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Executive Summary

Long-term capacity expansion models of the U.S. electricity sector have long been used to
inform electric sector stakeholders and decision makers. With the recent surge in variable
renewable energy (VRE) generators—primarily wind and solar photovoltaics—the need

to appropriately represent VRE generators in these long-term models has increased. VRE
generators are especially difficult to represent for a variety of reasons, including their variability,
uncertainty, and spatial diversity. To assess current best practices, share methods and data, and
identify future research needs for VRE representation in capacity expansion models, four
capacity expansion modeling teams from the Electric Power Research Institute, the U.S. Energy
Information Administration, the U.S. Environmental Protection Agency, and the National
Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale
capacity expansion models. The workshops covered a wide range of VRE topics, including
transmission and VRE resource data, VRE capacity value, dispatch and operational modeling,
distributed generation, and temporal and spatial resolution. The objectives of the workshops were
both to better understand these topics and to improve the representation of VRE across the suite
of models. Given these goals, each team incorporated model updates and performed additional
analyses between the first and second workshops. This report summarizes the analyses and
model “experiments” that were conducted as part of these workshops as well as the various
methods for treating VRE among the four modeling teams. The report also reviews the findings
and learnings from the two workshops. We emphasize the areas where there is still need for
additional research and development on analysis tools to incorporate VRE into long-term
planning and decision-making.

Note: This research is intended to inform the energy modeling community on the modeling of
variable renewable resources, and is not intended to advocate for or against any particular
energy technologies, resources, or policies. Scenarios evaluated as part of this work were
selected to exercise specific model capabilities, and do not reflect policy preferences or market
expectations of the participating organizations or modelers.
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1 Introduction

Capacity expansion models (CEMs) have long been used as tools by electric utility planners,
policymakers, and stakeholders to inform decisions related to the evolution of the power sector.
These models typically evaluate the least-cost portfolio of electricity generators, transmission,
and storage needed to reliably serve load over many years or decades. By evaluating different
possible future scenarios, CEMs can help identify key drivers of change and assess the
implications of different generation portfolios.

CEMs vary widely in their geographic scopes, which inform tradeoffs with temporal and spatial
resolution modeling choices. For example, CEMs are used to evaluate systems ranging from
local systems with tens of megawatts (MW) to national systems with greater than 1,000
gigawatts (GW), such as the four models included in this report. International versions have
been used in the integrated assessment model community to evaluate optimal pathways for
decarbonizing the global electricity system (e.g., Pietzcker et al. 2014; Pietzcker et al. 2017;
IPCC 2015; Edelenbosch et al. 2017). In this report, we take a relatively narrow focus and
consider only national-scale models of the U.S. power sector,' as this scope is commonly used
to inform national-level decisions for various government and private sector entities. These
national-scale models are not as large as integrated assessment models, which generally require
more simplified temporal and spatial treatment to accommodate greater model complexity when
they include all energy sectors and carriers, all world regions, and the full 21* century. On the
other hand, there are regional models with higher resolution but a much narrower scope (e.g.,
WECC 2013; ABB 2016; Mai et al. 2015; Nelson et al. 2012). These models are typically used
for different applications® than the four models in this project and thus are not fully comparable.
We do not assess these other classes of models in this work.

Variable renewable energy (VRE) is one of the major sources of complexity in national-scale
CEMs because of its physical attributes, which differ from conventional generator technologies,
and the need to more accurately represent those attributes. VRE technologies rely on a renewable
fuel source and are typically non-dispatchable; in the case of this report, we limit VRE
technologies to those that depend on solar and wind generation.® With the rapid increase in VRE
deployment over the past decade, the need to accurately represent VRE in CEMs has grown in
importance. However, VRE technologies have many differences from conventional technologies,
such as natural gas, coal, and nuclear units, which make them more challenging to incorporate
into CEMs. Table 2 summarizes many of these VRE attributes, which we compiled from various
sources, including Milligan et al. (2016) and Kroposki et al. (2017). These attributes, to varying
degrees, have economic implications for VRE, other electric sector investments, and system
operations (Ueckerdt et al. 2013; Blanford et al. 2016). For example, VRE plant output is
weather-driven and varies considerably from one location to another, while conventional

! Some national-scale U.S. models also represent portions of the Canadian power system because of the synchronous
interconnection ties across the two power systems. Mexican power plants that are part of the Western Electricity
Coordinating Council might also be included.

? For example, higher-resolution regional models are often used to evaluate individual projects, such as a new plant
addition, a new transmission line, or the retirement of a plant.

? Although other renewable technologies have variable output, such as conventional hydroelectric or geothermal,
their operational conditions are such that they are not considered variable as defined in this report.
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Table 1. Summary of VRE Attributes Relevant to Capacity Expansion Models

VRE Attribute

Variable

Uncertain

Near-zero
marginal cost

Lower capacity
value

Curtailment

Geographically
dispersed

Inverter-based

Physical Impact

VRE increases the variability of net load (load
minus VRE generation) because its available
power changes through time and space based
on changing weather patterns (e.g., wind
speed or solar irradiance)

VRE increases the uncertainty of net load
because the available power cannot be
perfectly forecast at all time horizons.®

VRE resources have near-zero or zero variable
production costs because of negligible
operations, maintenance, and fuel costs
(relative to conventional technologies), and
when production-based subsidies exist, this
variable cost can be negative.

As a consequence of VRE's variability, VRE
resources have lower capacity value than most
conventional resources because of VRE'’s
diurnal and seasonal patterns that may result
in low alignments of VRE generation with load
during times of highest system risk to reliability;
when resources are coincident with peak
demand, this contribution from VRE declines
with greater levels of VRE generation.

As a consequence of VRE’s variability, VRE
resources can experience times of curtailment
when the remainder of the generator fleet is
unable (for economic, reliability, or other
reasons) to further reduce its operating level to
accommodate VRE generation.

The dispersed nature of VRE resources
requires adequate transmission infrastructure
to transport electricity to end users.

VRE technologies are connected to the grid
through power electronic-based inverters, in
contrast to mechanically driven generators with
rotating mass that is synchronized to the grid;
inverters must be carefully designed to supply
necessary grid stability services.

® This uncertainty also impacts the capacity value and curtailment.

2

Relevance for CEMs

Need for appropriate temporal
and spatial resolution to capture
variability and correlations with
other time-series variables
(e.g., load)

Requires methods to account for
adequate operating reserves

Requires proper accounting of high
fixed costs, zero variable cost, and
any relevant production- or
capacity-based subsidies;
potentially requires representation
of market operation impacts and
behavior

Requires appropriate methods to
account for VRE’s contribution

to resource adequacy needs using
time-synchronized load and VRE
data, and ideally is based on
probabilistic reliability approaches
for identifying highest risk periods
to reliability

Consideration of VRE curtailment
using temporally-resolved, time-
synchronized load and VRE data
and key thermal generator operating
parameters such as minimum
generation level, ramping
constraints, and shut-down/start-up
costs

Appropriate representation of
transmission network, potentially
including line flows and new
capacity enhancements, as well as
additional costs for “spur lines”
connecting dispersed VRE sites to
existing network infrastructure

Currently unknown, but might limit
“instantaneous” penetration of VRE
generators because of inertia
limitations

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



generators are dispatchable and have little variation in their performance across regions. Because
of their spatial and temporal diversity, VRE technologies typically require significant amounts of
data to be included in CEMs. These traits impose challenges to valuing VRE generation in
capacity expansion and dispatch models. Additionally, VRE technologies have evolved rapidly
in recent years, so their future costs are difficult to accurately predict (NREL 2017).

These challenges associated with representing VRE in CEMs motivated us to develop
a collaboration of four separate modeling teams to assess current best practices, share methods
and data, and identify future research needs* using the following four national-scale CEMs:

e Integrated Planning Model (IPM)—U.S. Environmental Protection Agency (EPA)

e National Energy Modeling System (NEMS)—U.S. Energy Information Administration (EIA)

e Regional Energy Deployment System (ReEDS)— National Renewable Energy Laboratory
(NREL)

e United States Regional Economy, Greenhouse Gas, and Energy (US-REGEN)—The Electric
Power Research Institute (EPRI)

This collaborative research project included two closely-related workshops that examined VRE
data and methodologies used by the four national-scale long-term planning models. The
workshops were held in December 2016 in Washington, D.C. and in June 2017 in Golden,
Colorado. Each of the workshops was one and a half days and covered a wide range of VRE
topics, including transmission and VRE resource data, VRE capacity value, dispatch and
operational modeling, distributed generation, and temporal and spatial resolution. The objectives
of the workshops were both to better understand these topics and to improve the representation
of VRE across the suite of models. And, each team incorporated model updates and performed
additional analyses between the first and second workshops. A summary of the additional
analyses and model “experiments” is provided in the appendix.

This report summarizes the findings and shares what we learned from the two workshops.

In particular, we emphasize the areas where there is still need for additional research and
development (R&D) on analysis tools to incorporate VRE into long-term planning and decision-
making. We note that other collaborative model improvement and comparison efforts have been
conducted in the integrated assessment modeling community, such as the Advanced Model
Development and Validation for the Improved Analysis of Costs and Impacts of Mitigation
Policies (ADVANCE)® project and the Energy Modeling Forum (EMF).® This report and

an accompanying paper (Mai et al. forthcoming)’ both provide an overview of model
improvements and comparisons but applied to CEMs for the U.S. power sector.

* Modeling teams from this collaboration also conducted a multi-model scenario analysis (Mai et al. forthcoming)
SSeea description of the ADVANCE initiative and a full set of publications at http://www.fp7-advance.eu/

% See a description of the EMF initiative and a full set of publications at https://emf.stanford.edu/

7 Mai, Bistline, Sun et al. (forthcoming) presents a model scenario exploration, while this report focuses more on
methods and key factors for VRE representation.
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This report is organized as follows. Section 2 provides a high-level summary of the four models
that were included in the workshops. Section 3 presents four themed summaries from the
workshop: spatial and temporal resolution, resource adequacy, economics of energy production,
and an “other” summary that includes ancillary findings from the workshops. These themed
summaries include model method improvements, sensitivity analyses, or both. Each summary
ends with a list of key R&D areas that apply to the theme. Finally, Section 4 presents the
conclusions from this work.
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2 Model Summaries

Four CEMs were included in this comparison effort: [IPM (EPA 2013, 2015b), NEMS (EIA
2017b), ReEDS (Eurek et al. 2016), and US-REGEN (EPRI 2017). These CEMs were developed
for different use cases. Because model development is largely guided by the intended use of the
model, the differences between the four CEMs is in part driven by their differences in end-use
application. As a summary of models and uses:

e EPA’s version of IPM is often used to evaluate various emission and environmental
policies, such as the Cross-State Air Pollution Rule (CSAPR) and the Mercury and Air
Toxics Standards (MATS).® As a result, EPA has focused considerable effort on the
representation of fossil-based generator technologies and associated emissions and
environmental impacts.

e ReEDS was developed primarily to analyze scenarios with high VRE penetration levels,
and it thus has a highly resolved VRE representation.

e NEMS is the EIA’s primary tool to provide projections for its Annual Energy Outlook
(AEO) reports, which provide a baseline examination of U.S. energy markets and facilitate
better understanding of future policies and market evolutions. NEMS has a full linkage of the
energy and economy sectors to allow it to more appropriately capture economic feedback and
foresight impacts into the energy sector evolution.

o US-REGEN is the newest of the four capacity expansion models. It was built to answer and
serve a diverse set of questions, interests, and stakeholders. It was designed to be flexible,
including customizable regions and time slices, an adjustable planning horizon, and the
capability to link its electric-only model with an economy-wide model, a unit commitment
model, and/or an end-use demand model.

Various characteristics of each of the four models covered in the multi-model workshops are
summarized in Table 2, Table 3, and Table 4, including some of the differences highlighted
above. Of particular focus in these tables are features relevant to the representation of VRE,
which was the focus of the workshops. The base version of each model is formulated as a linear
program (LP) to facilitate computational tractability.” Additionally, the four models assume a
central-planning framework that seeks to minimize the net present value (NPV) of the entire
system.'* As a result, the models neither represent multiple decision makers nor capture explicit
choices of large actors (e.g., corporate power purchase agreements).

¥ The IPM model version and projections presented in this report were developed by EPA’s Clean Air Markets
Division with technical support from ICF International, Inc. The IPM modeling platform is a product of ICF
Resources, LLC, an operating company of ICF International and is used in support of its public and private sector
clients.

? LPs are used for optimal decision making in various industries and applications; as compared to the more complex
integer or non-linear mathematical programs, LPs can be solved far more quickly and directly with a guaranteed
single optimal solution. We note that, under certain scenario configurations, the US-REGEN model is run as a
quadratically constrained program or QCP.

' Rooftop PV adoption is an exception—it is modeled using other methods that do not rely on minimizing system-
wide NPV.

5

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



Table 2. Model and Computational Details

Model Institution Objective Computational Planning Horizon Foresight
Requirements
IPM U.S. Environmental Minimize the NPV of the ~10 hour run time on Non-chronological, all Perfect foresight

Protection Agency
(EPA) and ICF

NEMS U.S. Energy Information
Administration (EIA)

ReEDS

(NREL)
US-REGEN

(EPRI)

National Renewable
Energy Laboratory

Electric Power
Research Institute

power sector's total
annual production costs

Least cost optimization
for the U.S. electric
power sector; the EMM
projects capacity
planning, generation,
fuel use, transmission,
and pricing of electricity,
subject to inputs and
interactions with other
modules in NEMS.

Minimize total system
cost using the 20-year
NPV

Maximize NPV of
surplus over the model
time horizon
(accounting for end
effects); minimize NPV
if electric sector only
model

computational server

~8-12 hour run time as
part of integrated
NEMS runs, ~4 GB
memory

~8 hour run time, ~12
GB memory

Depends on spatial and
temporal resolution: ~1
hour run time, ~32 GB
memory for 48-state
runs

periods solved
simultaneously

NEMS solves annually
through 2050. In EMM
each solve-year
optimizes over a three-
period planning horizon
to examine costs over a
30-year period, which
consists of the current
year, the next year, and
the final 28 years of the
cost recovery period.

2-year increments
through 2050

Customizable; for most
analyses, three-year
increments through
2030 and five-year
increments through
2050

The model uses
convergent perfect
foresight within the
2050 planning horizon
by using prior run
results as input to the
current run. Out-of-
horizon years use
adaptive foresight.

Foresight only for
natural gas and CO,
prices

Intertemporal perfect
foresight

6
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Model
IPM

NEMS

ReEDS

US-REGEN

Temporal Resolution®

12 time slices for each run
year (2 seasons x 6
segments) through 2030; 8
time slices (2 seasons x 4
segments) for all post-2030
run years

Hourly loads are divided into
3 seasonal periods (summer,
winter, and spring/fall). For
each season, the loads are
divided into 3 groups: peak
(highest 1%), intermediate
(next 49%), and base (lowest
50%), totaling 9 segments.

17 Time slices (4 per day x 4
seasons + summer afternoon
super-peak) across one year

Customizable; typically 100+
"representative hours"
(Blanford et al. 2016) per year

Table 3. Power Sector Constraints/Implementation

Spatial Resolution®

64 regions covering the
contiguous United States
(61 power market regions
and 3 power switching
regions), with 11 additional
provincial power market
regions representing
southern Canada

The generation of
electricity is accounted for
in 22 supply regions that
resemble the North
American Electric
Reliability Corporation
(NERC) reliability
assessment regions.

Contiguous United States
with 134 load balancing
areas and 18 resource
adequacy regions; some
representation of Canada
and Mexico

Contiguous United States;
customizable regions
based on state boundaries

@ As applied to the dispatch process within the models

7

Transmission Representation

Firm and non-firm total transfer
capabilities between regions; joint
transmission capacity and energy
limits; wheeling charges between
regional transmission
organizations; static interregional
transmission losses

NERC collects data and 10-year
projections of demand, generating
and transmission capacity, and
capacity purchases and sales, by
region and/or by utility. These data
are used as input to capture firm
power transactions.

Approximate DC power flow
between 134 load regions;
susceptances and line capacities
updated between each solve
period; VRE spur lines represented
within regions

Pipeline representation of flows
across existing and new interstate
transmission lines; carrying
charges and line losses included;
$450 per kilowatt (kW)
transmission adder for new
renewables

Plant Retirements

Economic retirements for all
non-VRE technologies; VRE
technologies assumed to
incur life extension costs to
continue operation indefinitely

Announced retirements are a
model input. The model also
evaluates retirement
decisions for fossil and
nuclear based on whether
continuing operation costs
exceed revenues and if new
capacity is more economical.

Age-based retirements for all
technologies; additionally,
minimum capacity factor-
based retirements for coal

Exogenous retirements for
most technologies due to
announced closures and age-
based retirements;
endogenous economic
retirements also possible
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Table 4. VRE-Specific Characteristics

Model VRE Spatial Resolution Out of Optimization Distributed PV
VRE Treatment
IPM Onshore wind resource is allocated to five potential None PV deployment reflected in net
resource classes across three potential cost energy for load taken from EIA’s
classes for each of the 110 state and IPM region AEO. No distributed PV build
combinations in the contiguous United States. options are modeled in IPM.
Solar photovoltaic (PV) resource is divided among
122 state and IPM region combinations.
NEMS Solar: 22 regions Between each solve period, a Small-scale solar PV is
Wind: 22 regions and 4 resource classes statistical algorithm estimates endogenously modeled in the end-
marginal curtailment rates using a use module of NEMS through a
sequential 864 hourly model. hurdle model approach using Zip
code-level data.
ReEDS PV: 134 regions and 9 resource classes Between each solve period, the Exogenous rooftop PV adoption
5 resource classes hourly data and estimates
oo ; curtailment and forecasting error
I;:;:J&?gg ;VS'QS el e reserve requirement with a statistical
method.
Offshore wind: 70 regions and 15 resource classes
US-REGEN PV: & resource classes for each model region; 3 None Distributed generation (including
solar technology options for each class (fixed tilt, rooftop PV) retail market model
single-axis tracking, or double-axis tracking) iterates with the electric sector
CSP: 5 resource classes for each model region model
Onshore wind: 8 resource classes for each model
region
Offshore wind: 1 resource class for each
model region
@ See https://www.nrel.gov/analysis/dgen/.
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3 Results and Discussion

3.1 Spatial and Temporal Resolution

One of the most apparent differences among—and significant challenges with—the models
included in this multi-model effort is model resolution, both in the spatial and temporal
dimensions. Because the level of spatial and temporal resolution used in these models is a

key factor in the representation of variability and correlation of load and VRE resources, the
resolution can have a substantial impact on both the VRE and overall model solutions. Too little
resolution can fail to capture important correlations or the full distribution of high- and low-
quality VRE resources and other time-series variables (see Table 1), while too much resolution
can cause the model to become computationally intractable or have data requirements that are
currently unrealistic. The “right” choice of resolution often depends on the research question
being addressed. And, because that choice is typically unknown, we explore in this section

the spatial and temporal resolution of the models and the effects of changing that resolution.

Spatial resolution is reflected by the number of subnational geographical regions, each of which
is typically associated with its aggregate load, VRE resource availability, and conventional
generator fleet. Depending on the model, these regions may be defined by state boundaries,
cross-state or sub-state balancing areas, or other planning-relevant zones. The intraregional
resolution of VRE resources varies by model and is a function of the granularity of VRE cost,
resource quality, and resource availability data. Each region is typically represented as a single
node within a transmission network topology.'' As shown in Figure 1, the spatial extent of the
four models included here each captures, at a minimum, the contiguous United States, but [IPM
also endogenously represents Canada.'> Within this spatial extent, the models have a wide range
in the number and size of regions. This resolution sometimes varies by system component or
model configuration. For example, in ReEDS, some VRE resources are represented by 356
resource regions, while more spatially homogenous resources are resolved into the native 134
load balancing regions. US-REGEN provides a user-specified spatial resolution, up to the 48
contiguous states. Furthermore, the NEMS and IPM models have developed methodologies to
capture sub-regional boundaries that are either explicitly synchronized to the model regions or
implicitly embedded within the boundaries of smaller regional definitions, which are used to
capture state and regional policies within model constraints.

" "Each region in these models is a node, so 22—134 nodes are represented in them (see Table 3).

2 Other CEM, including integrated assessment models and computable general equilibrium models, extend beyond
just the power sector and can have a much broader scope, covering other economic sectors and geographic regions,
such as entire continents or the full globe. As discussed earlier, NEMS includes a full representation of the U.S.
energy-economy, but our project is focused primarily on the electricity market module within NEMS.
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Wind/CSP Region

Figure 1. Native spatial resolution of the four models: 64 IPM regions (top left), 22 NEMS
regions (top right), 134 ReEDS balancing area regions (bottom left), and 48 US-REGEN states
(bottom right)

Because of computational limitations, these four national-scale planning models are unable to
represent both the investment decisions and a fully resolved operational dispatch process across
a full year. As a result, representative time intervals (“time slices”) are typically used to represent
a full year of 8,760 hours (or a greater number of sub-hourly time steps). The temporal resolution
of the model dispatch refers to the number of such time slices. Numerous methods exist
exogenously selecting individual hours or representative time steps from a full year of data; these
include clustering techniques to select characteristic, aggregating similar hours, and using
characteristic time blocks by day and/or season (Getman et al. 2015; Blanford et al. 2016;
Nahmmacher et al. 2016; Santen et al. 2017). Temporal resolution is also reflected in the
underlying VRE data used in these down-scaling methods, as well as in metrics calculated
outside the optimization (but still endogenous to the model) to capture intra-time-slice VRE
characteristics. Aspects of the various temporal resolution and methods used by the four CEMs
are summarized in Table 5. One disadvantage of using time slices, which is shared by all these
models, is the non-chronological nature of the resulting dispatch steps, which augments
challenges associated with modeling energy storage, end-use demand response, and other
technologies with strong interdependencies across time slices. Furthermore, by nature of being
long-term planning models, the temporal extent of each of these models is decades into the
future, typically through 2050. However, the time steps along the investment time horizon

and model foresight can vary (see Table 2).
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Table 5. Summary of Temporal Resolution and Methods for the Four Models

Model Underlying Dispatch Dispatch Resolution Intra-time-slice VRE
VRE Data Resolution Method Parameter Resolution
Resolution

IPM Hourly 12 time slices = 6 stylized time blocks across NA
(“8760”") load  through 2030; ' load duration curve for each
and VRE time 8 thereafter of 2 seasons; 4 stylized time
series data blocks for post-2030 run

years.

NEMS  Hourly (8760) 9 time slices 3 load-based time segments | Curtailment calculated
load and VRE (peak, shoulder, base) per from 864 representative
time series each of 3 seasons (summer, | hours (3 day types x 24
data winter, fall/spring) hours x 12 months)

(see Section 3.1.1)

ReEDS Hourly (8760) 17 time slices = Fixed time blocks: 4 time Capacity value
load and VRE slices per day per each of calculated from hourly
time series the 4 seasons, plus a super  (8760) load and VRE
data peak summer afternoon time series data (see

period Section 3.1.1)

US- Hourly (8760) = User-defined; | Clustering method to capture = NA

REGEN load and VRE  typically ~100 @ both extreme events and
time series time slices representative hours
data throughout the year

A key theme that emerged from the multi-model comparison workshops was that the selection
method for temporal and spatial resolution can be as important as the resolution itself. These
methods include techniques both outside and inside the optimization code. Outside methods

focus on capturing the subset of the most important locations or times in order to reduce model
complexity. Inside methods aim to improve resolution through dispatch decision variables, for
example, by increasing the number of time slices or increasing the number of VRE resource
classes. The outside methods include both methodologies that update parameters between solve
periods'® and methodologies used to select exogenous parameters (e.g., how should time slices
be created?). The way in which these outside methods can be pursued range from direct
incorporation (e.g., building a methodology into a model) to using a separate, higher-
resolution model to inform parameter selection.

Much of the current model enhancement work among the teams included in this multi-model
exercise focuses on developing sophisticated outside methods. This effort includes representing
temporal and/or spatial system interactions that would be too complex and/or computationally
burdensome to include within the model while maintaining an LP formulation. For several

of the modeling teams, improved temporal methods aim to calculate metrics outside the
optimization to approximate intra-time-period variability and/or uncertainty. We detail two
examples below, from the NEMS and ReEDS models. Improved spatial methods include the

" NEMS and ReEDS are sequential models, so parameters can be updated between solve periods. For example,
after solving for the year 2020, ReEDS and NEMS employs nonlinear VRE calculations to update VRE parameters
that impact the value of VRE (e.g., from curtailment) before proceeding to the next year.

11

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



use of higher-resolution exogenous supply or cost curves to approximate intraregional
distributions of site-level features for VRE and other resource availability. The resolution can
be further improved by subdividing these resources into resource quality classes. In the spatial
method examples below with the IPM, US-REGEN, and ReEDS models, we show how the
seemingly simple choice of the number of regions can yield very different model results based
on the treatment of VRE resources.

3.1.1 Examples of Temporal Resolution Methods

The “outside” temporal resolution selection methods detailed here reflect efforts by the NEMS
and ReEDS modeling teams to improve the calculation of intra-time slice metrics, specifically to
capture the impact on PV curtailment and VRE capacity value respectively. The NEMS example
demonstrates the impact of increasing the number of model time slices. As we will see, there are
tradeoffs in computation time and model results between the numbers of time slices and how
intra-time-slice characteristics are represented. The results presented here suggest that improved
methodologies for calculating intra-time-slice characteristics provide a similar temporal
resolution benefit to approaches that only increase the number of time slices but they do so

with a smaller increase in computational burden.

NEMS represents load, VRE resources, and dispatch across nine time slices: three seasons
(summer, winter, and fall/spring) each with three load-based time segments (peak, shoulder, and
base). To capture intra-time-slice behavior, EIA implemented a “864 method” to estimate PV
curtailment within these time slices based on 864 hours across the year (12 months each with 24
hours and 3 load-based day types that correspond to weekday and weekend variations in
demand). Within each of the 864 time slices, the method computes the adjusted energy value of
PV after any generation in excess of net demand (after accounting for minimum generation limits
of units with limited cycling capability). As solar generation begins to saturate the demand
during daylight hours within each month, the apparent value of the resource (as measured by the
cost of displaced energy) is reduced. This energy value parameter is then aggregated back to the
nine time slices used in the LP, and it is passed to that process as an adjustment to the cost of PV.
In addition, this approach has been extended to wind curtailments and energy storage.

While developing the new approach, EIA also investigated increasing the temporal resolution of
the LP itself, focusing on adding time slices to provide more resolution around daylight and
nighttime hours. While time slices were added as a way to quickly assess the impact of the low
temporal resolution on PV model results prior to more-involved model development, the
expectation was that the impact on execution time would be too severe to operationalize in the
production NEMS model. However, this limited development provides a reasonable benchmark
against which the final 864 algorithm can be compared for both model impact and performance.
A comparison of with (“w/ Curt”) and without (“No Curt”) curtailment using the 864 method
and 9 versus 15 time slices is shown in Figure 2. Deployment is generally unaffected, except for
PV, which sees a reduction in buildout with both the 864 method and 15 time slices, suggesting
both methods achieve similar temporal resolution improvements of capturing the curtailment
impact at higher PV penetration levels.'* However, increasing the number of time slices had a
significantly greater impact on run time than the 864 method. In high VRE deployment

' Because of the wind/PV trade-off, wind deployment is increased as the PV deployment decreases.
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scenarios, run times increased by no more than 6% with the 864 method, while run times
increased by over 20% with 15 time slices. In summary, the 864 curtailment algorithm leads to
similar deployment results, represents PV generation with higher granularity, and has minimal
impact on run times, compared to increasing number of time slices.

Electricity generating capacity by technology type, HIVG side cases
Gigawatts (GW)

NG - Combined Cycle NG - Combustion Turbine Solar PV Wind
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Figure 2. NEMS deployment results with (“w/ Curt”) and without (“No Curt”’) 864 Curtailment
method using 9 versus 15 time slices

HIVG = high variable generation

The second example of “outside” methods to improve temporal resolution is with the ReEDS
“8760 method” that is based on time-synchronous hourly load (i.e., 8,760 hours) and VRE data.
As shown in Figure 3, this approach approximates the capacity value (CV) of VRE as the
difference between the top 100 hours of the load duration curve (LDC) and the net load duration
curve (NLDC). This approach further estimates the marginal CV of potential new VRE
generators as the difference between the NLDC and incremental NLDC (NLDC(5)). This
methodology is detailed by Frew et al. (2017) and was developed in coordination with a similar
methodology implemented in NREL’s Resource Planning Model or RPM (Hale, Stoll, and

Mai 2016). While this LDC-based approach for CV is not itself novel (e.g., IEA 2015), it

(1) demonstrates how a simplified 8760 hourly method more accurately captures CV trends
than a statistical method within the ReEDS CEM and (2) provides a flexible modeling
framework from which other 8760-based system elements (e.g., demand response, storage,

and transmission) can be added to further capture important dynamic interactions, such

as curtailment.
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Figure 3. ReEDS LDC-based approach to calculating CV

ReEDS previously estimated CV using a statistical approach that considered simple summary
metrics (variance and expected value) from the underlying hourly load and resource data within
each of the 17 time slices.> ReEDS optimizes investment decisions within two-year solve
periods, sequentially solving from the present day system out to the model horizon of 2050.

The CV parameters are updated between each of these two-year solve periods and then used

in the subsequent solve period in ReEDS to quantify each VRE resource’s capacity contribution
to the planning reserve constraint.

Results suggest that the new 8760 method offers a more accurate representation of VRE CV in
ReEDS than the former statistical approximation method with less than a 10% increase in solve
time. The marginal PV CV outputs derived by the former ReEDS statistical method and the new
8760 method are shown in Figure 4. The new ReEDS method better captures the declining
capacity value of VRE with increasing levels of penetration (see also Section 3.2). Previous work
has shown, and Figure 4 supports, that the former ReEDS CV method yields abrupt changes in
CV between the different time slices, particularly between summer afternoon and evening
(Sigrin et al. 2014). These results can be seen in Figure 4’s left pane by the sharp drop in the
former ReEDS method marginal CV around the 7% PV penetration level, where the planning
reserve constraint binding time slice shifts from summer afternoon to evening (yellow
diamonds). Furthermore, as the right pane shows, the coarse time-slice-based values in the
former ReEDS method often estimate persistently high CVs for PV even at relatively high
penetration levels. The new 8760-based method (red triangles), which looks across the top 100
net load hours to calculate an annual CV, results in a smoother and more rapid decline in CV.

!> ReEDS still uses this statistical approach for estimating VRE curtailment and forecast reserve errors. And,
as with the CV method, these other statistical approaches happen “outside” the optimization.
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Figure 4. Incremental PV CV using the former and new ReEDS CV method in the Austin, Texas,
region (left) and Southern California region (right)

In summary, these examples show how the temporal resolution can significantly impact the value
of VRE to the system. Insufficient temporal resolution can lead to overvaluing VRE, especially
PV, by underestimating VRE curtailment and overestimating capacity value. However, increased
temporal resolution typically requires higher-resolution data and often increases model runtime.

3.1.2 Examples of Spatial Resolution Methods

The four models discussed in this report differ significantly in the number of geographic
regions they represent. In this section, we show how the method for constructing various spatial
resolutions can yield opposing trends in some model results. In particular, as shown with
examples from the IPM, US-REGEN, and ReEDS models, the treatment of VRE resources can
drive total system costs to either increase or decrease with greater spatial resolution, depending
on the method for increasing the resolution.

The IPM model includes 64 U.S. regions. To examine how the spatial resolution of transmission
system representation impacts modeling projections, an alternate version of IPM was created by
eliminating transmission constraints, charges, and losses between select IPM regions. The
aggregated transmission regions were designed to approximate the 22 regions of the EMM in
NEMS. '° All other regional parameters, such as resource supply curves, were maintained at the
64-region level. To quantify the impact of this change, a minimum generation constraint was
imposed in both versions of IPM that required wind and solar resources to supply generation
equal to 40% of load by 2040.'” In the version of IPM with aggregated transmission regions, the
model was able to produce the prescribed level of VRE penetration in 2040 at a 5% savings in
total annual production costs ($9.5 billion in 201683), relative to the standard IPM version. These
savings were achieved through greater utilization of more remote but higher-resource wind,'®
which allows for (1) 13 GW in avoided solar capacity, (2) a slight shift away from higher fixed-
cost coal to more flexible natural gas resources (an incremental 9 GW of coal is retired under the

'® Transmission limits, charges, and losses are maintained between the aggregated regions.

' The constraint requires VRE generation equal to or greater than 17.5% of load by 2025; 22% of load by 2028;
25% of load by 2030; 32.5% of load by 2035; 40% of load by 2040.

'8 The wind fleet is I GW smaller but produces 20 terawatt-hours (TWh) more generation in 2040.
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aggregated transmission region version), and (3) a small overall reduction in total capacity and
generation through avoided transmission losses. These factors are reflected in the components
of production cost savings presented for a sample year in Figure 5, with the primary driver of
cost savings in the aggregated transmission region run being the avoided 13 GW of new solar
capacity. On an NPV basis, the cost savings from 2016 to 2040 realized by aggregating
transmission regions is $104.4 billion (20168$), of which $73.0 billion is attributable to avoided
capital expenditures. In other words, if IPM lacked the regional resolution in VRE-relevant
constraints that was eliminated for this scenario, it might underestimate the system cost and
capacity additions needed to reach this level of VRE generation.

10.0
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| 06 | = Variable O&M

8.0 = Fixed O&M
&5
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N Capital
c
g 40 7.0
.

2.0

Figure 5. Annual production cost savings from 22 aggregated transmission regions
(versus 64 native regions) for sample year 2040

US-REGEN performed a similar comparison of the 48 contiguous states against a smaller set

of 15 regions, as detailed in Bistline et al. (2017). The 48-state resolution is currently the finest
spatial resolution for planning decisions in US-REGEN. Similarly to the IPM example, the
intraregional transmission constraints were collapsed within the 15-region case, but other
intraregional parameters were maintained. Like IPM, the US-REGEN model with lower spatial
resolution had lower system costs (see Figure 6). Cost differences are amplified by policy
constraints such as a 50% national renewable mandate by 2050 (the “RPS” scenario in Figure 6)
as well as market conditions such as gas prices or limitations on trade. Incremental electric sector
costs relative to the reference in Figure 6 are shown assuming full interregional renewable
energy certificate trade and with restrictions on such trade. With fewer regions, there were fewer
transmission constraints, making it easier to access lower-cost VRE resources. Total system costs
were approximately 2% lower in the 15-region case than in the 48-region case.
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Figure 6. Incremental compliance cost of a 50% wind and solar RPS (relative to a reference
scenario without these mandates) with 15 versus 48 US-REGEN regions (Bistline et al. 2017)

In the ReEDS example, instead of adjusting transmission constraints to match varying levels of
regional aggregation, the impact of spatially aggregating VRE resources within a constant
transmission topology was evaluated (Krishnan and Cole 2016). Three aggregation scenarios
were considered: 134 native regions (“REF”), 48 contiguous U.S. states (“STATE”), and 13
approximate North American Electric Reliability Corporation regions (“NERC”). For each level
of aggregation, the VRE cost and performance characteristics were averaged (capacity-weighted)
to obtain a single supply curve for each resource within each region evaluated, but other regional
parameters, such as the transmission system were left at the native 134-region resolution. "
Unlike the trend observed by IPM and US-REGEN, the total system cost increased as the VRE
resource was aggregated, as shown in Table 6. This is driven by the impact of averaging higher-
and lower-quality VRE resources, yielding smoother supply curves that fail to capture the full
distribution of resource quality and resulting competitiveness among sites and across
technologies. With a more aggregate resource representation, the model can no longer see the
best-quality, lowest-cost sites that were available in the more spatially resolved representation.

' Within each region, ReEDS includes 10 wind classes (called techno-resource groups), 9 PV classes, and 5 CSP
classes. In this example, the classes were maintained but were aggregated with other similar classes in that region.
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Table 6. ReEDS’ Total System Cost with 134 (REF), 48 (STATE), and 13 (NERC) Regions
for VRE Representation (Krishnan and Cole 2016)

Category (2015$) REF STATE NERC

Conventional capital 345 356 356
Conventional O&M 840 844 846
Conventional Fuel 2,160 2,190 2,235
Renewable capital 614 598 570
Renewable O&M 239 236 237
Renewable Fuel 24 24 25
Storage capital 2.5 2.2 2.1
Storage O&M 9.3 9.1 9.1
All transmission 61 63 66
Water 0.02 0.02 0.02
Total 4,298 4,323 4,347
Difference 25 49

In summary, these examples show that insufficient spatial resolution can lead to either under- or
over-representing the cost of building out a system, depending on how the spatial aggregation
takes place. Aggregating the transmission leads to lower costs because lower-cost but more-
remote resources can contribute to the system with fewer transmission limitations. Aggregating
the VRE resources leads to higher costs because the highest-quality resource sites are averaged
with mid- or low-quality sites, reducing the model’s ability to “see” the lowest-cost VRE
potential. Higher spatial resolution, however, necessitates higher-resolution spatial data and,
because of the linear nature of these models, can lead to false precision (e.g., a very minor cost
difference between two small regions might mean all new capacity is built in the slightly less
expensive region). Additionally, increases in spatial resolution can increase model run time.

3.1.3 Recommendations for Future Modeling R&D

Developing improved temporal and spatial resolution methods is an active area of research
among the four modeling teams included here. Moving forward, the teams have identified
several areas of priority for future R&D, including:

e More systematic study of the cost/benefit tradeoffs of increased resolution—The general
understanding is that higher resolution leads to improved model results but also incurs
additional computational burden. That tradeoff strongly depends on the methods and model
used. More work is needed to better quantify and categorize the impact of both the resolution
and method on model accuracy and computational cost. This necessarily requires developing
and testing input data with greater resolution and/or scope, such as sub-hourly load and VRE
time series data and/or multiple years of such time series data. Such experiments can help
modelers better prioritize resolution tradeoffs and understand the scenario assumptions under
which greater model resolutions matter most.
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o Understanding of how much resolution is needed for VRE deployment projections—VRE
characteristics are generally better represented at higher resolution, but the marginal value of
additional resolution will decrease as the resolution increases. The value of the additional
resolution will also depend on the level of VRE penetration (e.g., a 100% VRE study would
need more resolution than a 50% VRE study) A quantitative understanding of how much
resolution is needed in making VRE deployment projections would allow modeling teams to
ensure they have a sufficiently robust representation of VRE characteristics.

e Metrics to quantify if and how much results improve with increased resolution or selection
methodology—TIn order to assess the cost/benefit tradeoffs of the resolution and method
choices, metrics need to be developed to provide equitable comparison and benchmarking of
these choices and the model used. These standards would ideally also serve to validate new
or improved methods. The metrics can also be used to inform decisions as to whether
methods should be directly incorporated within a model or if methods should be used to
parameterize existing model formulations.

e  Methods that can capture chronology for representing energy storage, unit commitment, and
dispatch—The modeling techniques described here generally ignore many chronological
issues that are important for a number of operational constraints. There is a need for methods
that either can incorporate chronology directly into the models or can parameterize the
chronological aspects in a way that the current methodologies can represent those
chronological aspects.

3.2 Resource Adequacy

One of the key factors that long-term models must consider is whether there is sufficient capacity
to maintain system reliability. Resource adequacy refers to the need to have enough available
resources to meet anticipated demand while accounting for a reasonable number of
contingencies. Today’s utilities and regulatory bodies typically measure resource adequacy
using a planning reserve margin. Details of planning reserve margin calculations and definitions
vary by organization, but in general the planning reserve margin represents the ratio of available
capacity divided by the expected peak demand, and it is expressed as a percentage value over
100%. For example, if a region expects to have 12 GW of available capacity and has a 10-GW
peak, the planning reserve margin would be 20%. Reference planning reserve levels range from
10% to 20% (NERC 2017) and are typically designed around a loss-of-load probability, such as
one day of lost load per 10 years of operation. Nearly all regions in the United States and Canada
currently have a higher planning reserve margin than the NERC reference levels (see Figure 7).
The actual process of determining an appropriate planning reserve margin for a region includes

a mix of technical analysis, economic analysis, and regulatory interactions.
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Figure 7. Reserve margins for each NERC assessment area (NERC 2017)

Capacity expansion models face two primary difficulties when representing resource adequacy.
The first difficulty lies in determining the availability of VRE resources for meeting peak
demand, or in other words, the contribution of a VRE generator toward the planning reserve
margin.”’ For example, how much can system operators rely on a wind or PV plant to be
producing energy during peak demand periods? This contribution has typically been referred

to as capacity value or capacity credit. The second difficulty lies in determining the level of
resource adequacy that is sufficient. As shown in Figure 7, current reserve margins are generally
higher (and sometimes much higher) than the reference reserve margin. Requiring too much
capacity can result in a more expensive, overbuilt system, while too little capacity can result in
expensive loss-of-load events.”’ We discuss these challenges in detail below.

3.2.1 VRE Contributions to Resource Adequacy

Several methods have been developed to try to address the first difficulty of representing VRE
generators’ contribution toward resource adequacy. The methods used by the four capacity
expansion models considered in this work are summarized in Table 7. Three of the four models
assess contributions of both conventional and VRE capacity toward the NERC reference reserve
margins, while US-REGEN uses a different methodology that derates the conventional capacity
based on a calculated availability factor (see EPRI 2017, Section 2.3.3) and applies that derated
capacity to the peak demand. Specifically for VRE capacity contributions, all of the models rely
on more detailed underlying data, such as hourly wind or solar data. These data are then
summarized outside the model optimization algorithm (see Section 3.1) and incorporated into
the optimization in order to allow the model to make appropriate investment decisions that will
result in systems with sufficient capacity. Though the algorithms and data requirements differ

2% Conventional generators have long been a major part of the power system and do not rely on variable resources
such as wind or sunlight, so their contribution toward resource adequacy is generally well understood and more
easily represented.

! The CEMss in this work do not model loss-of-load events. Rather, they require a certain amount of resource
adequacy and assume the level of resource adequacy is sufficient to meet required reliability levels. For this reason,
it is important that the resource adequacy levels are appropriately represented in CEMs.
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among models, they generally calculate the anticipated generation from VRE resources during
periods of peak net demand.”?

Table 7. Summary of How Conventional and VRE Capacity Contribute to Resource Adequacy
for the Four Models

Model

IPM

NEMS

ReEDS

Us-
REGEN

Resource Adequacy
Requirement

Planning reserve
margin based on
NERC reference
levels

Planning reserve
margin based on
NERC reference
levels

Planning reserve
margin based on
NERC reference
levels

No reserve margin—
capacity derated

to account for
contingencies

Conventional Capacity
Contribution to
Resource Adequacy

Installed net
summer capacity

Installed net
summer capacity

Installed net
summer capacity

Installed net summer
capacity derated using
availability factors

VRE Capacity
Contribution to
Resource Adequacy

Specified exogenously
based on NEMS
capacity value outputs
scaled by difference
between IPM and
NEMS capacity factors

Statistical method that
accounts for spatial and
temporal correlation of
wind/solar resources
within a region

Average capacity factor
during the highest 100
net load hours

Capacity factor during
time slice with peak
net load

VRE Data Used
for Resource
Adequacy
Calculations

Seasonal
generation
profiles

Average daily
generation by
month profiles

Hourly data from
2006 for load and
PV; hourly typical
meteorological
year data for
wind

Hourly data from
2010 for load,
PV, and wind

The lack of a metric for assessing whether a model is getting things “right” is one of the
challenges of capturing VRE contributions. The general trends for the capacity value of VRE

are well understood, namely, that wind has a low capacity value that does not change
dramatically with penetration and that PV begins with a high capacity value that declines rapidly
with penetration. The capacity value trends can be compared across models (see Figure 8) to
ensure they are well behaved. In addition the capacity expansion model results have often been
checked against more detailed models to ensure the systems they project do not drop load (Mai et
al. 2012; Jorgensen, Mai, and Brinkman 2017; Bistline 2017), but there is no way to conclusively
prove that the systems will meet the reliability targets anticipated by the reserve margins or
availability factors. The comparison against the more detailed models, however, can reveal
shortcomings of methodologies that can lead to improved methodologies. As a result of these
challenges, modeling VRE contribution toward resource adequacy is still an active area of
research (Frew et al. 2017), and all four modeling teams have identified areas in which they wish
to improve their VRE representation for resource adequacy.

2 Net demand is total demand minus VRE generation.
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Figure 8. Capacity value for wind (left) and PV (right) as a function of PV and wind penetration

“Other studies” are from Holttinen et al. (2016) for wind and Mills and Wiser (2012), Denholm and Hummon (2012),
and Jorgenson, Denholm, and Mehos (2014) for PV

One specific challenge for representing the capacity value of VRE in long-term planning models
is data (Gami, Sioshansi, and Denholm 2017). Planning models are projecting new builds of
VRE generators, and thus, no historical data exist for how well the generation from these new
builds will align with peak demand. Furthermore, because weather patterns change from year to
year, it is not clear how multiple years of data should be used to determine VRE capacity value.
For example, if a wind generator has a low output in year one during the peak hour and a high
output in year two during the peak hour, should the generator have a low value, high value, or
some combination of the two values for its capacity value contribution? Because of processing
time and computing resource limitations, CEMs tend to look at a deterministic year for load and
VRE availability rather than use a probabilistic approach or one that considers multiple years-
worth of data. Additional years of high-resolution data are available for wind and PV, but lack of
high-resolution load data has been a shortcoming that has made it difficult to expand the models
to use multiple years of data.

3.2.2 Determination of the Resource Adequacy Level

Although VRE treatment for resource adequacy has received significant attention, significantly
less research has been directed toward determining the appropriate resource adequacy level

of future power systems. Reference case or business-as-usual scenarios in capacity expansion
models regularly include increasing shares of VRE (Cole et al. 2016; EIA 2017a; Bistline et al.
2017). And, the models are often employed to analyze scenarios with significant changes, such
as carbon reduction scenarios (EPA 2015a), rapid electrification (Steinberg et al. 2017), alternate
oil and gas resource and technology projections (EIA 2017a), and deep decarbonization
scenarios (Bistline and Chesnaye 2017). The systems projected in even the reference scenarios
can be substantially different from today’s system. Because the models use current or historical
data to determine resource adequacy (based on NERC’s reference-level reserve margins or on
historical plant availability), it is not clear that these metrics will still be sufficient for future
power systems that in some cases are vastly different from today’s system.
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3.2.3 Other Resource Adequacy Challenges

In addition to the challenges laid out above, there are other important factors for addressing
resource adequacy in long-term planning models. As can be seen in Table 7, the models have
different methods for treating conventional capacity, and these differences can end up being
significant when aggregated over the entire U.S. power system. Moreover, the primary drivers
for the need for new capacity are retirements of existing generators and growth in peak demand.
The four models have very different methods for treating existing plant retirements, which
results in vastly different needs for new capacity (see Figure 9). Peak demand in the four models
is typically scaled according to projected electricity demand growth, where all four models rely
on the integrated NEMS model to project how annual electricity demand will change over time.
Additionally, changes in end-use demands are challenging to capture, especially with respect to
how they might alter load change and impact peak demand requirements. In many analyses, load
shapes are assumed to be constant over time.> All these factors influence how much capacity is
needed and therefore the relative economics of new VRE generators.

Coal Nuclear
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NEMS
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Q
S
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[}
(14
[= X
4+
Q
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Figure 9. Coal capacity (left) and nuclear capacity (right) in the model’s reference case scenarios

Finally, although all four models allow capacity to be shared between regions, little work has
been done to understand the load diversity between regions in order to assess the benefits and
limitations of sharing power between regions. This factor becomes especially important when
considering very long-distance transmission lines that might connect regions with different
time zones and therefore very different load shapes.

» NEMS includes a demand-side module, so the extent to which load shapes are updated over time depend
on the assumptions and methods included in this module.
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3.2.4 Recommendations for Future Modeling R&D

Although significant progress has been made for representing resource adequacy, there is still
substantial need for increased understanding and methodologies. The key R&D
recommendations we identified with respect to resource adequacy include:

o Understand how accurate VRE capacity value estimates need to be—Capacity value of VRE
is often discussed as an important element to capture in long-term planning models, but the
impact of underestimating or overestimating the capacity value has not been quantified.
Relatedly, the methodologies used by planning models for VRE capacity value estimates are
similar but vary considerably in their data and computational requirements, and to our
knowledge, no one has performed a comprehensive comparison and validation of the data
and techniques to understand the various tradeoffs of the methodologies.

o  Understand how much capacity is needed, especially for higher-penetration VRE futures—
Models typically rely on NERC reference reserve margins or historical data to specify
required capacity needs, but the current power system exceeds those recommended levels.
Improved understanding of historical reserve margin levels and what drives those levels can
inform how resource adequacy requirements are made for long-term planning scenarios.
Additionally, there might be value in incorporating more fundamental reliability metrics
(e.g., loss-of-load probabilities) within the planning models.

e Improve VRE and load time series data—Models typically rely on a single year of simulated
data that might not capture inter-annual weather patterns, load shapes, or less-common
events. Multi-year data sets could potentially lead to resource adequacy estimates that are
more robust. Additionally, validating or improving simulated data based on historical
measured data can reduce or remove shortcomings associated with using simulated data
for long-term projections.

e Improve data and methods for estimating retirements—Retirements represent a major driver
for new capacity needs, but they are challenging to estimate within models. Cost data for
current generators is difficult to obtain, and therefore methodologies are often built to
accommodate the limited data that are available. Methodologies that can apply non-cost data,
such as utilization or contract data, might effectively supplement the limited cost data.

Any improvements to the accuracy or coverage of existing cost data sets will improve
retirement estimates.

3.3 Economics of Energy Production

Because capacity expansion models are typically least-cost optimization models (see Table 2),
the relative economics of the various technologies are a primary driver of model results. Because
of current policies, such as renewable portfolio standards and the sometimes long lead-time to
build new plants, the economics play a lesser role in the short-term** but are a more significant
driver over the long term.

** Economics do impact near-term decisions, but in many cases, the decision to build a new plant in the near term
has already been made and the economics inside the model therefore do not impact whether that plant comes online.
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At low penetration, nearly all VRE generation can be utilized. However, as the VRE penetration
increases, the potential for curtailment, which is the intentional reduction in generation from
VRE generators when generation exceeds load, can substantially increase (Denholm and
Margolis 2016; Denholm, Clark, and O’Connell 2016). VRE curtailment can result from
insufficient transmission capacity to export surplus power to neighboring regions, the inability
to store surplus energy, and/or the inability to ramp down generation from committed thermal
units (Bird, Cochran, and Wang 2014; Fink et al. 2009).

The specific representation of VRE curtailment varies across models, but the methods are all
essentially doing an accounting to determine the amount of VRE generation that cannot be
absorbed by the system. Assumptions with respect to transmission limitations, storage, and
thermal unit minimum generation levels drive the ability of the system to absorb more VRE,

and those assumptions certainly vary from one model to another. Comparing the curtailment
outputs among models can be especially challenging because actual curtailment rates tend to be
low (<5%) even at fairly significant penetration levels. Instead, curtailment calculations within
capacity expansion models are usually compared against curtailment estimates from an hourly
chronological model. For example, DOE (2012), Mai et al. (2012), and Jorgensen, Mai, and
Brinkman (2017) compared ReEDS curtailment estimates against those of an hourly production
cost model. And, these comparisons have shown that the current methodologies capture
curtailment fairly well for the specific scenarios that were examined. However, it is unclear
whether these methodologies will remain robust across a wider range of scenarios, such as those
with significant amounts of inflexible load, restricted transmission expansion, or high
penetrations of new storage capacity. Additionally, the impacts of unit commitment and ramping
restrictions are typically ignored in the capacity expansion models, and it is unclear when or how
frequently their exclusion can have an impact on model results.

If VRE curtailment is not represented in a capacity expansion model, that model is likely to
overestimate the value of VRE technologies. Given that today’s VRE penetration levels are still
relatively low, the exclusion of curtailment is unlikely to significantly impact near-term
modeling results.” However, because VRE curtailment increases as VRE penetration increases,
medium- and long-term projections are likely to be significantly impacted. Solar PV economics
are especially impacted by curtailment because PV production is typically more strongly
autocorrelated than production from wind plants, which results in a steep increase in curtailment
rate as PV penetration increases (Denholm and Margolis 2016). Figure 10 shows the impact of
not including curtailment within the NEMS model reference scenario for this exercise. Excluding
curtailment leads to increased solar penetration as well decreased gas, wind, and coal generation.
Without the curtailment represented in the model, utility-scale PV generation nearly doubles.
This scenario is approaching 20% VRE penetration, so the impact of curtailment in higher
penetration scenarios would be even more significant.

%> Regionally, the exclusion of curtailment might be impactful. For example, California experienced solar
curtailments in the first half of 2017, and ERCOT had high levels of wind curtailment before expanding
transmission and implementing new operational practices.
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Figure 10. NEMS generation mix in the reference case when curtailment is included (left)
and the difference in generation when curtailment is not included (right)

Operating reserves needed for VRE integration are another aspect of VRE representation that can
impact economics. Higher penetrations of VRE typically require a greater amount of operating
reserves to account for short-term errors between VRE forecasted and actual generation. Sample
scenarios using the NEMS model demonstrated this through adjusting the level of spinning
reserve capacity required as a percentage of available operating VRE capacity in each timeslice.
For low operating reserve requirements (where the VRE-specific spinning reserves contribution
was at 25% of VRE available capacity or less),? the impact on the capacity expansion solution
was negligible. At higher requirements (where the VRE-specific reserves were at 50% of VRE
available capacity or more), the impact became more pronounced.

Another major component of the economic competitiveness of VRE is the way in which
financing is treated in the model. VRE technologies are capital-intensive technologies, meaning
nearly all their cost is upfront capital cost associated with their construction and that their O& M
costs are relatively low. In contrast, fuel-burning technologies such as coal, natural gas, and
biopower plants can have significant fuel costs that are spread over the lifetime of the plant.
Because of the capital-intensive nature of VRE technologies, they are more strongly impacted by
financing assumptions; lower financing costs can make them more competitive with fuel-burning
generators, while higher financing costs can do the opposite. We found a range of financing
assumptions across the four models (see Table 8), and we also found that measuring the quality
of financing assumptions can be especially difficult, especially when considering that projections
extend to 2050 or later.

%% This operating reserve requirement is the fraction of the available VRE capacity in each time slice that must
be matched with spinning reserves.
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Table 8. Financing Assumptions Used in the Four Models

IPM: IPM: IPM: NEMS Us- ReEDS
Merchant | Utility Overall (AEO2017)°  REGEN
Debt Interest Rate 5.30% 2.50% — 3.7% — 5.4%
Rate of Return on Equity 10.10% 5.30% — 8.2% — 10.2%
WACC 5.90% 3.01% 3.88% 51% 5% 5.4%
Economic Evaluation 20-40 20-40 2040 30 25-100 20

Period (years)

All percentage values are in real (as opposed to nominal) terms.

2 Financing in NEMS varies over time; the values included here are the long-term financing values in
the model.

The impact of varying financing assumptions on the levelized cost of electricity (LCOE) for

a wind plant is shown in Figure 11. The four WACC levels from Table 8 are shown, along with a
range of cost recovery periods from 20 years to 30 years. There is a difference of about $6/MWh
across the WACC values (holding economic lifetime constant) and across economic lifetime
values (holding WACC constant).”” A sample scenario using the ReEDS model showed that
changing the economic lifetime of al/ generators from 20 years to 30 years led to a 33% increase
in VRE capacity under reference scenario conditions.
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Figure 11. Impact of financing assumptions on the LCOE of a wind plant
LCOE calculated using the 2016 Annual Technology Baseline (ATB) spreadsheet (NREL 2016).

*" LCOE values are calculated using the 2016 Annual Technology Baseline spreadsheet (NREL 2016).
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The cost of connecting VRE resources to the grid is the final aspect of the economics of VRE
that we considered in our CEM modeling workshops. VRE generators are often built in locations
that are more remote and thus require some investment in the transmission system to move the
VRE generation to a load center. This area of representing VRE transmission connection costs
has received much less attention in the literature, with most of the published work relegated to
model documentation. The methods used to represent these costs for the four models are
summarized in Table 9. Interconnection values of $100/kW-200/kW represent approximately
5%—10% of the cost of a wind plant and approximately 5%—-20% of the cost of a utility PV plant,
so these values are not insignificant. Comparison of methods with actual historical builds and
improved methods for identifying new VRE sites could lead to more robust methods and more
confidence in transmission connection costs.

Table 9. Summary of Transmission Connection Costs for VRE Technologies

IPM® NEMS?® ReEDS US-REGEN
Type of Cost Multiplier Multiplier Adder Adder
Type of Values Supply curve Supply curve Supply curve Fixed value
Technologies Included | Wind Wind Wind, PV, CSP Wind, PV
Typical Value ~$200/kW ~$200/kW ~$100/kW $200/kW

Typical Range of Values 0-$2,000/kW 0-$2,000/kW $10-$1,000/kW  $200/kW

?1PM and NEMS do not apply a separate interconnection value to new wind capacity but instead uses a
range of multipliers to capture cost increases stemming from a variety of factors, including distance from
existing transmission, site accessibility challenges, population proximity, and other factors. The capital
cost multipliers for onshore wind add between 0% and 100% to the cost of a new wind plant.

3.3.1 Recommendations for Future Modeling R&D

e  More robust understanding of curtailment outside current system boundaries—Current
methods for estimating VRE curtailment appear to be robust when compared with more
detailed models, but that comparison has only been made for a small number of scenarios.
Scenarios with significant changes in minimum generation levels from thermal plants,
storage deployment, or demand-side technologies could challenge the curtailment methods
that have already been developed.

o Improved methods for how financing assumptions are assigned to a technology—Financing
can have significant impacts on model results, but the financing assumptions that should
be used for a given technology are not well understood or represented in long-term planning
models. Financing parameters such as interest rate and rate of return on equity might change
over time and be especially difficult to set appropriately, but economic lifetimes can likely
be well understood and represented in the modeling.

o [mproved methods for capturing VRE transmission connection costs— Transmission
connection costs can represent a significant fraction of the cost of a new plant, but it
is unclear whether current methods are underestimating or overestimating those costs and
how this might impact model results.
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3.4 Other Considerations

Although the workshops focused on the topics discussed above, a number of important ancillary
topics arose. These ancillary topics were not discussed in detail, but we include them here for the
sake of completeness in documenting workshop findings and because these topics deserve ample
consideration for long-term planning R&D.

o Methods for representing energy storage—There is considerable desire to consider low-cost
storage or other similar scenarios in long-term planning models, but the methodologies and
metrics for representing storage are not yet well defined. This is especially true for the
interaction of VRE generators with storage technologies. Issues such as chronology, capacity
value, and cost representation have yet to be addressed in most large-scale modeling
frameworks.

o Improved methods for handling the demand-side—FEnergy efficiency, customer behavior,
electric vehicles, and general energy electrification can significantly impact electricity
demand, both in terms of total electricity demand as well as the shape of the load profile.
Methods for understanding and projecting demand-side changes at a national scale within
electricity-sector-only models are generally limited or are in their early stages of
development.

o Assessment of importance of intraregional transmission for long-term planning decisions—
Although many models capture the cost of building intraregional transmission to connect
new generators to existing transmission, none of the four models represents transmission
flows or limitations within a balancing area. It is not clear whether this is a minor assumption
for the purpose of capacity expansion or it might significantly alter model results. Also, how
this assumption might interact with selected spatial resolution is unknown.

e Metrics for assessing model behavior— Model behavior is often assessed based on expert
opinion and/or other more detailed modeling tools. Metrics that can be used to more
concretely measure and assess model behavior can accelerate model development and
improve model utility.
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4 Summary and Conclusions

Capacity expansion models provide a useful tool for understanding how VRE interacts with and will
influence the future power sector under a wide range of economic, technology, and policy conditions.
However, because of the complexities associated with VRE and with long-term projections,
considerable work remains to be done to improve the utility of these models. The four modeling teams
involved in this comparison effort identified three key areas of active model enhancement to improve
the VRE representation within these planning models: (1) spatial and temporal resolution, (2) resource
adequacy, particularly the accounting method for VRE capacity, and (3) economics of energy
production, with a focus on the impact of curtailment on VRE economics.

Both the temporal and spatial resolution choice and method employed in a model can significantly
impact the results. In general we find that increased resolution leads to better representation of total
system cost and of VRE characteristics, but it is unclear how much resolution is necessary to answer
the questions asked of the model. Additionally, different questions might require different levels of
resolution.

Curtailment and capacity value of VRE are two of the most significant system characteristics to
represent in capacity expansion models. The existing methods for handling curtailment and capacity
value of VRE are generally sufficient at capturing VRE economics under systems with low-to-
moderate penetrations of VRE. However, these methods may not be sufficiently robust for futures that
are vastly different from today, and improvements will likely be needed. At a minimum, increased
understanding of high penetration VRE scenarios is needed to give increased confidence in model
solutions that show significant evolution from today’s system.

Other aspects of VRE (i.e., outside of curtailment and capacity value) do not generally have as well-
established methods, but it is also unclear to what degree they ultimately matter for ensuring projected
investment decisions are robust. For example, operating reserves, grid connection costs, and financing
costs are typically represented, but the best methods for doing so are not well defined, and the impact
of each is typically not well understood. Additionally, aspects that are typically not represented, such
as unit commitment, are also poorly understood with respect to how they might impact investment
decisions.

Across the four modeling teams that participated in our workshops, we found that most of the research
and innovation with respect to capacity expansion models utilize “out-of-optimization” methodologies.
In other words, new capabilities are developed using pre- or post-process innovations that allow the
already large and complicated optimization problem not to grow in size as additional capabilities are
added. We also found that the rapidly changing grid environment opens new challenges, especially
with respect to modeling storage and demand-side technologies.

Through this multi-model exercise, we have identified several areas for future modeling research and
development. These areas are included at the end of Sections 3.1.3, 3.2.4, 3.3.1, and 3.4. Finally, we
found that a collective environment to share ideas across modeling teams has led to higher quality
models and has bolstered individual model development, including many of the model enhancements
and method comparisons highlighted in this report (see the appendix for a summary of model
enhancements). We recommend collaboration across capacity expansion modeling teams, especially as
the research and development areas described in this report are pursued.
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Appendix. Summary of Model Enhancements

One purpose of the two CEM modeling workshops was to stimulate improvements and examine
assumptions in each the models, especially as they relate to VRE representation. Each of the
modeling teams identified and/or incorporated improvements and analyses between the two
workshops, and a summary of those is provided here.

IPM

The EPA IPM team is planning to implement several improvements to VRE representation in
the upcoming release of IPM v6. The most significant improvements include implementation
of 8760 hourly generation profiles, increased time slices targeting more resolution during
baseload hours, time-of-day differentiation, an additional winter season to better capture
variability in wind performance, VRE spur line costs integrated with the capital costs of new
units, and a new methodology to impose declining capacity value on new VRE resources.

NEMS

EIA has scheduled several modeling updates focused on improving representation of the value
and impact of VRE generation on the grid. Between AEO 2016 and the results shared in this
report, EIA updates to NEMS included changing the representation of residential solar PV from
a simple cash flow model to a statistical model, capturing a more detailed representation of the
end-use solar PV generation on net demand, and modeling solar PV and wind curtailments. In
addition, for AEO 2018, other modeling updates include integrating a four-hour energy storage
technology and modifying the regional solar resource to reflect a supply curve rather than an
average value. In addition to model updates, EIA conducted a number of model experiments,
including an analysis of the curtailment algorithm and a review of the spinning reserve
algorithm.

ReEDS

The most significant change to the ReEDS model was the incorporation of a new VRE capacity
value calculation methodology that uses hourly data to assess the contribution of existing and
potential new VRE generators toward the resource adequacy requirement. The methodology was
discussed briefly in Section 3.1.1, and details are reported by Frew et al. (2017). In addition, the
ReEDS team assessed the difference between a pipe-flow transmission representation and a DC-
power-flow representation (Sun and Cole 2017), and it did model runs comparing different
financing assumptions Finally, the incremental value used for calculating marginal VRE capacity
values and curtailment rates was examined to see how it impacts model results.

US-REGEN

The US-REGEN team conducted experiments to explore the impacts of spatial and temporal
resolution on model outputs. Detailed information about these analyses, results, and implications
for modeling can be found in Bistline et al. (2017). The team also added a wider variety of
utility-scale PV technologies, and the model now allows investments in fixed-tilt, single-axis
tracking, and double-axis tracking technologies. In addition, EPRI updated its representations

of operating reserves, planning reserves, and energy storage to illustrate potential effects of
alternate formulations and parameters.
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