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Abstract: We consider di-jet production in hadron collisions where a transverse veto is

imposed on radiation for (pseudo-)rapidities in the central region only, where this central

region is defined with rapidity cutoff. For the case where the transverse measurement

(e.g., transverse energy or min pT for jet veto) is parametrically larger relative to the

typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff

parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality

for these degrees of freedom is set by the transverse measurement, as in typical transverse-

momentum dependent observables such as Drell-Yan, Higgs production, and the event

shape broadening. This paper focuses on the other region, where the typical transverse

momentum below and beyond the cutoff is of similar size. In this region the rapidity

cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different

rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity

cutoff parameter which we resum using renormalization group methods. We factorize the

cross section in this region in terms of soft and collinear functions in the framework of soft-

collinear effective theory, then further refactorize the soft function as a convolution of the

(u)soft and soft-collinear functions. All these functions are calculated at one-loop order.

As an example, we calculate a differential cross section for a specific partonic channel,

qq′ → qq′, for the jet shape angularities and show that the refactorization allows us to

resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet

shape spectrum.
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1 Introduction

In the recent years, jet substructure has been of great interest to the particle physics com-

munity since it can be used to discriminate between jets of different origins, e.g., quark

and gluon jets or jets from hadronic decays of boosted heavy mesons or Higgs and Z

bosons [1–12]. This is essential for expanding our understanding of quantum chromody-

namics (QCD) as well as testing the standard model (SM) or searching for beyond SM

physics.
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In experimental studies of exclusive N -jet production, it is common to impose a veto

on the out-of-jet radiation in order to control soft emissions. Additionally, due to detec-

tor limitations these vetoes are imposed within a specific (pseudo-)rapidity region and the

veto is not imposed outside this region. These constraints can induce large logarithms of

the cutoff parameter, e−η
cut

, and ratios of the veto parameter, pcut
T , to other scales in the

problem (e.g., the hard scale µH ∼
√−t, where t is the usual Mandelstam variable). These

logarithmic enhancements could potentially ruin the effectiveness of the ordinary perturba-

tive expansion. In this work we propose a factorization theorem for resumming logarithms

of e−η
cut

and pcut
T /µ within the framework of soft-collinear effective theory (SCET) [13–16],

where µ is the factorization scale. SCET was extensively used in the past decade for

factorization of observables with sensitivity to soft and collinear radiation, such as jet sub-

structure measurements in hadronic colliders. Some other interesting applications of SCET

include cross sections for event shapes in the collinear limit, jet production rates [17, 18],

and identified hadrons within jets [19–26].

In this paper, we study rapidity cutoff resummation and develop the necessary ingre-

dients for di-jet cross sections with transverse energy, ET , and jet-veto measurements in

hadronic collisions. Our results can easily be extended to zero and one-jet cross sections

as well. The transverse energy is defined as the sum of the scalar transverse momentum of

all the particles that do not belong to a jet and have rapidity, η, in the range |η| < ηcut,

ET =
∑
i/∈jet

|piT |Θ(ηcut − |ηi|), (1.1)

where the rapidity is measured with respect to the beam axis. The veto is implemented

by imposing the constraint ET < pcut
T . Due to the nature of the observable one expects

that such a measurement is sensitive to the underlying event (UE). Measurements of the

UE activity have been performed by ATLAS and CMS in inclusive charged particle pro-

duction [27], Drell-Yan [28–30], and exclusive dijet events [31].

The effect of UE in transverse energy resummed distributions was studied in

refs. [32, 33] for ηcut = 4.5 in the case of Higgs and vector-boson production using monte-

carlo simulation. In contrast to the work in this paper, in refs. [32, 33] the rapidity cutoff

was introduced only during the simulation and not in the resummed distribution. However,

as will be discussed below, for the large values of rapidity cutoff (ηcut & 4.5) the effect of

the cutoff on the resummed distribution is expected to be small. In this work we ignore

effects of multiparton interactions and focus on contributions from initial and final state

radiation. In principle, effects from multiparton interactions could be included later on

top of our analysis as factorization breaking corrections but this is beyond the scope of

this work.

Similarly, the jet-veto measurement imposes |piT (Rveto)| < pcut
T , where piT is the trans-

verse momenta of the i-th jet reconstructed by a jet algorithm and Rveto is the jet cone size

parameter used during the vetoing process which could be different from the hard jet size,

R. Though the jet-veto measurements are less sensitive to UE, they suffer from logarithmic

enhancements of Rveto. Such logarithms are known as “clustering logarithms” and appear

in next-to-next-leading order (NNLO) calculations [34–36], and could make an important
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contribution to the cross section. At present there is no known method for resummation

of these logarithms but they could be included order-by-order in perturbation theory.

As a preliminary exercise we study di-jet production under the rapidity constraints in

an electron-positron annihilation process. Specifically we study the effects of the rapidity

constraints in the small transverse energy regime ΛQCD � E⊥ . ωr � ω, where ω =
√
s

is the center of mass energy and r = e−η
cut

is the rapidity cut. For this simple example,

the transverse energy E⊥ as well as the rapidity is measured with respect to the thrust

axis and therefore we use different notation (E⊥ instead of ET ) to avoid confusion. The

schematic form of the factorization of the cross section within SCET is,

dσ

dE⊥
∼ H × S ⊗ Jq ⊗ Jq̄, S(E⊥) = Ss ⊗ Sn ⊗ Sn̄, (1.2)

where ⊗ denotes convolution over E⊥. The hard function, H describes the hard process:

e+e− → qq̄, and the soft function, S, describes the soft radiation and cross talk between

collinear sectors. The collinear radiation along the thrust axis is described by the functions

Jq which can be written in terms of the “unmeasured” jet function,1 Ji, introduced in

refs. [37], and contributions from out-of-jet radiation, which we denote as ∆Ji. For small

values of the transverse momentum, E⊥ � ωr, the collinear radiation which is emitted

within the cone has parametrically large transverse momenta, compared to E⊥, and does

not contribute to the measurement. In this case the function Jq reduces to the standard

unmeasured jet function. The corrections from the out-of-jet radiations are necessary to

describe the process for moderate values of E⊥ . ωr. The collinear-soft function, Sn,

describes the collinear-soft modes which are collinear in the n-direction and therefore can

resolve the jet-cone boundary. The global-soft function, Ss, describes the standard u-soft

modes of SCETI which cannot resolve the small jet radius and therefore for the calculation

of Ss no rapidity constraints are imposed. In this e+e− example there is no UE and therefore

the factorization is accurate up to higher orders in the effective field theory power counting

parameter λ ∼ E⊥/ω. This allows us to directly compare our results with simulation data.

For our analysis we use MadGraph [38] + Pythia 8 [39, 40]. Our calculations are in very

good agreement with Monte Carlo for most values of E⊥.

The refactorization of the soft function into global-soft and collinear-soft terms intro-

duces rapidity divergences which we regulate using the rapidity regulator of refs. [41, 42].

The rapidity scale dependence allow us to derive rapidity renormalization group (RRG)

equations which we solve to resum global logarithms of r up to next-to-leading logarithmic

(NLL) accuracy. This process closely follows the analysis in refs. [43, 44] where resumma-

tion of jet size parameter is performed in the context of electron-positron annihilation and

in refs. [45, 46] for proton-proton collisions. Non-global logarithms (NGLs) [47–54] of r

appear at NNLO calculations. Their resummation is particularly challenging since they do

not have the same pattern at each order in perturbative expansion. NGLs can be included

order by order in αs when their contribution is not large. Otherwise, resummation strate-

1We use the terminology of ref. [37] and we refer to jets for which no substructure observable is measured

as unmeasured jets.
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gies developed in perturbative QCD [47, 48, 55–60] or recent approaches in the framework

of SCET [43, 61–64] should be adopted.

Other logarithms of ratios of widely separated scales also appear in the factorized cross

section (e.g. ratios of µH = ω, µJ = ωr, and µss = E⊥) are resummed by using the standard

RG evolution within the effective theory. We summarize the RG evolution properties for

all relevant terms in the sections 2.2, 3.2, and appendix A.3.

In hadronic collisions the beam direction plays the role that thrust axis plays in

electron-positron collisions and the collinear radiation along the nB-direction is described

by the beam functions [65]. The corrections to the beam function from out-of-beam radi-

ation will contribute to the transverse energy (or jet-veto) measurement in a similar way

as corrections to the jet function in electron-positron annihilation. For jet production,

in addition to the nB-collinear-soft and nB-collinear modes, we also have corresponding

modes along each jet direction. The contribution from nJ -collinear-soft modes is considered

through further refactorization of the soft function including the nJ -collinear-soft function,

Sn,J . The factorization theorem for N -jet production in hadronic collisions is,

dσ

dET
∼ Tr

[
Hab→1,2...,N Sab→1,2...,N

unmeas

]
⊗ Ba/P ⊗ Bb/P ×

( N∏
i=1

Ji

)
, (1.3)

where

Sab→1,2...,N
unmeas = Sab→1,2...,N

s ⊗ S(a)
n,B ⊗ S

(b)

n,B
⊗ S(1)

n,J · · · ⊗ S
(N)
n,J , (1.4)

and Ss is the global N -jet soft function, S
(a)
n,B, and S

(i)
n,J are the collinear soft functions along

the beam and jet directions respectively. The superscripts (a) and (i) denote the partons

associated with these functions and it should be noted that S
(a)
n,B and S

(i)
n,J are different

functions even for the same parton a = i because the veto for both functions is always

applied respect to the beam direction, not individual jet and beam directions. The parton

dependence of the soft functions will be suppressed for the rest of the text for simplicity

of notation. The contributions from the nJ -collinear modes to the transverse energy are

suppressed and therefore the jet functions Ji do not participate in the convolutions over

ET , while the beam functions Bi/P do through ET /ωr terms in the power corrections. This

is discussed in appendix C. It should be noted that in this paper we focus in the region

ET ∼ ωr where these corrections are important and NGLs of the form ln(ET /ωr) ∼ 1 and

therefore resummation is not needed.

The factorization formula in eq. (1.3) assumes the jets are in the central rapidity re-

gion, hence the factorization is invalid for jets in the large rapidity region, for which pure

t-channel forward scattering dominates. This process was extensively studied in the frame-

work of High Energy Jets (HEJ) [66–68] developed to resum logarithms of the rapidity

difference between jets and in the context of factorization violation by Glauber-gluon ex-

change [69]. The formula in eq. (1.3) can be used to calculate exclusive N-jet production

in the absence of UE and to understand its effect by comparing to ATLAS and CMS

measurements [28–31].
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We also consider jet substructure measurements for some of the jets. In this case the

factorization is obtained with the replacement [37, 45],

dσ

dETdτ
∼ dσ

dET

(
Ji → Smeas ⊗τ Ji(τ)

)
, (1.5)

where Smeas(τ) is the contribution of the collinear-soft modes to the measurements within

the jet cone, Ji(τ) is the measured jet function, and ⊗τ denotes a convolution over the jet

substructure observable, τ . The unmeasured soft function, Sunmeas, is universal, meaning

it does not depend on the jet substructure observable and therefore our calculations hold

for jet substructure studies as well.

In section 2 we motivate our analysis using the simple example of electron-positron

annihilation and we show two distinct factorization theorems are required to explain the

simulation data in the region E⊥ � ω. One factorization theorem involves the inclusive

soft and jet functions, does not depend on the rapidity cutoff, and describes the region

ωr � E⊥ � ω. On the other hand for small values of transverse energy, E⊥ � ωr � ω,

we find that a factorization is needed which is sensitive to the rapidity cutoff. In this section

we also calculate the correction to the unmeasured jet function from out of jet radiation

and demonstrate that including such corrections greatly improves the agreement with the

simulations for E⊥ . ωr. In section 3 we extend the formalism to hadronic collisions and

we give all perturbative matching coefficients for the unmeasured quark beam functions and

the corrections from out-of-beam radiation. The details of the calculation for the matching

coefficients are given in appendix B. In section 3 we also construct the universal part of

the di-jet soft function and we discuss the RG evolution of the soft function in rapidity

and virtuality space for both transverse energy and jet-veto measurements. In section 4 we

apply this formalism to the example of di-jet production with one unmeasured jet and one

for which the angularity (see ref. [45]) τ0 is measured. We impose a jet-veto measurement

on the soft out-of-jet radiation, and we focus on small, τ0, region for which angularity is

approximately proportional to the jet invariant mass,

τ0 = m2
J/p

2
T +O(τ2

0 ), (1.6)

where pT is the jet transverse momentum measured from the beam axis. Even though the

calculation of di-jet cross section involves summing over all possible partonic channels here

we consider only the case qq′ → qq′. The complete calculation is beyond the scope of this

paper. We conclude in section 5.

2 Two jets with an E⊥ veto in electron-positron annihilation

To obtain a better understanding of the effect of a soft radiation veto with rapidity con-

straints in a setting simpler than hadron-hadron collisions, we study a similar observable in

electron-position annihilation. To define the veto we use the rapidity of final state particles

measured with respect to the thrust axis. At leading order in the strong coupling the cross

section is dominated by di-jet events where the two-jet axis is close to the thrust axis. We

can then categorize the events into two types. In the first category which we refer to as

– 5 –
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Type II

⌘cut

vetoing region

n̂t

Type I

unmeasured region

�⌘cut

Figure 1. Topology of Type I and Type II events. The vetoing region |η| < ηcut is defined as

the area in which we perform the measurement of the quantity which will be using to perform the

transverse veto. Type I events contain at least one collinear sector in this region where Type II

contain no such collinear sectors.

Type-I events, at least one of the two collinear sectors points inside the vetoing area as

shown in figure 1 (left). The second category which we call Type-II events both collinear

sectors point outside the vetoing area as shown in figure 1 (right).

We consider a veto using the measurement of transverse energy, E⊥, which is defined

as the scalar sum of the transverse momentum of all particles in the pseudo-rapidity region

|η| < ηcut:

E⊥ =
∑
i

|pi⊥|Θ(ηcut − |ηi|), (2.1)

where the sum extends over all particles in the event. We are looking for the hierarchy

between E⊥, ωr, and ω that will allow us to separate regions of the phase space where either

Type-I or Type-II events dominate the cross section, where r is defined by r = exp(−ηcut).2

We study the fraction of Type-I and Type-II events as a function of transverse energy, E⊥,

for different values of ηcut at ω = 2 TeV using Pythia 8. In our simulations we have turned

off hadronization. The thrust axis is defined globally, and then the anti-kT algorithm is

used to find jets with R = 0.05. We require that the two most energetic jets carry 90% of

the total energy. If both of these jets are outside the veto the event is Type-II, otherwise

it is Type-I. The results for ηcut = 1.5 and ηcut = 2.5 are presented in figure 2.

From these plots we find that for ωr � E⊥, Type-I events dominate the cross section,

where for E⊥ � ωr, Type-II events dominate. This can be understood from basic kine-

matics. In each hemisphere the total transverse momentum is zero (from the definition of

the thrust axis) thus the collinear radiation will recoil against the soft radiation which is

emitted at larger angles. The transverse momentum of the collinear sector at the transition

point from Type-I to Type-II is given by Ecoll.
⊥ ∼ ωr therefore at this region of phase-space

E⊥ = Ecoll.
⊥ +Esoft

⊥ & 2ωr. On the other hand, transitioning from Type-II to Type-I events,

where E⊥ = Esoft
⊥ ,3 the transition begins at E⊥ . ωr.

2The parameter r is also related to the half opening angle, φ, of the cones: r = tan(φ/2).
3Note that E⊥ is measured only in the vetoing area thus for Type-II events only the soft radiation

contributes to the measurement. For Jet-veto type measurements (rather than E⊥-veto) both transitions

happen at the same point.
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Figure 2. The ratio of the number of events of Type-I (Type-II) divided the total number of

events for each bin of the transverse energy is plotted in blue (red) from Pythia simulations. We

analyzed center of mass events for
√
s = ω = 2 TeV and for ηcut = 1.5 (left) where ωr ∼ 450 GeV

and ηcut = 2.5 (right) where ωr ∼ 164 GeV. The collinear sectors are identified in Pythia using

anti-kT FastJet analysis for narrow jets (R = 0.05).

Therefore we identify two different regions and construct factorization theorems for

each region within the framework of SCET. The two regions of phase-space we are consid-

ering are:

Region I : ωr � E⊥ � ω

Region II : E⊥ � ωr � ω . (2.2)

Region I which is dominated by Type-I events which have no sensitivity to the exact value

of r as long as it respects the hierarchy of scales that describes this region. The reason

is that the modes sensitive to the size of r are soft and collinear with typical transverse

momentum ∼ E⊥r and therefore contribution of such particles to the measurement is

parametrically small. This suggests that for Type-I events we can take ηcut → ∞ and

obtain a good approximation to the cross section. To verify this, we define the integrated

cross section

dσ(ηcut, pcut
⊥ ) ≡

∫ pcut⊥

0
dE⊥

dσ

dE⊥
(ηcut, E⊥). (2.3)

and calculate the ratio of this cross section to the total cross section as a function of pcut
⊥

for various values of ηcut, as well as ηcut → ∞, in figure 3 using Pythia simulations. We

find that for sufficiently large values of pcut
⊥ the cross section dσ(ηcut, pcut

⊥ ) asymptotically

approaches dσ(ηcut → ∞, pcut
⊥ ). Note that the finite ηcut curves approach the ηcut → ∞

curve when pcut
⊥ ∼ ωr.

This approximation was discussed in refs. [34, 70] and has been used in subsequent

studies [36, 71] of various jet observables at hadron colliders within the framework of

SCETII. The factorization theorem for the differential cross section in electron-positron

– 7 –
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Figure 3. The integrated cross section as a function of the vetoing parameter pcutT from Pythia

simulation for various values of ηcut: ηcut = 0.5 (red), 1.5 (blue), 2.5 (green), 3.5 (orange). We also

give the results for no rapidity constraints, ηcut →∞, (black).

modes Region I Region II

n-collinear (E2
⊥/ω, ω,E⊥) (ωr2, ω, ωr)

n-collinear-soft – (E⊥r, E⊥/r,E⊥)

soft (E⊥, E⊥, E⊥) (E⊥, E⊥, E⊥)

Table 1. The scaling of (p+, p−, p⊥)n for the collinear, soft, and collinear-soft modes for transverse

energy measurement where n̂ is the thrust axis in electron-positron annihilation, for region I and II.

annihilation is identical to the factorization theorem for measured jet broadening4 derived

in eq. (6.22) of ref. [41],

dσ(I)

dE⊥
= σ0H2 ×

∫
dEndEn̄dEs δ(E⊥ − En − En̄ − Es)

∫
dq2
⊥dp

2
⊥S(Es,p

2
⊥,q

2
⊥)

×J(En,p
2
⊥)× J(En̄,q

2
⊥). (2.4)

where σ0 is the Born cross section and H2 is the di-jet hard function extracted from

the matching of QCD onto SCET and can be found in refs. [72, 73]. In this factorization

theorem the collinear radiation is described through the jet functions, J(En,p
2
⊥), where the

transverse momentum dependence (measured with respect to the thrust axis) is necessary

in order to account for the recoiling of collinear radiation against soft radiation. The

contribution of soft radiation is incorporated via the soft function, S(Es,p
2
⊥,q

2
⊥). In this

region both collinear and soft radiation contribute the measurement of transverse energy.

The relevant modes of SCET that contribute to the factorization theorem in eq. (2.4) which

are the standard SCETII modes are presented in table 1.

4Jet broadening, e is defined as e =
(∑

i |p
i
⊥|
)
/ω where the transverse momentum is measured with

respect to the thrust axis.
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We now turn our attention to region II where Type-II events dominate the cross

section. In order to identify the relevant SCET modes that participate in the factorization

of the cross section in this region is important to realize that, in contrast with region I,

the collinear modes within the cones outside the veto could have transverse momentum

parametrically larger than the soft radiation. This corresponds to approximately back-to-

back di-jet events and for this reason we employ SCETI modes. Furthermore in the limit

r � 1 we need to include the soft and collinear modes that contribute to the measurement

and can also resolve the cone boundary. We achieve this using the framework developed

in ref. [44] and refactorize the soft function into global soft and collinear-soft functions.

Due to the nature of the measurement the two modes have the same virtuality but live in

different rapidity regions, as shown in table 1. Thus the factorization of the cross section

in region II is,

dσ(II)

dE⊥
= σ0H2 × Jq(ω)× Jq̄(ω)×

∫
dEndEn̄ Ss(E⊥ − Esn − Esn̄)Sn(Esn)Sn̄(Esn̄), (2.5)

where Ss is the global soft function and Sn and Sn̄ are the collinear soft functions associated

with corresponding modes.

In fixed order calculations the global soft and collinear-soft functions suffer from ra-

pidity divergences that are regulated with the use of rapidity regulator of refs. [41, 42].

Employing rapidity renormalization group allows us to resum global logarithms of the cone

size parameter r (or equivalently ln(1/r) = ηcut). A similar analysis was performed within

the context of transverse momentum dependent fragmenting jet functions (TMDFJF) in

ref. [74]. The jet functions Ji(ω) describe the cone-type “unmeasured” jets and can be

found for both gluon, i = g, and quark (antiquark), i = q(q̄) jets in ref. [37]. For large

values of r (r ∼ 1 or equivalently ηcut → 0) the factorization theorem in eq. (2.5) still

holds but the refactorization of the soft function is redundant since the collinear-soft and

global-soft modes merge to the standard ultra-soft modes of SCETI.

2.1 Fixed order results

In this section we provide the fixed order results for region II up to NLO accuracy. The

elements for resummed expressions up to NLL’ are given in the following section along

with numerical implementations and comparison with Pythia. For region I all necessary

results for the NLO cross-section are derived in ref. [41] and summarized in appendix A.

In region II collinear radiation is contained within the unmeasured cones and therefore

does not contribute to the measurement of the transverse energy in the vetoing area. The

unmeasured jet function that appears in the factorized expression in eq. (2.5) are evaluated

in ref. [37] and are given by:

JNLO
q (ω, r) = 1 +

αsCF
2π

{
7

2
− 5

12
π2 + 3 ln(2) +

3

2
ln

(
µ2

r2ω2

)
+

1

2
ln2

(
µ2

r2ω2

)}
. (2.6)

The soft function Ss(Es) can be calculated using the rapidity and dimensional regulators

from the real gluon emission diagrams. Virtual gluon diagrams will give scaleless integrals

and therefore are ignored during this calculation. We evaluate the NLO contributions
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by extending the phase-space integration in eq. (5.11) of ref. [37] with the replacement

Θalg → δ(E⊥ − k⊥) and multiplying by the rapidity regulator factor, w2(ν/|2k3|)η,

S
b,(1)
s,ij (Es) = −g2w2

(
eγEµ2

4π

)ε
(Ti ·Tj)

∫
dk+dk−dd−2k⊥

(2π)d−1

νηδ(k2)

k+k−|k− − k+|η δ(Es − k⊥)

= −αsw
2

2π
(Ti ·Tj)

4eεγE

Γ(1− ε)

(
ν

µ

)η Γ(−η)Γ(η/2)

Γ(−η/2)

1

µ

(
µ

Es

)1+2ε+η

. (2.7)

where the superscript b denotes “bare” quantities. Expanding in η, then in ε, and adding

the LO contributions we have,

Sb,NLO
s,qq̄ (Es) = δ(Es) +

∑
i,j={q,q̄}
i 6=j

S
b,(1)
s,ij (Es) = δ(Es) +

αsw
2CF
π

{
2

η

[
− 1

ε
δ(Es) + 2L0(Es, µ)

]

+δ(Es)

[
1

ε2
+

1

ε
ln

(
µ2

ν2

)]
−2L0(Es, µ) ln

(
µ2

ν2

)
−4L1(Es, µ)−π

2

12
δ(Es)

}
,

where we used Tq ·Tq̄ + Tq̄ ·Tq = −2CF and defined5

Ln(x, µ) ≡ 1

µ
Ln
(
x

µ

)
=

1

µ

[
µ

x
lnn(x/µ)

]
+

. (2.8)

In the MS scheme, the renormalized result is

SNLO
s,qq̄ (Es, µ, ν) = δ(Es)−

αsCF
π

{
2L0(Es, µ) ln

(
µ2

ν2

)
+ 4L1(Es, µ) +

π2

12
δ(Es)

}
, (2.9)

where for a generic function, F , the bare and renormalized functions are related through

the following equation,

F b(E) =

∫
dE ZF (E − E′)F (E′) ≡ ZF ⊗ F (E), (2.10)

and

Zss,qq̄(Es) = δ(Es) +
αsw

2CF
π

{
2

η

[
− 1

ε
δ(Es) + 2L0(Es, µ)

]
+ δ(Es)

[
1

ε2
+

1

ε
ln

(
µ2

ν2

)]}
.

(2.11)

In the renormalized result we take w → 1 but we keep the explicit dependence of the

bookkeeping parameter in the renormalization function, Zss, since this will allow us to

evaluate the anomalous dimension for the rapidity renormalization group (RRG) in the

next section.

Similarly for the n-collinear-soft function, Sn(En) we have,

S
b,(1)
n,i (En) = 2g2w2

(
eγEµ2

4π

)ε
(Ti)

2

∫
dk+dk−dd−2k⊥

(2π)d−1

νη

k+(k−)1+η
δ(k2)δ(En − k⊥)Θr

=− αsw
2

2π
(Ti)

2 4eεγE

Γ(1− ε)
1

η

(
νr

µ

)η 1

µ

(
µ

En

)1+2ε+η

, (2.12)

5A precise definition of the plus-distributions in eq. (2.8) can be found in ref. [75].
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where Θr = Θ(k+/k− − r2) constrains the collinear-soft gluons to be within the mea-

sured region. Following similar process as for the global soft function, we have for the

renormalized collinear soft function,

SNLO
n,i (En, µ, ν) = δ(En) +

αsCi
2π

{
2L0(En, µ) ln

(
µ2

r2ν2

)
+ 4L1(En, µ) +

π2

12
δ(En)

}
, (2.13)

where Cq̄ = Cq ≡ (Tq)
2 = CF (also Cg = CA) and the renormalization function is

Zsn,i(En) = δ(En)− αsw
2Ci

2π

{
2

η

[
− 1

ε
δ(En) + 2L0(En, µ)

]
+δ(En)

[
1

ε2
+

1

ε
ln

(
µ2

r2ν2

)]}
.

(2.14)

2.2 Renormalization group evolution and numerics

In this section we review the results from literature regarding the NLL cross section for

region I and later study the renormalization properties of the global and collinear-soft

functions for the region II. We also perform numerical applications and compare against

Pythia.

2.2.1 Region I NLL cross section

In ref. [41] a factorization theorem is studied for electron-positron annihilation processes

where jet broadening, e, is measured. This measurement can be related with the measure-

ment of transverse energy in region I through a simple rescaling relation:

e =
1

ω

∑
i

|pi⊥| =
E⊥
ω
. (2.15)

The explicit NLL cross section for the simultaneous measurement of the left broadening,

eL, and right broadening, eR, is given in eq. (6.59) of ref. [41].

dσNLL

deRdeL
= σ0UH(µh, µs)

(
eγEµ

ω

)−2ωs 1

Γ2(ωs) (eLeR)1−ωs

[
1− ωs

2−ωs
B1/2(1 + ωs, 0)

]2

,

(2.16)

where

ωs = 2
αs(µ)CF

π
ln

(
ν

ν0

)
, and Bz(a, b) =

∫ z

0
dx (1− x)b−1xa−1, (2.17)

where ν and ν0 are the jet and soft rapidity-scales, respectively, and Bz(a, b) is the in-

complete beta-function. Using the fact that jet broadening is the sum of left and right

broadening, i.e., e = eL + eR, we have,

dσ

dE⊥
(E⊥) =

∫
deLdeR δ(E⊥ − ω(eL + eR))

dσ

deLdeR
(eL, eR). (2.18)

Performing the integrations we find,

dσ(I), NLL

dE⊥
= σ0UH(µh, µs)

e−2ωsγE

Γ(2ωs)

1

µ

(
µ

E⊥

)1−2ωs
[
1− ωs

2−ωs
B1/2(1 + ωs, 0)

]2

. (2.19)
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To determine the jet and soft rapidity scales we look at the fixed order results in ap-

pendix A.1. We see that at NLO the rapidity logarithms are minimized with the choices

ν = νJ = ω and ν0 = νS = E⊥. Thus for this choice of rapidity,

ωs = 2
αs(µ)CF

π
ln

(
ω

E⊥

)
. (2.20)

We will compare our result for the NLL integrated cross section to Pythia simulations in

the next section.

2.2.2 Region II NLL’ cross section

The renormalized global and collinear soft functions satisfy the following RG and RRG

equations:

d

d ln(µ)
F (E,µ, ν) = γFµ F (E,µ, ν),

d

d ln(ν)
F (E,µ, ν) = γFν ⊗ F (E,µ, ν), (2.21)

where γFµ and γFν are the RG and RRG anomalous dimensions respectively and F can

be either the global soft function, Ss,ij or the collinear-soft function Sn,i. The anomalous

dimensions are related to the renormalization function through the following relations:6

γFµ (µ, ν)δ(E) = −Z−1
F ⊗

(
dZF
d ln(µ)

)
, γFν (E,µ) = −Z−1

F ⊗
(

dZF
d ln(ν)

)
, (2.22)

and thus from eqs. (2.11) and (2.14) we have

γssµ (µ, ν) = +2
αsCF
π

ln

(
µ2

ν2

)
, γssν (E,µ) = +4

αsCF
π
L0(E,µ),

γsnµ (µ, ν) = −αsCF
π

ln

(
µ2

ν2r2

)
, γsnν (E,µ) = −2

αsCF
π
L0(E,µ), (2.23)

in agreement with eq. (A.9) of ref. [71]. We note that the soft anomalous dimensions satisfy

the following consistency relations,

γssµ (µ, ν) + 2 γsnµ (µ, ν) = γunmeas
S (µ) γssν (E,µ) + 2 γsnν (E,µ) = 0, (2.24)

where γunmeas
S (µ) is the soft anomalous dimension from eq. (6.30) in ref. [37]. These con-

sistency relations are required so that the cross section is independent of the factorization

and rapidity scale. The RRG anomalous dimension assumes the following generic form to

all orders in perturbation theory:

γFν (E,µ) = 2ΓFν [α]L0(E,µ) + ∆γFν [α]δ(E), (2.25)

where ΓFν is proportional to the cusp anomalous dimension Γcusp (see eq. (A.18)) and ∆γFν
is the non-cusp part of the anomalous dimension. The values of ΓFν [α] and ∆γFν [α] for the

collinear and global soft functions for the process e+e− → di-jets are given in table 2.

6In the following equations Z−1
F is defined such that Z−1

F ⊗ ZF (E) = δ(E).
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Function ΓFν ∆γFν νF

Ss,qq̄ 2αsCF /π O(α2
S) E⊥

Sn,q −αsCF /π O(α2
S) E⊥/r

Table 2. The rapidity renormalization group anomalous dimensions and rapidity canonical scales,

νF , for global-soft and collinear-soft functions for the electron-positron annihilation to di-jets.

The solution to the RRGE in eq. (2.21) is:

F (E,µ, ν) = [F (µ, νF )⊗ VF (µ, ν, νF )](E), (2.26)

where

VF (E,µ, ν, νF ) =
eκF (µ,ν,νF )(eγEµ)−ηF (µ,ν,νF )

Γ(ηF (µ, ν, νF ))

[
1

E1−ηF (µ,ν,νF )

]
+

, (2.27)

where we define the the plus-distribution in eq. (2.27) through its inverse Laplace

transform,7 [
1

E1−α

]
+

= L−1

[
sα Γ[−α]

]
,

and

ηF (µ, ν, νF ) = 2ΓFν [α] ln

(
ν

νF

)
, κF (µ, ν, νF ) = ∆γFν [α] ln

(
ν

νF

)
, (2.28)

where νF is the characteristic scale from which we start the evolution and is chosen such that

at this scale rapidity logarithms are minimized. For the global and collinear soft functions

these are given in table 2. The solution of the RGE in eq. (2.21) has been described

previously in the literature (see for example ref. [37]) and is summarized in appendix A.

In order to calculate the cross section up to next-leading-logarithmic (NLL) accuracy

we evolve the hard and the jet function from their characteristic scales (µH = ω and

µJ = ωr) to the soft scale, µss = µsn = E⊥, as discussed in appendix A.3. We also perform

the evolution in the rapidity space by evolving the global soft function from νss = E⊥ to

the collinear soft function canonical scale, νsn = E⊥/r. The evolution in the rapidity space

allow us to resum global logarithms of r up to NLL accuracy. Thus our final result for the

NLL’ cross section in region II is:

1

σ0

dσ(II), NLL’

dE⊥
= UH(µss, µh)HNLO

2 (ω, µh)× (UJ(µss, µj)J
NLO
q (ω, r, µj))

2 × (eγEµss)
−ηss

Γ(ηss)

× 1

E1−ηss
⊥

(
1− 4

αs(µss)CF
π

ln

(
νsnr

νss

)
f0(E⊥, µss, νsn, νss)

)
, (2.29)

where

ηss ≡ ηss(µss, νsn, νss), (2.30)

7For an alternative definition see appendix C of ref. [76].
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Figure 4. The differential cross section as a function of the transverse energy from Pythia

simulation (black solid) against NLL’ analytic calculations (red band) for region II for ω = 2 TeV

and for ηcut = 1.5 (left) where ωr ∼ 450 GeV and ηcut = 2.5 (right) where ωr ∼ 164 GeV. The

simulation data are normalized to unity and the analytic results are normalized to data in the region

E⊥ < ωr/2.

and

f0(E,µ, νsn, νss) = ln

(
E

µ

)
−H(−1 + ηss(µ, νsn, νss)), (2.31)

where H(x) is the harmonic number function. In the final result the scales are fixed

after we performed the convolutions. We emphasize again that in this work we resum

only the large global logarithms and resummation of NGLs is beyond the scope of this

work. Unfortunately, the cross section in region II suffers from non-global logarithmic

enchantments of the form, ln(E⊥/ωr), and a complete description of the cross section at

NLL or NLL’ in region II requires nontrivial resummation of NGLs which we leave for

future work. Recently resummation of NGLs for a similar observable was achieved in

ref. [64] using the technology of multi-Wilson-line “coft-functions”.

In figure 4 we compare our result for the NLL’ cross section (red band) in region

II against Pythia simulations (back solid line) at ω = 2 TeV for ηcut = 1.5 (left) and

ηcut = 2.5 (right). For the simulations hadronization is turned off. The analytic results

are normalized to the simulations in the region 0 < E⊥ < ωr/2. Theoretical uncertainties

were estimated by fluctuating all canonical scales by a factor of 2 and 1/2. We find that

within the theoretical uncertainties the NLL’ results agree very well with the simulations

for most values of E⊥. There is disagreement near the peak of the distribution which could

be due to the strong coupling constant in the soft function being evaluated at relatively

small scales where higher orders in perturbation theory and higher logarithmic accuracy

might be required for reliable results.

In figure 5 we compare our result for the integrated cross section (red band) defined

in eq. (2.3) against Pythia for same kinematic variables. In this figure we also extend the

graphs into region I and we include the predictions for that region from the factorization

theorem in eq. (2.19) for the NLL cross section (blue band). We see that the at small and
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Figure 5. The integrated cross section as a function of the vetoing parameter pcutT from Pythia

simulation (black solid) compared against the small transverse energy approximation (region II, red

band) and the large transverse energy approximation (region I, blue band) for ω = 2 TeV and for

ηcut = 1.5 (left) where ωr ∼ 450 GeV and ηcut = 2.5 (right) where ωr ∼ 164 GeV.

large values of pcut
T the cross section is well described by dσ(II) and dσ(I) respectively. The

intermediate regime where pcut
T ∼ ωr could be described with the use of a phenomeno-

logically motivated combination of the cross sections that interpolates between the two

regions, but developing such a formula is beyond the scope of this work.

2.3 Jet function corrections for E⊥ . ωr

In this section we consider corrections when E⊥ . ωr to the jet function, Jq(ω, r), used

in the factorization theorem for the region II cross section. Contributions in this regime

come from out-of-jet radiation of collinear modes. In electron-positron annihilation these

corrections were discussed in ref. [37] for the integrated jet function in the context of energy

veto. Here we extend the calculation for measurements of the transverse energy with respect

to thrust axis. For this purpose we modify the factorization theorem in eq. (2.5) such that

includes contributions to the measurement from collinear radiation. This modification

allows us to extend region II to E⊥ . ωr � ω which we refer to as region II.e. The cross

section is given by,
dσ(II.e)

dE⊥
= σ0H2 × Ss ⊗ [Sn ⊗ Jq(ω, r)]2, (2.32)

where at NLO

J NLO
q (E⊥, ω, r) = JNLO

q (ω, r)δ(E⊥) + ∆J (1)
q (E⊥, ω, r), (2.33)

where

∆J (1)
q (E⊥, ω, r) =− αsCF

2π

{
Θ
(
E⊥

)
Θ

(
ωr

2
− E⊥

)[
6

(
1

rω

)
+

4

E⊥
ln

(
1− E⊥

rω

)]
−Θ

(
E⊥ −

ωr

2

)
Θ
(
ωr − E⊥

)
×
[
6

(
1

rω

)
− 6

E⊥
+

4

E⊥
ln

(
1− E⊥

rω

)
− 8

E⊥
ln

(
E⊥
rω

)]}
. (2.34)
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Figure 6. The differential cross section as a function of the transverse energy from Pythia

simulation (black solid) against NLL’ analytic calculations without jet function corrections (red

band) and with jet function corrections (green dashed) for region II.e for ω = 2 TeV and for

ηcut = 2.5.

The first component of the jet function in eq. (2.33) is given by the standard unmeasured

jet function in eq. (2.6) multiplied by δ(E⊥) since the unmeasured jet function is calculated

for the case of both partons emitted within the unmeasured cone. The calculation of the

corrections from out-of-jet radiation, ∆J
(1)
q , are summarized in appendix A. The cross

section in this region is then given by

dσ(II.e), NLL’

dE⊥
=
dσ(II), NLL’

dE⊥
+ 2

dσ(II), NLL

dE⊥
⊗∆J (1)

q . (2.35)

In figure 6 we compare the analytic expression from eq. (2.29) and (2.35) for region

II and region II.e respectively against Pythia simulations. We find that for E⊥ < ωr/2,

the two expressions give almost identical distributions. This suggests that in this region,

the contribution from the out-of-jet radiation to the cross section, denoted ∆σ(II), is power

suppressed, as expected. On the other hand, in the region ωr/2 < E⊥ < ωr where

∆σ(II) is expected to give a significant contribution to the cross section, the distribution

for dσ(II.e), NLL’ = dσ(II), NLL’ + ∆σ(II) shows improved agreement with the simulation data

compared to dσ(II), NLL’. It should be noted that in this region NGLs of the form ln(E⊥/ωr)

are not large and therefore can be included order by order in perturbation theory.

3 Extension to hadronic collisions

In this section we extend the analysis of the previous section to hadronic collisions. We

consider the effects of rapidity cutoff in transverse energy and jet-veto measurements where

the transverse momentum and rapidity are measured with respect to the beam axis (hence

the change of notation E⊥ → ET ). A significant difference from the analysis of electron-

positron annihilation is that for O(αs) calculations in hadronic collisions, only one parton

can contribute to the measurement. Therefore, the hard-interacting (incoming) parton is

not constrained by the rapidity cutoff. In direct analogy to the previous section we identify

– 16 –



J
H
E
P
1
2
(
2
0
1
7
)
0
4
3

Region II.e as ET . p−r � p− where p− = xBEcm is the large component of the lightcone

momenta of the incoming parton and Ecm is the hadronic center of mass energy. Like

before we define r = e−η
cut

where ηcut is the rapidity cutoff.

We focus primarily on the factorization theorem for the di-jet cross section but these

results can be straightforwardly extended to the case of zero and one jet cross sections.

For measured transverse energy in SCET the factorized cross section is,

dσ(II.e),ab→12

dy1dy2dpTdET
= NBa/P (x1, µ)⊗ Bb/P (x2, µ)⊗ Tr[Hab

12(µ)Sab12(ET , µ)] J1(µ) J2(µ), (3.1)

where

N ≡ pT
32πNcx1x2E4

cm

. (3.2)

The corresponding factorization theorem for jet veto measurements is discussed in sec-

tion 4. In this section we will evaluate the NLO di-jet refactorized soft function for trans-

verse energy, Sab12(ET , µ), and we discuss how from this result we can trivially construct

the corresponding soft function for jet-veto measurements, Sab12(pcut
T , µ). The refactorized

result involves the global soft function for which no rapidity cutoff is implemented and soft

radiation is allowed within the jet cones. For zero and one jet production the global soft

function for is given at NLO in ref. [71]. The missing elements for the refactorized soft

function are the beam and jet collinear-soft function which we also present in this section

and discuss their evolution properties. For our calculations we assume that the jet and

beam directions are well separated.

Furthermore we give all perturbatively calculable elements for constructing the unmea-

sured quark beam function and give corrections to those from the out-of-beam radiation.

The details of this calculation are given in appendix B and in this section we summarize

our results.

3.1 The di-jet soft function

At NLO the soft function can be written in the following form (see refs. [37, 45])

S(ET , {τ}) = Sunmeas(ET )
m∏
i

Smeas(τ
(i))

= SNLO
unmeas(ET )

m∏
i

δ(τ (i)) + S0

[ m∑
i

S(1)
meas(τ

(i))
m∏
k 6=i

δ(τ (k))

]
δ(ET ), (3.3)

where m can be either 0,1, or 2 and is the number of jets for which the jet substruc-

ture observable, τ , is measured, S0 is the tree-level soft function, which can be found in

refs. [45, 77], and Sunmeas is the universal di-jet soft function which is independent of the

type of jet substructure measurement performed within the jets. Here bold-faced indicates

quantities that are matrices in color space. The only non-trivial function of the measure-

ments is Smeas(τ) which describes the contribution to the jet-shape measurement from

soft radiation within the jet. It should be noted that for the completely unmeasured case

(m = 0) the soft function reduces to Sunmeas. In this section we will evaluate Sunmeas and

discuss its renormalization group properties.
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The universal part of the soft function recieves contributions from the global-soft and

collinear-soft modes along the direction of beam and jets. Thus Sunmeas is factorized into

five terms:

Sunmeas(ET ) = Ss ⊗ Sn,B ⊗ Sn,B ⊗ Sn,1 ⊗ Sn,2. (3.4)

We construct the di-jet global soft function, Ss, for transverse energy and jet veto measure-

ments using results from the literature and we calculate Sn,i. For this reason we organize

this calculation in similar way as in ref. [45] where the authors calculated the universal

(unmeasured) part of the di-jet soft function in the limit r → 1. In contrast with the cal-

culation in ref. [45] in our calculation of the global soft function, gluons from real emissions

could have pseudo-rapidity greater than ηcut, thus:

Sb,NLO
s = S0 +

[
S0

∑
i<j

(Ti ·Tj)S
(1)
ij + h.c.

]
, (3.5)

where S
(1)
ij is the inclusive i-j interference term,

S
(1)
ij ≡ −g2

(
eγEµ2

4π

)ε
w2

∫
ddk

(2π)d−1

ni · nj
(ni · k)(nj · k)

(
ν

2kL

)η
δ(k2)δ(ET − ET (k))Θ(k0).

(3.6)

where ET (k) is the transverse energy as a function of the gluon three-momenta, k, and kL
is longitudinal component with respect to the beam axis.

Since in this paper we are considering hadronic collisions in the center of mass frame

where n̂B and n̂B are always back to back, the beam-beam interference term, S
(1)

BB
is given

by eq. (2.7) up to the color factor which is factored out of eq. (3.5), so

S
(1)

BB
(ET ) =

αs(µ)w2

2π

{
2

η

[
1

ε
δ(ET )− 2L0(ET , µ)

]
(3.7)

− δ(ET )

[
1

ε2
− 2

ε
ln

(
ν

µ

)]
+ 4L1(ET , µ)− 4L0(ET , µ) ln

(
ν

µ

)
+
π2

12
δ(ET )

}
.

The beam-jet interference term, S
(1)
BJ , where J is either 1 or 2, is one-half times the sum of

eqs. (B.2) and (B.10) of ref. [71],

S
(1)
BJ(ET ) =

αs(µ)w2

2π

{
1

η

[
1

ε
δ(ET )− 2L0(ET , µ)

]
+

1

ε
L0(ET , µ) (3.8)

+
1

ε

[
ln

(
ν

µ

)
− 1

ε
− ηJ

]
δ(ET ) + 2L0(ET , µ)

[
ηJ − ln

(
ν

µ

)]
+
π2

12
δ(ET )

}
.

The jet-jet interference contribution to the global soft function is given in table 1 of

ref. [45] (up to terms that are suppressed by O(R2)).8 It should be noted that the jet-jet

interference terms do not have rapidity divergences and therefore are independent of the

rapidity regulator parameters η and ν,

S
(1)
12 (ET ) =

αs(µ)w2

2π

1

µ

(
µ

ET

)1+2ε

(2 cosh(∆η/2))−2ε

[
2

ε
− ε
(

∆η2 +
π2

6

)]
, (3.9)

8It was shown in ref. [46] (where the O(R2) contributions were studied), even for moderate values of the

jet size (R . 1) the small R limit gives a very good approximation to the soft function.
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where ∆η = η1 − η2. Expanding in ε and using the two following relations (see eq. (4.17)

of ref. [45])

ln

(
2 cosh(∆η/2)

)
=

1

2

[
ln

(
n1 · n2

2

)
+ ln(2ch1) + ln(2ch2)

]
, (3.10)

where chi ≡ cosh(ηi) and

ln2 (2 cosh(∆η/2)) =
∆η2

4
+ ln(1 + e∆η) ln(1 + e−∆η) , (3.11)

we get for the jet-jet interference term,

S
(1)
12 (ET ) =

αs(µ)w2

2π

{[
1

ε
δ(ET )− 2L0(ET , µ)

](
ln

(
n1 · n2

2

)
+ ln(2ch1) + ln(2ch2)

)
− 2 ln(1 + e∆η) ln(1 + e−∆η)δ(ET )

− 1

ε

[
1

ε
δ(ET )− 2L0(ET , µ)

]
− 4L1(ET , µ) +

π2

12
δ(ET )

}
. (3.12)

Adding all contributions and using color conservation (i.e. T1 + T2 + TB + TB̄ = 0) to

simplify the results we find,

Sb,NLO
s (ET )= S0δ(ET )+

αs(µ)w2

2π

[
S0

{[
1

ε
δ(ET )− 2L0(ET , µ)

](∑
i

Ci ln

(
µ̄i
mi

)
−M′(mi)

)
− 2(T1 ·T2) ln(1 + e∆η) ln(1 + e−∆η)δ(ET )

+ (C1 + C2)

(
1

2ε

[
1

ε
δ(ET )− 2L0(ET , µ)

]
+ 2L1(ET , µ)− π2

24
δ(ET )

)
− (CB + CB )

(
1

η

[
1

ε
δ(ET )− 2L0(ET , µ)

]
+

1

2ε

[
2 ln

(
ν

µ

)
− 1

ε

]
δ(ET )

− 2L0(ET , µ) ln

(
ν

µ

)
+ 2L1(ET , µ) +

π2

24
δ(ET )

)}
+ h.c.

]
, (3.13)

where µ̄1,2 = pT , µ̄B,B = xiEcm,9 and

M′(mi) = −
∑
i<j

(Ti ·Tj) ln

(
sij

mimj

)
, (3.14)

where sij ≡ 2pi · pj and pµ1 and pµ2 are the four-momenta of the two jets and pµ
B(B)

=

(xB(B)Ecm/2)nµ
B(B)

. The renormalized soft function is defined by

Sb
s = Z†ss(µ)⊗ Ss(µ)⊗ Zss(µ), (3.15)

where Ss is the renormalized global soft function and Zss is the corresponding renormaliza-

tion matrix. The renormalized soft function satisfies the following RG and RRG equations,

d

d ln(µ)
Ss(ET ) = Ss ⊗ Γssµ + h.c.,

d

d ln(ν)
Ss(ET ) = γssν ⊗ Ss, (3.16)

9Note: the scales µ̄i are not the canonical scales µi for which logarithms of the factorization scale are

minimized in the corresponding functions.
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In the MS scheme we have

SNLO
s (ET ) = S0δ(ET ) +

αs(µ)

2π

[
S0

{
− 2L0(ET , µ)

(∑
i

Ci ln

(
µ̄i
mi

)
−M′(mi)

)
(3.17)

− 2(T1 ·T2) ln(1 + e∆η) ln(1 + e−∆η)δ(ET ) + (C1 + C2)

(
2L1(ET , µ)− π2

24
δ(ET )

)
− (CB + CB )

(
− 2L0(ET , µ) ln

(
ν

µ

)
+ 2L1(ET , µ) +

π2

24
δ(ET )

)}
+ h.c.

]
,

and the corresponding anomalous dimensions are

Γssµ =
αs
π

[∑
i

Ci ln

(
µ̄i
mi

)
−M′

]
δ(ET ) +

1

2
γssµ (ET ) , (3.18)

and

γssν = 2(CB + CB )
αs
π
L0(ET , µ), (3.19)

where γssµ is the total color-trivial part of the soft anomalous dimension after adding the

hermitian conjugate in eq. (3.16),

γssµ (ET ) = 2
αs
π

[
(CB + CB ) ln

(
µ

ν

)
δ(ET )− (C1 + C2)L0(ET , µ)

]
. (3.20)

The collinear-soft function Sn,i involves collinear-soft fields along the n̂i-direction only,

and those fields are decoupled at the level of the effective Lagrangian from the soft Wil-

son lines along the other n̂i 6=j directions. The one loop contribution to the collinear-soft

function along the jet direction (n̂J) is given by:

S
b,(1)
n,J (ET ) = 2g2

(
eγEµ2

4π

)ε
(Ti)

2

∫
dk+dk−dd−2k⊥

(2π)d−1

1

k+k−
δ(k2)δ

(
ET −

sJk
−

2

)
ΘR

=
αsCJ

2π

eεγE

Γ(1− ε)
2

εR2ε

1

µ

(
µ

ET

)1+2ε

, (3.21)

where sJ = sin(θJ) wth θJ the angle between the jet axis and the beam axis, and ΘR =

Θ(k+/k− − (sJR/2)2). Expanding in ε we get,

Sb,NLO
n,J (ET ) = δ(ET )− αsCJ

2π

{
1

ε2
δ(ET )− 2

ε
L0(ET , µ/R)

}
+ S

(1)
n,J +O(ε), (3.22)

where

S
(1)
n,J(ET ) = −αsCJ

2π

{
4L0(ET , µ) lnR+ 4L1(ET , µ) +

(
2 ln2R− π2

12

)
δ(ET )

}
. (3.23)

The renormalized quantity is defined through,

Sb
n,J(ET ) = Zsn,J(µ)⊗ Sn,J(ET , µ), (3.24)

and satisfies the following RGE

d

d ln(µ)
Sn,J(ET , µ) = γsn,Jµ (µ)⊗ Sn,J(ET , µ), (3.25)
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where γsn,Jµ is the RG anomalous dimension. It should be noted that since the collinear-

soft function along the jet direction does not have rapidity divergences, it does not evolve

in the rapidity space. In the MS scheme the renormalized collinear soft function and the

corresponding anomalous dimension are,

SNLO
n,J (ET ) = δ(ET ) + S

(1)
n,J(ET ), and γsn,Jµ (ET ) = 2

αsCJ
π
L0(ET , µ/R), (3.26)

respectively. The collinear-soft function along the beam direction, up to the color factor,

is identical to the one we evaluated in eq. (2.13).

SNLO
n,B (ET ) = δ(ET ) +

αsCB
2π

{
2L0(ET , µ) ln

(
µ2

r2ν2

)
+ 4L1(ET , µ) +

π2

12
δ(ET )

}
, (3.27)

where compared with eq. (2.13) we have replaced Cq with the general CB = (TB)2, and

similarly for the beam in the nB direction. The anomalous dimensions γsn,Bµ and γsn,Bν

are given in eq. (2.23). We also note that the anomalous dimensions satisfy the following

consistency relations,

Γssµ (ET ) +
1

2
(γsn,Bµ + γsn,Bµ )δ(ET ) +

1

2
(γsn,1µ (ET ) + γsn,2µ (ET )) = Γunmeas(ET ) , (3.28)

and

γssν (ET ) + γsn,Bν (ET ) + γsn,Bν (ET ) = 0, (3.29)

where Γ unmeas is the anomalous dimension of the unmeasured and unfactorized soft func-

tion for di-jet events. These consistency relations hold for both jet-veto and transverse

energy measurements. For jet-veto measurements Γunmeas(pcut
T ) is given in eq. (5.18) of

ref. [45]. The corresponding expressions for the global and collinear soft functions and their

anomalous dimensions appropriate for jet veto measurements can be trivially evaluated by

performing the integration over the transverse energy using the relations in eq. (A.5). It

is now a simple exercise to confirm that from the product of global soft, Ss(p
cut
T ), and

collinear soft functions, Sn,i(p
cut
T ), evaluated at a common scale µ, we recover the result

of ref. [45] for the di-jet soft function in eq. (4.28), and confirm the consistency relations

in eq. (3.28).

3.2 Soft function renormalization group evolution

3.2.1 Evolution in rapidity space

As mentioned earlier, the nJ -collinear soft function is free of rapidity divergences and thus

does not evolve in rapidity space. Here we discuss the RRG evolution of the global soft and

nB-collinear soft functions. For the case of transverse energy measurements the solution of

the RGE is discussed in the previous section below eq. (2.24). For jet-veto measurements

the rapidity space anomalous dimensions, γFν , of the global and collinear soft functions is

defined through the following RG equation,

d

d ln ν
F (pcut

T , Rveto, µ, ν) = γFν (pcut
T , Rveto, µ)F (pcut

T , Rveto, µ, ν), (3.30)
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where Rveto is the jet cone size used in the jet vetoing process. In our perturbative calcu-

lations at NLO there is at most one parton in the vetoing region, thus it will be forming a

single soft jet for all values of Rveto > 0. This is reflected in our calculations by the fact

that none of the perturbative calculable elements of the factorization theorem depends on

parameter Rveto at this order. The anomalous dimensions can be written in the following

general form (see eqs. (15) and (16) of ref. [36]),

γFν (pcut
T , Rveto, µ) = 2ΓFν [αs] ln

(
pcut
T

µ

)
+ ∆γFν [αs, R

veto], (3.31)

where ΓFν [αs] and ∆γFν [αs, R
veto] are given in table 3. Then, the solution to the RG equation

in eq. (3.30) is

F (pcut
T , Rveto, µ, ν) = V(pcut

T , Rveto, µ, ν, νF )F (pcut
T , Rveto, µ, νF ), (3.32)

where

V(pcut
T , Rveto, µ, ν, νF ) = exp

(
κveto
F [αs, R

veto, ν, νF ]

)(
µ

pcut
T

)−ηvetoF [αs,ν,νF ]

, (3.33)

with

ηveto
F [αs, ν, νF ] = 2ΓFν [αs] ln

(
ν

νF

)
, (3.34)

and

κveto
F [αs, R

veto, ν, νF ] = ∆γFν [αs, R
veto] ln

(
ν

νF

)
. (3.35)

It should be noted that for jet-veto measurements the canonical rapidity scales are νss ∼
pcut
T for the global soft function, and νsnB ∼ pcut

T /r for the nB-collinear soft function.

3.2.2 Evolution in virtuality space

We will first discuss the transverse energy measurement. The global and nB-collinear soft

functions have the same virtuality canonical scales, µss ∼ µsnB ∼ ET . Thus we will be

considering the simultaneous evolution of of the global and nB-collinear soft functions and

separately the evolution of the nJ -collinear soft function.

The combined global and nB-collinear soft function, Ss-n(µ), is defined by the convolu-

tion of the global soft and both nB-collinear soft beam functions evolved up to a common

rapidity scale, ν,

Ss-n(µ) ≡ Ss(µ, ν)⊗ Sn,B(µ, ν)⊗ Sn,B (µ, ν) , (3.36)

and satisfy the following renormalization group equation

d

d ln(µ)
Ss-n(ET , µ) = Γs-nµ (µ)⊗ Ss-n(ET , µ) + h.c. . (3.37)

The anomalous dimension Γs-nµ is given by the sum of the corresponding anomalous

dimensions,

Γs-nµ (ET ) = Γssµ (ET ) +
1

2
(γsnB
µ + γ

snB
µ )δ(ET ) = −αs

π
M′δ(ET ) +

1

2
γs-nµ (ET ) , (3.38)
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where

γs-nµ (ET ) ≡ 2
αs
π

[
− (C1 + C2)L0(ET , µ) +

(∑
i

Ci ln

(
µ̄i
mi

)
+ (CB + CB ) ln(r)

)
δ(ET )

]
.

(3.39)

The anomalous dimension, γFµ for both the nJ -collinear soft function and for the combined

global and nB-collinear soft functions can be written in the following general form

γFµ (ET , µ) = −2ΓF [αs]L0(ET , µ ξF ) + γF [αs]δ(ET ), (3.40)

where ξF is a scaleless parameter and ΓF [αs] and γF [αs] are the cusp and non-cusp part of

the anomalous dimension, respectively, with expansions in the strong coupling as described

in eqs. (A.18) and (A.19). Then the solution to eqs. (3.24) and (3.37) is given by

Sn,J(ET , µ) = Usn,J(µ, µ0)⊗ Sn,J(ET , µ0), (3.41)

and

Ss-n(ET , µ) = Us-n(µ, µ0)⊗
[
Π†(µ0, µ)Ss-n(ET , µ0)Π(µ0, µ)

]
, (3.42)

respectively. The matrix Π(µ0, µ) is given in eq. (A.27)10 and the evolution kernels UF are

similar to the evolution kernels discussed in ref. [37] for the measured jet and soft function

evolution and are given by

UF (ET , µ, µF ) = exp (γE ωF (µ, µF ) +KF (µ, µF ))
(ξF µF )ωF (µ,µF )

Γ(−ωF )

[
1

E
1+ωF (µ,µF )
T

]
+

,

(3.43)

where ωF (µ, µF ) and KF (µ, µF ) are given formally in all order in perturbation theory by

eq. (A.21) and (A.22).

For the case of jet veto measurements the renormalization group equation takes form

d

d ln(µ)
F (pcut

T , Rveto, µ) = γFµ (pcut
T , Rveto, µ)F (pcut

T , Rveto, µ), (3.44)

where

γFµ (pcut
T , Rveto, µ) = 2ΓF [αS ] ln

(
µ ξF
pcut
T

)
+ γF [αs, R

veto]. (3.45)

The form of the RG equation is identical to the one described in eq. (A.17) and therefore

the solution is given by eq. (A.20) for mF = pcut
T /ξF . The values of ΓF [αs] and γF [αs, R

veto]

at one loop are identical to the transverse energy measurements and independent of Rveto.

Therefore for the NLL and NLL’ soft function, all ingredients for calculating the evolution

kernels are given in table 3.

10Note that for the soft evolution the initial and final scales in the arguments of the matrix Π are reversed

compared to the hard function. This is due the difference in the sign of the color non-trivial part of the

soft and hard anomalous dimensions.
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Function Γ0
F γ0

F µF ξF ΓFν ∆γFν νF

Sn,J −4CJ 0 ETR 1/R – – –

Ss – – ET 1 (CB + CB )αs/π O(α2
s) ET

Sn,B – – ET 1 −CBαs/π O(α2
s) ET /r

Ss-n 4(C1 + C2) 4∆γs-n ET 1 – – –

Table 3. Elements of soft functions evolution equations for transverse energy and jet-veto mea-

surements. The parameters mF appearing in eq. (A.17) for the case of jet-veto measurements are

given by pcutT /ξF . In the last line ∆γs-n ≡ 2
∑

i Ci ln(µ̄i/mi) + 2(CB + CB ) ln(r).

3.3 Beam function

The beam function describes the initial state radiation and can be expressed in terms of

product of the quark field matrix elements and a delta function that imposes the measure-

ments on the partons outside the beam cone,

Bq/p(ET , xB, µ) =
∑
X

δ(ET − EXT )
〈
pn(k)

∣∣∣χ̄n(0)
γ−

2

∣∣∣X〉〈X∣∣∣δ(p− − P n)χn(0)
∣∣∣pn(k)

〉
,

(3.46)

where pn(k) is the collinear proton with momentum kµ = (0+, k−, 0⊥), and xB is the

fraction of the proton momentum carried by the quark field. The large component of the

quark field light-cone momenta is set to p− through the operator delta function δ(p−−P n)

and therefore, xB = p−/k−. The transverse energy of the state X is given by EXT and is

defined as follows,

EXT =
∑
i∈X
|piT |Θ(ηcut − ηi). (3.47)

In the p−r � ΛQCD limit the beam function can be written as a convolution between

collinear parton distribution functions (PDFs) and perturbative calculable coefficients [65],

Bj/p(ET , xB, µ) =
∑
i

∫ 1

xB

dx

x
Ij/i(ET , xB, µ)fi/p

(xB
x
, µ
)

+O
(

ΛQCD

(p−r)2

)
, (3.48)

where Ij/i are the short distance coefficients calculable in perturbation theory. In eq. (3.48)

we suppress the dependence of Ij/i and Bj/p on p− and r for simplicity. We organize the

calculation of the beam function in a similar way as the calculation of the jet function

in the last section. We denote the contribution to the partonic beam function from ra-

diation within the beam cone as Bi/j(x, p
−, r). The contribution to the beam function

from emissions outside the beam is ∆Bi/j(ET , x, p
−, r), and Bj/p(ET , xB, µ) is the sum of

Bi/j(x, p
−, r) and ∆Bi/j(ET , x, p

−, r).

We can evaluate Bi/j using the results for transverse virtuality of the incoming parton

(i.e., the parton that enters the hard process), t, from ref. [26]. At one-loop there is only

one parton contributing to the initial state radiation (ISR) and its transverse momentum

pT is completely constrained by t and x [26]:

t =

(
x

1− x

)
|p⊥|2, (3.49)
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therefore the constraint that the ISR parton is within the beam cone with r = e−η
cut

can

be expressed in terms of the transverse virtuality as follows,

t <

(
1− x
x

)
(p−r)2, (3.50)

where we assume that is a massless on-shell parton. We can then rewrite the partonic level

beam function at NLO as

Bb
i/j(x, p

−, r) = δi/jδ(1− x) +B
b,(1)
i/j (x, p−, r) +O(αs), (3.51)

where for calculating the unmeasured contribution (i.e., restricting the parton within the

beam cone) we have

B
b,(1)
q/q (x, p−, r) =

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, 1/x′)δ(x− x′)Θin, (3.52)

and

B
b,(1)
q/g (x, p−, r) = − 1

1− ε
TF
CF

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, (x′ − 1)/x′)δ(x− x′)Θin, (3.53)

where

Θin = Θ

(
1− x
x

(p−r)2 − t
)
, (3.54)

and dΦc,ISR
2 (t, x) is the two-particle collinear phase space [26] and σc

2 the squared matrix

element in MS [26, 78]:

dΦc,ISR
2 (t, x) =

[(1− x)t/x]−ε

(4π)2−εΓ(1− ε)dxdt , σc2(s, x) =

(
eγEµ2

4π

)ε
2g2

s
P b
qq(x). (3.55)

where P b
ij are the bare QCD splitting kernels given in refs. [79, 80]. Details of the calculation

are shown in appendix B and here we simply summarize the results:

B
b,(1)
q/q (x, p−, r) =

αsCF
2π

{
1

ε2
δ(1−x) +

1

ε

[
2δ(1−x) ln

(
µ

p−r

)
−P qq(x)

]}
+ I(1)

q/q(x, p
−, r),

(3.56)

and

B
b,(1)
q/g (x, p−, r) = −αsTF

π

1

2ε
Pqg(x) + I(1)

q/g(x, p
−, r), (3.57)

where I(1)
i/j are given in eqs. (B.3) and (B.5) and the index b denotes that those are the

“bare” quantities. The coefficients P ij can be expressed in terms of the standard QCD

splitting kernels as follows,

P qq(z) = Pqq(z)− 3

2
δ(1− z) = (1 + z2)L0(1− z), P qg(z) = Pqg(z) = z2 + (1− z)2,

(3.58)

We note that the Pij/ε terms are interpreted as IR divergences that will cancel in the

matching. The rest of the ε poles are UV divergences that need to be subtracted through

renormalization.
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For the calculation of the contribution to the beam function from radiation outside

the beam region, where we perform the measurement of the transverse energy, we need to

consider the zero-bin subtractions which are not scaleless in this region. Both the zero-bin

and collinear contributions suffer from divergences in the simultaneous limit ET → 0 and

x→ 1. We regulate these divergences using rapidity and dimensional regulators and we find

as expected all divergences cancel in the final result. For transverse energy measurement

at NLO we have,

∆B
(1)
q/q(ET , x, p

−, r) = ∆̃B
(1)

q/q −∆B
z-bin,(1)
q/q

=
αsCF
πET

{
(1 + x2)

[
Θ(x− x0)

1− x

]
+

+ 2 ln(x0)δ(1− x)

}
, (3.59)

and

∆B
(1)
q/g(ET , x, p

−, r) = ∆̃B
(1)

q/g =
αsTF
π

1

ET
Pqg(x)Θ(x− x0), (3.60)

where x0 = (1 + ET /(p
−r))−1 and the explicit forms and the calculations of ∆̃B

(1)

i/j and

∆B
z-bin,(1)
i/j are given appendix B.

Since at one-loop there is only one parton contributing to ISR we can evaluate the

beam functions for jet-veto measurements by integrating over the transverse energy before

expanding in ε and η. Like for the case of soft function, the beam function is independent

of the jet size parameter Rveto at this order. Performing the integrations and expanding

first in η and then in ε we get (for details of the calculation see appendix B),

∆B
(1)
q/q,veto(pcut

T , x, p−, r) =
αsCF
π

{
(1 + x2)

([
Θ(x− xvet.

0 )

1− x

]
+

ln

(
pcut
T x

p−r

)
−
[

ln(1− x)

1− x Θ(x− xvet.
0 )

]
+

)
− ln2(xvet.

0 )δ(1− x)

}
, (3.61)

and

∆B
(1)
q/g,veto(pcut

T , x, p−, r) =
αsTF
π

[
ln

(
pcut
T x

p−r

)
− ln(1− x)

]
Pqg(x)Θ(x− xvet.

0 ), (3.62)

where for the case of jet-veto measurement xvet.
0 = (1 + pcut

T /(p−r))−1. The renormalized

beam function is defined through the following equation

Bb
i/P (ET , x) = ZBi (µ)Bi/P (ET , x, µ), (3.63)

and satisfies the following RG equation

d

d lnµ
Bi/P (ET , x, µ) = γB,iµ (µ)Bi/P (ET , x, µ), (3.64)

where the index i is not summed over and the renormalization function, ZBi , and the

anomalous dimension, γB,iµ , do not depend on the variable x or the transverse energy ET .
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Therefore in the MS scheme the complete matching coefficients Ii/j for the quark beam

function in eq. (3.48) are:

Ii/j(ET , x, µ) =
[
δijδ(1− x) + I(1)

i/j (x, p
−, r)

]
δ(ET ) + ∆B

(1)
i/j (ET , x, p

−, r) +O(α2
s), (3.65)

for transverse energy measurements and,

Ii/j(pcut
T , x, µ) = δijδ(1− x) + I(1)

i/j (x, p
−, r) + ∆B

(1)
i/j,veto(pcut

T , x, p−, r) +O(α2
s), (3.66)

for jet-veto measurments. Based on eqs. (3.48), (B.3), and (B.5) we find,

γB,qµ (p−, r, µ) =
αsCF
π

[
2 ln

(
µ

p−r

)
+ γ̄q

]
, (3.67)

where γ̄q = 3/2. We note that the anomalous dimension in the above equation is identical

with the jet anomalous dimension after the replacement p−r → ω tan(R/2) (see eq. (6.26)

of ref. [37]). This relation between beam and jet function is discussed in appendix B

below eq. (B.8). Therefore the unmeasured beam function is evolved as the unmeasured

jet function with µB = mB = p−r and the solution of eq. (3.64) is given by eq. (A.20) with

the parameters given in table 4.

In figure 7 we plot the LO and NLO beam functions for the up-quark (left) and

down-quark (right). For the PDFs we use the CT10nlo data set extracted through the

LHAPDF6 C++ library (see ref. [81]). Note that the LO beam function is simply the PDF

evaluated at the scale µ = µB. We choose Ecm = 13 TeV, pcut
T = 20 GeV, and ηcut = 2.5.

For comparison we also included the calculation of the beam function ignoring the NLO

corrections from the out of beam radiation, ∆Bi/j . Comparing the three curves we see

that these corrections become important and of the same size as the contribution from

I(1)
i/j for small values of x ≈ pcut

T /(Ecmr), corresponding to region II.e. In this region, fixed

order QCD contributions are important. On the other hand, for higher values of x, region

(II), for which pcut
T � p−r they can be considered negligible . This behavior is similar to

what we found for the jet function corrections along the thrust axis in the electron-positron

annihilation section (see figure 6).

4 Applications

We apply this analysis to the study of di-jet cross sections in proton-proton collisions for

measured or unmeasured jets with jet-veto measurements. This process was investigated

within the framework of SCET in ref. [45] for r ∼ 1. In our analysis we take the small

r limit and we resum potentially large global logarithms of r, which will help reduce the

theoretical uncertainty in the differential cross section. We also include corrections from

contributions of ISR to the transverse energy and jet-veto measurement.

In this section we aim to show how using the formalism described in the last two

sections can help us to reduce the theoretical uncertainty from scale variation in jet pro-

duction cross sections. Thus, though gluon fusion processes (gg → gg and gg → qq̄)

dominate the di-jet cross section, here we consider the simpler example, qq′ → qq′. The
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Figure 7. The LO (orange solid lines) and NLO (blue solid lines) beam function for the u-quark

(left) and d-quark (right). For comparison we included the beam function at NLO without the

corrections from out out of beam radiation, ∆Bi/j , (red dashed lines). All curves are evaluated at

the beam scale µB = xEcm.

complete calculation, which involves summing over all partonic channels, is beyond the

scope of this work.

The observable we are considering is the boost invariant version of angularities defined

in ref. [45],

τa ≡
1

pT

∑
i∈jet

piT (∆RiJ)2−a , with ∆RiJ =
√

(∆ηiJ)2 + (∆φiJ)2, (4.1)

where a < 1 is the parameter the controls the wide angle radiation, pT is the transverse

momentum of the jets, ∆ηiJ , and ∆φiJ are the rapidity and azimuthal angle differences

between the particle, i, and the jet, J , measured with respect to the beam axis. As an

example we consider the case of one measured and one unmeasured jet for which the

factorization theorem in SCET for region (II.e) is given by

dσ(II.e)

dy1dy2dpTdτa
≡ dσ(pcut

T , τa) = NBq/P (pcut
T , x1, µ)Bq′/P (pcut

T , x2, µ)

Tr[Hqq′→qq′(µ)S(pcut
T , τa, µ)]⊗τ J1(τa, µ)J2(µ). (4.2)

The beam and soft functions appearing in the factorization theorem above are discussed

in the previous section. The hard function H is evaluated up to NLO in refs. [77]. The NLO

expressions for the measured and unmeasured jet functions, Ji(µ) and Ji(τa, µ), for cone

and kT -type jet algorithms are given for the case of electron-positron annihilation in ref. [37]

and are generalized for pp collisions in eqs. (4.1) and (4.8) of ref. [45]. In the calculation of

the jet functions both partons are constrained to be within the jet cone. The contributions

from the out-of-jet radiation are power suppressed by powers of ET /pT for the transverse

energy and pcut
T /pT for the jet veto measurement compared to the leading contributions of

the corresponding nJ -collinear soft function in eq. (3.23). This was discussed for the case

of electron-positron annihilation in ref. [37] and is demonstrated for the case of pp collisions

in appendix C.
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All elements of the factorization theorem need to be evaluated at the common scale

µ. The τa independent elements: beam, hard, and unmeasured jet function are evolved as

described in appendix A.3. The evolution of measured jet and soft functions is described in

section 6 of ref. [37]. Additionally the universal soft function, Sunmeas, is further factorized

in the global soft function, Ss, and the collinear soft functions, Sn,i. The evolution of

the nJ -collinear soft function, Sn,J , and the combination of global and nB-collinear soft

function, Ss-n, is described in section 3.2.2. The global soft and the nB-collinear functions,

in addition to the evolution in virtuality space, also evolve in rapidity space. The evolution

in rapidity space for transverse energy measurements is described in section 2 and for

jet-veto measurements in section 3.2.1.

We now have all the ingredients for the construction of the cross section up to NLL’

accuracy. For the choice µ = µss = pcut
T we have,

dσ(II.e),NLL’(pcut
T , τa) = N Uunmeas(µH , µss, µJ , µ

τ
J , µB, µB )Jq(µJ)Bq′/P (pcut

T , x2, µB )

× Bq/P (pcut
T , x1, µB)

[
Umeas(τa, µ

τ
J , µ

τ
S)
(

1 + fJq′(τa, ωS , µ
τ
J) + fSq′(τa, ωS , µ

τ
S)
)]

+

× Tr
[
Π(µss, µH)Hqq′→qq′(µH)Π†(µss, µH)Sunmeas(p

cut
T , µss)

]
, (4.3)

where

Uunmeas(µH , µss, µJ , µ
τ
J , µB, µB ) =

∏
F=B,B ,J1,J2,H

UF (µss, µF ). (4.4)

The functions fJi (τa, ωS , µ
τ
J) and fSi (τa, ωS , µ

τ
S) are given in eqs. (5.11) and (5.26) of ref. [45]

with ωS(µτJ , µ
τ
S) given in eq. (A.24) and the elements of the anomalous dimension (Γ0

S and

γ0
S) are given in table 2 of ref. [45]. The evolution kernel, Umeas, evolves the measured soft

function from it’s canonical scale up to the scale of measured jet function. After this point,

the combined measured jet and soft function evolve as a jet down to the soft scale µS , thus:

Umeas(τa, µ, µ0) =
eKS(µ,µ0)+γEωS(µ,µ0)

Γ(−ωS(µ, µ0))

(
µ0

mS

)ωS(µ,µ0)[ 1

τ
1+ωS(µ,µ0)
a

]
+

. (4.5)

For the choice ν = νss the universal part of the soft function, Sunmeas(p
cut
T , µss) is

given by

Sunmeas(µss) = Sss(µss, νss)
(
Vsn,B(νss, νsn,B)Sn,B(µss, νsn,B)

)2

×
(
Usn,J(µss, µsn,J)Sn,J(µsn,J)

)2
. (4.6)

where we evolve in rapidity space the nB-collinear soft function from νsn,B = pcut
T /r to

νss = pcut
T using eqs. (3.32) and (3.33). We also evolved in virtuality the nJ -collinear soft

function from µsn,J = pcut
T R to µss.

We evaluate dσ(II.e)(pcut
T , τa) as a function of τa for the following kinematic variables:

pcut
T = 20 GeV pT = 500 GeV Ecm = 13 TeV a = 0

ηcut = 2.5 R = 0.3 η1 = 1.0 η2 = 1.4, (4.7)
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Figure 8. The differential cross section as a function of τ0 = m2
J/p

2
T + O(τ20 ) for proton-proton

collisions at
√
s = 13 TeV for pcutT = 20 GeV and pjetT = 500 GeV. In this graph we used ηcut = 2.5

and the jet anti-kT algorithm with R = 0.3. The red band corresponds to the complete unfactorized

expression, the green band where only the jet-collinear modes are factorized, and blue band when

both jet-collinear and beam-collinear modes are factorized in the unmeasured soft function.

and our results are presented in figure 8. For estimating the theoretical uncertainty we

vary all canonical scales not associated with the jet shape measurement by 2 and 1/2.

The jet measured and soft measured scales are varied within the profile function used in

ref. [45]. In figure 8 the red band corresponds to the construction of the cross section

using the completely unfactorized soft function described in section 4.3 of ref. [45]. The

green band corresponds the global function in which we factorized the jet-cone regions but

not the beam-cone regions. This allows us to resum global logarithms of the jet-cone size

parameter R and thus leads to improved accuracy. Finally the blue band corresponds to

the completely refactorized soft function where we factorize the beam-region as well, that

way resuming global logarithms of r = e−η
cut

. We find that the refactorization of the soft

function allows us to significantly improve the theoretical uncertainty.

5 Conclusion

In this paper we consider the effect of rapidity cutoff in jet-veto and transverse energy

measurements for exclusive jet cross sections at LHC. We first demonstrate the effect of

the vetoes in electron-positron annihilations where the rapidity is measured with respect

to the thrust axis and later extend this analysis to proton-proton collisions where the

rapidity is measured with respect to the beam axis. For the electron-positron anihilation

analysis we find that two separate factorization theorems are required to describe the

transverse energy spectrum in the following regions, region I: ωr � E⊥ � ω, and region II:

E⊥ � ωr � ω where ω = p− ' 2EJ is the large component of the jet light-cone momentum

and r = exp(−ηcut), where ηcut denotes the rapidity cutoff where veto is applied.

We find that for large transverse energy, i.e., region I, the cross section is insensitive

to the exact value of r, as long as it satisfies the hierarchy describing this region. We show
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using Pythia simulations that for E⊥ > 2ωr and for increasing transverse energy, the

cross section dσ(r) asymptotically reaches the limit dσ(r → 0) (see figure 3). This suggests

that the factorization theorem appropriate for describing region I is independent of r and

involves the inclusive soft and jet functions for which no rapidity cutoff is implemented.

The factorization of the cross section in this region was derived within the framework of

SCETII in ref. [41].

In contrast, for region II the cross section is sensitive to the rapidity cutoff and there-

fore needs to be considered in the corresponding calculation. We propose a factorization

theorem in SCETI which involves the unmeasured jet function calculated in ref. [37] and

the refactorized soft function. The refactorization of the soft function is necessary for re-

summation of global logarithms of r that can be important in this region. Thus we employ

the formalism introduced in ref. [44] and separate contribution of global-soft modes and

soft-collinear modes. We find that the our analytic calculation at next-to-leading loga-

rithmic prime (NLL’) accuracy agrees with the Pythia simulation within the theoretical

uncertainty. Also the refactorization of the soft function helps reducing the theoretical

uncertainty (see figure 4).

Additionally, we consider corrections to the jet function from out-of-jet radiation when

E⊥ . ωr within the factorization theorem used for region II. We showed that including

these corrections to the calculation of the NLL’ cross-section greatly improves the agree-

ment of the analytic results with the simulation data for E⊥ . ωr (see figure 6).

In direct analogy from the electron-positron annihilation we extend our analysis to

proton-proton collisions. We identify the two regions, region I p−r � ET � p−, and region

II: ET � p−r � p− where the transverse energy, ET is measured with respect to the beam

axis and p− = xBEcm is the large light-cone component of the incoming parton in the hard

process. Focusing on region II we use the formalism developed in ref. [44] to refactorize the

soft function for exclusive jet production in proton-proton collisions. Unlike ref. [45], here

we consider the soft-collinear modes and functions along the beam direction. This allows

us to resum for the first time global logarithms of exp(−ηcut) to all orders in perturbation

theory. The refactorized result involves the global soft function which is insensitive to

the jet and beam cone boundaries, and the beam and jet collinear soft functions that

take contributions from soft-collinear modes which can resolve the corresponding cone

boundaries and therefore depend on the cone size parameters. In this work we study

the cases of transverse energy and jet-veto measurements and give the ingredients for

constructing the 0,1, and 2-jet refactorized soft functions. As an example we study the di-jet

cross section for the partonic channel qq′ → qq′ and we demonstrate that the refactorization

of the soft function is necessary at NLL’ accuracy for keeping the theoretical uncertainty

under control.

Furthermore we calculated for first time the perturbative ingredients for constructing

the unmeasured quark beam function and we consider corrections from out-of-beam radi-

ation. These corrections to the beam function allow us to extend the applicability of the

factorization theorem for ET . xBEcme
−ηcut . We discussed the relation of our results to

the fragmenting jet functions and the corresponding anomalous dimension.
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As an extension of this work we aim to complete the calculation of the di-jet cross

section, including all the partonic channels. Furthermore, our analysis can be used to

study the effect of underlying event activity in measurements of global observables such

as the transverse energy within specific rapidity regions. An ideal process for such a

measurement is isolated Drell-Yan at a large invariant mass compared to the typical soft

scale of the underlying event.
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A Fixed order results and unmeasured evolution

A.1 Fixed order results for region I

Though in the factorization theorem in eq. (2.4) the jet function depends on the transverse

momentum of the mother parton for evaluating the NLO cross section we only need the

O(αs) terms when this transverse momentum is vanishing. The reason is because at this

order the O(αs) terms of the jet function contribute only thought the LO soft function

which is proportional to δ(p2
⊥). Following similar arguments as in section 2.2.1, and the

results in eqs. (6.42) and (6.47) of ref. [41] we get,

S(Es,p
2
⊥,q

2
⊥) = δ(Es)δ(p

2
⊥)δ(q2

⊥) +
αsCF

2π

{
2L0(Es, µ) ln

(
ν2

µ2

)
− 4L1(Es, µ)− π2

12
δ(Es)

}
×
(
δ(E2

s − p2
⊥)δ(q2

⊥) + [q ↔ p]
)
, (A.1)

and

J(q)(En, 0) = δ(En − p⊥) +
αsCF

2π

{
1

2
δ(En)−

[
3 + 2 ln

(
ν2

ω2

)]
L0(En, µ)

}
, (A.2)

which suggest the following canonical choices for the jet and soft scales,

µs = µJ = E⊥, νS = E⊥, νJ = ω. (A.3)

The NLO cross section for E⊥ � ω can be constructed using the factorization theorem in

SCETII given by eq. (2.5)

dσ

dE⊥

(I),NLO

= σ0H2

[
δ(E⊥)− αsCF

2π

{
8 L1(E⊥, 2µ) +

[
6 + 4 ln

(
µ2

ω2

)]
L0(E⊥, 2µ)

−
[
1− π2

6

]
δ(E⊥)

}]
. (A.4)
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We note that this result is independent of the rapidity scale, ν, as expected from the

cancellation of rapidity divergences between soft and jet function. For the integrated cross

section defined in eq. (2.3) we use∫ Λ

0
dE L0 (E,µ) = ln

(
Λ

µ

)
,

∫ Λ

0
dE L1 (E,µ) =

1

2
ln2

(
Λ

µ

)
, (A.5)

to obtain,

dσ(I),NLO(pcut
⊥ ) = σ0H2

[
1 +

αsCF
2π

{
− 4 ln2

(
pcut
⊥
2ω

)
+ ln2

(
µ2

ω2

)
− 6 ln

(
pcut
⊥
2µ

)
+ 1− π2

6

}]
.

(A.6)

Using the hard function at NLO which is [72, 73]

H2(ω, µ) = 1− αsCF
2π

{
8− 7π2

6
+ ln2

(
µ2

ω2

)
+ 3 ln

(
µ2

ω2

)}
, (A.7)

we get

1

σ0
dσ(I),NLO(pcut

⊥ ) = 1 +
αsCF

2π

{
− 7 + π2 − 6 ln

(
pcut
⊥
2ω

)
− 4 ln2

(
pcut
⊥
2ω

)}
. (A.8)

which agrees with the full theory result for pcut
⊥ > 2ωr and pcut

⊥ � ω.

A.2 Fixed order jet function for region II

Using the results of ref. [37] for the diagrams that contribute to the calculation of the jet

function at 1-loop, the jet function for the transverse energy measurement with rapidity

cutoff and can be written in the following form:

J̃ b
q (E⊥, ω, r) = 2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)

(
ν

ω

)η ∫
dxdk⊥

1

k1+2ε
⊥

[
2

1− x
x1+η

+ (1− ε)x
]
Θ⊥, (A.9)

where x ≡ k−/ω is the portion of the original parton energy carried by the gluon and we

also use the rapidity regulator since the naive result for our measurement contains rapidity

divergences though they cancel when adding the zero-bin subtraction. Also we define

Θ⊥ = Θ
(
xωr − k⊥

)
Θ
(

(1− x)ωr − k⊥
)
δ(E⊥) +

[
Θ
(
k⊥ − xωr

)
Θ
(

(1− x)ωr − k⊥
)

+ Θ
(
xωr − k⊥

)
Θ
(
k⊥ − (1− x)ωr

)]
δ(E⊥ − k⊥). (A.10)

The first term in Θ⊥ is rapidity divergence free and corresponds to the case where both

daughter pardons are emitted within the unmeasured region. The contribution from this

term is calculated in ref. [37] and after renormalization is given by Jq in eq. (2.6). The

second and third terms correspond to the case where either the quark or gluon only is

emitted inside the measured region, respectively. The divergences appearing in the second

term are only rapidity divergences and the third term is finite. The case where both patrons

are emitted within the unmeasured region is not included since this region of phase space

contributes only for E⊥ > ωr. In the Region II the contributions of second and third term,
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which we will denote as ∆̃Jq, are power suppressed and can be ignored, thus the jet function

reduces to the unmeasured jet function in eq. (2.6). On the other hand in Region II.e those

terms become of O(1) and need to be included. Performing the integration we have

∆̃Jq(E⊥, ω, r) =
αsCF

2π

1

E⊥

{
− 4

[
1

η
+ ln

(
ν

ω

)
− ln

(
E⊥
ωr

)]
(A.11)

−Θ(E⊥)Θ(ωr/2− E⊥)

[
6
E⊥
ωr

+ 4 ln

(
1− E⊥

ωr

)]
+ Θ(E⊥ − ωr/2)Θ(ωr − E⊥)

[
6
E⊥
ωr
− 6−8 ln

(
E⊥
ωr

)
+ 4 ln

(
1− E⊥

ωr

)]}
,

Correspondingly the zero-bin subtractions can be constructed by taking the leading

contributions in the x→ 0 limit

J z-bin,(1)
q (E⊥, ω, r) = 2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)

∫
dxdk⊥

k1+2ε
⊥

2

x1+η
Θ z-bin
⊥ , (A.12)

where

Θ z-bin
⊥ = Θ⊥

∣∣∣
x�1
' Θ

(
xωr − k⊥

)
δ(E⊥) + Θ

(
k⊥ − xωr

)
δ(E⊥ − k⊥). (A.13)

We find that for the zero-bin subtraction we only have two contributions. The first term in

Θ z-bin
⊥ gives the contribution when the soft gluon is emitted within the jet cone (unmeasured

region) and the second term corresponds to case where the soft gluon is emitted within

measured region outside the jet cone. The first term reduces to a scaleless integral which

we ignore and the second term will contribute to ∆J
(1)
q :

∆J z-bin,(1)
q (E⊥, ω, r) = −αsCF

2π

4

E⊥

[
1

η
+ ln

(
ν

ω

)
− ln

(
E⊥
ωr

)]
. (A.14)

The final result of the total jet function we have

J NLO
q (E⊥, ω, r) = JNLO

q (ω, r)δ(E⊥) + ∆J (1)
q (E⊥, ω, r), (A.15)

where

∆J (1)
q (E⊥, ω, r) = ∆̃J

(1)

q (E⊥, ω, r)−∆J z-bin,(1)
q (E⊥, ω, r) (A.16)

= −αsCF
2π

{
Θ(E⊥)Θ(ωr/2− E⊥)

[
6

(
1

rω

)
+

4

E⊥
ln

(
1− E⊥

rω

)]
−Θ(E⊥ − ωr/2)Θ(ωr − E⊥)

×
[
6

(
1

rω

)
− 6

E⊥
+

4

E⊥
ln

(
1− E⊥

rω

)
− 8

E⊥
ln

(
E⊥
rω

)]}
.
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A.3 Renormalization group evolution of jet and hard functions

Unmeasured quantities such as the hard function in region I and the jet functions in region

II satisfy the following renormalization group equations:

µ
d

dµ
F (µ) =

[
ΓF [αS ] ln

(
µ2

m2
F

)
+ γF [αS ]

]
F (µ), (A.17)

where ΓF is the cusp part of the anomalous dimension which is proportional to the cusp

anomalous dimension and has the following expansion in the strong coupling

ΓF [αs] = (Γ0
F /Γ

0
cusp)Γcusp = (Γ0

F /Γ
0
cusp)

∞∑
n=0

(αs
4π

)1+n
Γncusp. (A.18)

Similarly the non-cusp part of the anomalous dimension, γF , has the following expansion

γF [αs] =
∞∑
n=0

(αs
4π

)1+n
γnF . (A.19)

The solution of eq. (A.17) is

F (µ) = UF (µ, µ0)F (µ0) , UF (µ, µ0) = exp (KF (µ, µ0))

(
µ0

mF

)ωF (µ,µ0)

, (A.20)

where formally to all orders in perturbation theory the exponents KF and ωF are given by,

KF (µ, µ0) = 2

∫ α(µ)

α(µ0)

dα

β(α)
ΓF (α)

∫ α

α(µ0)

dα′

β(α′)
+

∫ α(µ)

α(µ0)

dα

β(α)
γF (α), (A.21)

ωF (µ, µ0) = 2

∫ α(µ)

α(µ0)

dα

β(α)
ΓF (α). (A.22)

For NLL and NLL’ accuracy, which we are considering in this work,

KF (µ, µ0) = − γ
0
F

2β0
ln r − 2πΓ0

F

(β0)2

[
r − 1 + r ln r

αs(µ)
+

(
Γ1
c

Γ0
c

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln2 r

]
,

(A.23)

ωF (µ, µ0) = −Γ0
F

β0

[
ln r +

(
Γ1
c

Γ0
c

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (A.24)

where r = α(µ)/α(µ0) and βn are the coefficients of the QCD β-function,

β(αs) = µ
dαs
dµ

= −2αs

∞∑
n=0

(αs
4π

)1+n
βn . (A.25)

For unmeasured functions the scale mF equals the canonical scale of the perturbative

function F . For the hard and jet functions for electron-positron annihilation the quantities

Γ0
F , γ0

F , and mF are summarized in table 4. For the di-jet hard function in hadronic

collisions, the evolution of the hard function is complicated due to the non-trivial color

structure. The evolved hard function is given in section 5.1 of ref. [45]:

H(µ) = UH(µ, µ0)Π(µ, µ0)H(µ0)Π†(µ, µ0), (A.26)
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Function Γ0
F γ0

F mF (e+e−) mF (pp)

H(ω, µ) −4
∑

iCi −4
∑

i γ̄i ω mi

J
(i)
n (ω,R, µ) 4Ci 4γ̄i ω tan(R/2) pTR

Bi/P (p−, r, µ) 4Ci 4γ̄i n.a. p−r

Table 4. Evolution table: γ̄q = 3CF /2 and γ̄g = β0/2.

where

Π(µ, µ0) = exp

{
M′
∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp

}
, (A.27)

where M′ is given in eq. (3.14). The kernel UH can be constructed from eqs. (A.20), (A.23),

and (A.24) and table 4. In comparison to the results of ref. [77] we omitted the iπT term

since, as discussed in ref. [45], this term cancels in the RGE when we sum the hermitian

conjugate term.

B Fixed order results for quark beam function

In this section we give some more details of the calculation of beam function for measured

transverse energy and jet-veto measurements outside the beam region. From eq. (3.52),

B
b,(1)
q/q (x, p−, r) =

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, 1/x′)δ(x− x′)Θin

=
αsCF

2π

(eγExµ2)ε

Γ(1− ε)

[
1 + x2

(1− x)1+ε
− ε(1− x)1−ε

] ∫ (1−x)(p−r)2/x

0

dt

t1+ε

= −αsCF
2π

(eγEx2)ε

εΓ(1− ε)

(
µ

p−r

)2ε [ 1 + x2

(1− x)1+2ε
− ε(1− x)1−2ε

]
. (B.1)

where in the first line,

Θin = Θ

(
1− x
x

(p−r)2 − t
)
. (B.2)

Expanding eq. (B.1) in ε we get the result in eq. (3.56) with

I(1)
q/q(x, p

−, r) =
αsCF
π

{
1

2
(1− x) + δ(1− x)

[
ln2

(
µ

p−r

)
− π2

24

]
+ (1 + x2)L1(1− x)

− P qq(x) ln

(
xµ

p−r

)}
. (B.3)

Similarly for the contribution from the gluon we have from eq. (3.53)

B
b,(1)
q/g (x, p−, r) = − 1

1− ε
TF
CF

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, (x′ − 1)/x′)δ(x− x′)Θin

=
αsTF

2π
(1 + ε)µ2ε

(
x

1− x

)ε [
x2 + (1− x)2 − ε

] ∫ (1−x)(p−r)2/x

0

dt

t1+ε

= −αsTF
2π

(
1

ε
+ 1

)(
x

1− x

)2ε( µ

p−r

)2ε [
Pqg(x)− ε

]
. (B.4)
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Expanding the above equation in ε we get the result in eq. (3.57) with

I(1)
q/g(x, p

−, r) =
αsTF
π

{
x(1− x) + Pqg(x)

[
ln

(
p−r

xµ

)
+ ln(1− x)

]}
. (B.5)

Since the above results correspond to the case where the ISR parton is emitted

within the beam region where no measurement is performed, these are universal for any

measurement:

Bq/q(e, x, p
−, r) = Bq/q(x, p

−, r)δ(e), (B.6)

where e is the measured observable. For jet-veto like measurements we simply have

Bq/q(e
cut, x, p−, r) = Bq/q(x, p

−, r). (B.7)

For the case where the parton is emitted within the phase-space region where measurements

are performed we need to calculate the contribution for each measurement independently.

In the next two sections we give the details of the calculation for transverse energy and

jet-veto measurements.

We note here that at this order the matching coefficients, I(1)
i/j (x, p

−, r), are related to

the matching coefficients, J (1)
j/i (x, ω tan(R/2)), of the unmeasured fragmenting jet func-

tion onto the collinear fragmentation function from ref. [82] through the replacement

ω tan(R/2)→ p−r/x:

Ii/j(x, p−, r)
∣∣∣
0<x<1

= Jj/i(x, p−r/x)
∣∣∣
x>1/2

. (B.8)

This then implies the following relation between the beam and jet anomalous dimensions:

γBµ (µB) = γJµ (µJ → µB), (B.9)

where µB = p−r and µJ = ω tan(R/2). This is shown explicitly for the quark beam

function at one loop in eq. (3.67). These relations in eq. (B.8) can be easily checked at

NLO for the cases Iq/q and Iq/g using the results of this section and we believed that hold

for Ig/g and Ig/q as well. The explicit calculations for the remaining two cases is left for a

subsequent publication.

B.1 Transverse energy measurement

As already mentioned in section 3 contributions to the beam function from emission of

partons within the measured region of phase-space suffer from rapidity divergences that

need to be regulated. Additionally the soft-bin subtractions do not give scaleless integrals

and thus will also contribute to the calculation of the beam function. Furthermore, the

soft-bin contributions themselves require rapidity regulator and as we will show the total

results turns out be finite and independent of the rapidity regulator parameters. The

correction to the beam function is

∆̃B
(1)

q/q(ET , x, p
−, r) =

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, 1/x′)δ(x− x′)

(
ν

(1− x)p−

)η
Θmeas.

=
αsCF
π

(eγEµ2)ε

Γ(1− ε)

(
ν

p−

)η[ 1 + x2

(1− x)1+η
− ε(1− x)1−η

]
Θ(x− x0)

E1+2ε
T

,

(B.10)
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where

Θmeas. = (1−Θin)δ

(
ET −

[
(1− x)t

x

]1/2)
x0 =

[
1 +

ET
p−r

]−1

, (B.11)

and we used

δ

(
ET −

[
(1− x)t

x

]1/2)
= 2

x

1− xET δ
(
t− x

1− xE
2
T

)
. (B.12)

For the soft-bin subtraction

∆B
z-bin,(1)
q/q (ET , x, p

−, r) = 4

(
eγEµ2

4π

)ε
g2CF δ(1−x)νη

∫
ddk δ(k2)

(2π)d−1

δ(ET − k⊥)Θ(k⊥−k−r)
k+(k−)1+η

= 2
αsCF
π

(eγEµ2)ε

Γ(1− ε) ν
ηδ(1− x)

1

E1+2ε
T

∫ ET /r

0

dk−

(k−)1+η

= −2
αsCF
π

(eγEµ2)ε

Γ(1− ε)
(νr)η

η
δ(1− x)

1

E1+2ε+η
T

. (B.13)

Adding both contributions and expanding in η keeping ε finite we have

∆B
(1)
q/q(ET , x, p

−, r) = ∆̃B
(1)

q/q −∆B
z-bin,(1)
q/q (B.14)

=
αsCF
π

(eγEµ2)ε

Γ(1− ε)
(νr)η

E1+2ε+η
T

{
2

η
δ(1− x) +

[
1 + x2

(1− x)1+η
− ε(1− x)1−η

](
ET
p−r

)η
Θ(x− x0)

}
=
αsCF
π

(eγEµ2)ε

Γ(1− ε)
1

E1+2ε
T

{
(1 + x2)

[
Θ(x− x0)

1− x

]
+

− 2 ln

(
1 +

ET
p−r

)
δ(1− x)− ε(1− x)

}
.

To get from the second line to the last line we used:

Θ(x− x0)L0(1− x) =

[
Θ(x− x0)

1− x

]
+

+ ln(1− x0)δ(1− x). (B.15)

A similar identity that will be used below is

Θ(x− x0)L1(1− x) =

[
Θ(x− x0)

1− x ln(1− x)

]
+

+
1

2
ln2(1− x0)δ(1− x). (B.16)

The plus-functions on the right hand side of eqs. (B.15), (B.16) are defined such that∫ 1

0
dx

[
Θ(x− x0)

1− x

]
+

=

∫ 1

0
dx

[
Θ(x− x0)

1− x ln(1− x)

]
+

= 0.

It should be noted that the last line of eq. (B.14) does not contain any divergences in

the simultaneous limit ET → 0 and x → 1, thus we can safely take the limit ε → 0. This

gives the final result

∆B
(1)
q/q(ET , x, p

−, r) =
αsCF
π

1

ET

{
(1 + x2)

[
Θ(x− x0)

1− x

]
+

+ 2 ln(x0)δ(1− x)

}
+O(η, ε) .

(B.17)
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For the contribution of the gluon PDF to the quark beam function there is no soft-bin

subtraction or rapidity divergences involved therefore we have:

∆B
(1)
q/g(ET , x, p

−, r) = − 1

1− ε
TF
CF

∫
dΦc,ISR

2 (t, x′)σc
2(−t/x′, (x′ − 1)/x′)δ(x− x′)Θmeas.

=
αsTF
π(1− ε)µ

2ε
[
Pqg(x)− ε

] 1

E1+2ε
T

Θ(x− x0), (B.18)

and since the final result does not contain any divergences in the simultaneous limit we have

∆B
(1)
q/g(ET , x, p

−, r) =
αsTF
π

1

ET

[
Pqg(x)

]
Θ(x− x0). (B.19)

B.2 Jet-veto measurement

Since at NLO there is only one parton contributing to ISR we can obtain the jet-veto

measurement expressions by integrating the transverse energy results before performing the

expansion in ε and η. In general the jet-veto measurements should depend on the jet radius

Rveto that appear in two-loop and higher order calculations. Since here we are considering

only the one-loop contributions we will omit from the arguments this dependence on Rveto.

From eq. (B.10) we have

∆̃B
(1)

q/q(p
cut
T , x, p−, r) =

αsCF
π

(eγEµ2)ε

Γ(1− ε)

(
ν

p−

)η
×
[

1 + x2

(1− x)1+η
− ε(1− x)1−η

] ∫ pcutT

0

dETΘ(x− x0)

E1+2ε
T

=
αsCF
2πε

(eγEµ2)ε

Γ(1− ε)

(
ν

p−

)η[ 1 + x2

(1− x)1+η
− ε(1− x)1−η

]
×Θ(x− xvet.

0 )

{(
x

p−r(1− x)

)2ε

− 1

(pcut
T )2ε

}
. (B.20)

where xvet.
0 = (1 + pcut

T /(p−r))−1. Similarly for the soft-bin subtraction from eq. (B.13)

we have:

∆B
z-bin,(1)
q/q (pcut

T , x, p−, r) = −2
αsCF
π

(eγEµ2)ε

Γ(1− ε)
(νr)η

η
δ(1− x)

∫ pcutT

0

dET

E1+2ε+η
T

= 2
αsCF
π

(eγEµ2)ε

Γ(1− ε)
(νr)η

η
δ(1− x)

[
1

2ε+ η

1

(pcut
T )2ε+η

]
. (B.21)

Adding both contributions and expanding first in η and then in ε we get

∆B
(1)
q/q(p

cut
T , x, p−, r) = ∆̃B

(1)

q/q(p
cut
T , x, p−, r)−∆B

z-bin,(1)
q/q (pcut

T , x, p−, r)

=
αsCF
π

{
− δ(1− x) ln2

(
pcut
T

p−r

)
− (1 + x2)

[
L1(1− x)

− L0(1− x) ln

(
xpcut

T

p−r

)]
Θ(x− xvet.

0 )

}
. (B.22)
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We can further simplify this result using eqs. (B.15) and (B.16)

∆B
(1)
q/q(p

cut
T , x, p−, r) =

αsCF
π

{
(1 + x2)

([
Θ(x− xvet.

0 )

1− x

]
+

ln

(
xpcut

T

p−r

)
−
[

Θ(x− xvet.
0 )

1− x ln(1− x)

]
+

)
− ln2(xvet.

0 )δ(1− x)

}
. (B.23)

For the contribution of the gluon PDF to the quark beam function in jet-veto measurements

we have by integrating eq. (B.18):

∆B
(1)
q/g(p

cut
T , x, p−, r) =

αsTF
π(1− ε)µ

2ε
[
Pqg(x)− ε

] ∫ pcutT

0

dET

E1+2ε
T

Θ(x− x0) (B.24)

= −αsTF
π

[
ln

(
p−r

pcut
T x

)
+ ln(1− x)

]
Pqg(x)Θ(x− xvet.

0 ) +O(ε) .

C Jet function contributions from out-of-jet radiation

In this section we demonstrate how the contributions from out-of-jet radiation to the

jet function in hadronic collisions and the total cross section at NLO are suppressed by

a factor of ET /pT for transverse energy measurements and pcut
T /pT for transverse veto

measurements. The results we obtain are independent of the measurements within the

jet-cone, thus our conclusions apply to both measured and unmeasured jets. We start the

calculation with the expression of the jet function in eq. (4.12) of ref. [37] inserting the

appropriate transverse energy δ-function,

J̃g-out
q = g2

(
eγEµ2

4π

)ε
CF

∫
d`+

2π

1

(`+)2

∫
ddq

(2π)d−2

[
4
`+

q−
+ 2(1− ε)`

+ − q+

ω − q−
]
δ(q+q− − q2

T )

δ

(
`+ − q+ω

ω − q−
)
δ(ET − qT )Θ(q+/q− − (sJR/2)2), (C.1)

where qT ' |q| sin(θJ) ≡ |q|sJ is the transverse momentum of the gluon escaping the jet

with respect to the beam axis n̂B = (cJ , sJ , 0, . . . , 0), with ci and si the cosine and sine of

the angle θi respectively. Since this gluon is a collinear in scaling, from power counting we

have |q| = q−/2 + O(λ2q−). Performing the integrals d`+ and dd−2qT using the first two

δ-functions in eq. (C.1) we get,

J̃g-out
q = 2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)

∫
dq+dq−

(q+q−)1+ε

[
1− q−

ω
+

1

2
(1− ε)(q−)2

ω2

]
× δ(ET − qT )Θ

(
q+/q− − (sJR/2)2

)
. (C.2)

Performing the remaining integrals we have,

J̃g-out
q = 2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)εR2ε

1

E1+2ε
T

[
1− ET

pT
+

1

2
(1− ε)E

2
T

p2
T

]
. (C.3)
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Before we further expand eq. (C.3) we evaluate the zero-bin subtraction of the eq. (C.1)

which is given by the following (see Eq. (4.14) of ref. [37]),

Jg-out, z-bin
q = 4g2

(
eγEµ2

4π

)ε
CF

∫
d`+

2π

1

(`+)2

∫
ddq

(2π)d−2

`+

q−
δ(q+q− − q2

T )δ(`+ − q+)

× δ(ET − qT )Θ(q+/q− − (sJR/2)2). (C.4)

Following the same steps used to obtain eq. (C.3) we find,

Jg-out, z-bin
q = 2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)εR2ε

1

E1+2ε
T

. (C.5)

We note that the zero-bin term exactly will cancel the first term in the square brackets of

eq. (C.3) thus for our final result we have

J̃g-out,b
q = −2

αsCF
2π

(eγEµ2)ε

Γ(1− ε)R2ε

1

E1+2ε
T

[
1

ε

(
ET
pT
− E2

T

2p2
T

)
+
E2
T

2p2
T

]
. (C.6)

Expanding in ε and keeping only the leading order in ET /pT finite terms we have

Jg-out,LP
q = 2

αsCF
π

1

ET

[
ET
pT

ln

(
ETR

µ

)
+O

(
E2
T

p2
T

)]
. (C.7)

Since the jet canonical scale is µJ = pTR, for ET � pT this term is suppressed compared to

the leading contributions of the corresponding nJ -collinear soft function in eq. (3.23) and

therefore maybe ignored during the computation of jet cross section. Similar suppression

is found for the integrated (jet-veto) measurement.
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