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A series approximation model for optical light transport and output intensity field 
distribution in large aspect ratio cylindrical scintillation crystals 
 
Benjamin John Tobias 
Los Alamos National Laboratory 
P-21 Applied Modern Physics 
 
A series approximation has been derived for the transport of optical photons within a cylindrically 
symmetric light pipe and applied to the task of evaluating both the origin and angular distribution 
of light reaching the output plane. This analytic expression finds particular utility in first-pass 
photonic design applications since it may be evaluated at a very modest computational cost and is 
readily parameterized for relevant design constraints. It has been applied toward quantitative 
exploration of various scintillation crystal preparations and their impact on both quantum 
efficiency and noise, reproducing sensible dependencies and providing physical justification for 
certain gamma ray camera design choices. 
 
INTRODUCTION 
 
Efficient conversion of gamma- and/or x-ray photons to visible light for detection by charge-
coupled devices is an important element of radiographic imaging in many medical, industrial, and 
scientific research applications. In lens-coupled gamma-ray cameras of the type employed for 
nuclear research at DARHT and the proposed ECSE facilities, this conversion is performed by a 
scintillating crystal that intercepts the high-energy photon flux. (For an adequate review of 
scintillation detector physics see [Nikl 2006].) Quantum efficiency, i.e. gain, is increased by 
making the crystal thicker so as to absorb more photon energy, but in a monolithic scintillation 
crystal this comes at a great expense in modulation transfer function, i.e. image resolution. This 
can be compensated by segmenting the scintillator crystal in an opaque and/or reflecting septal 
material. However, introduction of the septal walls and modification of the crystal geometry 
impact energy deposition, optical transport, and lens coupling in a variety of ways, making it 
sometimes complicated to predict the overall effect on imaging figures of merit such as the 
frequency-dependent detective quantum efficiency (DQE) [Swank 1970, Siewerdsen 2002, Gagne 
2003]. These effects have been observed in experimental characterization of scintillation detectors 
[Cherry 1995, Globus 1997, Siewerdsen 1998, Watson 1998, Heinrichs 2002], and comprehensive 
explorations using Monte Carlo techniques have been carried out for some scintillator designs [Liu 
2014, Roncali 2017]. However, as a foundation for understanding design trade-offs and as a first-
pass design tool, analytic models are often most valuable. When they adequately represent the 
physical system, they most readily provide insight into parametric dependencies. For example, 
[Shurcliff 1949] provides a simple geometric analysis that adequately describes the trapping of 
light within highly symmetrical crystals and reveals simple guidelines as a function of crystal 
geometry and index of refraction. [Keil 1970] goes further by analyzing the properties of reflective 
surface preparations and their impact upon light output. Both models provide a resource for 
intuitive design principles. This report presents an equally simple analytical model from which to 
draw equally foundational design principles. 
 
This brief report describes a simple analytic formula for obtaining the origin and angular 
distribution of light that may appear at the output plane of a highly symmetric scintillation crystal. 



The model begins by assuming un-polarized, isotropic scintillation of incident gamma-ray energy 
along the axis of a high aspect ratio cylindrical crystal. The unit sphere of optical photon emission 
is then divided into forward and backward directed solid angles with the intensity in each zone 
represented by an attenuating and reflecting bundle of rays. Forward directed rays arrive at the 
optical output plane of the crystal, and backward directed rays are reflected or absorbed by a 
smooth or diffuse boundary at the upstream end of the crystal before being converted into forward 
directed rays. Realistic attenuation of the optical intensity within the crystal, Fresnel reflection at 
the sides of the crystal, and even frustrated total internal reflection (FTIR) are easily included. The 
resulting series equation is simple to evaluate numerically, and although it neglects diffusion of 
the optical ray and cannot easily accommodate a diffuse reflector at the crystal sides [Roncali 
2013, 2017], it provides a simple means by which to estimate the optical Swank factor and intensity 
distribution as a function of crystal length for many scenarios of relevance to gamma ray camera 
design. In a more general sense, it can be recognized as a useful and compact expression for a 
variety of photonic design tasks and general ballistic transport problems. 
 
FORWARD DIRECTED PHOTON FLUX 
 
We begin by assuming that an isotropic flux of optical photons is produced along the axis of a 
cylindrical pipe with radius ρ. If we consider only the photons produced at a distance l from the 
optical output end of the pipe, then the fraction of the photon intensity that is directed toward that 
plane without making any reflection is, 
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If we now consider those photons that strike a wall of the light-pipe and make a single reflection, 
we find that they are all contained within the integral, 
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where α represents absorption at the reflection site. This is illustrated in Figure 1 below. Note that 
photons making the largest possible angle with the axis of the crystal, yet making exactly one 
reflection, strike the wall first at 1/3rd of their way to the output plane. Likewise, photons making 
exactly two reflections are encompassed by, 
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When all integrals of this type are included, the result is the following series: 
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Evaluating the integrals, this becomes, 
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In this form, it becomes apparent that the series converges rather quickly. Note also that the integer 
k has a distinct physical meaning: it represents the number of reflections encountered by rays 
included in that term. 
 

 
 

Figure 1. Illustration of the longest rays making zero wall reflections, the longest rays making 
one reflection, and the longest rays making two reflections between their origin and the optical 

output plane of the crystal. 
 
An attenuation coefficient may be introduced by recognizing that the path length for an individual 
ray is 𝑙/ cos 𝜃. Given an attenuation coefficient β, Equation (4) becomes, 
 

ΦG[F =
]
L

𝑒^nA/ Vo, / sin 𝜃 𝑑𝜃TUVWT.89
S + 1 − 𝛼 e𝑒^nA/ Vo, / sin 𝜃 𝑑𝜃

TUVWT. +`ab 8
9

TUVWT. +`cb 8
9

d
ef] . (6) 

 
An approximation for this attenuation coefficient in LSO can be found in [Kriplani, 2003]. 
 
At a conducting boundary, the reflection coefficient may be taken to be, 
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For a high-quality aluminum coating, the reflection coefficient may be as high as 0.924 at 400 nm 
with a skin depth of only 2.5 nm [Hass and Waylonis 1961]. At a dielectric interface, the well-
known transverse-electric and transverse-magnetic Fresnel reflection coefficients (RTE and RTM, 
respectively) are given by, 
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and, 
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Dielectric interfaces produce total internal reflection (TIR) at an incident angle smaller than the 
well-known critical angle. Therefore, there appears a critical integer, kc, which represents the 
number of reflections experienced by a ray at an angle infinitesimally smaller than the critical 
angle for TIR. This integer is the smallest integer greater than, 
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The TIR effect allows the summation to be simplified in the following form, 
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which requires fewer evaluations of the Fresnel reflection coefficients. The first term in this 
expression is easily modified to accommodate losses from the FTIR effect when it is appropriate. 
Furthermore, it reveals that the largest contribution to the light output comes from so-called TIR 
light in many practical cases. Figure 2, part a, shows the relative contributions to forward directed 
flux arriving at the optical output plane for crystals with high-quality aluminum and quartz (SiO2) 
reflective coatings. These calculations neglect the problem of coupling light out of the crystal and 
into the detector, but nonetheless reveal that much more light is available for output coupling when 
a TIR reflection is provided along the sides of a high aspect ratio crystal. Only for crystals shorter 
than 2 cm (aspect ratio < 200) does a high-quality Al coating provide any benefit. (Coincidentally, 
this additional intensity is at large angles to the output plane.) Part b of Figure 2 shows that 
optimization of the TIR critical angle provides a benefit for crystals of all lengths. The most 
important caveats here are the feasibility of completely surrounding a crystal in air, and the 
potential tradeoffs that would be observed when gamma-ray energy deposition were taken into 
account. Neither undermines the importance or validity of the design principle that is implied. 
 



 
 

Figure 2. a) The normalized fraction of scintillation photon flux arriving at the output plane of a 
cylindrical crystal vs. the distance from the output end at which the photon is generated for an 
LSO crystal (n=1.82, ρ=0.505 mm, β=0.0048 mm-1) surrounded by either Al (R=0.924) and 

SiO2 (n=1.47). b) The same crystal surrounded by either Al or dry Air (n=1.0). 
 
BACKWARD DIRECTED PHOTON FLUX 
 
The additional contribution from photons that are initially directed toward the gamma-ray incident 
end of the crystal is easily accounted for. By defining the overall length of the crystal, z, Equation 
(11) can be used to compute the photon flux arriving at the upstream plane simply by substituting 
𝑙 → 𝑧 − 𝑙. For a dielectric boundary (or an interface with air), the Fresnel coefficient must be 
evaluated before propagating the ray back toward the output end of the crystal. For a very smooth 
reflecting conductor, the reflectivity of the conductor is taken from the appropriate references as a 
function of angle. In either case, this flux is accounted for by simple modifications of (11). A 
slightly more sophisticated approach should be adopted for diffuse reflectors, the simplest model 
being a Lambertian distribution [Keil 1970]. This, for example, might be adopted in an equation 
of the form, 
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where 𝑅� cos 𝜃 describes the conversion of the intensity to a Lambertian distribution reflecting 
from the back, or upstream, crystal face. 
 
Even the best reflector cannot more than double the light output. However, it can modify the 
gamma ray camera’s performance by altering the origin of light reaching the output end. A 
reflector, particularly a diffuse reflector that scatters more light to small angles with the optical 
axis, tends to preferentially improve transport for photons generated far from the output plane. 
Depending on the output coupling condition, this may improve the optical Swank factor by 



enhancing the number of coupled photons generated in regions of large radiation Swank factor 
(narrow pulse height distribution). This is best explored in conjunction with a radiation deposition 
model and therefore reserved for a later report. 
 
INTENSITY DISTRIBUTION INCIDENT AT THE OUTPUT PLANE 
 
The form of Equation (6) readily lends itself to evaluation of the intensity distribution at the output 
plane, since each term represents the intensity within an annular zone of solid angle on the far-
field unit sphere. In addition to the integral contained within each term, only the solid angle and 
mean polar angle need be calculated in order to reconstruct an approximation for the far-field 
intensity pattern. The resolution obtained for a given intensity distribution is determined by the 
limits of integration in each term, and is therefore more crude when taken for photons generated 
very near the output end of the crystal. This limits the utility of the method when dealing with 
scintillators having low aspect ratio elements. But, when evaluated for large aspect ratio 
applications it validates one’s expectation that the intensity pattern incident on the output plane is 
relatively uniform across the solid angle bounded by the TIR critical angle and provides a 
quantitative starting point for subsequent optical coupling calculations. This is shown in Figure 3. 
Note that the distribution is less well defined for photons originating very near the output plane. 
This is due in part to loss of resolution, but also to the additional contribution of light reflecting 
from the scintillator walls at angles smaller than the critical angle. This light is attenuated by 
multiple lossy reflections when generated deeper within the crystal and makes a small contribution 
to the overall light output. 
 

 
 

Figure 3. The approximate far-field intensity patterns produced by light originating 2 mm, 5 mm, 
and 2 cm within a scintillating crystal. Note the use of linear interpolation in this plot. 

 
SUMMARY AND CONCLUSIONS 
 
A straight-forward geometric approach to visible photon transport within a cylindrical scintillator 
crystal results in a compact series approximation for the light incident at the optical output plane 
that includes absorption along the ray path, reflection from conducting or dielectric boundaries, 



and various types of back-reflectors. Evaluation of this series simply and intuitively demonstrates 
the benefit of TIR reflections at dielectric boundaries for high aspect ratio scintillator crystals, and 
the potential degradation in performance from finite absorption when conducting coatings are 
used. Simple modifications of the equation provide a path forward in evaluating the impact of 
various back reflectors, including Lambertian diffuse reflectors, on light output and total Swank 
noise performance. Finally, the equation is shown to produce the expected photon flux density at 
the optical output plane, an important component of quantitatively evaluating output coupling 
schemes. The fact that photons are produced along the axis of the crystal in this model has virtually 
no bearing on the validity of the result for relevant aspect ratios: a finite aperture is well-
represented as a collection of sources, each having an intensity distribution identical to that 
obtained using the on-axis approximation. 
 
Pertinent to first-pass design of a scintillating detector for the ECSE-Scorpius project, it has been 
verified that LSO crystals loosely packed in a scintillator septal frame such that their boundaries 
are almost entirely in contact with air can be expected to perform better than those with any other 
feasible preparation, such as a metallic or fluoride coating. Additionally, a back-reflector can be 
expected to boost optical output and preferentially enhance coupling of photons generated near the 
gamma-ray entrance of the scintillator. In the future, this will be explored in more detail by 
coupling this simple model to Monte Carlo simulations of the gamma-ray energy deposition. 
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