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ABSTRACT: We consider di-jet production in hadron collisions where a transverse veto is
imposed on radiation for (pseudo-)rapidities in the central region only, where this central
region is defined with rapidity cutoff. For the case where the transverse measurement
(e.g., transverse energy or min pr for jet veto) is parametrically larger relative to the
typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff
parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality
for these degrees of freedom is set by the transverse measurement, as in typical transverse-
momentum dependent observables such as Drell-Yan, Higgs production, and the event
shape broadening. This paper focuses on the other region, where the typical transverse
momentum below and beyond the cutoff is of similar size. In this region the rapidity
cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different
rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity
cutoff parameter which we resum using renormalization group methods. We factorize the
cross section in this region in terms of soft and collinear functions in the framework of soft-
collinear effective theory, then further refactorize the soft function as a convolution of the
(u)soft and soft-collinear functions. All these functions are calculated at one-loop order.
As an example, we calculate a differential cross section for a specific partonic channel,
qq' — qq', for the jet shape angularities and show that the refactorization allows us to
resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet

shape spectrum.
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1 Introduction

In the recent years, jet substructure has been of great interest to the particle physics com-
munity since it can be used to discriminate between jets of different origins, e.g., quark
and gluon jets or jets from hadronic decays of boosted heavy mesons or Higgs and Z
bosons [1-12]. This is essential for expanding our understanding of quantum chromody-
namics (QCD) as well as testing the standard model (SM) or searching for beyond SM
physics.



In experimental studies of exclusive N-jet production, it is common to impose a veto
on the out-of-jet radiation in order to control soft emissions. Additionally, due to detec-
tor limitations these vetoes are imposed within a specific (pseudo-)rapidity region and the
veto is not imposed outside this region. These constraints can induce large logarithms of
the cutoff parameter, e‘”cut, and ratios of the veto parameter, p5*, to other scales in the
problem (e.g., the hard scale puy ~ +/—t, where t is the usual Mandelstam variable). These
logarithmic enhancements could potentially ruin the effectiveness of the ordinary perturba-
tive expansion. In this work we propose a factorization theorem for resumming logarithms
of e and P /p within the framework of soft-collinear effective theory (SCET) [13-16],
where p is the factorization scale. SCET was extensively used in the past decade for
factorization of observables with sensitivity to soft and collinear radiation, such as jet sub-
structure measurements in hadronic colliders. Some other interesting applications of SCET
include cross sections for event shapes in the collinear limit, jet production rates [17, 18],
and identified hadrons within jets [19-26].

In this paper, we study rapidity cutoff resummation and develop the necessary ingre-
dients for di-jet cross sections with transverse energy, Er, and jet-veto measurements in
hadronic collisions. Our results can easily be extended to zero and one-jet cross sections
as well. The transverse energy is defined as the sum of the scalar transverse momentum of
all the particles that do not belong to a jet and have rapidity, 7, in the range |n| < n°Ut,

Er =Y |pr|O(™ — |n), (1.1)
i¢jet
where the rapidity is measured with respect to the beam axis. The veto is implemented
by imposing the constraint Er < p$**. Due to the nature of the observable one expects
that such a measurement is sensitive to the underlying event (UE). Measurements of the
UE activity have been performed by ATLAS and CMS in inclusive charged particle pro-
duction [27], Drell-Yan [28-30], and exclusive dijet events [31].

The effect of UE in transverse energy resummed distributions was studied in
refs. [32, 33] for n°™ = 4.5 in the case of Higgs and vector-boson production using monte-
carlo simulation. In contrast to the work in this paper, in refs. [32, 33] the rapidity cutoff
was introduced only during the simulation and not in the resummed distribution. However,
as will be discussed below, for the large values of rapidity cutoff (n°"* > 4.5) the effect of
the cutoff on the resummed distribution is expected to be small. In this work we ignore
effects of multiparton interactions and focus on contributions from initial and final state
radiation. In principle, effects from multiparton interactions could be included later on
top of our analysis as factorization breaking corrections but this is beyond the scope of
this work.

Similarly, the jet-veto measurement imposes |p-(R**)| < pit, where p- is the trans-
verse momenta of the i-th jet reconstructed by a jet algorithm and R is the jet cone size
parameter used during the vetoing process which could be different from the hard jet size,
R. Though the jet-veto measurements are less sensitive to UE, they suffer from logarithmic
enhancements of R¥®*°. Such logarithms are known as “clustering logarithms” and appear
in next-to-next-leading order (NNLO) calculations [34-36], and could make an important



contribution to the cross section. At present there is no known method for resummation
of these logarithms but they could be included order-by-order in perturbation theory.

As a preliminary exercise we study di-jet production under the rapidity constraints in
an electron-positron annihilation process. Specifically we study the effects of the rapidity
constraints in the small transverse energy regime Aqcp < E| S wr < w, where w = /s
is the center of mass energy and r = e ™" is the rapidity cut. For this simple example,
the transverse energy E| as well as the rapidity is measured with respect to the thrust
axis and therefore we use different notation (F, instead of Er) to avoid confusion. The
schematic form of the factorization of the cross section within SCET is,

Cé‘l ~H X 5® 7,07, S(Ey) = 8. ® 5, @ Sn, (1.2)
where ® denotes convolution over . The hard function, H describes the hard process:
eTe™ — qq, and the soft function, S, describes the soft radiation and cross talk between
collinear sectors. The collinear radiation along the thrust axis is described by the functions
Jq which can be written in terms of the “unmeasured” jet function,! J;, introduced in
refs. [37], and contributions from out-of-jet radiation, which we denote as A.J;. For small
values of the transverse momentum, F, < wr, the collinear radiation which is emitted
within the cone has parametrically large transverse momenta, compared to £, and does
not contribute to the measurement. In this case the function [J; reduces to the standard
unmeasured jet function. The corrections from the out-of-jet radiations are necessary to
describe the process for moderate values of E| < wr. The collinear-soft function, S,
describes the collinear-soft modes which are collinear in the n-direction and therefore can
resolve the jet-cone boundary. The global-soft function, S, describes the standard u-soft
modes of SCET| which cannot resolve the small jet radius and therefore for the calculation
of S no rapidity constraints are imposed. In this e*e™ example there is no UE and therefore
the factorization is accurate up to higher orders in the effective field theory power counting
parameter A ~ E| /w. This allows us to directly compare our results with simulation data.
For our analysis we use MadGraph [38] + PyTHIA 8 [39, 40]. Our calculations are in very
good agreement with Monte Carlo for most values of E .

The refactorization of the soft function into global-soft and collinear-soft terms intro-
duces rapidity divergences which we regulate using the rapidity regulator of refs. [41, 42].
The rapidity scale dependence allow us to derive rapidity renormalization group (RRG)
equations which we solve to resum global logarithms of r up to next-to-leading logarithmic
(NLL) accuracy. This process closely follows the analysis in refs. [43, 44] where resumma-
tion of jet size parameter is performed in the context of electron-positron annihilation and
in refs. [45, 46] for proton-proton collisions. Non-global logarithms (NGLs) [47-54] of r
appear at NNLO calculations. Their resummation is particularly challenging since they do
not have the same pattern at each order in perturbative expansion. NGLs can be included
order by order in ag when their contribution is not large. Otherwise, resummation strate-

'We use the terminology of ref. [37] and we refer to jets for which no substructure observable is measured
as unmeasured jets.



gies developed in perturbative QCD [47, 48, 55—60] or recent approaches in the framework
of SCET [43, 61-64] should be adopted.

Other logarithms of ratios of widely separated scales also appear in the factorized cross
section (e.g. ratios of uy = w, py = wr, and pss = E ) are resummed by using the standard
RG evolution within the effective theory. We summarize the RG evolution properties for
all relevant terms in the sections 2.2, 3.2, and appendix A.3.

In hadronic collisions the beam direction plays the role that thrust axis plays in
electron-positron collisions and the collinear radiation along the np-direction is described
by the beam functions [65]. The corrections to the beam function from out-of-beam radi-
ation will contribute to the transverse energy (or jet-veto) measurement in a similar way
as corrections to the jet function in electron-positron annihilation. For jet production,
in addition to the np-collinear-soft and np-collinear modes, we also have corresponding
modes along each jet direction. The contribution from n j-collinear-soft modes is considered
through further refactorization of the soft function including the n j-collinear-soft function,
Shn,7. The factorization theorem for N-jet production in hadronic collisions is,

N
do
dbr " Tr [Hab—>1,2...,N SN @ Byyp @ Byp % (H Ji), (1.3)
i=1
where
Sab 2N = gab12.N g 600 0 50 @ 5@ s, (1.4)

and S; is the global N-jet soft function, 57(;1})3, and SS)J are the collinear soft functions along
the beam and jet directions respectively. The superscripts (a) and (i) denote the partons
associated with these functions and it should be noted that Sr(f])g and ST(LZ)J are different
functions even for the same parton a = ¢ because the veto for both functions is always
applied respect to the beam direction, not individual jet and beam directions. The parton
dependence of the soft functions will be suppressed for the rest of the text for simplicity
of notation. The contributions from the nj-collinear modes to the transverse energy are
suppressed and therefore the jet functions J; do not participate in the convolutions over
Er, while the beam functions B;,p do through Ep Jwr terms in the power corrections. This
is discussed in appendix C. It should be noted that in this paper we focus in the region
E7 ~ wr where these corrections are important and NGLs of the form In(Er/wr) ~ 1 and
therefore resummation is not needed.

The factorization formula in eq. (1.3) assumes the jets are in the central rapidity re-
gion, hence the factorization is invalid for jets in the large rapidity region, for which pure
t-channel forward scattering dominates. This process was extensively studied in the frame-
work of High Energy Jets (HEJ) [66-68] developed to resum logarithms of the rapidity
difference between jets and in the context of factorization violation by Glauber-gluon ex-
change [69]. The formula in eq. (1.3) can be used to calculate exclusive N-jet production
in the absence of UE and to understand its effect by comparing to ATLAS and CMS
measurements [28-31].



We also consider jet substructure measurements for some of the jets. In this case the
factorization is obtained with the replacement [37, 45],

do do
dErdr  dET

(s = Smeas @7 Ji()). (L5)

where Speas(7) is the contribution of the collinear-soft modes to the measurements within
the jet cone, J;(7) is the measured jet function, and ®, denotes a convolution over the jet
substructure observable, 7. The unmeasured soft function, Synmeas, iS universal, meaning
it does not depend on the jet substructure observable and therefore our calculations hold
for jet substructure studies as well.

In section 2 we motivate our analysis using the simple example of electron-positron
annihilation and we show two distinct factorization theorems are required to explain the
simulation data in the region F| <« w. One factorization theorem involves the inclusive
soft and jet functions, does not depend on the rapidity cutoff, and describes the region
wr < E| < w. On the other hand for small values of transverse energy, F| < wr < w,
we find that a factorization is needed which is sensitive to the rapidity cutoff. In this section
we also calculate the correction to the unmeasured jet function from out of jet radiation
and demonstrate that including such corrections greatly improves the agreement with the
simulations for | < wr. In section 3 we extend the formalism to hadronic collisions and
we give all perturbative matching coefficients for the unmeasured quark beam functions and
the corrections from out-of-beam radiation. The details of the calculation for the matching
coeflicients are given in appendix B. In section 3 we also construct the universal part of
the di-jet soft function and we discuss the RG evolution of the soft function in rapidity
and virtuality space for both transverse energy and jet-veto measurements. In section 4 we
apply this formalism to the example of di-jet production with one unmeasured jet and one
for which the angularity (see ref. [45]) 7p is measured. We impose a jet-veto measurement
on the soft out-of-jet radiation, and we focus on small, 7y, region for which angularity is
approximately proportional to the jet invariant mass,

0 = m3/p} + O(13), (1.6)

where pr is the jet transverse momentum measured from the beam axis. Even though the
calculation of di-jet cross section involves summing over all possible partonic channels here
we consider only the case q¢' — qq’. The complete calculation is beyond the scope of this
paper. We conclude in section 5.

2 Two jets with an E | veto in electron-positron annihilation

To obtain a better understanding of the effect of a soft radiation veto with rapidity con-
straints in a setting simpler than hadron-hadron collisions, we study a similar observable in
electron-position annihilation. To define the veto we use the rapidity of final state particles
measured with respect to the thrust axis. At leading order in the strong coupling the cross
section is dominated by di-jet events where the two-jet axis is close to the thrust axis. We
can then categorize the events into two types. In the first category which we refer to as



\"*\\unmeasured region
Type I Type 11

Figure 1. Topology of Type I and Type II events. The vetoing region |n| < 7" is defined as
the area in which we perform the measurement of the quantity which will be using to perform the
transverse veto. Type I events contain at least one collinear sector in this region where Type II
contain no such collinear sectors.

Type-1 events, at least one of the two collinear sectors points inside the vetoing area as
shown in figure 1 (left). The second category which we call Type-II events both collinear
sectors point outside the vetoing area as shown in figure 1 (right).

We consider a veto using the measurement of transverse energy, F,, which is defined
as the scalar sum of the transverse momentum of all particles in the pseudo-rapidity region
| <

Ey =) Ip’ 100 ™ — |mi), (2.1)

where the sum extends over all particles in the event. We are looking for the hierarchy
between FE | , wr, and w that will allow us to separate regions of the phase space where either
Type-I or Type-II events dominate the cross section, where r is defined by r = exp(—n°"t).2
We study the fraction of Type-I and Type-1I events as a function of transverse energy, F| ,
for different values of 7.yt at w = 2 TeV using PYTHIA 8. In our simulations we have turned
off hadronization. The thrust axis is defined globally, and then the anti-kr algorithm is
used to find jets with R = 0.05. We require that the two most energetic jets carry 90% of
the total energy. If both of these jets are outside the veto the event is Type-1I, otherwise
it is Type-I. The results for 1y = 1.5 and 7y = 2.5 are presented in figure 2.

From these plots we find that for wr < E |, Type-I events dominate the cross section,
where for | < wr, Type-II events dominate. This can be understood from basic kine-
matics. In each hemisphere the total transverse momentum is zero (from the definition of
the thrust axis) thus the collinear radiation will recoil against the soft radiation which is
emitted at larger angles. The transverse momentum of the collinear sector at the transition
point from Type-I to Type-II is given by chu' ~ wr therefore at this region of phase-space
E = Eiou' —HEJT’ft 2 2wr. On the other hand, transitioning from Type-II to Type-I events,
where E| = EY%3 the transition begins at £ < wr.

2The parameter r is also related to the half opening angle, ¢, of the cones: 7 = tan(¢/2).

3Note that E, is measured only in the vetoing area thus for Type-II events only the soft radiation
contributes to the measurement. For Jet-veto type measurements (rather than E | -veto) both transitions
happen at the same point.
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Figure 2. The ratio of the number of events of Type-I (Type-II) divided the total number of
events for each bin of the transverse energy is plotted in blue (red) from PYTHIA simulations. We
analyzed center of mass events for /s = w = 2TeV and for % = 1.5 (left) where wr ~ 450 GeV
and n°"* = 2.5 (right) where wr ~ 164 GeV. The collinear sectors are identified in PYTHIA using
anti-k7 FASTJET analysis for narrow jets (R = 0.05).

Therefore we identify two different regions and construct factorization theorems for
each region within the framework of SCET. The two regions of phase-space we are consid-
ering are:

Regionl: wr < F| <w
RegionIl: F| < wr < w . (2.2)

Region I which is dominated by Type-I events which have no sensitivity to the exact value
of r as long as it respects the hierarchy of scales that describes this region. The reason
is that the modes sensitive to the size of r are soft and collinear with typical transverse
momentum ~ FE | r and therefore contribution of such particles to the measurement is
parametrically small. This suggests that for Type-1 events we can take 7., — oo and
obtain a good approximation to the cross section. To verify this, we define the integrated
cross section

cut

do

1
do (0", pi™*) E/ dEL—dE (™, E.). (2.3)
0 1

and calculate the ratio of this cross section to the total cross section as a function of p§"*

for various values of 7, as well as n°u

— 00, in figure 3 using PYTHIA simulations. We
find that for sufficiently large values of pS"* the cross section do(n®", p{"*) asymptotically
approaches do(n™ — oo, pi™). Note that the finite n°"* curves approach the " — oo

curve when p* ~ wr.

This approximation was discussed in refs. [34, 70] and has been used in subsequent
studies [36, 71] of various jet observables at hadron colliders within the framework of
SCETy;. The factorization theorem for the differential cross section in electron-positron
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Figure 3. The integrated cross section as a function of the vetoing parameter p'* from PYTHIA
simulation for various values of n°"*: n°* = 0.5 (red), 1.5 (blue), 2.5 (green), 3.5 (orange). We also
give the results for no rapidity constraints, n°%* — oo, (black).

modes Region I Region II
n-collinear (B? Jw,w, E]) (wr?, w, wr)
n-collinear-soft - (Eyr,E /r,E))

soft (E\,E\,E\) | (E.,E.,E))

Table 1. The scaling of (p™,p~,p1 )n for the collinear, soft, and collinear-soft modes for transverse
energy measurement where 7 is the thrust axis in electron-positron annihilation, for region I and II.

annihilation is identical to the factorization theorem for measured jet broadening? derived
in eq. (6.22) of ref. [41],

doM) 2 ;.2 2 2
T ooHsy x /dEndEndEs 0(E, — E, — Ep — Ey) /qudPLS(Espra qi)
i

XJ(Env pi) X J(Eﬁ,a Qi) (24)

where oy is the Born cross section and Hs is the di-jet hard function extracted from
the matching of QCD onto SCET and can be found in refs. [72, 73]. In this factorization
theorem the collinear radiation is described through the jet functions, J(E,, p%_), where the
transverse momentum dependence (measured with respect to the thrust axis) is necessary
in order to account for the recoiling of collinear radiation against soft radiation. The
contribution of soft radiation is incorporated via the soft function, S(Es,p%,q?). In this
region both collinear and soft radiation contribute the measurement of transverse energy.
The relevant modes of SCET that contribute to the factorization theorem in eq. (2.4) which
are the standard SCET; modes are presented in table 1.

4Jet broadening, e is defined as e = (ZZ \pj_|) /w where the transverse momentum is measured with
respect to the thrust axis.



We now turn our attention to region II where Type-II events dominate the cross
section. In order to identify the relevant SCET modes that participate in the factorization
of the cross section in this region is important to realize that, in contrast with region I,
the collinear modes within the cones outside the veto could have transverse momentum
parametrically larger than the soft radiation. This corresponds to approximately back-to-
back di-jet events and for this reason we employ SCET[ modes. Furthermore in the limit
r < 1 we need to include the soft and collinear modes that contribute to the measurement
and can also resolve the cone boundary. We achieve this using the framework developed
in ref. [44] and refactorize the soft function into global soft and collinear-soft functions.
Due to the nature of the measurement the two modes have the same virtuality but live in
different rapidity regions, as shown in table 1. Thus the factorization of the cross section
in region II is,

do_(H)
dE |

= O'()HQ X Jq(W) X Jq((ﬂ) X /dEndEn SS(EJ_ — Esn — Esﬁ)Sn(Es )Sﬁ(Esﬁ), (25)

where S; is the global soft function and S, and Sy are the collinear soft functions associated
with corresponding modes.

In fixed order calculations the global soft and collinear-soft functions suffer from ra-
pidity divergences that are regulated with the use of rapidity regulator of refs. [41, 42].
Employing rapidity renormalization group allows us to resum global logarithms of the cone

cut) - A similar analysis was performed within

size parameter r (or equivalently In(1/r) =n
the context of transverse momentum dependent fragmenting jet functions (TMDFJF) in
ref. [74]. The jet functions J;(w) describe the cone-type “unmeasured” jets and can be
found for both gluon, i = g, and quark (antiquark), i = ¢(q) jets in ref. [37]. For large
values of r (r ~ 1 or equivalently n°** — 0) the factorization theorem in eq. (2.5) still
holds but the refactorization of the soft function is redundant since the collinear-soft and

global-soft modes merge to the standard ultra-soft modes of SCET].

2.1 Fixed order results

In this section we provide the fixed order results for region II up to NLO accuracy. The
elements for resummed expressions up to NLL’ are given in the following section along
with numerical implementations and comparison with PYTHIA. For region I all necessary
results for the NLO cross-section are derived in ref. [41] and summarized in appendix A.

In region II collinear radiation is contained within the unmeasured cones and therefore
does not contribute to the measurement of the transverse energy in the vetoing area. The
unmeasured jet function that appears in the factorized expression in eq. (2.5) are evaluated
in ref. [37] and are given by:

NLO _ asCr [T 5 4 3 w 1o w
Jq ((.U, 7”) =1 + o {2 — Eﬂ' + 31n(2) + 5 In ')“2w2 + 5 In ')“2w2 . (26)

The soft function Ss(Fs) can be calculated using the rapidity and dimensional regulators
from the real gluon emission diagrams. Virtual gluon diagrams will give scaleless integrals
and therefore are ignored during this calculation. We evaluate the NLO contributions



by extending the phase-space integration in eq. (5.11) of ref. [37] with the replacement
Oag — 6(E| — k1) and multiplying by the rapidity regulator factor, w?(v/|2ks|)",

by o (€PN /dwdk—dd—?m V15 (k2) -

_a? g A0 (TR 1 ()
=% T Tra—g <u> T(—n/2) u( > '

Es
where the superscript b denotes “bare” quantities. Expanding in 7, then in €, and adding

2.7)

the LO contributions we have,

Cp (2] 1
Sea 0 (E) = 0(B) + Y SeP(B) = a(By) + L F{ [ ~ —0(E,) + 2£0(Es,u)}
iyj?;q#?} K
i#]

+5(Ey) [612 + éln (‘:j) } —2Lo(Es, ) ln<5§> _4[’1(E57H)_71T;5(E8)}7

where we used T, - T;+ T;-T; = —2CF and defined®

Lol 1) = ;cn (Z) _ ;[‘; 1nn(x/ﬂ)]+. (2.8)

In the MS scheme, the renormalized result is

2

-2 Loty (‘V‘j) At + o) | (29)

NLO
Ss,q(j (ES7IU’7 V) = 5(E8) T

where for a generic function, F', the bare and renormalized functions are related through
the following equation,

FE) = /dE Zp(E — E'\F(E') = Zr ® F(E), (2.10)
and
L) =008 + 22O L2 L ot + o[ 5+ 2w (45) ]}

(2.11)
In the renormalized result we take w — 1 but we keep the explicit dependence of the
bookkeeping parameter in the renormalization function, Zg, since this will allow us to
evaluate the anomalous dimension for the rapidity renormalization group (RRG) in the
next section.
Similarly for the n-collinear-soft function, S, (E,) we have,

b,(1) NI Y A o [ dktdk—d¥ %k, v )
Sn,i (En) =2g"w < A (T:) (27)d-1 k+(k:—)1+775(k )o(E, — k1)O,

— OCS’LUQ(':[“)2 deE 1 ﬁ nl i e (2 12)
N 2r Y T —-en\pn) p\E, ’ ’

® A precise definition of the plus-distributions in eq. (2.8) can be found in ref. [75].

~10 -



where ©, = O(k*/k~ — r?) constrains the collinear-soft gluons to be within the mea-
sured region. Following similar process as for the global soft function, we have for the
renormalized collinear soft function,

asCj ,u2 2
< {mo(En,u) In (22) ALy (B ) + 125<En>}, (2.13)

St (B 1, v) = 6(En) +

where C; = C, = (T,)? = CF (also Cy = C4) and the renormalization function is

Do i(En) = 8(Ey) — 222G {2 [— éé(En) +2Lo(Bn, u)] +6(En) [612 + %m ( e > ] }

2 n r2p2
(2.14)

2.2 Renormalization group evolution and numerics

In this section we review the results from literature regarding the NLL cross section for
region I and later study the renormalization properties of the global and collinear-soft
functions for the region II. We also perform numerical applications and compare against
PyTHIA.

2.2.1 Region I NLL cross section

In ref. [41] a factorization theorem is studied for electron-positron annihilation processes
where jet broadening, e, is measured. This measurement can be related with the measure-
ment of transverse energy in region I through a simple rescaling relation:

—— = =, 2.15

=X whi= T (215)

The explicit NLL cross section for the simultaneous measurement of the left broadening,
er,, and right broadening, eg, is given in eq. (6.59) of ref. [41].

2

do™t e\ T 1 ws
= U S 1— B 1 s 0 ,
depde;, ~ ° i pn )< w > I'2(ws) (€L€R)1_“5[ 2-ws 1/2(1 +w )}
(2.16)
where
Wg = QM 111 <V> , and Bz(a, b) — / de‘ (1 _ x)b—lxa—l’ (217)
s 140 0

where v and 1y are the jet and soft rapidity-scales, respectively, and B,(a,b) is the in-
complete beta-function. Using the fact that jet broadening is the sum of left and right
broadening, i.e., e = ey, + er, we have,

do do

—(F)) = E, — . 2.1
T (B = [ derden 8(BL — wler + en)) 15 (even) (218)
Performing the integrations we find,
do (D, NLL e~ 2WsVE | m 1-2ws Ws 2
— =o9U, —— | = 1-— B 1 0)| . 2.19
) S (7)1 sG] @)
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To determine the jet and soft rapidity scales we look at the fixed order results in ap-
pendix A.1. We see that at NLO the rapidity logarithms are minimized with the choices
v=v;=w and vy = vg = E|. Thus for this choice of rapidity,

wy = 20‘5(’?% In <£> . (2.20)

We will compare our result for the NLL integrated cross section to PYTHIA simulations in
the next section.

2.2.2 Region IT NLL’ cross section

The renormalized global and collinear soft functions satisfy the following RG and RRG
equations:

d

F(E —~Fo FE 2.21
dln(y) ( 7“71/) ,.)/I/ ® ( 7/’[/71/)7 ( )

F(E =~y'F(E

d].n(/,t) ( 7/’L7 V) FY},L ( 7/’[/7 V)?
where 75 and 7" are the RG and RRG anomalous dimensions respectively and F can
be either the global soft function, S, ;; or the collinear-soft function S, ;. The anomalous

dimensions are related to the renormalization function through the following relations:®

dz dz
F —1 F F -1 F
oE)=—Z _— E =—7Z 2.22
f)/,u(:u’ay) ( ) F ®<dln(u))’ ’Yl/( ,,U,) F ®<dln(y))’ ( )
and thus from egs. (2.11) and (2.14) we have
C 2 C
) = 2% <M2> ) (B, ) =+ Ly (B, ),
T 14 T
sn asCr :u2 sn asCp
Tu (:u’a V) - - T In (V2T2> ’ T (Evu) =-2 T ﬁO(Ea M)? (223)

in agreement with eq. (A.9) of ref. [71]. We note that the soft anomalous dimensions satisfy
the following consistency relations,

W (o v) 27" (s v) = 75" (1) W(E k) + 27 (B, p) =0, (2.24)
where "™ °* (1) is the soft anomalous dimension from eq. (6.30) in ref. [37]. These con-

sistency relations are required so that the cross section is independent of the factorization
and rapidity scale. The RRG anomalous dimension assumes the following generic form to
all orders in perturbation theory:

W (B, p) = 2Ly [a] Lo(E, u) + Ay [a]d(E), (2.25)

where 'L is proportional to the cusp anomalous dimension T'eysp (see eq. (A.18)) and Avyf
is the non-cusp part of the anomalous dimension. The values of I'2[a] and Avyf'[a] for the
collinear and global soft functions for the process ete™ — di-jets are given in table 2.

®In the following equations Z5' is defined such that Z5' ® Zr(E) = §(E).
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Function rr ANE vp
Ss.qq 20sCp/m | O(ag) | EL

( 2
S
Sn.q —asCp/m (’)(04%) E\/r

Table 2. The rapidity renormalization group anomalous dimensions and rapidity canonical scales,
vr, for global-soft and collinear-soft functions for the electron-positron annihilation to di-jets.

The solution to the RRGE in eq. (2.21) is:

F(Eal’L?V):[F(:uva)@VF(:uaVaVF)](E)a (226)
where ( ) ( )
eHF w,\VE (e’yEu) —NrK,VVE 1
E = 2.27
VF( y Wy Vs VF) F("?F(,Uaya VF)) El1-nr(wvvr) +’ ( )
where we define the the plus-distribution in eq. (2.27) through its inverse Laplace
transform,”
=), o]
wima| =L |s"T[=o]|,
|:E1 « N
and
F v F v
UF(Ha v, VF) =2I', [Oé] In{—, HF(H’ v, VF) = A’Yl/ [Oé] In{—, (228)
VR VR

where vp is the characteristic scale from which we start the evolution and is chosen such that
at this scale rapidity logarithms are minimized. For the global and collinear soft functions
these are given in table 2. The solution of the RGE in eq. (2.21) has been described
previously in the literature (see for example ref. [37]) and is summarized in appendix A.

In order to calculate the cross section up to next-leading-logarithmic (NLL) accuracy
we evolve the hard and the jet function from their characteristic scales (uy = w and
py = wr) to the soft scale, pss = psp, = F, as discussed in appendix A.3. We also perform
the evolution in the rapidity space by evolving the global soft function from v, = E| to
the collinear soft function canonical scale, vg, = E| /r. The evolution in the rapidity space
allow us to resum global logarithms of r up to NLL accuracy. Thus our final result for the
NLL’ cross section in region II is:

1 do(D, NLL’
oo dE;

e’yE,U/SS —Tss
:uH(Mssa Mh)Hé\ILO(w,/Lh) X (UJ(,US&#J')J;\ILO(Wa r, :uj))Q X (11(77))
ss

1 (1 . 4as(ﬂss)CF In <Vsn7"> f()(EJ_, Las: Vam, 1/53)> ’ (2'29)

X
SSs
E m

VSS

where

Nss = nss(ﬂss, Vsn, Vss)a (230)

"For an alternative definition see appendix C of ref. [76].
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Figure 4. The differential cross section as a function of the transverse energy from PYTHIA
simulation (black solid) against NLL’ analytic calculations (red band) for region II for w = 2TeV
and for " = 1.5 (left) where wr ~ 450 GeV and n°"* = 2.5 (right) where wr ~ 164 GeV. The
simulation data are normalized to unity and the analytic results are normalized to data in the region
E| <wr/2.

and

FE
f()(E,,U,, Vsn, Vss) =In <N> - H(_l + 7755(”7 Vsn, Vss))7 (231)

where H(x) is the harmonic number function. In the final result the scales are fixed
after we performed the convolutions. We emphasize again that in this work we resum
only the large global logarithms and resummation of NGLs is beyond the scope of this
work. Unfortunately, the cross section in region II suffers from non-global logarithmic
enchantments of the form, In(E | /wr), and a complete description of the cross section at
NLL or NLL’ in region II requires nontrivial resummation of NGLs which we leave for
future work. Recently resummation of NGLs for a similar observable was achieved in
ref. [64] using the technology of multi-Wilson-line “coft-functions”.

In figure 4 we compare our result for the NLL’ cross section (red band) in region
IT against PYTHIA simulations (back solid line) at w = 2TeV for 7 = 1.5 (left) and
n® = 2.5 (right). For the simulations hadronization is turned off. The analytic results
are normalized to the simulations in the region 0 < F; < wr/2. Theoretical uncertainties
were estimated by fluctuating all canonical scales by a factor of 2 and 1/2. We find that
within the theoretical uncertainties the NLL’ results agree very well with the simulations
for most values of E|. There is disagreement near the peak of the distribution which could
be due to the strong coupling constant in the soft function being evaluated at relatively
small scales where higher orders in perturbation theory and higher logarithmic accuracy
might be required for reliable results.

In figure 5 we compare our result for the integrated cross section (red band) defined
in eq. (2.3) against PYTHIA for same kinematic variables. In this figure we also extend the
graphs into region I and we include the predictions for that region from the factorization
theorem in eq. (2.19) for the NLL cross section (blue band). We see that the at small and
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Figure 5. The integrated cross section as a function of the vetoing parameter p$** from PyYTHIA
simulation (black solid) compared against the small transverse energy approximation (region II, red
band) and the large transverse energy approximation (region I, blue band) for w = 2TeV and for
n° = 1.5 (left) where wr ~ 450 GeV and n"* = 2.5 (right) where wr ~ 164 GeV.

large values of pi'* the cross section is well described by do™ and do® respectively. The
intermediate regime where pCTut ~ wr could be described with the use of a phenomeno-
logically motivated combination of the cross sections that interpolates between the two
regions, but developing such a formula is beyond the scope of this work.

2.3 Jet function corrections for F| < wr

In this section we consider corrections when E| < wr to the jet function, J,(w,r), used
in the factorization theorem for the region II cross section. Contributions in this regime
come from out-of-jet radiation of collinear modes. In electron-positron annihilation these
corrections were discussed in ref. [37] for the integrated jet function in the context of energy
veto. Here we extend the calculation for measurements of the transverse energy with respect
to thrust axis. For this purpose we modify the factorization theorem in eq. (2.5) such that
includes contributions to the measurement from collinear radiation. This modification
allows us to extend region II to F; < wr < w which we refer to as region Il.e. The cross
section is given by,

dO.(II.e) )
= 0oHz X 85 ® [Sh ® Jy(w, )7, (2.32)
dE |
where at NLO
INO(E L, w,r) = JNOW,r)6(EL) + AJI(EL,w,r), (2.33)

where

(1) __aCF wr 1y, 4 By
ATID(E w,r) = {@(EL)G)(Q EL>[6<rw tprn(1-
wTr

Jo(A) -t E) - 2 w(E)]) s
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Figure 6. The differential cross section as a function of the transverse energy from PyYTHIA
simulation (black solid) against NLL’ analytic calculations without jet function corrections (red
band) and with jet function corrections (green dashed) for region Il.e for w = 2TeV and for
neut = 2.5

The first component of the jet function in eq. (2.33) is given by the standard unmeasured
jet function in eq. (2.6) multiplied by §(E ) since the unmeasured jet function is calculated
for the case of both partons emitted within the unmeasured cone. The calculation of the

(1)

corrections from out-of-jet radiation, AJ;’, are summarized in appendix A. The cross

section in this region is then given by

do(le), NLL' g (II), NLL’ do (D), NLL

= 2 AJWM. 2.
dE, i, TP am, @ (2:35)

In figure 6 we compare the analytic expression from eq. (2.29) and (2.35) for region
IT and region IL.e respectively against PYTHIA simulations. We find that for £, < wr/2,
the two expressions give almost identical distributions. This suggests that in this region,
the contribution from the out-of-jet radiation to the cross section, denoted Ao is power
suppressed, as expected. On the other hand, in the region wr/2 < E; < wr where
Ao is expected to give a significant contribution to the cross section, the distribution
for do-), NLL” — (1), NLL” 1 A5 (ID) shows improved agreement with the simulation data
compared to do: NLL' Tt should be noted that in this region NGLs of the form In(E | /wr)
are not large and therefore can be included order by order in perturbation theory.

3 Extension to hadronic collisions

In this section we extend the analysis of the previous section to hadronic collisions. We
consider the effects of rapidity cutoff in transverse energy and jet-veto measurements where
the transverse momentum and rapidity are measured with respect to the beam axis (hence
the change of notation £| — E7). A significant difference from the analysis of electron-
positron annihilation is that for O(ay) calculations in hadronic collisions, only one parton
can contribute to the measurement. Therefore, the hard-interacting (incoming) parton is
not constrained by the rapidity cutoff. In direct analogy to the previous section we identify
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Region Il.e as Ep < p~r < p~ where p~ = xpFey, is the large component of the lightcone
momenta of the incoming parton and FE.,, is the hadronic center of mass energy. Like
before we define r = e~ where N is the rapidity cutoff.

We focus primarily on the factorization theorem for the di-jet cross section but these
results can be straightforwardly extended to the case of zero and one jet cross sections.
For measured transverse energy in SCET the factorized cross section is,

da(H.e),abﬁlQ

= NB,p(x1, 1) @ By p(xa, 1) @ Te[HYG(1)SY(Er, )] Ji(1) Jo(p), (3.1
dy1dyadprdEr /p(z1, 1) @ Byyp(22, 1) [Hi3(1)S13(Er, p)] Ji(p) J2(p), (3.1)

where

pr
N = ) 3.2
32w N.xyzoES (3.2)

The corresponding factorization theorem for jet veto measurements is discussed in sec-
tion 4. In this section we will evaluate the NLO di-jet refactorized soft function for trans-
verse energy, S{5(FEr, i), and we discuss how from this result we can trivially construct
the corresponding soft function for jet-veto measurements, S5 (pS™*, w). The refactorized
result involves the global soft function for which no rapidity cutoff is implemented and soft
radiation is allowed within the jet cones. For zero and one jet production the global soft
function for is given at NLO in ref. [71]. The missing elements for the refactorized soft
function are the beam and jet collinear-soft function which we also present in this section
and discuss their evolution properties. For our calculations we assume that the jet and
beam directions are well separated.

Furthermore we give all perturbatively calculable elements for constructing the unmea-
sured quark beam function and give corrections to those from the out-of-beam radiation.
The details of this calculation are given in appendix B and in this section we summarize
our results.

3.1 The di-jet soft function
At NLO the soft function can be written in the following form (see refs. [37, 45])

S(ET, {T}> = Sunmeas(ET> H SmeaS(T(i))

?’:"L m m
= Sgr%ncl)eas(ET) H 5(7—(1)) + So |:Z Sge)as(T(i)) H 5(T(k)):| 5(ET)7 (33)
i i k#i
where m can be either 0,1, or 2 and is the number of jets for which the jet substruc-
ture observable, 7, is measured, Sy is the tree-level soft function, which can be found in
refs. [45, 77], and Synmeas is the universal di-jet soft function which is independent of the
type of jet substructure measurement performed within the jets. Here bold-faced indicates
quantities that are matrices in color space. The only non-trivial function of the measure-
ments iS Smeas(7) which describes the contribution to the jet-shape measurement from
soft radiation within the jet. It should be noted that for the completely unmeasured case
(m = 0) the soft function reduces to Synmeas- In this section we will evaluate Sypmeas and
discuss its renormalization group properties.
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The universal part of the soft function recieves contributions from the global-soft and
collinear-soft modes along the direction of beam and jets. Thus Sunmeas i factorized into
five terms:

Sunmeas(ET) - Ss & Sn,B & Sﬂ,E & Sn71 &® Sn,z- (34)

We construct the di-jet global soft function, S, for transverse energy and jet veto measure-
ments using results from the literature and we calculate S, ;. For this reason we organize
this calculation in similar way as in ref. [45] where the authors calculated the universal
(unmeasured) part of the di-jet soft function in the limit » — 1. In contrast with the cal-
culation in ref. [45] in our calculation of the global soft function, gluons from real emissions
could have pseudo-rapidity greater than n°“*, thus:

SE’NLO — S+ [So Z(Tz . T].)Si(;) + h.c.], (3.5)
1<j

where S’i(jl)

VE 2 dk n; - n; v \"
sW=_g( & 2/ () 5(k%)6(Br — Br(K))O (ko).
i =9\ Tar )Y ) @n)d T (g k) (ny - k) \ 2Kz (F)3(Er — B (k) (ko)
(3.6)
where Ep(k) is the transverse energy as a function of the gluon three-momenta, k, and &,

is the inclusive i-j interference term,

is longitudinal component with respect to the beam axis.

Since in this paper we are considering hadronic collisions in the center of mass frame
where fp and fiz are always back to back, the beam-beam interference term, Sj(gl)E is given
by eq. (2.7) up to the color factor which is factored out of eq. (3.5), so

S](31) (Er) = W{z [ié(ET) - 2£O(ET,M)] (3.7)

— §(Er) [612 - %m <:> ] 4 ALy (Br, ) — ALo(Br, ) In (:) + ﬁé(ET)}.

The beam-jet interference term, Sg},, where J is either 1 or 2, is one-half times the sum of
egs. (B.2) and (B.10) of ref. [71],

i) = L5 — 20| + LeatBrn) 35)
+ % [lﬂ (:) - % - UJ] d(ET) +2Lo(ET, 1) [HJ —1In (:) } + 7;5(ET)}-

The jet-jet interference contribution to the global soft function is given in table 1 of
ref. [45] (up to terms that are suppressed by O(R?)).8 Tt should be noted that the jet-jet
interference terms do not have rapidity divergences and therefore are independent of the
rapidity regulator parameters n and v,

2

S (Br) = O‘(Q‘jz“’Q; (4:) " 2eosh(Any2) Zoc(ar+ )| 6o

8Tt was shown in ref. [46] (where the O(R?) contributions were studied), even for moderate values of the
jet size (R < 1) the small R limit gives a very good approximation to the soft function.
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where An = 1y — n2. Expanding in € and using the two following relations (see eq. (4.17)
of ref. [45])

In <2 cosh(An/2)> - ;[m (”1 2”2> + In(2chy) + In(2chy) | (3.10)

where ch; = cosh(n;) and

2
In? (2 cosh(An/2)) = AT” +1In(1 + 2" In(1 + e~ 47) (3.11)

we get for the jet-jet interference term,

s (Br) = O‘(“)“’z{ [15(ET) —2Ly(Br, M)] (m (”1 : ”2> + In(2chy) + 1n(2ch2)>

2 € 2
—2In(1 + 2" In(1 + e"2")§(Er)
- % [ié(ET) - 2£0(ET,M)] — 4Ly (Er, p) + ié(ET)}~ (3.12)

Adding all contributions and using color conservation (i.e. Ty + T2+ Tp + Tz = 0) to
simplify the results we find,

SPNLO (1) — 8o ET)+%(2“72“’2 [so{ [ié(ET) — 214 (Er, u)] (ZC In (:2) —M’(w))

(€t ) (216 [16<ET> - 2LO<ET,M>] 21 (Brop) — Zé(%))
- o+ Co) (3| LatEn) - 2talEr]| + 5|2 (£) - 1o
2
— 2Lo(Er, 1) In <:> 2L (B, p) + &5(%)) } +he ] (3.13)
where fi1o = pr, fig 5 = i Fem,? and
M) = = 3 T (). (3.14)

1<j
where s;; = 2p; - p; and pi and pl are the four-momenta of the two jets and p‘é B =

(% p(@) Eem/2)1, B The renormalized soft function is defined by

St = Z1, (1) ® Ss(1) ® Ziss(p), (3.15)

where S; is the renormalized global soft function and Zg, is the corresponding renormaliza-
tion matrix. The renormalized soft function satisfies the following RG and RRG equations,

d d
% S.(Fp)=S.,®T% +he,
dln(,u)s (Br) =S, @ I/ + he dln(v)

9Note: the scales i1; are not the canonical scales p; for which logarithms of the factorization scale are

Ss(Er) =7, ©8Ss, (3.16)

minimized in the corresponding functions.
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In the MS scheme we have

SYMO(Er) = Sed(Er) + (1) [So{ - 2E0(ET,M)<Z@' In (f;) - M/(mz’)> (3.17)

2T

—2(Ty - T2)In(1 + 2N In(1 4+ e 2N §(Er) + (C1 + Co) <2£1(ET, ) — Za(&))

—(Cp+Cjp) ( — 2Lo(Erp, ) In (:) + 201 (Bp, 1) + Zé(Eﬂ) } + h.c.] :

and the corresponding anomalous dimensions are

ss Qg ﬂz 1 ss
e =—" [Z C;ln <m> - M'} O(Er) + 57, (Br) , (3.18)
and
Qs
v =2(Cg+ CE)?»CO(ET) 1), (3.19)

where 7,° is the total color-trivial part of the soft anomalous dimension after adding the
hermitian conjugate in eq. (3.16),

i (Br) =22 (O + ) (4)o(Br) — (€1 + CotalBr)|. (20)

The collinear-soft function .S, ; involves collinear-soft fields along the 7;-direction only,
and those fields are decoupled at the level of the effective Lagrangian from the soft Wil-
son lines along the other 7,.; directions. The one loop contribution to the collinear-soft
function along the jet direction (7 ;) is given by:

b, eVE,MZ ¢ dktdk—d* 2k, 1 sk~
Sn,Sl)(ET):292< Am ) (Ti)Q/ (2m)d-1 k+k—5(k2)5 Er—==5—)Onr

_asCy  eF 2 1/ p 12e
21 T(1—e€)eR?* u\ BEr ’

(3.21)

where s; = sin(f;) wth 6; the angle between the jet axis and the beam axis, and Op =
O(k*/k~ — (s;R/2)?). Expanding in € we get,

Cr (1 2
SPNLO (Br) = 5(Ep) — Q%J {625(ET) ~ =Lo(Er, u/R)} +5Uro@), (322
where
(1) asCy 9, T
Sn’J(ET) = — o 4E0(ET, /L) In R+ 4L (ET, ,u) 4+ (2In“ R — E 5(ET) . (3.23)
The renormalized quantity is defined through,
SB,J(ET) = ZSn,J(,u) ® Sn,J(ETv :u)a (324)
and satisfies the following RGE
d
. E — ~Sn,d " E , , 2
TH(M)S J(Er, 1) =7, (1) @ Sn,g (B, 1) (3.25)
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where 'y,‘i""] is the RG anomalous dimension. It should be noted that since the collinear-

soft function along the jet direction does not have rapidity divergences, it does not evolve
in the rapidity space. In the MS scheme the renormalized collinear soft function and the
corresponding anomalous dimension are,

CVSC(J

SNLO(Er) = 8(Br) + S (Br), and 43 (Br) =2

n, n,

Lo(Er, p/R),  (3.26)

™

respectively. The collinear-soft function along the beam direction, up to the color factor,
is identical to the one we evaluated in eq. (2.13).

2

C 2
ds>'5 {2£0(ET, 1) In <T‘2‘V2> +4L1(Er, p) + 7{25(ET)}, (3.27)

SNE(Er) = 8(Br) +

where compared with eq. (2.13) we have replaced C, with the general Cg = (Tp)?, and
similarly for the beam in the ng direction. The anomalous dimensions 'yZ”’B and 5P
are given in eq. (2.23). We also note that the anomalous dimensions satisfy the following

consistency relations,

1 B 1
T (Er) + 5 (07 + 2 P)6(Er) + 5 (i (Br) + 9 (Br)) = T™™*=(Er) . (328)

and
v (Er) + 5P (Er) + 5" (Br) =0, (3.29)

where T "™ g the anomalous dimension of the unmeasured and unfactorized soft func-

tion for di-jet events. These consistency relations hold for both jet-veto and transverse

I\unmeas (p%ut )

ref. [45]. The corresponding expressions for the global and collinear soft functions and their

energy measurements. For jet-veto measurements is given in eq. (5.18) of
anomalous dimensions appropriate for jet veto measurements can be trivially evaluated by
performing the integration over the transverse energy using the relations in eq. (A.5). It
is now a simple exercise to confirm that from the product of global soft, Ss(p$*), and
collinear soft functions, S, ;(p5™), evaluated at a common scale p, we recover the result
of ref. [45] for the di-jet soft function in eq. (4.28), and confirm the consistency relations
in eq. (3.28).

3.2 Soft function renormalization group evolution
3.2.1 Evolution in rapidity space

As mentioned earlier, the n j-collinear soft function is free of rapidity divergences and thus
does not evolve in rapidity space. Here we discuss the RRG evolution of the global soft and
np-collinear soft functions. For the case of transverse energy measurements the solution of
the RGE is discussed in the previous section below eq. (2.24). For jet-veto measurements
the rapidity space anomalous dimensions, 'yf , of the global and collinear soft functions is
defined through the following RG equation,

T PO R, v) = 5 (07", B, ) F (o, B, p, v), (3.30)
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where RV is the jet cone size used in the jet vetoing process. In our perturbative calcu-
lations at NLO there is at most one parton in the vetoing region, thus it will be forming a
single soft jet for all values of RV**® > (. This is reflected in our calculations by the fact
that none of the perturbative calculable elements of the factorization theorem depends on
parameter RV°' at this order. The anomalous dimensions can be written in the following
general form (see egs. (15) and (16) of ref. [36]),

cut

g, ) = 2rfladin (M) 4 Anf o, 20, (3.31)

where I'L'[as] and Ayl [as, RY%] are given in table 3. Then, the solution to the RG equation
in eq. (3.30) is

F(p%ltv RVBtOv M, l/) = V(p%uta RVQtO? M, v, VF)F(p%Uta Rveto’ M, VF)a (332)
where
[ —n¥ s v vp)
V(pF", R, p,v,vp) = exp <m}eto[0¢s, R v, VF]) (pcut> ; (3.33)
T
with
il i) =20t () (3.3
Vp
and
HVFetO[Ozs, Rveto’ v, VF] — A’Yf[as, RvetO] In <V) . (335)
VR

It should be noted that for jet-veto measurements the canonical rapidity scales are vy ~

pM for the global soft function, and vg,, ~ p5**/r for the np-collinear soft function.

3.2.2 Evolution in virtuality space

We will first discuss the transverse energy measurement. The global and np-collinear soft
functions have the same virtuality canonical scales, jtss ~ ptony ~ E7. Thus we will be
considering the simultaneous evolution of of the global and np-collinear soft functions and
separately the evolution of the n j-collinear soft function.

The combined global and n g-collinear soft function, S, (1), is defined by the convolu-
tion of the global soft and both npg-collinear soft beam functions evolved up to a common
rapidity scale, v,

Ssn(p) = Ss(p,v) ® S, v) ® S, 5u,v), (3.36)
and satisfy the following renormalization group equation
d
——S (B, p) =T5" Ssn(ET, h.c. . .

The anomalous dimension I';™ is given by the sum of the corresponding anomalous
dimensions,

1 sng O 1 s-n
I‘Z_n(ET> = I‘ZS(ET) + E(PYZ”B + Y B)é(ET) = —?Mlé(ET) + 5’}/“ (ET) s (338)
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where

Ve (Er) = 2% — (C1 + C2)Lo(Er, p (Z CiIn <“’ ) +(Cp +C3) ln(r)>5(ET)} .

(3.39)
The anomalous dimension, 7F for both the n j-collinear soft function and for the combined
global and np-collinear soft functions can be written in the following general form

Vi(ET7 ,U/) = _QFF[as]ﬁ()(ET, H fF) +F [as]é(ET)7 (3'40)

where &5 is a scaleless parameter and I'p[as] and yp[as] are the cusp and non-cusp part of
the anomalous dimension, respectively, with expansions in the strong coupling as described
in egs. (A.18) and (A.19). Then the solution to egs. (3.24) and (3.37) is given by

S, g (B, 1) = Usn, g (1, o) @ Sn.g(ET, po), (3.41)

and
Ssn(Er, 1) = Usn (11, f10) ® HT(NOvH)SS-n(ET»MO)H(HOaM) ) (3.42)

respectively. The matrix TI(jq, 1) is given in eq. (A.27)'% and the evolution kernels Up are
similar to the evolution kernels discussed in ref. [37] for the measured jet and soft function
evolution and are given by

wr(pr) 1
Ur(Er, i, pr) = exp (e wr(p, pr) + Kr(p, pr)) (€F 1F) [ ] |
+

I'(—wr) pltwr(unr)

(3.43)
where wp(u, ur) and Kp(u, pr) are given formally in all order in perturbation theory by
eq. (A.21) and (A.22).

For the case of jet veto measurements the renormalization group equation takes form

d
F cut veto cut veto F cut veto 44
() (PP, RV, ) = 1 (5, RY, ) F (p*, RV, ), (3.44)
where
R R ) = 2 rlos]n (455 )+ oo, R (3.45)
T

The form of the RG equation is identical to the one described in eq. (A.17) and therefore
the solution is given by eq. (A.20) for mp = p5**/Ep. The values of I'plas] and yp|as, RV
at one loop are identical to the transverse energy measurements and independent of RVet°.
Therefore for the NLL and NLL’ soft function, all ingredients for calculating the evolution
kernels are given in table 3.

10Note that for the soft evolution the initial and final scales in the arguments of the matrix IT are reversed
compared to the hard function. This is due the difference in the sign of the color non-trivial part of the
soft and hard anomalous dimensions.
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Function roy, 7% UE 93 re ANE vp

Sn,J _4CJ 0 ETR 1/R — — —
S, — — Er 1 (CB —I—CE)CKS/W O(Oég) Er
Sn,B - - ET 1 —CBOZS/TF (’)(ag) ET/T

Sen 4(01 + Cg) 4A’ys_n Er 1 - - —

Table 3. Elements of soft functions evolution equations for transverse energy and jet-veto mea-
surements. The parameters mpg appearing in eq. (A.17) for the case of jet-veto measurements are
given by p§*/¢p. In the last line Av,., =23, C;In(f;/m;) + 2(C + Cg) In(r).

3.3 Beam function

The beam function describes the initial state radiation and can be expressed in terms of
product of the quark field matrix elements and a delta function that imposes the measure-
ments on the partons outside the beam cone,

Byp(Er,xp,11) =Y 6(Er — E¥)<Pn(k)
X

(0 X ) (X]36™ = Po)xa0)

pulk)),

(3.46)
where p,(k) is the collinear proton with momentum k* = (07,k~,0,), and zp is the
fraction of the proton momentum carried by the quark field. The large component of the
quark field light-cone momenta is set to p~ through the operator delta function §(p~ — P,,)
and therefore, zp = p~ /k~. The transverse energy of the state X is given by E%( and is
defined as follows,

BEf =) Iprl0m™ — ). (3.47)

1€X
In the p™r > Agcp limit the beam function can be written as a convolution between
collinear parton distribution functions (PDFs) and perturbative calculable coefficients [65],

bde x A
Bj/P(EvaB7M) = Z/ ? j/i(ET7$Bau)fi/p (fﬂﬂ) + O((p(g:];?)v (348)
i Y*tB

where Z; /; are the short distance coefficients calculable in perturbation theory. In eq. (3.48)
we suppress the dependence of Z;/; and B;/, on p~ and r for simplicity. We organize the
calculation of the beam function in a similar way as the calculation of the jet function
in the last section. We denote the contribution to the partonic beam function from ra-
diation within the beam cone as B;/;(z,p~,r). The contribution to the beam function
from emissions outside the beam is AB;/;(Er,z,p~,7), and B;/,(Er, g, it) is the sum of
B;i(x,p~,r) and AB;/;(Er,7,p~,7).

We can evaluate B;/; using the results for transverse virtuality of the incoming parton
(i.e., the parton that enters the hard process), ¢, from ref. [26]. At one-loop there is only
one parton contributing to the initial state radiation (ISR) and its transverse momentum
pr is completely constrained by ¢ and z [26]:

o= (1) o (3.49)

1—=x
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cut
-n

therefore the constraint that the ISR parton is within the beam cone with r = e can

be expressed in terms of the transverse virtuality as follows,

1—=x

t< <$> (p~r)?, (3.50)

where we assume that is a massless on-shell parton. We can then rewrite the partonic level
beam function at NLO as

b, (1)

By (z,p™,r) = 8501 — x) + B (2,97, 1) + Oas), (3.51)

where for calculating the unmeasured contribution (i.e., restricting the parton within the
beam cone) we have

By (w.pm,r) = / a5 (1 2" )o(~t/a' 1/2")d(x — 2!) O, (3:52)
and
B (a,p,1) = ——— 5 [ a0 4, ol yos(—t/a!, (2 — 1) /)2 — 2O, (3:53)
a/g \OP T =TT T 0, 2 e ’ v .
where

O = @(1 - T pr)? - t>, (3.54)

and d(bg’ISR(t,:c) is the two-particle collinear phase space [26] and ¢§ the squared matrix
element in MS [26, 78]:

— 2V 2l eVE 2\ € 202
d@;’ISR(tvx) — (EL(;)QG%t(/l ]_ E)dgcdt, o5(s,x) = ( 4: ) Q%P(Z(x). (3.55)

where Pi? are the bare QCD splitting kernels given in refs. [79, 80]. Details of the calculation
are shown in appendix B and here we simply summarize the results:

b, _ a,C 1 1 M . -
BNV (w,p,r) = 27TF{625(1—x)+6[25(1—x)1n <W>—pqq(;x>”+zé};(x,p ),
(3.56)
and _
b, — Qgslp _
By (@, p™,r) = — = 2—6qu($)+1;})9(33,]) ), (3.57)

where IZ(/IJ) are given in egs. (B.3) and (B.5) and the index b denotes that those are the

“bare” quantities. The coefficients Fij can be expressed in terms of the standard QCD

splitting kernels as follows,

Paq(z) = Pyq(2) — %5(1 —2)=(1+2)Lo(1 - 2), Pgy(z) = Pyyl2) =2 + (1 - 2)*,

(3.58)

We note that the P;j/e terms are interpreted as IR divergences that will cancel in the
matching. The rest of the e poles are UV divergences that need to be subtracted through
renormalization.

— 95—



For the calculation of the contribution to the beam function from radiation outside
the beam region, where we perform the measurement of the transverse energy, we need to
consider the zero-bin subtractions which are not scaleless in this region. Both the zero-bin
and collinear contributions suffer from divergences in the simultaneous limit F7 — 0 and
x — 1. We regulate these divergences using rapidity and dimensional regulators and we find
as expected all divergences cancel in the final result. For transverse energy measurement
at NLO we have,

(1) - _ ey, z-bin, (1)
ABq/q(ET,.’L',p ,7’) - ABq/q - ABq/q
_ asCr 9 @(.I‘ - ZL‘0)
=B {(l—l—x )[ T ++21n(:n0)5(1 x) ¢, (3.59)
and -
_ —(1) le%
ABQZ(ETWP ;7)) =ABg ), = SWF qug(m)@(x — o), (3.60)

— (1
where 7o = (1 + Ep/(p~r))~! and the explicit forms and the calculations of ABE /;- and

AB;}bin’(l) are given appendix B.

Since at one-loop there is only one parton contributing to ISR we can evaluate the
beam functions for jet-veto measurements by integrating over the transverse energy before
expanding in € and n. Like for the case of soft function, the beam function is independent
of the jet size parameter R'®'° at this order. Performing the integrations and expanding

first in 1 and then in € we get (for details of the calculation see appendix B),

(1) cut - _ asCF 2 @(l’ _ xb]et‘) p%utx
ABQ/lI,Veto(pT , Ly P 77')_ T {(1+l’ )(|: 1—1x +ln pr

1—=x

. [ln(l@@(x —~ xget-)] +> — In*(2°)8(1 — x)}, (3.61)

and

cut
ABY <pCTUt,x7p,r>=O‘STF[1“ (pT x)—hl(l—w)}qu@)@(x—xs“-), (3.62)

q/g,veto T pr

where for the case of jet-veto measurement z{°" = (1 + p*/(p~r))~!. The renormalized
beam function is defined through the following equation

B})/P(ETP%') = ZF<M>BZ/P(ET7:U7M)7 (363)

and satisfies the following RG equation

d

_ B
mlgz‘/P(ETafﬁa#) =" (W) Bisp(Er, 2, 1), (3.64)

where the index ¢ is not summed over and the renormalization function, ZZ-B, and the
anomalous dimension, 75 " do not depend on the variable = or the transverse energy E7.
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Therefore in the MS scheme the complete matching coefficients Z; /; for the quark beam
function in eq. (3.48) are:

T,/5(Br, o, p) = (0501 — ) + T (@, p™,7) [8(Er) + ABY ) (Br, 2,p7,7) + O(a?), (3.65)

for transverse energy measurements and,

Ty (05, 1) = 05501 — 2) + T @, p™,7) + ABL) (05, 2,p7,7) + O(a?),  (3.66)

for jet-veto measurments. Based on egs. (3.48), (B.3), and (B.5) we find,

sC
’757(1(29_77“’ N) = L |:2 In ( a ) +,7q:|’ (367)

7r pr
where 4, = 3/2. We note that the anomalous dimension in the above equation is identical
with the jet anomalous dimension after the replacement p~r — wtan(R/2) (see eq. (6.26)
of ref. [37]). This relation between beam and jet function is discussed in appendix B
below eq. (B.8). Therefore the unmeasured beam function is evolved as the unmeasured
jet function with ug = mp = p~r and the solution of eq. (3.64) is given by eq. (A.20) with
the parameters given in table 4.

In figure 7 we plot the LO and NLO beam functions for the up-quark (left) and
down-quark (right). For the PDFs we use the CT10nlo data set extracted through the
LHAPDF6 C++ library (see ref. [81]). Note that the LO beam function is simply the PDF
evaluated at the scale p = ug. We choose E¢y, = 13TeV, p§* = 20 GeV, and n®™* = 2.5.
For comparison we also included the calculation of the beam function ignoring the NLO
corrections from the out of beam radiation, AB;,;. Comparing the three curves we see
that these corrections become important and of the same size as the contribution from
Il(/lj) for small values of x &~ pi/(Ecyr), corresponding to region ILe. In this region, fixed
order QCD contributions are important. On the other hand, for higher values of x, region
(II), for which p§** < p~r they can be considered negligible . This behavior is similar to
what we found for the jet function corrections along the thrust axis in the electron-positron
annihilation section (see figure 6).

4 Applications

We apply this analysis to the study of di-jet cross sections in proton-proton collisions for
measured or unmeasured jets with jet-veto measurements. This process was investigated
within the framework of SCET in ref. [45] for r ~ 1. In our analysis we take the small
r limit and we resum potentially large global logarithms of r, which will help reduce the
theoretical uncertainty in the differential cross section. We also include corrections from
contributions of ISR to the transverse energy and jet-veto measurement.

In this section we aim to show how using the formalism described in the last two
sections can help us to reduce the theoretical uncertainty from scale variation in jet pro-
duction cross sections. Thus, though gluon fusion processes (g9 — gg and gg — qq)
dominate the di-jet cross section, here we consider the simpler example, q¢' — qq’. The
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Figure 7. The LO (orange solid lines) and NLO (blue solid lines) beam function for the u-quark
(left) and d-quark (right). For comparison we included the beam function at NLO without the
corrections from out out of beam radiation, AB,;/;, (red dashed lines). All curves are evaluated at
the beam scale ug = rFE.p,.

complete calculation, which involves summing over all partonic channels, is beyond the
scope of this work.

The observable we are considering is the boost invariant version of angularities defined
in ref. [45],

o= — 3" p(AR)T, with ARy = VAP + (Bé)?  (41)
pr i€jet

where a < 1 is the parameter the controls the wide angle radiation, pr is the transverse

momentum of the jets, An;;, and Ag;; are the rapidity and azimuthal angle differences

between the particle, i, and the jet, J, measured with respect to the beam axis. As an

example we consider the case of one measured and one unmeasured jet for which the

factorization theorem in SCET for region (Il.e) is given by

dU(HIG) cut cut cut
=do(p7",7a) = NBq/P(pT 7$1,M)Bq//P(PT , T2, 1)

dyrdyadprdr,
Te[HY 29 (1)S(p, 7o, 1)) @1 J1 (0, ) T2 (). (4.2)

The beam and soft functions appearing in the factorization theorem above are discussed
in the previous section. The hard function H is evaluated up to NLO in refs. [77]. The NLO
expressions for the measured and unmeasured jet functions, J;(p) and J;(74, p), for cone
and kp-type jet algorithms are given for the case of electron-positron annihilation in ref. [37]
and are generalized for pp collisions in egs. (4.1) and (4.8) of ref. [45]. In the calculation of
the jet functions both partons are constrained to be within the jet cone. The contributions
from the out-of-jet radiation are power suppressed by powers of Er/pr for the transverse
energy and p$/pp for the jet veto measurement compared to the leading contributions of
the corresponding n j-collinear soft function in eq. (3.23). This was discussed for the case
of electron-positron annihilation in ref. [37] and is demonstrated for the case of pp collisions

in appendix C.
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All elements of the factorization theorem need to be evaluated at the common scale
w. The 7, independent elements: beam, hard, and unmeasured jet function are evolved as
described in appendix A.3. The evolution of measured jet and soft functions is described in
section 6 of ref. [37]. Additionally the universal soft function, Synmeas, is further factorized
in the global soft function, Sy, and the collinear soft functions, S, ;. The evolution of
the nj-collinear soft function, S, ;, and the combination of global and np-collinear soft
function, S,_,, is described in section 3.2.2. The global soft and the ng-collinear functions,
in addition to the evolution in virtuality space, also evolve in rapidity space. The evolution
in rapidity space for transverse energy measurements is described in section 2 and for
jet-veto measurements in section 3.2.1.

We now have all the ingredients for the construction of the cross section up to NLL’

accuracy. For the choice 1 = pgs = p* we have,

dU(II.e),NLL’(p%ut7 Ta) =N Unnmeas (MH7 Mssy [0, N}v 2553 :U/B)Jq (NJ)Bq’/P (p%ut’ z2, ME)

x BQ/P(p’%utvxh:U’B) |:umeas(7-aa 17, 1) (1 + ft}{(TavavHZ}) + f5(7a7w57ug)>:|

+
x Tr H(IU,SS, MH)qu/%qq, (,U/H)I_I]L (/1/557 MH)Sunmeas (p%lty ,U'SS)] s (4-3)

where
Unnmeas ([LH s Poss, 1075 15 155 HE) = T Ue(pss pr). (4.4)

F=B.B,J1,J2,H

The functions f{ (1, ws, #7) and £ (74, ws, u%) are given in egs. (5.11) and (5.26) of ref. [45]
with wg(u7, u%) given in eq. (A.24) and the elements of the anomalous dimension (I'} and
Vg) are given in table 2 of ref. [45]. The evolution kernel, U cas, evolves the measured soft
function from it’s canonical scale up to the scale of measured jet function. After this point,
the combined measured jet and soft function evolve as a jet down to the soft scale ug, thus:

eKs(ppo)+ypws(mmo) /1y ws (1,10) 1
['(—ws (i, po)) <> [WWL

Umeas (Ta7 M, /’LO) = (45)

mgs

For the choice v = vy the universal part of the soft function, Sunmeas(PSs tiss) 18
given by

2
Sunmeas (ﬂss) = Sss (/1353 Vss) (Vsn,B(V887 Vsn,B)Sn,B(,Ussa Vsn,B))
2
X (usn,J(,Ufssa Nsn,J)Sn,J(Nsn,J)) . (46)

where we evolve in rapidity space the np-collinear soft function from vy, p = pCTllt /7 to

ves = P using egs. (3.32) and (3.33). We also evolved in virtuality the nj-collinear soft

function from fie, ;7 = pCTUtR to lgs-

We evaluate do®) (psit, 7,) as a function of 7, for the following kinematic variables:

Pt =20 GeV pr = 500 GeV Eem = 13 TeV a=0
7,’cut =925 R=0.3 m = 1.0 n2 = 1.4, (47)
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Figure 8. The differential cross section as a function of 7o = m?%/p% + O(7&) for proton-proton
collisions at /s = 13TeV for p§** = 20 GeV and p];t = 500 GeV. In this graph we used 7% = 2.5
and the jet anti-k7 algorithm with R = 0.3. The red band corresponds to the complete unfactorized
expression, the green band where only the jet-collinear modes are factorized, and blue band when
both jet-collinear and beam-collinear modes are factorized in the unmeasured soft function.

and our results are presented in figure 8. For estimating the theoretical uncertainty we
vary all canonical scales not associated with the jet shape measurement by 2 and 1/2.
The jet measured and soft measured scales are varied within the profile function used in
ref. [45]. In figure 8 the red band corresponds to the construction of the cross section
using the completely unfactorized soft function described in section 4.3 of ref. [45]. The
green band corresponds the global function in which we factorized the jet-cone regions but
not the beam-cone regions. This allows us to resum global logarithms of the jet-cone size
parameter R and thus leads to improved accuracy. Finally the blue band corresponds to
the completely refactorized soft function where we factorize the beam-region as well, that
. We find that the refactorization of the soft
function allows us to significantly improve the theoretical uncertainty.

cut

way resuming global logarithms of r = e™"

5 Conclusion

In this paper we consider the effect of rapidity cutoff in jet-veto and transverse energy
measurements for exclusive jet cross sections at LHC. We first demonstrate the effect of
the vetoes in electron-positron annihilations where the rapidity is measured with respect
to the thrust axis and later extend this analysis to proton-proton collisions where the
rapidity is measured with respect to the beam axis. For the electron-positron anihilation
analysis we find that two separate factorization theorems are required to describe the
transverse energy spectrum in the following regions, region I: wr < E| < w, and region 1I:
F| < wr < wwherew = p~ >~ 2F; is the large component of the jet light-cone momentum
and r = exp(—n°"), where 7" denotes the rapidity cutoff where veto is applied.

We find that for large transverse energy, i.e., region I, the cross section is insensitive
to the exact value of r, as long as it satisfies the hierarchy describing this region. We show
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using PYTHIA simulations that for F|, > 2wr and for increasing transverse energy, the
cross section do(r) asymptotically reaches the limit do(r — 0) (see figure 3). This suggests
that the factorization theorem appropriate for describing region I is independent of r and
involves the inclusive soft and jet functions for which no rapidity cutoff is implemented.
The factorization of the cross section in this region was derived within the framework of
SCETy; in ref. [41].

In contrast, for region II the cross section is sensitive to the rapidity cutoff and there-
fore needs to be considered in the corresponding calculation. We propose a factorization
theorem in SCET] which involves the unmeasured jet function calculated in ref. [37] and
the refactorized soft function. The refactorization of the soft function is necessary for re-
summation of global logarithms of r that can be important in this region. Thus we employ
the formalism introduced in ref. [44] and separate contribution of global-soft modes and
soft-collinear modes. We find that the our analytic calculation at next-to-leading loga-
rithmic prime (NLL’) accuracy agrees with the PYTHIA simulation within the theoretical
uncertainty. Also the refactorization of the soft function helps reducing the theoretical
uncertainty (see figure 4).

Additionally, we consider corrections to the jet function from out-of-jet radiation when
E| < wr within the factorization theorem used for region II. We showed that including
these corrections to the calculation of the NLL’ cross-section greatly improves the agree-
ment of the analytic results with the simulation data for F| < wr (see figure 6).

In direct analogy from the electron-positron annihilation we extend our analysis to
proton-proton collisions. We identify the two regions, region I p~r < Er < p~, and region
II: Er < p~r < p~ where the transverse energy, Fr is measured with respect to the beam
axis and p~ = xpFE.y, is the large light-cone component of the incoming parton in the hard
process. Focusing on region II we use the formalism developed in ref. [44] to refactorize the
soft function for exclusive jet production in proton-proton collisions. Unlike ref. [45], here
we consider the soft-collinear modes and functions along the beam direction. This allows

cut) to all orders in perturbation

us to resum for the first time global logarithms of exp(—n
theory. The refactorized result involves the global soft function which is insensitive to
the jet and beam cone boundaries, and the beam and jet collinear soft functions that
take contributions from soft-collinear modes which can resolve the corresponding cone
boundaries and therefore depend on the cone size parameters. In this work we study
the cases of transverse energy and jet-veto measurements and give the ingredients for
constructing the 0,1, and 2-jet refactorized soft functions. As an example we study the di-jet
cross section for the partonic channel ¢’ — ¢q’ and we demonstrate that the refactorization
of the soft function is necessary at NLL’ accuracy for keeping the theoretical uncertainty
under control.

Furthermore we calculated for first time the perturbative ingredients for constructing
the unmeasured quark beam function and we consider corrections from out-of-beam radi-
ation. These corrections to the beam function allow us to extend the applicability of the

cut

factorization theorem for Ep < zpFEcme” 7 . We discussed the relation of our results to

the fragmenting jet functions and the corresponding anomalous dimension.
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As an extension of this work we aim to complete the calculation of the di-jet cross
section, including all the partonic channels. Furthermore, our analysis can be used to
study the effect of underlying event activity in measurements of global observables such
as the transverse energy within specific rapidity regions. An ideal process for such a
measurement is isolated Drell-Yan at a large invariant mass compared to the typical soft
scale of the underlying event.
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A Fixed order results and unmeasured evolution

A.1 Fixed order results for region I

Though in the factorization theorem in eq. (2.4) the jet function depends on the transverse
momentum of the mother parton for evaluating the NLO cross section we only need the
O(a,) terms when this transverse momentum is vanishing. The reason is because at this
order the O(ay) terms of the jet function contribute only thought the LO soft function
which is proportional to §(p?). Following similar arguments as in section 2.2.1, and the
results in eqgs. (6.42) and (6.47) of ref. [41] we get,

2

Lato(Bummn (%) - 418 - o)}

x (8(EZ —pl)o(al) + [+ p]>, (A1)

asC
S(E,,p%, %) =6(Ey)5(p%)o(q) + ==

and

J@ﬂE%JD::&E%——pQ-FagiF{;&Eh)—[3+2h1<52>}£d£%40}, (A.2)

which suggest the following canonical choices for the jet and soft scales,
s =y =FE|, vg =F,, vy =w. (A.3)

The NLO cross section for F; < w can be constructed using the factorization theorem in
SCETy; given by eq. (2.5)

do (DNLO

dE |

{8 L1(EL,2u) + [6 +4In (52)}50(@,2@

- s} "

a,Cr

:%meg_
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We note that this result is independent of the rapidity scale, v, as expected from the
cancellation of rapidity divergences between soft and jet function. For the integrated cross
section defined in eq. (2.3) we use

/OA dE Lo (E, 1) =1In (A) : /OA dE L1 (E,p) = %m? (A> , (A.5)

f 1
to obtain,
sCF pcut MQ pcut 7T2
doWNLO (peuty — o pr | . & a2 (P a2 () e [ B 1—— 4.
7 (L") = ooHz| 1+ 2 " 2w i w? 6ln 24 + 6
(A.6)
Using the hard function at NLO which is [72, 73]
_,_oCF o (1 p
HQ(W,/.L) =1- o {8—6+1H E 4+ 31n E y (A?)
we get
1 asCF pcut pcut
—d (),NLO/, cut -1 o 2 1 rFloy 41 2 (1L . A
p o (»T™) + 5 7T+ 7 —61In 50 S (A.8)

cut cut

which agrees with the full theory result for p™** > 2wr and pi"* < w.

A.2 Fixed order jet function for region II

Using the results of ref. [37] for the diagrams that contribute to the calculation of the jet
function at 1-loop, the jet function for the transverse energy measurement with rapidity
cutoff and can be written in the following form:

- e (Y R
I (BEL,w,r) =2 o7 T(—6) \w dxdk R 2$1+77 +(1-€¢x|0, (A9

where x = k™ /w is the portion of the original parton energy carried by the gluon and we
also use the rapidity regulator since the naive result for our measurement contains rapidity
divergences though they cancel when adding the zero-bin subtraction. Also we define

0, = @(mwr—kj_>®<(1—:r)wr—lq_)d(EJ_)—i— [@(lﬁ_ —xwr)@((l —.’E)WT—kL)
+@(a:wr— kL>@(kzL —(1 —az)wr)}&(EL — k). (A.10)

The first term in © is rapidity divergence free and corresponds to the case where both
daughter pardons are emitted within the unmeasured region. The contribution from this
term is calculated in ref. [37] and after renormalization is given by J, in eq. (2.6). The
second and third terms correspond to the case where either the quark or gluon only is
emitted inside the measured region, respectively. The divergences appearing in the second
term are only rapidity divergences and the third term is finite. The case where both patrons
are emitted within the unmeasured region is not included since this region of phase space
contributes only for £/} > wr. In the Region II the contributions of second and third term,
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which we will denote as qu, are power suppressed and can be ignored, thus the jet function
reduces to the unmeasured jet function in eq. (2.6). On the other hand in Region Il.e those
terms become of O(1) and need to be included. Performing the integration we have

AT,(EL,w,r) = O‘;FElL{ _ 4[717 +ln <:> “n <]jj>] (A.11)
—O(E)O(wr/2— B.) [6]3 +4ln <1 _ ﬁ)]

+O(E, —wr/2)0(wr — E)) [6]3 ~6-8In <ii>—|—4ln< - fj)] }

Correspondingly the zero-bin subtractions can be constructed by taking the leading
contributions in the x — 0 limit

2\e
z-bin, (1) _ asCr (G,YE/”L ) dedk, 2 z-bin
g EL ) =2t S [ S el )
where
orbn_g,| =~ G)(a;wr - kL>6(EL) + @(kL - gz,w)a(EL — k). (A.13)
<1

We find that for the zero-bin subtraction we only have two contributions. The first term in
e f‘bin gives the contribution when the soft gluon is emitted within the jet cone (unmeasured
region) and the second term corresponds to case where the soft gluon is emitted within
measured region outside the jet cone. The first term reduces to a scaleless integral which

we ignore and the second term will contribute to AJél):
; Cr 4 |1 v E
AJ PO (p = BRI (Y] —m (2R A.14
Jq ( J_,(JJ,T‘) o E,| 77+ n w n wor ( )
The final result of the total jet function we have
quLO(EJ_7 W, 7”) = J;\TLO(("}’ T)(S(EJ_) + A‘Lgl) (EJ_a W, T)v (A15)
where
AID(EL,wr) = AT (L wr) - AT (B w,r) (A.16)
_ OZSCF 1 4 EJ_
= {@(El)@(wr/Z EL)[G (T‘(U) + B In (1 Tw>]

—O(FE, —wr/2)0(wr —E))

1 6 4 Ey 8 E,
— ) ——— 4+ —h(l—-— ) ——=—In|— )
X[6<rw> EL+ELH< rw) ELn<rw>}}
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A.3 Renormalization group evolution of jet and hard functions
Unmeasured quantities such as the hard function in region I and the jet functions in region
IT satisfy the following renormalization group equations:

2

MQFWﬁ{mwﬂmQ%>+wmﬂFm» (A.17)

where I'p is the cusp part of the anomalous dimension which is proportional to the cusp
anomalous dimension and has the following expansion in the strong coupling

00
ag\ 1+n
FF[O‘S] - (F%/Fgusp)FCUSp - (F%/Fgusp) Z (ﬁ) F::Lusp' (A18)
n=0

Similarly the non-cusp part of the anomalous dimension, g, has the following expansion

Vrlas] = i (%;)Hn V- (A.19)
n=0

The solution of eq. (A.17) is

mp

1o wr (1,40)
F() = Ur (1, 1) F(po) %WwwmmMQWMD<> L (A20)

where formally to all orders in perturbation theory the exponents Kr and wg are given by,

alm)  go *  do! alm)  do
= o o o A.
Rl o) Q/cxwo) Ba) £ /Oé(#o) pe) +/a(uo) 3l ) 2y
a(w) 4
wF(u,uo):2/( )(Z)FF(Q). (A.22)
(Mo

For NLL and NLL’ accuracy, which we are considering in this work,

0 0 1
07 27T% [1"—1—|—7“ln7‘ (Fc ﬁ1> 1—r+Inr b1 o
Kr(u, =——"1Inr— == — — In“r|,
Pk = o M G | T\ &) T A s
(A.23)
I F}; B Qg
orn o) =~ [ (5 = 1) @), (A.24)
where r = a(u)/a(po) and B, are the coefficients of the QCD S-function,
dog L g\ 1
Blas) = pg - = —2a; ) (E) Bn . (A.25)

n=0

For unmeasured functions the scale mpg equals the canonical scale of the perturbative
function F'. For the hard and jet functions for electron-positron annihilation the quantities
F%, fy%, and mp are summarized in table 4. For the di-jet hard function in hadronic
collisions, the evolution of the hard function is complicated due to the non-trivial color
structure. The evolved hard function is given in section 5.1 of ref. [45]:

H (1) = Upr (1, 110) T (1, p20)H (p20) T (12, a0, (A.26)
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’ Function ‘ I‘% ‘ 7% ‘ mp(ete™) ‘ mp(pp) ‘

H(w, p) —43,Ci | =437 w m;
W (w, R, ) 4C; 47, wtan(R/2) | prR
Bz‘/P(p_a T, t) 4C; 45; n.a. pT

Table 4. Evolution table: 4, = 3Cr/2 and 7, = 8y/2.

where

as(1)  gey
II(w, po) = exp {M’/ — T }, A.27
( 0) s (1) ﬁ[a] cusp ( )

where M’ is given in eq. (3.14). The kernel Uy can be constructed from egs. (A.20), (A.23),
and (A.24) and table 4. In comparison to the results of ref. [77] we omitted the 7T term
since, as discussed in ref. [45], this term cancels in the RGE when we sum the hermitian
conjugate term.

B Fixed order results for quark beam function

In this section we give some more details of the calculation of beam function for measured
transverse energy and jet-veto measurements outside the beam region. From eq. (3.52),

By o) = [ a85 a5/, 1/ — o)

a/q
VB 7y 2)€ 2 A-z)(p~r)?/x
asCr (78 zp?) [ 14+ —6(1—$)16:|/ dt
0

o T(1—e) [(1—x)lFe ti+e
asCr (e22) [ \*[ 1422 1-9
= — —€(1— l. B.1
2 el(1—¢€) \pr (1 — x)l+2e «(1—=2) (B-1)
where in the first line,
1—
@m:@<xxwrf—o. (B.2)
Expanding eq. (B.1) in € we get the result in eq. (3.56) with
Wy oy = GCF L Y P A s 270 (1 —
O CUEORT I i) CC B FRCPRS Y
- P In{ — . B.3
i () } (B.3)
Similarly for the contribution from the gluon we have from eq. (3.53)
b,(1 _ 1 TF , c
Bq/(g )(x,p ) = — —<Cr /d‘I); SRt 2oS(—t/a!, (2 —1)/2')6(x — 2')Or

_agTr 9¢ z \[ o e /(1x)(p‘r)2/ffdt
= (1+e)p <1 x> [m +(1—2)"—¢€ ; e

o)) () e e
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Expanding the above equation in € we get the result in eq. (3.57) with
T —
Iq(}zz(l‘»p_,r) - OésWF {33(1 — ) + Pyy(w) []n (%) +In(1 - fﬁ)] } (B.5)

Since the above results correspond to the case where the ISR parton is emitted

within the beam region where no measurement is performed, these are universal for any

measurement:
Bq/q(e,:ﬂ,p_,r) = Bq/q(:x,p_,r)5(e), (B'G)
where e is the measured observable. For jet-veto like measurements we simply have
Byjq(e™,x,p7, 1) = Byg(x,p™, 7). (B.7)

For the case where the parton is emitted within the phase-space region where measurements
are performed we need to calculate the contribution for each measurement independently.
In the next two sections we give the details of the calculation for transverse energy and
jet-veto measurements.

We note here that at this order the matching coefficients, IZ(}]? (z,p~,r), are related to

the matching coefficients, Jj(/li) (r,wtan(R/2)), of the unmeasured fragmenting jet func-
tion onto the collinear fragmentation function from ref. [82] through the replacement
wtan(R/2) — p~r/x:

Ziji(x,p~,m) = Jji(x,p"r/x) (B.8)

0<z<1 a>1/2

This then implies the following relation between the beam and jet anomalous dimensions:

Ve (uB) =7, (s — pB), (B.9)

where up = p~r and py = wtan(R/2). This is shown explicitly for the quark beam
function at one loop in eq. (3.67). These relations in eq. (B.8) can be easily checked at
NLO for the cases Z,/, and Z,,, using the results of this section and we believed that hold
for Z,,, and Z,, as well. The explicit calculations for the remaining two cases is left for a
subsequent publication.

B.1 Transverse energy measurement

As already mentioned in section 3 contributions to the beam function from emission of
partons within the measured region of phase-space suffer from rapidity divergences that
need to be regulated. Additionally the soft-bin subtractions do not give scaleless integrals
and thus will also contribute to the calculation of the beam function. Furthermore, the
soft-bin contributions themselves require rapidity regulator and as we will show the total
results turns out be finite and independent of the rapidity regulator parameters. The
correction to the beam function is
-1 _ JISR v K
ABq/q(EJ‘T> x,p 7T) = /dq); (tv x')og(—t/x', 1/1‘,)(5(56 - x/) ((1_.%)p_> @meas.
_aCp (eVE,uQ)6< v >"[ 1+ 22 O(z — o)
= - F(l — 6) (1 . CC)1+77 E%+2€ ;
(B.10)
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where

B 1/2 -1
Omeas. = (1 — @in)5<ET — [(1 x)t] > To = [1 + LZT} , (B.11)
T pr
and we used 12
[A—a)t o,z A
6<ET [ . _21—xET6 t 1_$ET . (B.12)

For the soft-bin subtraction

. YE ,,2\ € d 2 . -
AB Z_bln7(1)(ET,x,p_,T') 4 (6 Eu > g2CF5(1—x)l/n/d k(S(k )5(ET /ﬁ_)@(/ﬁ_ k 7’)

a/q T (27)d-1 fet (k=)
YE ,2)€ 1 Er/r gk~
B L
m D(1—e¢) PR (k—)l+n
asCr (e7Epu?)e (vr)" 1
-2 o(1 — . B.1
r T(l—¢€) 7 ( x)E1+26+7’ (B.13)
Adding both contributions and expanding in 7 keeping e finite we have
(1) - N x5 7z-bin, (1)
ABq/q(ET,x,p ;1) =ABg, — ABq/q (B.14)

_ auCr (€5 2) @mn{iay_@+{rﬂﬁ dl_@kq<ﬂb>ﬂxx_m@

m T'(1—e) E;DLQEJ”7 (1—a2)t+n pr

_ asCp (7p?) 1 {(1 +2?) [@(x_%)] 2 (1 + E_T>5(1 Ca)—e(1— x)} .
+

m T'(1—e¢) Ejlfr2€ 1—=z pr

To get from the second line to the last line we used:

Oz — z0)Lo(1 — z) = [@(i"’_;(])} +1n(1 — 20)5(1 — ). (B.15)
- +
A similar identity that will be used below is
Oz — 20)L1(1 — ) = {@(f_;o) (1 — x)] + %1&(1 —w)d(l—x).  (B.6)
o +

The plus-functions on the right hand side of egs. (B.15), (B.16) are defined such that

It should be noted that the last line of eq. (B.14) does not contain any divergences in
the simultaneous limit Fr — 0 and z — 1, thus we can safely take the limit e — 0. This
gives the final result

s{a e

ABél) (Ep,z,p,r) =

) [@(x — o)

1—=z

} + 21In(zp)o(1 — ac)} + O(n,e) .
+
(B.17)
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For the contribution of the gluon PDF to the quark beam function there is no soft-bin
subtraction or rapidity divergences involved therefore we have:

(1) - _ I Tg c,ISR INCl g od (o] ! o
AB (Br,z,p~,1) = — 1_€CF/d<I> (t, 2 )oS(—t/2', (2’ — 1)/2")6(x — 2')Ormens.
_ _asTr o Y e
- i~ gt s

and since the final result does not contain any divergences in the simultaneous limit we have

aslp 1 [qu(x)} O(z — xp). (B.19)

AB(l) (ETvxapiﬂa) = E
71— T

a/g

B.2 Jet-veto measurement

Since at NLO there is only one parton contributing to ISR we can obtain the jet-veto
measurement expressions by integrating the transverse energy results before performing the
expansion in € and 7). In general the jet-veto measurements should depend on the jet radius
RYe*® that appear in two-loop and higher order calculations. Since here we are considering
only the one-loop contributions we will omit from the arguments this dependence on RVet°.
From eq. (B.10) we have

—(1) cu _ asc eVE 2\e v \"
AB/(thv y P 7T): F<M)<>

m I(l—e¢) \p
1+ a2 . } /pT dErO(z — x0)
) |1 — )t SETO P~ 20)
{(1 — ) e(1-w) 0 ELF
_osCr () (v \'[ 14a% e(1 — )L
- 2me T(1—€) \p~ (1 —z)ltn

<o - (=t x>>26 “pEy @

where z3 = (1 + p$*t/(p~r))~!. Similarly for the soft-bin subtraction from eq. (B.13)

we have:
cut
2-bin,(1) | cut _ asCp(Pp®) (wr)" - [PT dEr
ABq/q (pT s Xy P 7T) - 2 T (1 — 6) n 5(1 ,%) ; 7E711+26+77
asCp (e78 p2)e (vr)n 1 1

5(1— ) [ ] (B.21)

T T'(l—¢ 17 2e + 1 (pt)2etn

Adding both contributions and expanding first in 77 and then in € we get

u 1) u z-bin, u
ABU) 05, 2,07, 1) = AByg(p3, . p™ 1) — ABP™ D (50 0 p~ 1)
. asCr B - p%m B 9 B
= { 5(1 — z) In? (p . (I+2%)|L1(1 —x)
cut
— Lo(1 —2)ln (?’_TT )]@(g; - xget-)}. (B.22)
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We can further simplify this result using egs. (B.15) and (B.16)

_ .vet. cut
S ) = G 1 ([P=] o (22
™
+

11—z pr

[@(x — o)

1—=x

In(1 — x)] +> — In*(z3**)5(1 — x)}. (B.23)

For the contribution of the gluon PDF to the quark beam function in jet-veto measurements
we have by integrating eq. (B.18):

cut

(1) 7, cut - _ asTp 2¢ Pr dET
By 1) = [qu(x)—g}/o ﬁ@(x—xo) (B.24)
_asTF

s

- [m <p]iu;> +In(l — x)] Pyy(2)0(z — 23%) + O(e) .

C Jet function contributions from out-of-jet radiation

In this section we demonstrate how the contributions from out-of-jet radiation to the
jet function in hadronic collisions and the total cross section at NLO are suppressed by
a factor of Er/pr for transverse energy measurements and p$'*/pr for transverse veto
measurements. The results we obtain are independent of the measurements within the
jet-cone, thus our conclusions apply to both measured and unmeasured jets. We start the
calculation with the expression of the jet function in eq. (4.12) of ref. [37] inserting the
appropriate transverse energy d-function,

2\ ¢ + d + + gt
joout _ g2( € /‘M 1 / U ARV B Al A Y
Y g < A > Or | o e ) oz |ty T = — |0 a —ar)

n
5 (£ = S5 ) s(Br —an)la® /4™ — (5B /2, ()
where gp ~ |q|sin(6;) = |q|ss is the transverse momentum of the gluon escaping the jet
with respect to the beam axis ng = (¢, 57,0,...,0), with ¢; and s; the cosine and sine of
the angle 6; respectively. Since this gluon is a collinear in scaling, from power counting we
have |q| = ¢~ /2 + O(\2¢™). Performing the integrals d¢* and d?2¢r using the first two
0-functions in eq. (C.1) we get,

_ YE ;,2)€ + 7, - 1 —)\2
Jg—Out — 2aSCF (6 2 ) / dq 7dq _ qi + 7(1 _ E) (q )
e 2r T'(1—¢€) ) (¢gtq)t*e w2 w?
% 8(Br - ar)®(a*/a~ — (ssR/2)%). (C2)
Performing the remaining integrals we have,
0 Cr (e72p?)¢ 1 Er 1 E2
gout:2a3F 1 - — —(1 — —T, .
Ya 21 T(1 — €)eR%* pLt* pr 1=9) P2 (©3)
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Before we further expand eq. (C.3) we evaluate the zero-bin subtraction of the eq. (C.1)
which is given by the following (see Eq. (4.14) of ref. [37]),

2\ € + d +
g-out, z-bin _ 2 eWE'u / dt 1 / d q ¢ +.— _ 2 + _ 4T
J 4g ( o ) Cr [ 5= 72 | @nyi q_<5(q q —qp)0(lT —q")

x 8(Er —qr)O(¢t/a~ — (ssR/2)%). (C.4)

Following the same steps used to obtain eq. (C.3) we find,

2\€
g-out, z-bin _ asCr (e’YEM ) 1
Jq 2 o1t F(l _ 6)6R2€ E%j’QE. (0'5)

We note that the zero-bin term exactly will cancel the first term in the square brackets of
eq. (C.3) thus for our final result we have

jg—out,b _ _2a50F (e’YEMQ)€ 1 1 & _ E7% + E7% . (CG)
q 2 T(1 —e)R* B2 e \pr  2p} 2p%.

Expanding in € and keeping only the leading order in Ep/pr finite terms we have

E2
Jg—out,LP —_ 20550}7‘ 1 |:ET In (M> + O<2T>:| . (07)
m Er|pr Iz bt

Since the jet canonical scale is puy = pr R, for ET < pr this term is suppressed compared to
the leading contributions of the corresponding n j-collinear soft function in eq. (3.23) and
therefore maybe ignored during the computation of jet cross section. Similar suppression
is found for the integrated (jet-veto) measurement.
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