlink follows a similar logic. Let l be an uplink
from a level k sub-fat-tree, SUB, which has w0×·· ·×wk× pk
outgoing links (including link l). Thus, the total outgoing
capacity of SUB is w0×·· ·×wk× pk×c. Since γ is feasible for
some routing r and since regardless of the routing, all outgoing
flows from SUB must use some of the outgoing links of SUB,
the total outgoing rate of SUB must be no more than the total
outgoing capacity, that is, Ro ≤ w0×·· ·×wk× pk× c. From
Lemma 1, using UAPR, the load for all uplink from SUB is

Ro
w0×···×wk×pk

≤ c. Hence, using UAPR the capacity constraints
for all uplinks are satisfied; and γ is feasible for UAPR. 2

Lemma 2 indicates that the max-min fair rate allocation for
any routing scheme can also be realized using UAPR. Because
the max-min fair rate allocation is unique [7], the max-min
fair rate allocation for any routing algorithm is also the max-
min fair rate allocation for UAPR. In other words, solving
the MMF-MCF problem for fat trees is equivalent to solving
the MMF rate allocation assuming UAPR. This drastically
simplifies the problem, allowing much more efficient solutions
to be developed.

3.2. LP based solution

We develop an LP based formulation that computes MMF
rate allocations for UAPR. The algorithm follows almost
identical steps as the generic algorithm in Figure 3, but only
solves a simpler problem that assumes UAPR in each iteration.
We will prove later in Theorem 1 that this algorithm solves
MMF-MCF on fat trees. The algorithm is shown in Figure 5. In
our LP formulation, we no longer need to consider constraints
for each combination of flows and links in the way we had to
for GEN due to lack of routing information. By limiting the
routing to UAPR, the complex LP formulation in Figure 4 is
replaced by the simple one variable LP formulation in lines 5–
7 in Figure 5. Our formulation finds all shortest paths for each
flow using UAPR and uses the edge-path form to generate
traffic constraints. We describe the steps of our LP formulation



in the following text. The number of constraints is |E| because
the capacity constraint on each link needs to be specified.

Data:
N: set of nodes in the PGFT
E: set of links in the PGFT
C: set of link rates (normalized to 1)
D: set of flows
Pd = set of shortest paths used to realize flow d

Result: A max-min fair allocation vector λ of size |D|
1 Set k = 0, L0 = φ , and BW(i, j) =C(i, j),∀(i, j) ∈ E;
2 while Lk 6= D do
3 Set k = k+1 ;
4 Solve the LP problem LP PGFT UAPRk;
5 Maximize α

6 Subject to:
7 ∑d∈D\Lk−1, p∈Pd , (i, j)∈p

1
|Pd |
×α ≤ BWi j,∀(i, j) ∈ E

8 Identify the set Dk of saturated flows.
9 Set λd = α for all d ∈ Dk and Lk = Lk−1∪Dk

10 Adjust BW(i, j) by deducting the rates used by
saturated flows.

11 end
12 The flow vector λ obtained at the last step is the

max-min fair allocation rate for D
Fig. 5: Algorithm MMF PGFT LP

The algorithm first initializes the iteration number (k), the
set of flows whose rates have been determined (L0 = φ ), and
the available bandwidth on each link (to be equal to link
capacity). It then iteratively computes the rates (lines 2–11). In
each iteration, it solves the LP problem described in lines 5–7.
Basically, this LP finds the maximum possible rate for all flows
under consideration assuming UAPR. With UAPR, for each
flow d, the set of paths for the flow is Pd and the number of
paths is |Pd |. Hence, if the rate for the flow is α , it contributes

1
|Pd |
×α rate on each link along each path. The constraints

at Line 7 ensure that the total rate on each link is no more
than its remaining link capacity. Once the maximum rate α is
determined, the link loads on all links in the network can
be decided and the saturated links are identified using the
same technique as used by Nace et al. [7]. Any flow that
uses a saturated link, is considered saturated and put in Dk.
The saturated flows are assigned their rates and then removed
from consideration, and the remaining bandwidth on each link
is adjusted accordingly. Although this algorithm also requires
solving a LP problem in every iteration, the LP formulation
only contains one variable and |E| constraints, much simpler
than the multi-commodity formulation in Figure 3.
Theorem 1: The rate allocation computed by
MMF PGFT LP is the same as that computed by GEN in
Figure 3 for any pattern on a fat tree.
Proof: Let the communication pattern be D. We prove the
theorem by induction.

Base case: In the first iteration, both algorithms compute
the maximum rate for all flows in D. Assume that the generic

algorithm in Figure 3 yields a maximum rate of α1
1 . The rate

allocation where all flows are allocated rate α1
1 can be realized

by some multi-path routing scheme. From Lemma 2, α1
1 can be

realized by UAPR. Let us assume that MMF PGFT LP yields
a maximum rate of α1

2 . Since α1
1 can be realized by UAPR,

we have α1
2 ≥ α1

1 . However, since α1
1 is the maximum rate

that can be achieved assuming any routing scheme including
UAPR, α1

1 ≥ α1
2 . Hence, α1

1 = α1
2 . As shown in [7], the set

of saturated flows is unique. The unique set will be found by
both algorithms.

Induction case: Assume that in the first k− 1 iterations,
both algorithms have the same Lk−1 and the corresponding
rates for the same flows in Lk−1 are the same. In the k-th
iteration, both algorithms try to decide the maximum rate
that can be allocated to all flows in D\Lk−1. Assume that
the generic algorithm in Figure 3 yields a maximum rate of
α1

k in the k-th iteration and that MMF PGFT LP yields a
maximum rate of α2

k : α1
k and α2

k are the maximum rate that
can be allocated to all flows in D\Lk−1 for the two algorithms,
respectively. From Lemma 2, the rate allocation for flows in
Lk−1 and α1

k for all flows in D\Lk−1 can also be realized
with UAPR. Hence, α2

k ≥ α1
k . On the other hand, α1

k is the
maximum that can be allocated for all flows in D\Lk−1 with
any routing including UAPR, assuming that the same rates
are allocated to corresponding flows in Lk−1: α1

k ≥ α2
k . Hence

α1
k = α2

k . Both algorithms will find the same maximum data
rate α1

k and the same set of saturated flows. Hence, in each
iteration, both GEN and MMF PGFT LP, will find the same
set of saturated flows with the same rate. 2

Let the number of flows in a communication pattern be
F , the worst case time to solve one LP formulation in the
algorithm be T (LP), the worst case time complexity for
MMF PGFT LP is O(F × T (LP)) since each iteration will
find the rate for at least one flow. In practice, many flows
in a pattern will have the same MMF rate and the actual
time will be much better than the worst case situation. We
note that analyzing the time complexity with LP solvers is a
bit complicated. Although there exist worst-case polynomial-
time algorithms to solve LP problems (O(n3), where n is
the number of variables and constraints) [17], real-world
LP solvers such as IBM’s ILOG CPLEX[18] use practical
algorithms such as the popular simplex method that solve LP
problems efficiently in practice, but have exponential worst-
case time complexity. As such, we use T (LP) to represent the
time to solve one LP problem.

3.3. Progressive filling algorithm

Using UAPR, given a rate for a flow, the rate contribution
of the flow to every link in the fat tree can be decided based
on the flow rate. Hence, one can find the maximum possible
rate for all flows under consideration by raising the rate for
all flows uniformly and examining all links to decide the
mostly capacity-limited link. This way, for a given fat tree with
available bandwidth on each link, the maximum possible rate
for all flows in a pattern can be decided without solving an LP



formulation. Instead, a progressive-filling-based algorithm that
directly calculates the MMF rate allocation for UAPR can be
devised. This is the base of the progressive-filling algorithm,
MMF PGFT PF, which is shown in Figure 6.

Data:
N: set of nodes in the PGFT
E: set of links in the PGFT
C: set of link rates (normalized to 1)
D: set of flows
Pd = set of shortest paths used to realize flow d

Result: A max-min fair allocation vector λ of size |D|
1 Set k = 0, L0 = φ and BW(i, j) =C(i, j),(i, j) ∈ E;
2 Set λd = 0; ∀d ∈ D;
3 while Lk 6= D do
4 Set k = k+1; Lk = Lk−1;
5 Compute the rate limiting factor for each link

(i, j) ∈ E;
6 RL(i, j) =

BW(i, j)
∑d∈D\Lk−1,

[d uses (i, j)]

w0×w1×..×wl×pl

, where (i, j) is at

level l;
7 RL = min(i, j){RL(i, j)} is the smallest rate limiting

factor;
8 The links with the smallest rate limiting factor are

saturated links;
9 For all d ∈ D\Lk−1 that uses any saturated link at

level l
10 λd = RL× (w0×w1× ..×wl× pl);
11 Lk = Lk ∪{d};
12 Adjust BW(i, j) for all links (i, j) that d uses;
13 end
14 end
15 λ is the max-min fair allocation rate for D

Fig. 6: Algorithm MMF PGFT PF

In each iteration, the algorithm computes the rate limiting
factor for each link (lines 5–6). Assume that link (i, j) is at
level l, and that there are Y flows using the link. 1

w0×···×wl×pl
of the rate for each flow is routed through the link since there
are w0 × ·· · ×wl × pl such links to carry the traffic in the
flow. Since the rate for all flows increases uniformly, all Y
flows that use this link can at most communicate at the rate
of BW(i, j)/

Y
w0×···×wl×pl

: this is the rate limiting factor for the
link. Once the rate limiting factors for all links are computed,
the smallest rate limiting factor will determine the maximum
rate that all flows can have; and all links with the smallest rate
limiting factor are saturated after this iteration; and all flows
that use the saturated links are saturated in this iteration. In
lines 10–14, the rates for these flows are determined and the
remaining bandwidth on all links are adjusted.

In the worst case, each iteration will compute the MMF
rate for at least one flow. Let |E| be the number of links in
the network, F be the number of flows, and I be the number
of iterations to solve the problem. Within each iteration, in
the worst case, computing the rate limiting factor can take

O(|E|×F); lines 7 and 8 take O(F) time; and lines (10) to
(14) can take O(|E| ×F) time. Hence, the time complexity
of the algorithm is O(|E| × F × I). In the worst case, it is
O(|E|×F2). In cases when the number of different MMF rates
is small and the number of iterations to solve the problem is
a small constant, the time complexity is O(|E|×F).

3.4. Optimizing the progressive filling algorithm

In the progressive filling algorithm MMF PGFT PF in
Section 3.3, the most computation-intensive components are
in the calculation of the rate limiting factors (lines 5–7) and
the adjusting the link bandwidth when the saturated flows
are removed (lines 10–14). Both components require iterating
through all active flows. For each active flow, another iterative
operation is required to scan through all the paths of that flow
and to update variables(bandwidth, rate limiting factor, etc)
associated with each link along those paths. Since each flow
in the worst case can have a large number of paths with UAPR
as discussed in Section 3.1, the worst case time complexity of
each of these two components is O(|E|×F) in each iteration.

The computation complexity of MMF PGFT PF can be
further reduced by utilizing the topological feature of PGFT
that all links have the same capacity (different capacity be-
tween switches is achieved by using parallel links). Recall
from Lemma 1 that using UAPR, for a flow with a given rate
that utilizes level k uplinks (or downlinks) of a level k sub-
fat-tree, the flow will contribute the same rate to each of the
level k uplinks (or downlinks) of the level k sub-fat-tree. This
follows that the remaining bandwidth (BW(i, j) in Figure 6)
for all uplinks (and downlinks) of a sub-fat-tree in the PGFT
will be exactly the same for all iterations in MMF PGFT PF.
Hence, we can calculate the MMF-MCF rates by using the
bandwidth and rate limiting factor of one representative uplink
(and downlink) for each sub-fat-tree instead of all uplinks (or
downlinks) of the sub-fat-tree as in Figure 6. This significantly
reduces the time complexity of the MMF-MCF rate calculation
algorithm.

Figure 7 is an example illustrating the reduction in the
complexity. In the figure, we use the left uppermost uplink
and downlink (which are connected with the left uppermost
switch of the sub-fat-tree) of each sub-fat-tree to record to the
information for the uplink and downlink of the sub-fat-tree.
This is also how it is implemented in our implementation of
the optimized algorithm to be described later. As shown in
the figure, only the links represented by the red thick lines are
to be explicitly considered in the computation. The value for
each of the links represented by the black thin lines is implied.
For an h+1 level fat-tree, the number of sub-fat-trees that a
flow must pass by is at most 2h (h sub-fat-trees up and h sub-
fat-trees down). Hence, to compute the rate limiting factors
for all sub-fat-trees, we can loop through each active flow. In
each iteration, the rate limiting factor of each of the 2h sub-
fat-trees is updated: the time complexity is O(2h×F), where
F is the number of active flows. For a practical fat-tree of
small height (e.g. h = 3), the time complexity is O(F) which



switches processing nodes

Fig. 7: The reduction of computation by using the concepts of
bandwidth and rate-limiting factor of the uplink and downlink
of sub-fat-tree

is significantly better than the O(|E|×F) time complexity for
the same functionality in the unoptimized MMF PGFT PF.

The optimized algorithm MMF PGFT OPT is shown
in Figure 8. This algorithm has the same structure as
MMF PGFT PF. The only difference is that the bandwidth
and the rate limiting factor are now associated with two links
(one representative uplink and one representative downlink) of
each sub-fat-tree instead of every link in the network. Lines 6–
9 compute the smallest rate limiting factors for the uplink
and downlink of each sub-fat-tree. Lines 12–16 update the
bandwidth of the representative uplink and downlink of each
sub-fat-tree for saturated flows.

In the worst case, each iteration will compute the MMF
rate for one flow. Let |E| be the number of links in the
network, F be the number of flows, and I be the number of
iterations to solve the problem. Assuming the height of the
fat-tree (h) is a small constant, within each iteration, in the
worst case, computing the rate limiting factors for all sub-fat-
trees (lines 6–8) can take O(F). Computing the minimum of
the rate limiting factor (line 9) takes O(|E|) time. The loop
in lines 12–16 takes O(F) time. Hence, the time complexity
of the algorithm is O((|E|+F)× I), which is similar to the
complexity for computing MMF with a single-path routing
scheme. In the worst case, it is O((|E|+F)×F). In cases
when the number of different MMF rates is small and the
number of iterations to solve the problem is a small constant,
the time complexity is O(|E|+F).

MMF PGFT OPT and MMF PGFT PF share the
same fat-tree data structure. In the implementation of
MMF PGFT PF, we use the labeling and numbering scheme
used in [19] to identify switches, links, and compute nodes in
a fat tree. In MMF PGFT OPT , the same labeling scheme is
used to identify the sub-fat-trees: logically the upper-leftmost
switch as seen in Figure 7 of a sub-fat-tree is used to represent
the sub-fat-tree, and the leftmost uplink and downlink of the
switch is used to represent the uplinks and downlinks of the
sub-fat-tree. Given the label of the endpoints of a traffic flow,
one can enumerate the labels of each intermediate sub-fat-tree
(or switch) along the flow path in constant time.

Data:
N: set of nodes in the PGFT
E: set of links in the PGFT
C: set of link rates (normalized to 1)
D: set of flows

Result: A max-min fair allocation vector λ of size |D|
1 Set k = 0 and L0 = φ ;
2 Set BWSUB,{up,down} =CSUB,{up,down}) for each sub-fat-tree

SUB;
3 Set λst = 0; ∀(s, t) ∈ D;
4 while Lk 6= D do
5 Set k = k+1; Lk = Lk−1;
6 Compute the rate limiting factors for each level-i

sub-fat-tree SUB corresponding to its uplinks and
downlinks;

7 RLSUB,up =
BWSUB,up

∑(s,t)∈D\Lk−1[s∈SUB,t /∈SUB]
w0×w1×..wi×pi

8 RLSUB,down =
BWSUB,down

∑(s,t)∈D\Lk−1[s/∈SUB,t∈SUB]
w0×w1×..wi×pi

9 RL = minSUB{RLSUB,up,RLSUB,down} is the smallest
rate limiting factor;

10 Identify the sub-fat-trees with the smallest rate
limiting factor for saturation;

11 Compute the maximum rate R for all unsaturated
flows based on RL;

12 forall (s, t) ∈ D\Lk−1 using a saturated sub-fat-tree
do

13 λst = R;
14 Lk = Lk ∪{(s, t)};
15 Adjust BWSUB,up and BWSUB,down for all

sub-fat-tree SUB that flow (s, t) uses
16 end
17 end
18 λ is the max-min fair allocation rate for D

Fig. 8: Algorithm MMF PGFT OPT

3.5. Parallelization of MMF PGFT OPT

MMF PGFT OPT has the lowest time complexity among
the newly proposed algorithms. We further improve its ef-
ficiency for shared memory architectures such as machines
with multi-core CPUs by parallelizing this algorithm with
OpenMP [10]. As discussed in the previous subsection, the
main complexity is in the calculation of the smallest rate
limiting factor (lines 6–9 in Figure 8) and the updating of
sub-fat-tree uplink and downlink bandwidth (lines 12–16). Our
parallelization effort focuses on these two components.

As can be seen from Figure 8, the rate limiting factor for the
uplink of a sub-fat-tree depends on its bandwidth as well as
the number of active flows that use it. The same observation
applies for downlinks too. To compute the the smallest rate
limiting factor, MMF PGFT OPT has two loops: the first
loop iterates through all active flows and counts the number
of flows using each uplink and downlink of sub-fat-trees; and



the second loop computes the rate limiting factor for each
link and finds the minimum. One parallelization strategy is
to directly parallelize both loops. Since different flows can
affect the counters for different sub-fat-trees, to execute the
first loop in parallel, the counters for the uplink and downlink
of each sub-fat-tree must be updated using atomic operations.
Another strategy to parallelize this loop is to pre-calculate
for each uplink and downlink of sub-fat-trees, all flows that
use the uplink/downlink. This can be done before the outer-
loop. With this information, counting the number of flows
using each uplink and downlink of sub-fat-trees can be done
by iterating through all sub-fat-trees and counting the active
flows for each sub-fat-tree. We empirically decided that the
second approach is more effective in most practical cases, and
adopt this approach to report the results in our performance
evaluation. The second loop computes the minimum of all rate
limiting factors. This loop can be parallelized by declaring the
minimum rate limiting factor as a reduction variable with the
MIN operator.

The second component is in the loop in lines 12–16 in
Figure 8. The loop iterates through all active flows and
checks for saturated flows, which are flows using a saturated
uplink or downlink of a sub-fat-tree. Within each iteration, it
assigns the flow rate to the saturated flow (line 13), marks
the flow as saturated (line 14), and update the bandwidths
of uplinks/downlinks of sub-fat-trees that are affected by the
saturated flow (line 15). In the implementation, each flow
is initially assigned a flow rate of -1, which also marks
that the flow is not saturated. Hence, assigning a positive
flow rate to a flow in line 13 also implicitly marks the
flow as saturated: line 14 is not necessary in the imple-
mentation. This loop can also be parallelized in a straight-
forward manner: line 13 causes no dependence; and line 14
is removed in the implementation. However, different flows
can update the bandwidth of the same uplink or downlink
of a sub-fat-tree. Hence, the adjustment of BWSUB,{up,down} in
line 15 must be performed using atomic operations. Another
parallelization strategy is to split this loop into two loops.
The first loop iterates through all sub-fat-trees, identifies the
saturated flows, and assigns the flow rates for the saturated
flows. The second loop iterates through all sub-fat-trees and
adjust BWSUB,{up,down} accordingly. With the pre-calculation
of flows for each uplink and downlink of sub-fat-trees, no
atomic operation is necessary. The implementation that we use
to report performance results uses the second parallelization
strategy. We note that the bandwidth update operations in
the last loop can be merged with the load calculation loop
of the subsequent loop. Therefore in our implementation, the
effective bandwidth of each sub-fat-tree is evaluated in a lazy
fashion in the same parallel region that implements lines 6–9
to reduce the fork/join overhead of our parallel routine.

4. Performance evaluation

We compare the run-time performance of MMF PGFT LP,
MMF PGFT PF and MMF PGFT OPT , our three newly

developed algorithms, with the performance of an imple-
mentation of the generic multi-path max-min fair rate al-
location algorithm given by Nace et al. [7]. In addition,
we also implement and use the classical, progressive-filling
based MMF-SRP algorithm given by Bertsekas et al. as a
performance reference [5]. The single-path routing algorithm
for the MMF-SRP algorithm is the widely used destination-
mod-k routing [19]. Note that computing MMF rate allocation
with MMF-SRP is commonly considered to be efficient [5].
We denote the generic algorithm for the MMF-MCF problem
as GEN, the MMF-SRP solution algorithm with single-path
destination-mod-k routing as DMK, our linear programming
based algorithm MMF PGFT LP as LP, our progressive
filling based algorithm MMF PGFT PF as PF and lastly,
our optimized algorithm with sub-fat-tree based calculation
MMF PGFT OPT as OPT . We evaluate the performance of
these algorithms by recording the total amount of time required
to calculate rate allocation by each algorithm on different
practical fat-tree topologies and with different communication
patterns. Note that all of the algorithms except DMK yield the
same results (within numerical errors).

As discussed in Section 3.1, using our algorithms to com-
pute MMF rates on PGFT, parallel links between a pair
of switches in PGFT can be treated as an aggregate link
since all our algorithms are based on UAPR. The com-
putation complexity of our algorithms is not affected by
the number of parallel links in PGFT. Hence, we only
use XGFT in the evaluation. The topology instances con-
sidered in this set of experiments are 2-level and 3-level
full bisection bandwidth fat trees with 24- and 36-port
switches, consisting of a 2-level 24-port full bisection tree
(XGFT(2;12,24;1,12)) that supports 288 processing nodes,
a 2-level 36-port full bisection tree (XGFT(2;18,36;1,18))
that supports 648 processing nodes, a 3-level 24-port full bi-
section tree (XGFT(3;12,12,24;1,12,12)) that supports 3,456
processing nodes, and a 3-level 36-port full bisection tree
XGFT(3;18,18,36;1,18,18) that supports 11,664 processing
nodes. In all topology instances considered, the link capacity
is assumed to be the same throughout the network.

The following traffic communication patterns were used in
our study: (1) random permutation patterns (Perm.) where each
node sends traffic to one destination and receives traffic from
exactly one source, and (2) random 2-dimensional nearest-
neighbor communication patterns (2DNN) where each node
communicates with 4 nearest-neighbors on a random sized
grid, and (3) random patterns with each source node sending
traffic to 20 random destination nodes (RANDN(20)). We note
that these patterns also represent increasing problem sizes
given the same network configuration.

A RANDN(20) problem takes significantly longer time to
solve than a 2DNN problem, which in turn takes much longer
time than a Perm. problem. To more or less offset the timing
differences for different type of problems, the timing results
reported for Perm. is the total time to solve 20 random
permutation problems; the timing results reported for 2DNN is
the total time to solve 5 random 2DNN problems; the timing



results reported for RANDN(20) is the timing for solving one
RANDN(20) problem.

All experiments in this section are run on a server equipped
with an intel Core i7-5820K CPU (having 6 physical cores
running at 3.3 GHz clock speed and 16MB L3 cache) and
64GB of memory. The linear programming problems used in
GEN and LP are solved by the IBM ILOG CPLEX Optimiza-
tion Studio software version 12.5.1.0 [18]. The algorithms in
discussion, along with the corresponding routing mechanisms,
are implemented in the C programming language and compiled
with the GNU Compiler Collection (GCC) version 4.8.4. The
programs are run in the Ubuntu 14.04 LTS operating system
environment. For each algorithm, we report the average time
taken to solve 2 random instances of each traffic pattern
category. As we scale up the network size, the execution
time of some of our routines increases beyond several days.
Therefore, we set a time threshold of 30 hours for all of
the experiments. Only measurements that complete within that
threshold are reported.

4.1. Timing Results for sequential algorithms

Table 1 lists the experimental results of the algorithms GEN,
LP, PF, OPT and DMK. The generic MMF-MCF solver GEN
takes longer than our 30 hour time limit for all traffic inputs
used in Table 1. As a special case, we observe the performance
of GEN on our smallest problem instance: the 2-level 24-port
fat tree (XGFT(2; 12, 24; 1, 12)) with 288 processing nodes
and a single permutation pattern (288 flows). Even on such
small network and traffic pattern sizes, GEN takes 1 hour and
49 minutes on average to solve each problem instance. This
indicates that even though GEN can be used to compute MMF-
MCF rate for any topology, it is computationally too expensive
for almost any practical cases. Note that GEN, LP, PF, and
OPT all produce the same results (within numerical errors),
while DMK yields different rate allocation since with DMK,
only single path routing scheme is used to route each flow.

As can be seen from Table 1, by simplifying the LP formula-
tion with fat-tree specific features, our MMF PGFT LP can
solve all but the largest problem (RANDN(20) on XGFT(3;
18,18,36;1,18,18)) within the time limit. By directly comput-
ing the rate limiting factor without using the LP formula-
tion, our MMF PGFT PF significantly reduces the execution
time of MMF PGFT LP. Furthermore, MMF PGFT OPT
further reduces the execution time of MMF PGFT PF very
significantly. As discussed in Section 3, MMF PGFT OPT
improves the time complexity of MMF PGFT PF from
O(|E|×F× I) to O((|E|+F)× I), where |E| is the number of
edges in the graph, F is the number of flows in the problem,
and I is the number of iterations to allocate all rates. The
reduction of the complexity is confirmed in our experience.

As discussed in Section 3, MMF PGFT OPT has time
complexity similar to that of DMK. However, in our ex-
periments, MMF PGFT OPT consistently takes less time
than DMK. Such performance difference is attributed to
the load-balancing property of single-path and multi-path

routing schemes. The multi-path UAPR routing used by
MMF PGFT OPT tend to utilize the network uniformly,
causing many links to have equal loads and thus, to be
saturated in the same step of the MMF-MCF rate calculation
algorithm. On the other hand, the single-path routing used
by DMK causes relatively imbalanced load distribution over
the network, resulting more distinct link load values and thus,
requiring more iterations to compute the MMF-MCF rates.
Therefore, even though MMF PGFT OPT has similar time
complexity as DMK for every iteration, the total time to
compute rate allocation is usually less than DMK, sometimes
significantly. Since DMK is in general considered to be
efficient, we conclude that MMF-MCF rate allocation for fat-
trees can be computed efficiently with MMF PGFT OPT .

4.2. Performance of parallelized MMF PGFT OPT

Table 2 shows the timing results of MMF PGFT OPT . Two
3-level fat-trees, 24-port (XGFT (3;12,12,24;1,12,12)) and
36-port(XGFT (3;18,18,36;1,18,18)), are considered. We run
the OpenMP version with different numbers of threads for the
three traffic patterns, permutation, 2DNN, and RANDN(20).
As can be seen from the table, when the number of threads is
set to 1, the timing results are the same as that in the sequential
implementation. When the number of threads increases, there
are two situations. For the permutation and 2DNN problems,
the problem size is not large enough to explore parallel
execution: using more threads do not have significant impacts
on the execution time. This is because after the optimization
in MMF PGFT OPT , the parallel region is small when the
number of flows is not sufficiently large. In such cases, the
benefits of parallel execution is overshadowed by the overhead
of parallel execution. When there is a sufficiently large number
of flows to be considered in a problem, parallelization can
have significant benefits. For example, with the RANDN(20)
pattern, the parallelization achieves a speed-up of 3.4 with 4
threads for XGFT (3;12,12,24;1,12,12) and a speed-up of 3.5
with 4 threads for XGFT (3;18,18,36;1,18,18). This demon-
strates the effectiveness of the parallelized MMF PGFT OPT .

5. An application

We demonstrate an application of the proposed algorithms
by showing how the new algorithms facilitate the evaluation of
the potential performance degradation by limiting the routing
to the popular destination-mod-k single path routing [19]
on current generation large-scale fat trees. In particular, we
model the throughput performance of fat trees using the newly
proposed LANL-FSU Throughput Indices (LFTI) [11] and
compare the performance of a fat tree with the destination-
mod-k routing (in terms of LFTI) to that without any routing
constraint. The ability to solve an MMF-MCF problem rapidly
for a given communication pattern is essential for computing
LFTI for a fat tree without routing constraints.

LFTI characterizes the performance of interconnects by cap-
turing the throughput behaviors corresponding to the common



TABLE 1: Timing results in seconds (s)

Topology Pattern Average Execution Time
GEN LP PF OPT DMK

XGFT (2;12,24;1,12) Perm. > 30h 0.593s 0.150s 0.003s 0.096s
(288 proc. nodes) 2DNN > 30h 1.228s 0.145s 0.002s 0.002s

RANDN(20) > 30h 127.618s 0.592s 0.033s 0.093s
XGFT (2;18,36;1,18) Perm. > 30h 1.016s 0.348s 0.007s 0.513s

(648 proc nodes) 2DNN > 30h 3.606s 0.324s 0.006s 0.005s
RANDN(20) > 30h 323.986s 3.672s 0.007s 0.532s

XGFT (3;12,12,24;1,12,12) Perm. > 30h 27.222s 4.172s 0.031s 0.326s
(3,456 proc. nodes) 2DNN > 30h 7.783s 2.278s 0.024s 0.027s

RANDN(20) > 30h 30,080.077s 3,717.002s 10.189s 29.63s
XGFT (3;18,18,36;1,1818) Perm. > 30h 230.870s 26.151s 0.150s 1.083s

(11,664 proc. nodes) 2DNN > 30h 38.447s 13.532s 0.089s 0.134s
RANDN(20) > 30h > 30h 96,730.001s 310.650s 782.923s

TABLE 2: Performance of the parallelized MMF PGFT OPT
with 3-level fat-trees (s: seconds)

Topology pattern Number of Threads
1 2 4

24-port Perm. 0.031s 0.032s 0.038s
(3,456) 2DNN 0.024s 0.025s 0.024s

RANDN(20) 10.189s 5.31s 2.985s
36-port Perm. 0.150s 0.137s 0.115s
(11,664) 2DNN 0.089s 0.092s 0.085s

RANDN(20) 310.650s 168.09s 89.085s

types of HPC communication patterns. LFTI considers a com-
prehensive spectrum of the common communication traffics
observed in HPC, classifies them into several pattern types
and then, generates traffic workload samples for each pattern
type. Given a network specification and routing information,
LFTI first approximates the aggregate throughput of the net-
work by taking the average of throughput measures resulting
from several workloads of the same type. Then, the average
aggregate throughput is normalized to the throughput of a
crossbar switch that connects the same number of processing
nodes as the given network does. The resultant metric is an
LFTI throughput index corresponding to the given network and
traffic pattern type pair. Hence, an LFTI index of 1 means that
the performance of the interconnect is equivalent to a crossbar
switch. The final LFTI output is a set of throughput indices
that can express the throughput behaviors of a network for
each type of traffic patterns separately. For further details, we
refer the reader to the paper that introduces LFTI [11].

LFTI is used to compare throughput performances among
different routing schemes on a given network specification.
The network throughput resulting from MMF-MCF rate allo-
cation can be a good theoretical benchmark for making such
comparisons with LFTI. For networks other than fat-trees,
calculating LFTI for MMF-MCF rate allocation is impossible
due to the computational complexity of the GEN algorithm.
However, for fat trees, we can use the newly developed al-
gorithms to compute the MMF-MCF throughput performance
as a reference for evaluating other fat-tree routing schemes.
We note that the goal of this application is not to replace
existing routing schemes with the optimal routing derived from
MMF-MCF calculation, but to rather demonstrate an MMF-

MCF based framework where the performance of any routing
scheme, including and beyond the destination-mod-k routing,
may be evaluated.

In this paper, we select a subset of the communication
pattern types considered in the LFTI paper [11]. The com-
munication patterns considered in this paper and their brief
explanations are listed in Table 3. LFTI also uses different
throughput indices for different node mapping schemes that
determine physical communication patterns. We consider two
mapping schemes in this paper, whole system direct map and
whole system random map. With whole system direct map,
it is assumed that the whole system runs one application
with one communication pattern. The application processes are
mapped to nodes using the identity function, allowing the node
mapping scheme to exploit the network locality to improve
throughput performance. With whole system random map, it
is assumed that the whole system runs one application with one
communication pattern and each application process is mapped
to a random processing node with equal probability. This
scheme characterizes the raw performance of the interconnect
topology with no optimization in the node mapping.

To compute LFTI, it is imperative that the throughput
of each communication pattern can be modeled efficiently.
To evaluate the limitation of destination-mod-k routing, we
compute the LFTI for each type of pattern assuming the
destination-mod-k routing and MMF using the DMK algo-
rithm. We then compare the fat-tree LFTI with destination-
mod-k to the corresponding LFTI without routing constraints,
in which case the parallelized MMF PGFT OPT algorithm
with 4 threads is used to compute the throughput performance
for a pattern.

The topologies used in this experiment are (1)
XGFT(3;18,18,36;1,18,18) a current generation large-scale
fat-tree topology with full bisection bandwidth supporting
11,664 nodes, and (2) XGFT(3;24,24,36;1,12,12): a
slimmed fat-tree topology with 4:1 over-subscription ratio
between the switch levels, supporting 20,736 nodes. The link
capacities are assumed to be the same in both topologies.
Figure 9 shows the LFTI indices for the full bisection
bandwidth fat tree and Figure 10 shows the same for the
slimmed fat tree. The LFTI indices calculated using the
parallelized MMF PGFT OPT algorithm with 4 threads are



TABLE 3: HPC communication patterns used in evaluation

Pattern Description
2DNN average throughput for all 2-dimensional nearest

neighbor patterns with random 2D grid sizes
2DNNDIAG average throughput for all 2-dimensional nearest

neighbor with diagonals patterns with random 2D
grid sizes

3DNN average throughput for all 3-dimension nearest
neighbor patterns with random 3D grid sizes

3DNNDIAG average throughput for all 3-dimension nearest
neighbor patterns with random 3D grid sizes

Permutation average throughput for all permutation patterns
Bisect average throughput for all bisection patterns; same

as effective bisection bandwidth
Shift average throughput for all shift patterns
RANDN(20) average throughput for random patterns with 20

random destinations for each source node
RANDOM(20) average throughput for random patterns, each con-

sisting of nprocs× 20 randomly chosen SD pairs
where nprocs is the number of processing nodes

labeled as MMF in the figures, as any of our MMF-MCF
implementations would produce the same set of indices.

For the full bisection bandwidth fat-tree (Figure 9),
destination-mod-k achieves high performance for 2D and 3D
stencil patterns with the whole system direct map scheme, but
are not as effective for other patterns with global communica-
tion such as permutation and bisect when used with the whole
system direct map scheme. This confirms observations from
earlier studies [9], [11] that when node mapping is properly
controlled, fat-trees with destination-mod-k routing can be
very effective for many HPC traffic patterns. With random
map, the patterns become more random; and fat-tree with
destination-mod-k routing become less effective. On average,
destination-mod-k achieves about 89% of the optimal routing
with whole system direct map. With whole system random
map, the performance gap between destination-mod-k and the
optimal is wider for the stencil patterns and the shift pattern.
On average, destination-mod-k is about 77% of the optimal.
This indicates that destination-mod-k is sensitive to process
mapping. Without routing constraints, the full bisection fat-
tree achieves 100% performance of a crossbar switch while
maintaining max-min fairness among traffic flows.

For the slimmed fat tree (Figure 10), the throughput indices
are predictably lower due to over-subscription. Since slimmed
fat trees do not have full bisection bandwidth, even the optimal
interconnect performance without routing constraints is not
equivalent to a crossbar switch. This makes crossbar switches
a loose upper-bound to the performances of slimmed fat trees
and we cannot infer much information about the performance
of any routing by comparing to crossbar performances only. By
comparing to the maximum obtainable MMF throughput on
the same slimmed-down network with no routing constraint,
Figure 10 provides a better estimate of the performance
of destination-mod-k routing as compared to what can be
achieved without the routing constraint. In other words, the
LFTI results in Figure 10 quantifies the performance margin
that can be improved by improving the destination-mod-k rout-
ing. On average, destination-mod-k routing on our slimmed
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Fig. 9: LFTI summary of a 11,664-node fat-tree network
(XGFT(3;18,36,36;1,18,18))

fat-tree configuration achieves 89% of the optimal throughput
performance with whole system direct map and 81% with the
whole system random map.

For all of the experiments, the parallelized
MMF PGFT OPT with 4 threads computes the LFTI
much faster than DMK. Table 4 shows the statistics of the
time and the average number of iterations taken to compute
LFTI for the slimmed XGFT(3;24,24,36;1,12,12) with
the whole system random map. When calculating LFTI,
we report the average time to solve one problem of each
kind regardless of the problem size whereas the timing
results in the preceding section showed the time to solve
multiple problems for certain patterns. The statistics for
other topologies and/or node mapping schemes are similar.
As can be seen from the table, the number of iterations to
solve each problem is much smaller for multi-path routing
than for single-path routing. This partially explains why the
parallelized MMF PGFT OPT computes the LFTI much
faster than DMK. We note that the number of iterations only
gives a rough estimation of the execution time. The final
execution time also relies on how the rates are computed. For
example, the algorithm that assigns rates to more flows in the
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Fig. 10: LFTI summary of a 20,736-node fat-tree network
(XGFT(3;24,24,36;1,24,24))

earlier iterations will out-perform an algorithm that assigns
rates to a fewer number of flows in the earlier iterations since
the execution time of each iteration depends on the number of
actives flows in the iteration; and once the rate for a flow is
computed, the flow is marked as inactive and will no longer
be considered in future iterations. Nonetheless, the results in
Table 4 shows that our parallelized MMF PGFT OPT is a
practical scheme that can be used to compute LFTI for the
current and future generation of large fat-tree topologies.

6. Conclusions

The max-min fair (MMF) communication rate establishes an
upper bound on the communication performance achievable by
altering only the routing algorithm. It is therefore a worthwhile
metric to compute when designing and evaluating routing
algorithms. However, while MMF is quick to compute for
networks containing only a single path between any source and
destination, it is extremely slow to compute for networks used
in practice in high-performance computing (HPC) systems,
all of which contain multiple paths between peers. This is
because the best algorithm to date for solving the multiple-

TABLE 4: Statistics of the timing and the average number
of iterations to solve each problem in the calculation of the
LFT I of a 20,736-node fat tree XGFT(3;24,24,36;1,12,12)
with the whole system random map (s:seconds)

pattern DMK Parallelized OPT
avg. iter. time avg. iter. time

2DNN 7,559 58.22s 1,021 1.25s
2DNNDIAG 9,814 165.36s 2,123 7.75s
3DNN 8,637 85.37s 1,529 2.87s
3DNNDIAG 14,020 1,149.33s 3,288 91.98s
Permutation 857 3.92s 37 0.04s
Bisect 116 0.52s 52 0.03s
ShiftN 844 3.86s 39 0.04s
RANDN(20) 16,117 1,168.79s 4,531 104.88s
RANDOM(20) 16,121 1,180.27s 5,064 119.64s

path case (a.k.a. MMF multi-commodity flow or MMF-MCF)
is based on linear programming (LP), which is computationally
infeasible at the billion-variable scale needed to represent a
modern HPC system’s network.

The main conclusion to draw from our work is that it is
possible to compute the MMF communication rate in the
multi-path case in time comparable to—and at times, faster
than—that needed to compute a single-path MMF rate by
taking into account the network’s specific topology instead
of considering only the general case of arbitrary topologies.
Via an empirical evaluation we have demonstrated that our
algorithms, which target commonly used fat-tree topologies,
are significantly faster than the existing generic solution.

A secondary conclusion is that destination-mod-k routing,
which is the quintessential routing algorithm for fat-tree
networks, achieves an average of about 77-89% of optimal
routing (as determined by the MMF rate) across a suite
of HPC communication patterns at a scale of over 10,000
network endpoints. This is the first time that the performance
of destination-mod-k routing has been compared to optimal
routing at such a large scale and is made possible by our
algorithms’ ability to so quickly compute MMF in the MMF-
MCF case.

A natural avenue for future research would be to investigate
ways to extend the concepts utilized in this paper to other net-
works used in modern HPC systems such as meshes/tori and
dragonflies. Nevertheless, by being able to rapidly compute
max-min fair rates for multi-commodity flows on fat trees it
is finally possible to evaluate routing algorithms at scale not
only in terms of how much better they are than prior routing
algorithms but also in terms of how close they come to the
best possible routing algorithm for the given network.
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