
U. S. Department of Energy
Office of Science

Office of Advanced Scientific Computing Research

Exploratory Research for Extreme-Scale Science

Final Report:

Massive Asynchronous Parallelization of Sparse Matrix Factorizations

Period Covered: Sept. 1, 2014 – August 31, 2017

Date of Report: January 9, 2018

Award Number DE-SC0012538

Applicant Institution and Address Georgia Tech Research Corporation
Office of Sponsored Programs
505 Tenth Street, NW
Atlanta, GA 30332-0420

Lead Principal Investigator Edmond Chow
Associate Professor
School of Computational Science and Engineering
echow@cc.gatech.edu
Tel.: (404) 894-3086

DOE Office of Science Program Office Office of Advanced Scientific Computing Research

DOE Office of Science Technical Contact Dr. Steven L. Lee

1 Introduction

Solving sparse problems is at the core of many DOE computational science applications. We focus on the
challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale comput-
ing systems, in particular systems with massive numbers of cores per node. Our approach is to express a
sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equa-
tions via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the
factorization that is desired.

For an incomplete LU (ILU) factorization, A ≈ LU , define the sparsity pattern S to be the set of matrix
locations where nonzeros are allowed, that is, (i, j) ∈ S if li j in matrix L or ui j in matrix U is permitted to be
nonzero. The constraint equations are

(LU)i j = ai j, (i, j) ∈ S (1)

where (LU)i j denotes the (i, j) entry of the product of the computed factors L and U , and ai j is the corre-
sponding entry in matrix A.

To solve these constraint equations, we write

li j =
1

u j j

(
ai j−

j−1

∑
k=1

likuk j

)
, i > j ui j = ai j−

i−1

∑
k=1

likuk j, i≤ j (2)

which has the form x = G(x), where x is a vector containing the unknowns li j and ui j for (i, j) ∈ S. The
equations are then solved by using the fixed-point iteration x(p+1) = G(x(p)), for p = 0,1, . . ., starting with
some initial x(0). Sweeps of the fixed-point iteration are highly parallel. In addition, the sweeps can be
performed asynchronously, i.e., each thread uses the latest available values of the unknowns, rather than
waiting to synchronize with other threads.

2 Convergence Results

A critical question in our research is the convergence of the nonlinear fixed-point iterations for the solution
of the constraint equations. In particular, the question is whether the fixed-point mapping G is a contraction
mapping for a given matrix, A. We have derived bounds for the 1-norm of the Jacobian, G′, of the mapping
as a function of the matrix A and the current approximation of x. We have also derived exact expressions
when A is a finite difference matrix. These results show that indeed the mapping is a contraction in important
cases, although it cannot be guaranteed for arbitrary matrices. More more details, please see [7].

3 Threshold-based ILU factorization

The ILU algorithm described above assumes that the sparsity pattern S is fixed before the factorization
computation begins. In many cases, such as for anisotropic problems, a good choice of S is not known
beforehand. Conventionally, this is addressed by using a threshold-based ILU factorization, where elements
in S are chosen dynamically by dropping nonzeros during the factorization that are smaller than a threshold.
However, because the sparsity pattern is not fixed beforehand, parallelization using conventional techniques
such as level scheduling is impossible. There are no known techniques for fine-grained parallelization of
threshold-based ILU factorizations (parallelization through coarse-grained domain decomposition is possi-
ble, where threshold-based ILU is performed sequentially on each subdomain).

To address the above issues, we have developed a new algorithm for computing an incomplete factor-
ization that takes into account the values of the nonzeros in the coefficient matrix A, i.e., one that chooses
the sparsity pattern S dynamically, to try to minimize

‖A−LU‖F

1

0 5 10 15

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
ti
o

n
s

IC(0)

ICT

ParICT = 0.02

ParICT = 0.05

ParICT = 1.0

ParICT

0 5 10 15

Number of ParICT steps (2 sweeps per step)

0

1

2

3

4

5

6

7

8

R
e

s
id

u
a

l
n

o
rm

 |
|A

-L
L

T
|| F

IC(0)

ICT

ParICT = 0.02

ParICT = 0.05

ParICT = 1.0

ParICT

Figure 1: PCG iteration count and ILU residual norm for the ParICT preconditioner computed with different number of steps for
the ani3 matrix. The results for IC(0) and classical ICT are also shown.

with the constraint that L and U are sparse. The idea is to interleave a parallel fixed-point iteration that ap-
proximates an incomplete factorization for a given nonzero pattern with a procedure that adaptively changes
the pattern. Nonzeros are both added and removed from the nonzero pattern. Thus the thresholding strategy
is different from existing threshold ILU techniques and generates different nonzero patterns.

While our initial goal was to match the preconditioner quality of threshold ILU factorizations, the new
algorithm can generate factorizations that are better, for the same number of nonzeros in the factorizations.
This is because by removing nonzeros, we can exclude certain nonzeros that must be retained in existing
techniques. In particular, a given fill-in element may be the result of an earlier fill-in element. In existing
threshold ILU techniques, the earlier fill-in element must be included in the pattern if the later fill-in element
is included. This is not the case in our new strategy. Test results show the important consequence that it
is possible with our new algorithm to compute threshold-based incomplete Cholesky factorizations with a
given amount of nonzeros that are impossible to compute via classical threshold-based algorithms because
these classical algorithms break down, i.e., encounter negative pivots.

Figure 1(left) shows the PCG iteration counts using the new preconditioner, called ICT in the incomplete
Cholesky case. The number of solver iterations using IC(0) and classical ICT are also shown, as are variants
using a parameter δ . Classical ICT preconditioning gives about half the number of iterations as IC(0) pre-
conditioning. Compared to classical ICT, ParICT preconditioning gives about the same number of iterations
after 4 or 5 steps. It is also observed that ParICT can be slightly better than classical ICT when many steps
are taken. This is possible because the sparsity patterns for ICT and for ParICT are not guaranteed to be the
same.

Figure 1(right) shows the incomplete factorization residual norm ‖A−LLT‖F where L is the computed
incomplete Cholesky factor. The norm is larger for IC(0) than for classical ICT. The norm for ParICT after
many steps is very close to that for classical ICT. The ParICT norm does not appear to smaller than the
classical ICT norm when the ParICT preconditioner gives fewer PCG iterations than classical ICT. The in-
complete factorization residual norm is not sensitive enough to identify differences between preconditioners
that lead to small but noticeable differences in PCG iteration count.

For thorough results on a suite of test problems running on Intel Xeon Phi Knights Landing processors,
please see [1].

2

4 Solving Sequences of Linear Systems

When solving a sequence of related linear systems by iterative methods, it is common to reuse the pre-
conditioner for several systems, and then to recompute the preconditioner when the matrix has changed
significantly. Rather than recomputing the preconditioner from scratch, it is potentially more efficient to
update the previous preconditioner. Unfortunately, it is not always known how to update a preconditioner,
for example, when the preconditioner is an incomplete factorization. Our iterative algorithm for computing
incomplete factorizations, however, is able to exploit an initial guess, unlike existing algorithms for incom-
plete factorizations. By treating a previous factorization as an initial guess to this algorithm, an incomplete
factorization may thus be updated. We use a sequence of problems from model order reduction. Experi-
mental results using an optimized GPU implementation show that updating a previous factorization can be
inexpensive and effective, making solving sequences of linear systems a potential niche problem for the
iterative incomplete factorization algorithm.

Figure 2 shows a typical result for a sequence of 34 linear systems, each having a different “shift in-
dex.” Exact and iterative IC factorizations were computed every ` systems, and were used to precondition `
consecutive systems. The figure shows the case with ` = 5. The iterative IC factorizations were computed
using a single sweep applied to either the standard or previous factorization initial guesses (SIG or PFIG).
In the case of PFIG, larger ` means that the factorization used as initial guess for the current factorization is
more “stale” or numerically farther. It could be expected that for larger `, the PFIG updating strategy may
be worse than the SIG strategy without updating.

A typical sawtooth pattern can be observed, as the PCG iteration count degrades as a factorization is
reused, and then improves again when it is recomputed. From the graphs on the left side of Figure 2, fewer
total number of PCG iterations are needed when factorizations are updated using PFIG, compared to when
factorizations are computed from scratch using SIG. When the recomputation interval is larger (not shown)
the overall cost decreases (due to requiring fewer total number of sweeps) but the benefit of PFIG also
decreases compared to SIG. However, even for large values of `, the PFIG strategy is better than the SIG
strategy. Additional results can be found in the journal article [4].

Shift index
5 10 15 20 25 30

P
C

G
 it

er
at

io
ns

0

50

100

150

200

250

300

350

400
IC
Reuse IC
Reuse SIG
Reuse PFIG

Shift index
2 4 6 8 10 12 14 16 18 20

P
C

G
 it

er
at

io
ns

0

5

10

15

20

25

30

35

40

45

50
IC
Reuse IC
Reuse SIG
Reuse PFIG

Figure 2: PCG iteration counts when each factorization is computed every 5 systems and reused for 5 consecutive systems. Right
side graph zoom in on the left side graph. A single sweep was used in the SIG and PFIG cases. “IC” denotes the case where the
exact IC factorization is used for every system.

5 Parallel Sparse Triangular Solves

Sparse triangular solvers are typically parallelized using level-scheduling techniques, but parallel efficiency
is poor on high-throughput architectures like GPUs. We have studied an iterative approach, which is highly

3

parallel, for solving sparse triangular systems when an approximation is suitable. This approach will not
work for all problems, but can be successful for sparse triangular matrices arising from incomplete factor-
izations, where an approximate solution is acceptable.

A triangular system Rx = b may be solved approximately by a fixed small number of steps of a Jacobi
iteration

xk+1 = (I−D−1R)xk +D−1b

where D is the matrix consisting of the diagonal of R. Thus the iteration matrix G = I−D−1R is strictly
triangular (the diagonal is all zeros) and has spectral radius 0. This is similar to the ILU case, providing
trivial asymptotic convergence. Convergence within a small number of iterations is desired, however, and
this depends on the norm or non-normality of G.

To improve robustness and convergence, we need to decrease the non-normality of the iteration matrix.
This can be done simply by using a block Jacobi iteration, rather than a scalar Jacobi iteration. Our exper-
iments have shown that this can dramatically reduce the number of sweeps required for the approximate
triangular solves to achieve a given level of accuracy. Blocks should be chosen such that the diagonal blocks
have large norm, which can be enhanced by permuting rows and columns.

A simple blocking technique that we are using is the following based on the idea of aggregation. Us-
ing the graph theoretic description of sparse matrices, each node of the sparse matrix is initially in its own
set. The technique considers all edges by decreasing edge weight. Each edge, considered in order, aggre-
gates two sets, unless the size of the new set exceeds a user-defined maximum. After all edges have been
considered the merged sets define the rows and columns that are grouped to define a block.

Reordering to create a heavily weighted block diagonal part of the matrix, however, changes the ordering
of the matrix which can adversely affect the accuracy of an incomplete factorization. We have further
experimented with applying a block RCM ordering to this block matrix, as well as using a simple blocking
of the matrix in the original ordering, for cases where the large entries are already near the diagonal.

Experimental results are shown in [2]. Performance results using GPUs (but not not using blocking) are
in [8]. This latter paper also empirically studies the effect of using asynchronous iterations for the triangular
solves.

6 Software

We have designed a GPU implementation of the asynchronous iterative algorithm for computing incomplete
factorizations. Our GPU implementation considers several non-traditional techniques that can be important
for asynchronous algorithms to optimize convergence and data locality. These techniques include controlling
the order in which variables are updated by controlling the order of execution of thread blocks, taking
advantage of cache reuse between thread blocks, and managing the amount of parallelism to control the
convergence of the algorithm. These techniques can be considered radical because the order of execution
of thread blocks cannot be controlled. However, by reverse engineering this order on different GPUs, this
ordering can be exploited, in particular to reuse cache in a temporal fashion. Traditionally, cache cannot be
reused in a temporal fashion, again because the thread block execution order is not controlled. A description
of the GPU implementation and these optimizations are described in [9].

Software for fine-grained asynchronous ILU computation has been developed in collaboration with San-
dia National Laboratories. The software is part of the ShyLU Trilinos package. The software uses Kokkos
to provide performance portability across different types of manycore architectures including GPUs, Intel
Xeon Phi, and general purpose CPUs. The software was presented in [17].

Software for fine-grained asynchronous ILU computation and sparse triangular solves is also part of the
MAGMA Sparse library developed with our collaborators at the Innovative Computing Lab at the University
of Tennessee.

4

7 Publications

[1] H. Anzt, E. Chow, and J. Dongarra, PARILUT: A New Parallel Threshold ILU Factorization, SIAM
Journal on Scientific Computing, 2017, submitted.

[2] E. Chow, H. Anzt, J. Scott, and J. Dongarra, Experimental Study of Iterative Methods and Blocking for
Solving Sparse Triangular Systems in Incomplete Factorization Preconditioning, Journal of Parallel and
Distributed Computing, 2017, submitted.

[3] H. Anzt, E. Chow, T. Huckle, and J. Dongarra, Batched Generation of Incomplete Sparse Approximate
Inverses on GPUs, Proceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA’16), Salt Lake City, UT, pp. 49-56 (2016).

[4] H. Anzt, E. Chow, J. Saak, and J. Dongarra, Updating Incomplete Factorization Preconditioners for
Model Order Reduction, Numerical Algorithms, 73, 611-630 (2016).

[5] J. Wolfson-Pou and E. Chow, Reducing Communication in Distributed Asynchronous Iterative Meth-
ods, ICCS Workshop on Mathematical Methods and Algorithms for Extreme Scale, Procedia Computer
Science, 80, 1906-1916 (2016).

[6] H. Anzt, E. Chow, D. Szyld, and J. Dongarra, Domain Overlap for Iterative Sparse Triangular Solves on
GPUs, Lecture Notes in Computational Science and Engineering (LNCSE), 113, 527-545 (2016).

[7] E. Chow and A. Patel, Fine-grained Parallel Incomplete LU Factorization, SIAM Journal on Scientific
Computing, 37, C169-C193 (2015).

[8] H. Anzt, E. Chow, and J. Dongarra, Iterative Sparse Triangular Solves for Preconditioning, 21st Inter-
national European Conference on Parallel and Distributed Computing (Euro-Par 2015), Vienna, Austria,
Aug. 24-28, 2015, Lecture Notes in Computer Science, 9233, 650-661 (2015).

[9] E. Chow, H. Anzt, and J. Dongarra, Asynchronous Iterative Algorithm for Computing Incomplete Fac-
torizations on GPUs, ISC High Performance, Frankfurt, Germany, July 12-16, 2015, Lecture Notes in
Computer Science, 9137, 1-16 (2015).

Presentations

[10] E. Chow, Householder Symposium XX, Blacksburg, VA, June 18-23, 2017.

[11] E. Chow, Linear Algebra and Optimization Seminar, Institute for Computational and Mathematical
Engineering, Stanford University, Palo Alto, CA, May 11, 2017.

[12] E. Chow, 26th Advanced Supercomputing Environment (ASE) Seminar, Information Technology Cen-
ter (ITC), The University of Tokyo, Japan, Jan. 6, 2017.

[13] E. Chow, New Parallel Iterative Methods with Reduced Communication for Solving Large Sparse Lin-
ear Systems, Workshop on Recent Development of Matrix Computations, National Center for Theoretical
Sciences, Taipei, Taiwan, May 13, 2016.

[14] E. Chow and J. Wolfson-Pou, Reducing Communication Costs in Distributed Relaxation Methods,
Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, March 20-25, 2016.

[15] E. Chow, Very Fine-grained Parallelization of Preconditioning Operations, International Workshop on
Software for Peta-Scale Numerical Simulation, Tokyo, Japan, Dec. 3-4, 2015.

5

[16] E. Chow, Very Fine-grained Parallelization of Preconditioning Operations, Numerical Analysis Group,
Applied Mathematics Department, Delft University of Technology, Delft, The Netherlands, Nov. 9, 2015.

[17] A. Patel, S. Rajamanickam, E. G. Boman, and E. Chow, Parallel Iterative Incomplete Factorizations
and Triangular Solves SIAM Conference on Applied Linear Algebra, Atlanta, GA, Oct. 26-30, 2015.

[18] E. Chow, Very fine-grained parallelization of sparse linear algebra computations, Computer Science
and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, Oct. 13, 2015.

[19] E. Chow, Very fine-grained parallelization of sparse linear algebra computations, Innovative Comput-
ing Laboratory, University of Tennessee, Knoxville, TN, Oct. 12, 2015.

[20] E. Chow, Asynchronous Algorithms for Approximate Sparse Matrix Factorizations, ICIAM 2015,
Beijing, China, Aug. 10-15, 2015.

[21] E. Chow, Fine-Grained Parallel Incomplete Factorization Preconditioning, 2015 International Confer-
ence on Preconditioning Techniques for Scientific and Industrial Applications, Eindhoven University of
Technology, Eindhoven, The Netherlands, June 17-19, 2015.

[22] E. Chow, Asynchronous Preconditioning on Accelerators, SIAM Conference on Computational Sci-
ence and Engineering, Salt Lake City, UT, March 14-18, 2015.

[23] E. Chow, Fine-grained Parallel Computation of Approximate Sparse Matrix Factorizations, Applied
Math and Scientific Computing Seminar, Department of Mathematics, Temple University, Philadelphia,
PA, Feb. 25, 2015.

[24] E. Chow, A Parallel Iterative Approach for Computing and Updating an Approximate Sparse Matrix
Factorization, Department of Mathematics Colloquium, Virginia Tech, Blacksburg, VA, Oct. 10, 2014.

6

