

1 **Data-constrained projections of methane fluxes in a Northern Minnesota Peatland in**
2 **response to elevated CO₂ and warming**

3 Shuang Ma¹, Jiang Jiang^{2,3}, Yuanyuan Huang^{3,4}, Zheng Shi³, Rachel M. Wilson⁵, Daniel Ricciuto⁶,
4 Stephen D. Sebestyen⁷, Paul J. Hanson⁶, Yiqi Luo^{1,8}

5 1, Center for Ecosystem Science and Society, Department of Biological Sciences, Northern
6 Arizona University, Flagstaff, Arizona, USA

7 2, Department of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu,
8 China

9 3, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma,
10 USA

11 4, Laboratoire des Sciences du Climat et de l'Environnement, 91191 Gif-sur-Yvette, France

12 5, Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida, USA

13 6, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National
14 Laboratory, Oak Ridge, Tennessee, USA

15 7, US Forest Service, Northern Research Station, Center for Research on Ecosystem Change,
16 Grand Rapids, Minnesota, USA

17 8, Department of Earth System Science, Tsinghua University, Beijing, China

18 Corresponding author: Yiqi Luo (yiqi.luo@nau.edu)

19 **Key points:**

- 20 1. Using a data-model fusion approach, we constrained parameters and quantified uncertainties of
21 CH₄ emission forecast.
- 22 2. Both warming and elevated air CO₂ concentrations have a stimulating effect on CH₄ emission.
- 23 3. The uncertainty in plant-mediated transportation and ebullition increased under warming.

24 **Abstract:** Large uncertainties exist in predicting responses of wetland methane (CH_4) fluxes to
25 future climate change. However, sources of the uncertainty have not been clearly identified
26 despite the fact that methane production and emission processes have been extensively explored.
27 In this study, we took advantage of manual CH_4 flux measurements under ambient environment
28 from 2011-2014 at the Spruce and Peatland Responses Under Changing Environments (SPRUCE)
29 experimental site and developed a data-informed process-based methane module. The module was
30 incorporated into the Terrestrial ECOsystem (TECO) model before its parameters were
31 constrained with multiple years of methane flux data for forecasting CH_4 emission under five
32 warming and two elevated CO_2 treatments at SPRUCE. We found that 9 °C warming treatments
33 significantly increased methane emission by approximately 400%, and elevated CO_2 treatments
34 stimulated methane emission by 10.4% - 23.6% in comparison with ambient conditions. The
35 relative contribution of plant-mediated transport to methane emission decreased from 96% at the
36 control to 92% at the 9 °C warming, largely to compensate for an increase in ebullition. The
37 uncertainty in plant-mediated transportation and ebullition increased with warming and
38 contributed to the overall changes of emissions uncertainties. At the same time, our modeling
39 results indicated a significant increase in the emitted $\text{CH}_4:\text{CO}_2$ ratio. This result, together with the
40 larger warming potential of CH_4 , will lead to a strong positive feedback from terrestrial ecosystems
41 to climate warming. The model-data fusion approach used in this study enabled parameter
42 estimation and uncertainty quantification for forecasting methane fluxes.

43 **Keywords**

44 Data-model fusion, uncertainty, forecasting, methane, wetland, climate change

45 **Plain Language Summary**

46 Methane (CH₄) has 45 times the sustained-flux global warming potential of CO₂ over a 100-year
47 scale, and it is directly responsible for approximately 20% of global warming since pre-industrial
48 time. Wetlands are the single largest natural source of CH₄ emission and there is major concern
49 about potential feedbacks between global climate change and CH₄ emissions from wetlands, as
50 warming and atmospheric CO₂ are known to affect CH₄ emissions. However, extensive observed
51 CH₄ flux data have not been well used to constrain model predictions of CH₄ emission in the future
52 climate. Using a data-model fusion approach, we constrained parameters and quantified
53 uncertainties of CH₄ emission forecast. We found both warming and elevated air CO₂
54 concentrations have a stimulating effect on CH₄ emission. The uncertainty in plant-mediated
55 transportation and ebullition increased under warming.

57 **1. Introduction**

58 Methane (CH_4) is the simplest hydrocarbon produced by anaerobic microbes in the terminal step
59 of organic matter remineralization. CH_4 has 45 times the sustained-flux global warming potential
60 (SGWP) of CO_2 over a 100-year scale [Neubauer and Megonigal, 2015], and it is directly
61 responsible for approximately 20% of global warming since pre-industrial periods [Forster *et al.*,
62 2007]. Wetlands are the single largest natural source of emitted CH_4 [Bridgham *et al.*, 2013] and
63 there is major concern about potential feedbacks between global climate change and CH_4
64 emissions from wetlands, as warming and atmospheric CO_2 are known to affect CH_4 emissions
65 [Zhuang *et al.*, 2004; Bridgham *et al.*, 2006]. However, extensive observed CH_4 flux data have not
66 been well used to constrain model predictions of CH_4 emission in the future.

67 Process-based biogeochemistry models have been used to quantify global wetland CH_4 emissions
68 with different complexities in model structures [Cao *et al.*, 1995; Walter and Heimann, 2000;
69 Zhang *et al.*, 2002; Zhuang *et al.*, 2004; Wania *et al.*, 2010; Riley *et al.*, 2011; Zhu *et al.*, 2014].
70 However, large uncertainties exist in predicting responses of methane emissions to future climate
71 change [Frolking *et al.*, 2006; Bridgham *et al.*, 2013]. In methane models, the uncertainties in
72 model predictions stem from: 1) *Model structure* – process-based models with more details and
73 controls are being developed at the site level and will be added into global models, but a bottleneck
74 is the lack of spatially explicit physical, chemical and biological data [Bridgham *et al.*, 2013]; 2)
75 *Parameter values* – some conceptual parameters used in methane models are not directly
76 measurable and there is a limited variety of observational data do not comprehensively address
77 various CH_4 emission pathways that are needed to constrain parameter values using data
78 assimilation; and 3) *Forcing-data* [Luo *et al.*, 2015] – water table level and soil temperature are
79 the two dominant controls on methane flux simulation because a) the water table position
80 determines the extent of the catotelm zone where methane is largely produced (acrotelm may be

81 anoxic and methane may be produced in acrotelm) and the acrotelm where most methane is
82 oxidized (methane can also be oxidized by methanotrophs in catotelm using Fe^{3+} , NO_3^- , SO_4^{2-} , etc.
83 as electron acceptors). [Bartlett *et al.*, 1990; Dise and Gorham, 1993; Bubier *et al.*, 1995; Walter
84 and Heimann, 2000] and b) soil temperature affects the rates of microbiological processes such as
85 fermentation, methanogenesis and methanotrophy [Dise and Gorham, 1993; Frolking and Crill,
86 1994; Kettunen *et al.*, 1999; Walter and Heimann, 2000].

87 Biogeochemical models and experimental results are generally consistent in showing that climate
88 warming stimulates CH_4 emissions. Modeling results under +1 and +2°C warming scenarios found
89 increases in CH_4 emission in northern wetlands by 17% and 11%, but decreases under higher
90 elevated temperature due to the effect of soil moisture depletion [Cao *et al.*, 1998]. Short-term
91 warming and coupled water table level \times warming *in situ* or mesocosm manipulations have been
92 used at the site level to explore the responses of northern peatland CH_4 emission to climate
93 warming from +0.6 to +2.0 °C. These studies found warming increased CH_4 fluxes by 15%-550%
94 or had no effect based on the condition of water table variation and vegetation change [Verville *et*
95 *al.*, 1998; Granberg *et al.*, 2001; Updegraff *et al.*, 2001; Turetsky *et al.*, 2008]. However, these
96 studies only warmed the soil surface, which may have precluded deep soil responses to warming
97 especially in northern wetlands where a significant fraction of C is stored in deep peat layers.
98 Nevertheless, methane fluxes measured under warming or elevated CO_2 (e CO_2) have never been
99 incorporated into models via data-model fusion or used to constrain models in projecting methane
100 emission under climate change.

101 Net methane emission includes contributions from plant-mediated transport, diffusion and
102 ebullition (i.e. bubble release). Over 90% of the methane emission in a *Carex*-dominated fen near
103 Schefferville, Quebec, Canada was mediated by plants [Whiting and Chanton, 1992]. Emergent

104 plants in a peatland in southern Michigan, USA accounted for 64% - 90% of the net CH₄ efflux in
105 plant enclosure experiments [Shannon *et al.*, 1996]. Plant-mediated fluxes averaged 69.8 ± 11.8
106 mg CH₄ m⁻² d⁻¹ and accounted for *ca.* 50% of total fluxes at the Alaska Peatland Experiment site
107 [Shea *et al.*, 2010]. In the same study, diffusion contributed to less than 9% of total CH₄ flux (up
108 to 7.6 mg CH₄ m⁻² d⁻¹) and ebullition accounted for *ca.* 41% of total CH₄ flux. However, the
109 quantity and temporal-spatial scales of experimental studies are limited, so the responses of the
110 relative contributions of the three processes to climate warming have not been unraveled either
111 using experiments or modeling approaches.

112 In process-based methane models, the individual pathway of CH₄ emission is related to CH₄ pool
113 size (CH₄ concentration), which is primarily determined by CH₄ production. Once the parameters
114 in CH₄ production, plant-mediated transportation, ebullition, and diffusion are constrained by
115 observed data and the prior range of parameter values with a data-model fusion technique [Wang
116 *et al.*, 2009; Richardson *et al.*, 2010; Keenan *et al.*, 2011, 2012; Smith *et al.*, 2013], the simulation
117 of differential contributions from the three pathways under warming and eCO₂ may be improved.
118 The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experimental site
119 is unique in coupling deep peat heating (to a depth of 2 m) and above-ground warming at +0°C,
120 +2.25°C, +4.5°C, +6.75°C and +9 °C above ambient temperature along with eCO₂ treatment
121 [Hanson *et al.*, 2016a]. Although not enough data are yet available for validating methane emission
122 under warming treatments, the extensive data sets released or coming out from SPRUCE will
123 enable parameter estimation, uncertainty quantification, and contribution from each pathway to
124 better forecast methane fluxes under warming and eCO₂.

125 In this study, we focus on developing a data-informed process-based model using the methane
126 chamber measurement data from a northern peatland in northern Minnesota where the SPRUCE

127 project is occurring. We also looked at differential responses of CH₄ production, oxidation,
128 diffusion, ebullition and plant-mediated transportation to warming and eCO₂. We hypothesized
129 that both warming and eCO₂ would increase methane emission in this ombrotrophic bog, with
130 differential responses of each process due to the differential temperature dependencies of
131 methanogenesis and respiration.

132 **2. Methods**

133 **2.1 Site Description and treatments**

134 We took Spruce and Peatland Responses Under Climatic and Environmental Change experiment
135 (SPRUCE) as our case study site. The SPRUCE project is conducted to study the responses of
136 northern peatland to climate warming (+0, +2.25, +4.5, +6.75, +9 °C) and elevated atmospheric
137 CO₂ concentration (+0 and +500 ppm) [Hanson *et al.*, 2016a]. The SPRUCE experiment is located
138 in the 8-ha S1 bog that has been at the Marcell Experimental Forest (MEF, N 47° 30.476' W 93°
139 27.162', 418 m above mean sea level), a site in northern Minnesota, USA, with a long-term
140 research program that is administered by the USDA Forest Service. Temperature and precipitation
141 have been measured since 1961 at the MEF South Meteorological station, which is about 1 km
142 from the SPRUCE experiment. The mean annual temperature from 1961 to 2009 was 3.4 °C, and
143 the mean annual precipitation was 780mm [Sebestyen *et al.*, 2011b]. Mean annual air temperatures
144 have increased approximately 0.4 °C per decade over the last 50 years [Sebestyen *et al.*, 2011b].
145 Vegetation within the S1 bog is dominated by trees species *Picea mariana* and *Larix laricina*, a
146 variety of ericaceous shrubs, and *Sphagnum* sp. moss. The bog also has graminoids *Carex*
147 *trisperma* and *Eriophorum spissum*, as well as forbs *Sarracenia purpurea* and *Smilacina trifolia*.
148 Mean peat depth in this bog is around 2-3m [Parsekian *et al.*, 2012].
149 The water table typically fluctuates within the top 30 cm of peat at five long-studied bogs on the
150 MEF [Sebestyen *et al.*, 2011a]. Within SPRUCE, water table levels have been measured half
151 hourly (except during freezing temperatures) at the meteorological station EM1 on the southwest
152 side of the experiment site since Jan 2011. The sensor was placed in a hollow (microtopographic
153 lows that are interspersed among hummocks of bogs [Verry, 1984]). A TruTrack WT-VO water
154 level sensor was used to measure water table levels that were logged with a Campbell Scientific

155 CR1000 data logger. In this study, water table height is expressed as zero at the hollow surface
156 during late spring or early summer [Sebestyen and Griffiths, 2016]. Community-level CH₄
157 emission were measured once each month during snow-free months beginning during 2011 using
158 a portable open-path analyzer in each plot at “large collars” (area of 1.13 m²) that have been
159 previously described [Hanson *et al.*, 2016b; Hanson *et al.*, 2017]. Mean annual air temperature at
160 2 meters height ranged 1.91-5.10 °C, mean annual soil temperature at 30 cm depth ranged 5.83-
161 7.06 °C, annual precipitation ranged 651-717 mm during the year 2011-2016. In total, 45 daily
162 CH₄ chamber measurement data points were integrated from ambient plots from 2011-2016. We
163 took the mean value if there is more than one plot that have data on the same date, variations in
164 different ambient plots were not simulated due to our purpose to represent the site level CH₄
165 emission.

166 **2.2 Model description and key processes**

167 **2.2.1 Overview of TECO**

168 The process-based biogeochemistry model, TECO (Terrestrial ECOsystem model), simulates
169 carbon, nitrogen and hydrology cycles in terrestrial ecosystems [Weng and Luo, 2008]. The model
170 has four major components: canopy photosynthesis, soil water dynamics, plant growth (allocation
171 and phenology), and soil carbon and nitrogen transfers. A detailed description of TECO is
172 available in Weng and Luo [2008] and Shi *et al.* [2015b]. The canopy sub-module was mainly
173 derived from Wang and Leuning’s [1998] two-leaf model, which simulated processes of canopy
174 photosynthesis, conductance, energy balance, and transpiration. The soil water dynamics sub-
175 module has ten soil layers and simulates soil moisture dynamics based on precipitation,
176 evapotranspiration and runoff. Evaporation is regulated by the first soil layer water content and the
177 evaporative demand of the atmosphere. Transpiration is determined by stomatal conductance and

178 the soil water content of layers where roots are present. When precipitation exceeds water recharge
179 to soil water holding capacity, runoff occurs. The C transfer sub-module simulates movement of
180 C from plants to three soil C pools through litter fall and the decomposition of litter and soil organic
181 C. Carbon fluxes from litter and soil carbon pools are based on residence time of each C pool and
182 the C pool sizes [Luo and Reynolds, 1999].

183 The TECO model has been adapted to the SPRUCE site by *Jiang et al.* [2017] and *Huang et al.*
184 [2017] to study the forecasting uncertainty in terrestrial carbon cycles and soil thermal dynamics.
185 Five out of 18 parameters related to photosynthesis, respiration, plant growth and C turnover were
186 constrained by 11 pretreatment data sets from 2011 to 2014 [*Jiang et al.*, 2017]. Since water table
187 is an important variable determining aerobic and anaerobic belowground environments and further
188 influence CH₄ production, oxidation and diffusion, we improved the model by incorporating
189 hourly time step water table dynamics and methane production, oxidation, diffusion, ebullition and
190 plant-aided transportation processes into the model. We followed the original TECO_SPRUCE
191 structure and divided the soil into 10 layers, with first five layers that were 10-cm thick and other
192 five layers that were 20-cm thick. (most peatland roots are distributed in the top 60 cm peat layer).
193 The conceptual structure of water table and methane flux models and the incorporation into
194 TECO_SPRUCE are shown in Fig.1 and further described below.

195 **2.2.2 Water table module**

196 New algorithms were developed and integrated into the hydrological part of TECO to estimate the
197 water table level and the influence of the water table on soil moisture in the unsaturated zone.
198 Generally, the water table module followed Granberg's [*Granberg et al.*, 1999] method and this
199 approach has been widely applied in global methane models [*Zhuang et al.*, 2004; *Wania et al.*,
200 2009a; *Zhu et al.*, 2014]. Based on our observation data, these bog soils are always saturated below

201 30cm [Tfaily *et al.*, 2014], except during some extreme droughts [Sebestyen *et al.*, 2011].
 202 Therefore, we set 30cm as the maximum water table depth (z_b). The system was considered as a
 203 simple bucket model. The changes in water content of the top 30 cm soil profile can be calculated
 204 by a water balance model characterized by water input and output at hourly time step. The level of
 205 the water table is determined by soil moisture change. We used a constructed function for water-
 206 holding capacity to simulate the dynamics of the water table level. In the unsaturated zone, we use
 207 a quadratic function and the soil volumetric water content (θ_{us}) increases from the vegetation
 208 surface volumetric water content (θ_s) to the position of the water table (z_{wt}) as follows:

$$209 \quad \theta_{us}(z) = \min \left[\varphi, \theta_s + (\varphi - \theta_s) \left(\frac{z}{z_{wt}} \right)^2 \right], \quad (1)$$

210 where φ has a constant value of 0.95, z is the depth in soil (mm), and θ_s is adapted from Hayward
 211 and Clymo [1982] and represented as:

$$212 \quad \theta_s = \max [\theta_{smin}, \varphi - (a_z z_{wt})], \quad (2)$$

213 where θ_{smin} is the minimum volumetric water content still held by capitulum of *Sphagnum* at the
 214 soil surface and set to 0.25, a_z is the linearly decreasing gradient given by:

$$215 \quad a_z = \frac{\varphi - \theta_{smin}}{z_{\theta smin}}, \quad (3)$$

216 where $z_{\theta smin}$ is the maximum suction interval given the value 100 mm. Thus, the total volume of
 217 water in soil profile above z_b would be:

$$218 \quad V_{tot} = \varphi(z_b - z_{wt}) + \int_0^{z_{wt}} \theta_{us}(z) dz, \quad (4)$$

219 where the first part of the equation represents the water content in the saturated zone above z_b , and
 220 the second part of the equation refers to the water content in the unsaturated zone. If the whole

221 profile is saturated, the height of standing water is represented by the difference of V_{tot} and $z_b\varphi$.

222 The final equation for water table depth is:

$$223 z_{wt} = \begin{cases} \sqrt{\frac{3(\varphi z_b - V_{tot})}{2a_z}} & \text{if } z_{wt} > 0 \text{ and } z_{wt} \leq z_{\theta smin} \\ \frac{3(\varphi z_b - V_{tot})}{2(\varphi - \theta_{smin})} & \text{if } z_{wt} > z_{\theta smin} \text{ and } z_{wt} < z_b, \\ -(V_{tot} - z_b\varphi) & \text{if } z_{wt} < 0 \end{cases} \quad (5)$$

224 where a positive value of z_{wt} indicates the water table is below the hollow surface, and a negative

225 value of z_{wt} indicates the water table is above the hollow surface.

226 2.2.3 Methane module

227 TECO_SPRUCE_ME explicitly considers the transient and vertical dynamics of CH_4 production
228 (P_{ro} , methanogenesis), CH_4 oxidation (O_{xi} , methanotrophy) and CH_4 transport from the soil to the
229 atmosphere which includes ebullition (E_{bu}), diffusion (D_{ifu}), and plant-mediated transport (A_{ere}) in
230 the soil profiles. The structure and processes were adapted from a number of previous studies and
231 models [Walter and Heimann, 2000; Zhuang *et al.*, 2004; Wania *et al.*, 2010; Riley *et al.*, 2011].

232 We assume that soils can be separated into an unsaturated zone above the water table and a
233 saturated zone below the water table. Methane oxidation occurs in the unsaturated zone and
234 rhizosphere (as explained in Section 2.2.3.4), methane production occurs in the saturated zone
235 [Walter and Heimann, 2000; Zhuang *et al.*, 2004; Zhu *et al.*, 2014; Cao *et al.*, 1996]. To simulate
236 methane dynamics within the soil, we divided the soil column into 10 layers, with first five layers
237 that were 10-cm thick and other five layers that were 20-cm thick. Within each soil layer, CH_4
238 concentration dynamics were calculated by a transient reaction equation:

$$239 \frac{\partial([CH_4])}{\partial t} = P_{ro}(z,t) - O_{xi}(z,t) - E_{bu}(z,t) - A_{ere}(z,t) - \frac{\partial D_{ifu}(z,t)}{\partial z}, \quad (6)$$

240 where $[\text{CH}_4]$ is soil CH_4 concentration (g C m^{-3}), z is the depth in soil (mm), t is time step (hr), P_{ro}
 241 (z,t) is the CH_4 production rate, $O_{xi}(z,t)$ is the CH_4 oxidation rate, $E_{bu}(z,t)$ is the ebullitive CH_4
 242 emission rate, and $A_{ere}(z,t)$ is the plant-mediated transportation rate. The term $\frac{\partial D_{ifu}(z,t)}{\partial z}$ is the flux
 243 divergence resulting from the diffusion of methane into/out of soil layer z from the lower/upper
 244 soil layer or the atmosphere (for the first layer). A negative value indicates a reverse transfer
 245 direction determined by the difference of CH_4 concentration between adjacent layers. The total
 246 emission of CH_4 from soil to atmosphere ($F_{CH_4}(t)$) is represented as:

$$247 \quad F_{CH_4}(t) = E_{bu}(t) + A_{ere}(t) + D_0(t), \quad (7)$$

248 where within each time step, $E_{bu}(t)$ is the sum of all the ebullitive CH_4 emissions in soil layers,
 249 $A_{ere}(t)$ is the sum of all the plant-aided CH_4 emissions in soil layers, and $D_0(t)$ is the diffused flux
 250 from the first soil layer into the atmosphere (a negative value indicates diffused flux from the
 251 atmosphere into the soil).

252 2.2.3.1 Methane production

253 Methanogenesis is the terminal step of soil organic carbon decomposition under anaerobic
 254 conditions [Conrad, 1999]. This process is determined by carbon substrate supply and soil
 255 environmental conditions such as water table via O_2 availability and soil temperature [Walter and
 256 Heimann, 2000]. In TECO_SPRUCE_ME, CH_4 production occurs only in the saturated zone of
 257 the soil profile. Similar to CLM4Me [Riley *et al.*, 2011], LPJ-WHyMe [Wania *et al.*, 2010; Spahni
 258 *et al.*, 2011] and TRIPLEX-GHG [Zhu *et al.*, 2014] models, we assume there are no time delays
 259 between fermentation and methanogenesis so that CH_4 production within the catotelm is directly
 260 related to heterotrophic respiration from soil and litter (R_h , $\text{g C m}^{-2}h^{-1}$):

$$261 \quad P_{ro}(z,t) = R_h(z,t) r_{mef} f_{stp}(z,t) f_{pH} f_{red}, \quad (8)$$

262 where $R_h(z,t)$ is redistributed in different soil layers by assuming that 50% is associated with roots
 263 and the rest is evenly distributed among the top 0.3 m of soil [Riley *et al.*, 2011]. The distribution
 264 of root biomass was estimated from minirhizotrons and root in-growth cores over the summer of
 265 2013 [Iversen *et al.*, 2017]. The fractions of root biomass in each soil layer ($f_{root}(z)$) were
 266 estimated as 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.025, 0.015, 0.005, and 0.005 from the upper boundary
 267 (the soil surface or water surface if the water table is above the soil surface) to a lower boundary.
 268 The parameter r_{me} is the potential ratio of anaerobically mineralized C released as CH_4 , which is
 269 an ecosystem specific conversion scalar. The soil environmental scalers, f_{stp} , f_{pH} , and f_{red} are
 270 for soil temperature, pH and redox potential. The factor f_{stp} is a multiplier enhancing CH_4
 271 production with increasing soil temperature. It uses a Q_{10} function with a Q_{10} coefficient for
 272 production (Q_{10pro}), a highest temperature (T_{max}) and optimum temperature (T_{opt}) for CH_4
 273 production. We used Q_{10pro} which refers to a parameter that describes the temperature sensitivity
 274 of the reaction from CO_2 to CH_4 . Q_{10Rh} describes temperature sensitivity of the reaction from soil
 275 organic carbon to CO_2 , which has already been adapted and constrained by Jiang *et al.* [2017].
 276 Previous studies have shown that in winter when soil temperature is below 0 °C, the
 277 methanogenesis rate is significantly lower than that of rates observed during growing seasons
 278 [Whalen and Reeburgh, 1992; Shannon and White, 1994]. Therefore, CH_4 production in the model
 279 only occurs when soil temperature is above 0 °C and below an extremely high temperature of 45
 280 °C as shown below:

$$281 f_{stp}(t) = \begin{cases} 0 & \text{if } T_{soil} < 0 \\ Q_{10}^{\frac{T_{soil}(t) - T_{optpro}}{10}} & \text{if } 0 \leq T_{soil} \leq T_{max} \\ 0 & \text{if } T_{soil} > T_{max} \end{cases} \quad (9)$$

282 where $T_{soil}(t)$ is the hourly soil temperature, and T_{optpro} is the optimum temperature for CH₄
283 production, which varies across ecosystems. In this study we chose an value of 20 °C since this
284 was the maximum temperature for which methane production was examined in incubations of peat
285 from this site [Wilson *et al.*, 2016].

286 The factors f_{pH} and f_{red} are nominally set to a constant value of 1.0 due to the model sensitivity
287 [Riley *et al.*, 2011; Meng *et al.*, 2012] and uncertainty in characterizing these two parameters
288 [Whalen, 2005, Le Mer and Roger, 2001; Wania *et al.*, 2010]. In the CLM4Me model, the effect
289 of pH and redox potential on net fluxes were tested in the sensitivity analysis, and resulted in less
290 than a 20% change in net CH₄ emission at high latitudes [Riley *et al.*, 2011]. Redox potential does
291 not have substantial impacts on methane emissions at seven wetland sites including one adjacent
292 to the Marcell Experimental Forest in north central Minnesota [Meng *et al.*, 2012; Shurpali and
293 Verma, 1998]. Wania *et al.* [2010] argued that the pH and redox factors are so poorly characterized
294 that they should be excluded. Many of the current process-based methane models use a single
295 value for the pH scalar calculated from the soil property that does not change with time and depth.
296 In many process-based methane models a step function is used for calculating the redox potential
297 scalar [Fiedler and Sommer, 2000; Segers and Kengen 1998; Zhang *et al.*, 2002], which is decided
298 by root distribution, fraction of water filled pore space, the water table position, as well as several
299 other constant parameters with a single value across different ecosystems such as change rate of
300 soil redox potential under saturated conditions, cross-sectional area of a typical fine root and fine
301 root length density. In our model, the potential ratio of anaerobically mineralized C released as
302 CH₄ can reflect some of the information on the effects of pH and redox potential to methane
303 production. We kept f_{pH} , and f_{red} in equation (8) because as more information become available
304 we might be able to improve their calculation in our later versions.

305 **2.2.3.2 Methane oxidation**

306 Methane is oxidized by methanotrophs in both the acrotelm (O_2 as electron accepter) and the
 307 catotelm (Fe^{3+} , NO_3^- , SO_4^{2-} , etc. as electron accepters). Like in other methane models [Cao *et al.*,
 308 1996; Zhuang *et al.*, 2004], we only consider CH_4 oxidation in the acrotelm and during the process
 309 of plant-mediated transportation (as explained in Section 2.2.3.4). Given that CH_4 oxidation is
 310 largely controlled by CH_4 concentration, it is assumed to follow the Michaelis-Menten kinetics
 311 [Bender and Conrad, 1992] represented by:

312
$$O_{xi}(z,t) = O_{\max} f_{CH_4}(z,t) f_{sto}(z,t), \quad (10)$$

313 where O_{\max} is the ecosystem-specific maximum oxidation rate ($\mu\text{mol L}^{-1} \text{ h}^{-1}$) for CH_4 , f_{CH_4} is the
 314 CH_4 concentration coefficient equal to: $\frac{[CH_4](z,t)}{K_{CH_4} + [CH_4](z,t)}$, where $[CH_4]$ denotes the soil methane
 315 concentration (g C m^{-3}) at time t and depth z , and K_{CH_4} is Michaelis constant. $f_{sto}(z,t)$ is an
 316 environmental scalar associated with a Q_{10} function, with Q_{10oxi} and ecosystem-specific optimum
 317 temperature for oxidation (T_{optoxi}).

318 **2.2.3.3 Aqueous and gaseous diffusion**

319 In process based models, CH_4 emission from the soil to the atmosphere is represented by three
 320 pathways: diffusion ($D_{if}(z,t)$), plant-mediated transport ($A_{ere}(z,t)$), and ebullition ($E_{bu}(z,t)$).

321 The CH_4 diffusion across soil layers follows Fick's first law,

322
$$D_{ifu}(z,t) = D_{CH_4}(z,t) \frac{\partial [CH_4](z,t)}{\partial z}, \quad (11)$$

323 where $D_{ifu}(z,t)$ is the diffusive flux at depth z (mm) and time t (hour), and $[CH_4](z,t)$ is the
 324 corresponding methane concentration (g C m^{-3}). The diffusion coefficient ($D_{CH_4}(z,t)$) varies
 325 with soil layers, the calculation is adapted and modified from Walter and Heimann [2000] :

326

$$D_{coe}(z,t) = \frac{(f_{air}(z,t))^{10/3}}{\varphi^2} \times D_{CH4a}, \quad (12)$$

327

$$D_{CH_4}(z,t) = \begin{cases} D_{CH_4W}, & f_{air}(z,t) \leq 0.05, \\ D_{coe}(z,t), & f_{air}(z,t) > 0.05. \end{cases} \quad (13)$$

328 where $D_{coe}(z,t)$ is the CH_4 diffusivity in soil; D_{CH4a} and D_{CH4w} are the diffusion coefficient of
 329 methane in bulk air ($0.2 \text{ cm}^2 \text{s}^{-1}$) and in water ($0.2 \cdot 10^{-4} \text{ cm}^2 \text{s}^{-1}$) [Walter and Heimann, 2000];
 330 φ is soil porosity; f_{water} is the fraction of water-filled pore space in soil calculated from soil water
 331 content; and f_{air} is the fraction of air-filled pore space in soil calculated by $\varphi - f_{water}$. Only the
 332 net emission or uptake from first layer ($D_0(t)$) directly contributes to the final CH_4 flux exchange
 333 between soil and the atmosphere. For boundary conditions, the methane flux at the bottom
 334 boundary was set to zero. The atmospheric CH_4 concentration at the soil surface (or water surface
 335 if the water table is at or above the soil surface) is set to $0.076 \mu\text{M}$. At the water-air interface the
 336 methane concentrations in both phases are assumed to be in equilibrium. For layers where air
 337 fraction ($f_{air}(z,t)$) < 0.05 , the diffusivities for water were used. When $f_{air}(z,t) > 0.05$, the
 338 diffusivities in soil were used.

339 **2.2.3.4 Plant-mediated transportation**

340 Vascular plants enhance CH_4 emissions by transporting CH_4 from the point of methanogenesis in
 341 the rhizosphere directly to the atmosphere [Joabsson *et al.*, 1999]. When gas is transported through
 342 intercellular spaces (molecular diffusion) or aerenchyma tissues, methane emissions are larger than
 343 through diffusion alone. Because the diffusive CH_4 flux may bypass the soil profiles where it might
 344 otherwise be consumed above water table level by oxygen (O_2) or below the interface by Fe^{3+} ,
 345 NO_3^- , SO_4^{2-} , etc. [Chanton and Dacey, 1991]. Conversely, plants could reduce CH_4 emissions by
 346 releasing O_2 to the rhizosphere thereby enhancing CH_4 oxidation. In TECO_SPRUCE_ME, plant-

347 mediated transport is adapted from Walter's model [Walter and Heimann, 2000]. We described
 348 two processes: CH₄ transported through plants and directly into the atmosphere (the 'chimney
 349 effect') and enhanced CH₄ oxidation during upward transport in tissues. Briefly, it is modeled as
 350 a function of the vegetation condition (T_{veg}), the fraction of root biomass in each soil layer (f_{root}
 351 (z)), the growing state of plants ($f_{growth}(t)$), the fraction of CH₄ consumed by oxidation in
 352 rhizosphere (P_{ox}) and the distribution of soil CH₄ concentrations in the soil:

$$353 \quad A_{ere}(t) = k_{pla} T_{veg} f_{root}(z) f_{growth}(t) [CH_4] (1 - P_{ox}), \quad (14)$$

354 where k_{pla} is a rate constant with the unit 0.01 h⁻¹; The parameter T_{veg} is a factor of transport
 355 ability at the plant community level, which is set by species composition and plant density; The
 356 fraction of CH₄ consumed by oxidation in rhizosphere, P_{ox} , is set to 50%, although there is high
 357 variability of observed values [Gerard and Chanton, 1993; Schipper and Reddy, 1996]. The
 358 multiplier $f_{growth}(t)$ describes the effects of the growing stage of vegetation on plant-mediated
 359 methane transport [Walter and Heimann, 2000; Zhuang *et al.*, 2004], it is determined by leaf area
 360 index (LAI) and soil temperatures (T_{soil}),

$$361 \quad f_{growth}(t) = \begin{cases} LAI_{min} & \text{if } T_{soil} < T_{gr} \\ LAI_{min} + LAI_{max} \left(1 - \left(\frac{T_{mat} - T_{soil}}{T_{mai} - T_{gr}}\right)^2\right) & \text{if } T_{gr} \leq T_{soil} \leq T_{mat} \\ LAI_{max} & \text{if } T_{mat} > T_{soil} \end{cases}, \quad (15)$$

362 where LAI_{min} is the minimum LAI associated with the beginning of plant growth; while LAI_{max}
 363 is the maximum LAI associated with plant at maturity; We used T_{gr} as the temperature at which
 364 plants starts to grow; and T_{mat} is the temperature at which plants reach maturity. Similar to Walter
 365 and Heimann [2000] and Zhuang *et al.* [2004], LAI_{min} and LAI_{max} were chosen to be 0 and 4,
 366 respectively; T_{gr} is equal to 7°C where the annual mean soil temperature is above 5°C, otherwise,

367 T_{gr} is equal to 2°C. The annual mean soil temperature at our study site is 5.83-7.06°C, so the value
368 7°C was used. T_{mat} is assumed to equal $T_{gr} + 10^\circ\text{C}$.
369 A range of 0-15 for T_{veg} was used in a process based model at five wetland sites [Walter and
370 Heimann, 2000]. In Zhuang *et al.*[2004], the value of T_{veg} was given as 0.5 for tundra ecosystems
371 and 0.0 for boreal forests, as they considered trees to not contribute to plant-mediated transport;
372 shrubs to mediate some gas transportation; and grasses, ferns, and sedges to be good mediators of
373 gas transport. The assignments of this parameter are empirical and would be improper for trees
374 and shrubs that mediate CH₄ transportation. In our study we give a 0-15 range for T_{veg} from those
375 studies and try to constrain the value by using data assimilation as illustrated below.

376 2.2.3.5 Ebullition

377 We assumed that bubbles form when the CH₄ concentration exceeded a certain threshold ((

378 $[CH_4]_{thre} = 750 \mu\text{mol L}^{-1}$) [Walter and Heimann, 2000] and that bubbles were directly emitted into
379 the atmosphere when the water table was above the soil surface. Otherwise, the bubbles are added
380 to the soil layer just above the water table and then continue to diffuse through the soil layers if z
381 is below the water level:

$$382 E_{bu}(z,t) = \begin{cases} K_{ebu}([CH_4](z,t) - [CH_4]_{thre}) & \text{if } [CH_4] > [CH_4]_{thre} \\ 0.0 & \text{if } [CH_4] \leq [CH_4]_{thre} \end{cases}, \quad (15)$$

383 where K_{ebu} is a rate constant of 1.0 h⁻¹ [Walter and Heimann, 2000]. No bubbles are formed if z
384 is above the water level.

385 2.3 Sensitivity test for data assimilation

386 The efficiency of data assimilation is affected by the number of observational data sets as well as
387 the amount of data in each set. In this study, methane emission data is the only available
388 observational data set for data assimilation. Therefore, we chose only the most sensitive parameters

389 for data assimilation because the observational variable is usually sensitive to the changes in
390 parameter values when a parameter can be constrained by that variable in data assimilation
391 [Roulier and Jarvis, 2003]. We chose nine key parameters used in TECO_SPRUCE_ME (Table
392 1) for the initial sensitivity test, and most of the remaining parameters are physical constants. The
393 sensitivity of parameters are determined by sensitivity index (I) defined as:

$$394 \quad I = \frac{(y_2 - y_1)/y_0}{2\Delta x/x_0} \quad , \quad (16)$$

395 where y_0 is the model output (methane emission) with an initial value of the independent variable
396 x_0 (parameters in Table 1). The independent variable value varied by $\pm \Delta x$ with corresponding
397 dependent variable values y_2 and y_1 . Δx was set at 0.25 times of initial values. The sensitivity
398 index (I) was used by Lenhart *et al.* [2002] and Zhu *et al.* [2014] to quantify sensitivity, which was
399 ranked into four levels, the grading of the index could be found in Lenhart *et al.* [2002].

400 2.4 Data Assimilation

401 Using the Bayesian probabilistic inversion technique, we estimated the posterior distribution of
402 model parameters based on prior knowledge of parameter ranges (Table 1) and field chamber
403 measurements of CH_4 emissions. Since the whole-ecosystem warming (air heating and deep peat
404 heating) treatments were recently initiated on August 12, 2015 [Hanson *et al.*, 2017], and the
405 number of whole-ecosystem warming treatment data points were not enough for data assimilation,
406 we only compiled chamber measurement data in ambient plots from 2011-2014 for data
407 assimilation and 2015-2016 for validation. Both the observed data and simulated results were
408 rescaled to a daily emission unit for comparison. In order to project future methane flux uncertainty
409 only related to parameter values, we conducted 100 forecasting runs by randomly choosing
410 parameter sets from their posterior distributions, we randomly picked one set of stochastically
411 generated environmental variables and used the same set for all the forecasting runs.

412 Bayes' theorem provides an equation in which the posterior probability density function $p(\theta | Z)$
413 of model parameters for given observations Z is based on prior knowledge of parameter
414 distribution $p(\theta)$ and the likelihood function $p(Z | \theta)$:

415
$$p(\theta | Z) \propto p(Z | \theta)p(\theta) \quad (17)$$

416 Here we assume the prior knowledge of parameter distribution $p(\theta)$ is uniformly distributed. Due
417 to the equifinality and unidentifiable parameters when using only one observation data stream to
418 constrain multiple parameters [Luo *et al.*, 2009], we only chose 4 parameters with high sensitivity
419 to run data assimilation and the prior ranges were cited from published papers for the same or
420 similar ecosystems (Table1). The errors between each observation data and model simulation
421 result independently follow normal distribution with a zero mean, so the likelihood function is
422 represented by:

423
$$p(Z | \theta) \propto \exp\left\{-\sum_{t \in Z} \frac{[Z_i(t) - X(t)]^2}{2\sigma_i^2(t)}\right\} \quad (18)$$

424 where $Z_i(t)$ is the only observation stream at time t , $X(t)$ is the simulated corresponding variable,
425 and $\sigma_i(t)$ is the standard deviation of observation set.

426 The Markov chain Monte Carlo (MCMC) technique was used for posterior probability distribution
427 of parameters sampling with adaptive Metropolis-Hastings (M-H) algorithm. A new vector of
428 candidate parameters was repeatedly proposed based on the accepted parameters in the previous
429 steps by a normal distribution. The new set of parameter values would be accepted either by
430 reducing the sum of standard deviation from observation and model, or being randomly accepted
431 with a probability of 0.05. Detailed information on sampling posterior distribution is well
432 illustrated in Jiang *et al.* [2017]. We ran 4 chains of 50,000 simulations with an acceptance rate
433 around 30%, and used the Gelman-Rubin statistic [Gelman and Rubin, 1992; Xu *et al.*, 2006] to

434 check the convergence of sampling chains. Only the second half of accepted parameter values
435 were used for posterior analysis considering the burn-in period in the first half.

436 **2.5 Stochastic Weather Generation**

437 We generated three hundred sets of 10-year environmental variables (2016-2024). Daily air
438 temperature and precipitation were stochastically generated based on historical data from 1961-
439 2014 at the MEF South Meteorological station using a vector autoregressive model (VAR, Fig. 2).
440 To match the model time step, hourly precipitation was obtained by evenly distributing daily
441 precipitation for each hour, hourly air temperature was interpolated from daily maximum and
442 minimum, and soil temperature was calculated from air temperature based on linear regression
443 between soil temperature and air temperature at S1 Bog from 2011-2014. The generated air
444 temperature generally follows the same distribution as the historical temperature (Fig. 2a). The
445 standard deviation of generated temperature decreases with increasing daily mean temperature
446 (Fig. 2c), which indicates a larger uncertainty of generated future temperature in winter than in
447 summer. Future prediction of precipitation is similar to the historical precipitation with slightly
448 higher variation (Fig. 2bd). More details on stochastic weather generation process and the
449 assignment of environmental forces can be found in *Jiang et al.* [2017]. We increased both the air
450 temperature and soil temperature by 2.25 °C, 4.5 °C, 6.75 °C, 9 °C and the atmospheric CO₂ value
451 by 500 ppm to simulate CH₄ emission in different scenarios manipulated at the SPRUCE site.

453 **3. Results**

454 **3.1 Parameters constrained by data assimilation in TECO_SPRUCE_ME**

455 The model output was sensitive to 5 out of 9 tested parameters in the growing season (Fig. 3):
456 potential ratio of anaerobically mineralized carbon released as CH₄ (r_{me}), Q₁₀ for CH₄ production
457 (Q_{10_pro}), maximum oxidation rate (O_{max}), ability of plant-mediated transportation decided by
458 species composition and plant density (T_{veg}), and optimum temperature for CH₄ production
459 (T_{opt_pro}) with sensitivity index values higher than 0.2. T_{opt_pro} and r_{me} had the highest sensitivity
460 index values throughout the growing season (sensitivity class >1.00, very high), suggesting the
461 importance of temperature and soil substrate in methanogenesis to methane emission. Q_{10_pro}, O_{max},
462 and T_{veg} rank in the second class of sensitivity and the sensitivity index values varied across
463 growing season. Q_{10_pro} had the lowest value of sensitivity index in July and October (around
464 0.2). O_{max}, and T_{veg} had the highest sensitivity index value in peak growing season (Aug, Sep and
465 Oct, around 0.5), suggesting the importance of plant root transportation and oxidation on methane
466 emission in response to environmental change.

467 There are strong interaction effects among r_{me}, Q_{10_pro} and T_{opt_pro} as these parameters are
468 multiplied in the same equation for methane production. We settled a reasonable value of T_{opt_pro}
469 to 20.0 based on published incubation results [*Wilson et al.*, 2016] and the values cited in other
470 modeling papers (*Zhuang et al.*, 2004; *Zhu et al.*, 2014), so as to better constrain the other
471 parameter values using data assimilation. Two out of 4 parameters put into data assimilation were
472 constrained including r_{me} and Q_{10_pro} (Fig. 4). Histograms of parameter shows that the
473 distribution of r_{me} is well constrained with a unimodal shape and the distribution of Q_{10_pro} is
474 edge hitting with a marginal distribution upward (Fig. 4ab). T_{veg} and O_{max} has the largest variability

475 and wide, slightly-domed distributions (Fig. 4cd), which may have resulted from a limited number
476 of observation data points and large variation in the CH₄ emission measurements.

477 **3.2 Simulation, validation and forecast in ambient condition**

478 Our simulated CH₄ flux well-captured the general seasonal changes in the CH₄ emission observed
479 by the large collar chamber (Fig. 5). The mean annual methane efflux from 2011-2014 was 16.5 ±
480 2.0 g C m⁻² yr⁻¹. We applied observational data from January 2015 - August 2016 for model
481 forecasting validation (Fig. 5), with the parameters constrained in the data assimilation stage using
482 the observational data from 2011-2014. During the forecasted period of 2015-2016, the seasonal
483 changes of methane emission is well captured by the model (Fig. 5). To better show the seasonal
484 variation, we picked the first year in the simulation (2011) and plotted daily variation of water
485 table (simulated), surface soil temperature (measured), and methane emission (simulated) in panel
486 a-c (Fig. 5). In general, the highest water table conditions occurred in late spring (May), and
487 middle-to-late summer (July to August), while lower levels occurred in middle spring (April),
488 early summer (June), and end of July. Before the month of July when the daily mean soil
489 temperature was below 10 °C, methane emission was restricted by temperature. During the peak
490 growing season the decrease of methane emission was mainly driven by low water level. When
491 the water table was at or above the soil surface, CH₄ emission were more sensitive to variability
492 in soil temperature. During the period from September 2016 - December 2024, the variation
493 amplitudes of CH₄ emissions were relatively higher due to the statistically generated weather
494 forcing data, while the general seasonal pattern remained the same with that from January 2011 -
495 August 2016 (Fig. 5).

496 **3.3 Responses of water table and CH₄ emission to warming and elevated CO₂**

497 Our modeling results showed no significant changes of water table elevation in response to whole
498 ecosystem warming treatment. By using constrained parameter values we were able to simulate
499 CH₄ emission in the bog and found that warming significantly increased methane emission by 1.5,
500 2.1, 3.0, and 4.2 times under +2.25 °C, +4.5 °C, +6.75 °C, and +9 °C, respectively (Fig. 6a), while
501 elevated CO₂ only had a small stimulating effect (*ca.* 10.4% - 28.6%) on methane emission (Fig.
502 6a). Both CH₄ production and oxidation increased by about 4 times above ambient level with 9 °C
503 warming with enlarged uncertainties especially in the growing seasons (Fig. 6bc, Fig. 8bc, 9bc).
504 Plant-mediated transport is the major pathway of CH₄ emission which increased by *ca.* 4 times
505 above the ambient level under 9 °C warming (Fig. 6d, 8adef, 9adef), however its relative
506 contribution to methane emission decreased from 96% to 92% due to the increased ebullition (Fig.
507 7). At the same time, in ambient conditions the uncertainty of plant transported began to increase
508 in early August (Fig. 8d), but the starting point moved up to late June under 9 °C warming (Fig.
509 9d). The absolute value of uncertainty was ten times the value without treatment. In ambient
510 conditions, ebullition contributed 0.13% (0.02 g C m⁻² yr⁻¹) of total emission, while under 9 °C
511 warming the total amount of bubbles released into the atmosphere increased to 5.7% (4.0 g C m⁻²
512 yr⁻¹) of total emission (Fig. 7). The uncertainty in plant mediated transportation and ebullition
513 both increased under warming (Fig. 6df), while the uncertainty in diffusion did not change much
514 (Fig. 6e). The simulated results showed that diffusion contributed 3.4% (0.57 g C m⁻² yr⁻¹) of total
515 emission, and it decreased to 1.7% (1.17 g C m⁻² yr⁻¹) of total emission under 9 °C warming (Fig.
516 7).

518 **4. Discussion**519 **4.1 Model performance in reducing uncertainties**

520 Data-model fusion reduced the uncertainty of methane emission estimation by constraining the
521 CH₄ and CO₂ ratio, and temperature sensitivity for CH₄ production. In our model, with 30 data
522 points of daily methane emission from 2011 to 2014, 2 out of 4 parameters were well-constrained
523 or marginally edge-hitting. *Gill et al.* [2017] estimated the mean value of CH₄ flux Q₁₀ to be 5.63
524 (2.92-10.52 with 95% confidence interval) using a linearized Q₁₀ function [*Humphreys et al.*,
525 2005] at the same study site during the 2015 growing season. Our constrained Q₁₀ range was 2.34-
526 6.33 with 95% confidence interval, which overlaps with but has a narrower range than the estimate
527 by *Gill et al.* [2017].

528 Equifinality and identifiability are the symptoms of using only one data stream to constrain
529 multiple parameters in a model [*Wang et al.*, 2001; *Braswell et al.*, 2005; *Luo et al.*, 2009; *Keenan
530 et al.*, 2011]. *Oikawa et al.* [2016] used one year of half hourly eddy covariance CH₄ emission data
531 and constrained 3 parameters in the CH₄ module of PEPRMT-DAMM model. Although the
532 posterior ranges of 2 out of 4 of key parameters in TECO_SPRUCE_ME have been constrained
533 and thus the uncertainty has been reduced, there is still some uncertainty due to the unconstrained
534 parameter O_{max} and lack of observation data available to constrain the other 3 parameters to a
535 smaller range. More parameters could be constrained with more measurement data available, such
536 as more data points in an extended length of time, as well as CH₄ concentration and CH₄ oxidation
537 in different soil layers.

538 Our simulated CH₄ flux captured the general seasonal changes in CH₄ emissions observed by the
539 large collar chamber (Fig. 5). Seasonal variations in wetland CH₄ fluxes are mostly determined by
540 temporal changes in peatland water volume and soil temperature [*Walter et al.*, 2001; *Gedney et*

541 *al., 2004*]. We found that soil temperature was the restricting factor when below 10 °C, while
542 during the peak growing season the decrease of CH₄ emission was mainly determined by the lower
543 water table (Fig. 5). CH₄ emission was more sensitive to variability in soil temperature during the
544 wet time when the water table was at or above the soil surface.

545 For the purpose of reducing simulation uncertainties by using data assimilation to constrain the
546 key parameters value, we did not fully incorporate all the processes and scalers described in other
547 studies, such as the effect of competition between processes [Riley *et al.*, 2011], pH and redox
548 potential [Cao *et al.*, 1998; Segers and Kengen, 1998; Zhu *et al.*, 2014]. There are always trade-
549 offs between the desire to include all the mechanisms assumed to be important and 1) reducing
550 those uncertainties from assumed model structure; 2) lack of prior knowledge of non-key
551 parameter values; and 3) the computational cost when applying data assimilation.

552 **4.2 Warming and eCO₂ effects on CH₄ emission**

553 By using constrained parameter values we were able to simulate CH₄ emission in the bog wetland
554 and found an exponential increase under warming (Fig. 6a). Wilson *et al.* [2016] fitted seasonal
555 flux measurements against the average temperature from 1m to 2m below the hollow surface and
556 also found an exponential increase in CH₄ emission using chamber flux measurements, also as part
557 of SPRUCE. Methane emissions were most responsive to warming during the peak growing
558 season, which could explain greater uncertainty in growing season in response to warming
559 simulated by the model (Fig. 8a, 9a). We found elevated CO₂ had a small stimulating effect (*ca.*
560 10.4% - 28.6%) on methane emission (Fig. 6a), due to increased substrate supply for
561 methanogenesis. Because elevated CO₂ has stimulating effects on soil respiration in TECO model
562 through increased photosynthesis and thus increased substrate supply for mineralization [Shi *et al.*,
563 2015b].

564 We compared our results with other modelling and experimental work. The Wetland and Wetland
565 CH₄ Inter Comparison of Models Project (WETCHIMP) simulated the change in global methane
566 emission in response to temperature increase (+3.7 °C) and elevated CO₂ (step increase from ~300
567 to 857 ppm) using ten global models [Melton *et al.* 2013]. A ~160% increase in global CH₄ flux
568 was found in ORCHIDEE model with the largest sensitivity to increased CO₂, other models results
569 showed an increase of global CH₄ emission from 73.2% ±49.1% to 55.4%±25.5%. Our results
570 showed that elevated CO₂ treatments stimulated methane emission by 10.4% - 23.6% per unit at
571 site level. The difference may be attributable to their expectation of an ~13% increase of global
572 wetland areal extent under the elevated CO₂ scenarios. Furthermore, different wetland types, such
573 as bogs and fens, may respond differently to CO₂ enrichment [Boardman *et al.*, 2011].

574 Our findings of increased methane emission with CO₂ enrichment are also consistent with
575 experiments. Methane emissions in natural wetlands and mesocosms generally have increased with
576 exposure to elevated atmospheric CO₂ [Megonigal and Schlesinger, 1997; Saarnio and Silvola,
577 1999; Saarnio *et al.*, 2003]. In a meta-analysis study, *van Groenigen et al.* [2011] reported an
578 increase of methane emission from natural wetlands of 13.2% per area for an atmospheric CO₂
579 concentration increase from 473-780 ppm. In an incubation study, *Kang et al.* [2001] found no
580 significant differences in CH₄ emission regardless a significantly higher biomass in a fen peatland.
581 Our results showed a much stronger response of methane emission (30%, 100%, 275%, and 400%
582 under 2.25, 4.5, 6.75, 9°C warming) mainly due to no significant changes in water table elevation
583 in response to the whole ecosystem warming treatment in this area, which was in agreement with
584 observed water table depth during the deep peat warming period [Wilson *et al.*, 2016]. The same
585 pattern of water elevation under warming was also projected by CLM model at the same study site
586 [Shi *et al.*, 2015a]. Zhu *et al.* [2011] estimated CH₄ emission in Northern Eurasia with the TEM

587 model for the period 1971–2100 (annual mean soil temperature gradually increased by \sim 6°C,
588 annual precipitation gradually increased by 30%). They found the water table dropped due to the
589 increased soil temperature, which diminished water table rising after additional rainfall. Using
590 various datasets on wetland extent, regional methane emission increased by 6–51%. Results from
591 WETCHIMP showed a slight, non-significant decline in global methane emission with warming
592 ($+3.7$ °C), due to a moderate decline in wetland area [Melton *et al.* 2013]. IAP is the only model
593 showing a large increase in CH₄ emissions, because it does not simulate increased evaporation
594 under warmer surface air temperature or an effect decreasing wetland area with increased
595 evaporation. Wetlands from different regions may also have differential responses to elevated
596 temperature. In warm regions, methane production may decrease if elevated temperature causes
597 down-regulation of photosynthesis and henceforth production of substrate for methane production
598 [Melton *et al.* 2013]. Bohn *et al.* [2007] used the VBM model and simulated methane emission in
599 western Siberia. They found increased methane production with higher temperature alone (0–5°C),
600 but overall shrinking of wetland area resulted in a net reduction in methane emissions.
601 Our simulation results showed that the total CH₄ production increased by 4 times under 9 °C
602 warming, while the heterotrophic respiration has only increased by *ca.* 25% in comparison to
603 ambient temperatures. That large contrast between methane production and respiration implies a
604 higher temperature dependence of methanogenesis than respiration. A similar result was also found
605 at the same site in an incubation study [Wilson *et al.*, 2016], where they found a positive correlation
606 between CH₄: CO₂ emission ratio and increased temperature. Consistently higher temperature
607 dependence in methanogenesis was also found across the ecosystem (field flux measurement),
608 community (CH₄ incubation), and species levels (pure culture) [Yvon-Durocher *et al.*, 2014].

609 We did not find differential responses of CH₄ emission in different layers, while the incubation
610 study by Wilson et al. [2016] showed that the increased CH₄ emission was largely driven by
611 surface peat (25cm) warming by measuring CH₄ production in different layers (25cm, 75cm,
612 100cm, 150cm and 200cm). The Q₁₀ for CH₄ production (Q_{10_pro}) may vary in different soil layers
613 and this parameter value is important when estimating CH₄ emission under warming. Different
614 Q₁₀ values for surface and catotelm soil may be needed in methane models. One possible solution
615 is to add o-alkyl carbon (C) content as a function of basal Q₁₀ into the equation, because the lack
616 of reactivity from deep peat to warming was speculated to result from low o-alkyl C [Leifeld et al.,
617 2012; Tfaily et al., 2014; Wilson et al., 2016].

618 In order to eliminate the interaction effect between r_me, Q_{10_pro} and T_{opt_pro} when constraining
619 their values, we set one of the key parameter T_{opt_pro} (reference temperature for methanogenesis)
620 to 20 °C in this ecosystem. A wide range of T_{opt_pro} values (-5.5 - 25 °C) have been used in
621 methane models for various ecosystems. Even in one single ecosystem type, for example, the
622 boreal forest, the value used in different models varies from 10 °C [Zhuang et al., 2004] to 25 °C
623 [Zhu et al., 2014]. As T_{opt_pro} is an extremely sensitive parameter in TECO_SPRUCE_ME
624 model, we carefully estimated the value according to the temperature response of CH₄ production
625 from surface peat samples incubated within 1 °C of *in situ* temperatures from the same study site
626 [Wilson et al., 2016]. In biogeochemical models all the reference temperatures for foliar respiration
627 [Wythers et al., 2005], soil respiration [Luo et al., 2001], and root respiration [Atkin et al., 2000]
628 were set to constant values, even when the acclimation effect on Q₁₀ and specific reaction rate at
629 a reference temperature were considered. This method was chosen partially because the reference
630 temperature is an intrinsic biological term which is stable under a certain combination of
631 organisms, for example, the structure of the microbial community, and the concentration and

632 quality of soil organic matter. On the other hand, the potential change in reference temperature due
633 the change in depth and substrate supply could be reflected by the change in Q_{10} .

634 **4.3 Differential responses of CH₄ emission pathways to warming and eCO₂**

635 Removal of the vascular plants (*Eriophorum vaginatum*) in a Swedish boreal peatland decreased
636 the seasonal CH₄ flux by 55%-85% [Waddington *et al.* 1996]. Wania *et al.* [2010] estimated the
637 contribution of plant-mediated transport to be 67.8%-84.5% across different sites using the LPJ-
638 WHyMe model. In Arctic tundra, plant-mediated transport represented 92%-98% of the net
639 emission measured by static chamber (clipping 100%, 50%, 0% of the phytomass quantity within
640 the sample chamber [Morrissey and Livingston, 1992]). Plant-mediated transport was 92-96.5%
641 of total emission at our study site. The contribution of plant mediated CH₄ efflux to total emission
642 may be underestimated in some biogeochemical models where trees, forbs and shrubs were not
643 included either because of the low NPP contribution or assumptions about the capacity of these
644 various plant types to mediate gas transport [Wania *et al.* 2010; Zhuang *et al.* 2004]. Lignified or
645 suberized plants, such as trees, are considered incapable of transporting CH₄. However, in the past
646 10 years some studies have detected considerable CH₄ efflux from stems [Terazawa *et al.*, 2007;
647 Carmichael *et al.*, 2014; Pitz and Megonigal, 2017]. Trees in boreal forests have been found to
648 emit methane from both stems and shoots [Machacova *et al.*, 2016]. Tree-mediated CH₄ emissions
649 contribute up to 27% of seasonal ecosystem CH₄ flux in a temperate forested wetland [Pangala *et*
650 *al.*, 2015]. In the TECO model, roots were not separated into tree, shrub, and grass, but we used a
651 scalar T_{veg} , a parameter that was determined by type and plant density. This parameter represents
652 the ability of plant to transport CH₄ at the community level. Plant-mediated transport of CH₄ from
653 deep soil layers may have been over estimated as the trees and shrubs may transport less CH₄ than
654 grasses and sedges. More data on the relative effects of different plant functional types on CH₄

655 transport are needed. For the long term projections, vegetation change should be considered as
656 CH_4 emission is sensitive to T_{veg} . The constant value used for T_{veg} in global methane emission
657 models [Zhang *et al.*, 2002; Zhuang *et al.*, 2004; Riley *et al.*, 2011; Zhu *et al.*, 2014] may bias for
658 CH_4 emission estimates.

659 Diffusion accounts for ~5% on average in south Florida wetlands [Barber *et al.* 1988]. Ebullition
660 accounts for 10% - 60% of the emission [Chanton *et al.* 1989; Tokida *et al.* 2007]. At the SPRUCE
661 site, Gill *et al.* [2017] did chamber measurements but used 30 cm diameter collars to measure
662 methane emissions at a smaller community level. Trees, shrubs and plants with well-developed
663 aerenchyma tissues, such as *Eriophorum spissum*, were excluded at this measurement scale. They
664 estimated 2015 growing season ebullition fluxes to be 1% of total CH_4 flux measurements averaged
665 from different warming treatments by considering CH_4 fluxes > 2 standard deviations of the
666 median as products of CH_4 ebullition. We estimated that diffusion and ebullition accounted for
667 3.4% and 0.1%, respectively. We found that CH_4 production rate drives the overall pattern of CH_4
668 emission (Fig7 ab). Due to a higher CH_4 concentration in soil layers, the relative contribution of
669 ebullition increased from 0.13% at the control to 5.7% at the 9°C warming, given the fact that any
670 “excess” CH_4 is immediately released into the atmosphere when water table is above the soil
671 surface. Although the absolute value of diffusion fluxes increased from 0.57 at the control to 1.17
672 $\text{g C m}^{-2} \text{ yr}^{-1}$ at the 9°C warming, the relative contribution of diffusion decreased to 1.7% from
673 3.4%. Our model-simulation of ebullition matched the observational data, which implied that
674 model-data fusion differentiates responses of plant-mediated transportation, diffusion, and
675 ebullition to climate change. The uncertainty in plant-mediated transportation and ebullition
676 increased under warming and contributed to the overall change of uncertainty in emission.

677 **4.4 Future Studies**

678 Existing methane models use a constant value of ecosystem-specific parameters such as Q_{10} for
679 CH_4 production (Q_{10_pro}) and potential ratio of anaerobically mineralized carbon released as CH_4
680 (r_{me}). Under long-term warming conditions, however, ecosystem acclimation to temperature
681 may result in a change in Q_{10} [*Wythers et al.*, 2005; *Gill et al.* 2017] and r_{me} . Through our data-
682 model fusion framework, the long-term change in parameter values may be detected by combining
683 the long term CH_4 emission measurement data and more data sets coming out such as CH_4
684 concentration in different layers and CH_4 oxidation rate.

686 **5. Conclusions**

687 We developed a methane module, which included processes of methane production, methane
688 oxidation, plant mediated methane transportation, diffusion through different layers, and
689 ebullition, together with water table dynamics. The methane module was integrated into the
690 Terrestrial ECOsystem (TECO) model. After constraining the parameters with multiple years of
691 methane emission data in a northern Minnesota peatland, we used the model to forecast CH₄
692 emission until 2024 under five warming and two elevated CO₂ treatments. We found 9 °C warming
693 significantly increased methane emission by 4 times above ambient conditions, and elevated CO₂
694 stimulated methane emission by 10.4%-23.6%. The uncertainty in plant-mediated transportation
695 and ebullition increased under warming and contributed to the overall change of uncertainty in
696 CH₄ emission estimates. The model-data fusion approach used in this study enabled parameter
697 estimation and uncertainty quantification for forecasting methane fluxes. As additional data for
698 warming and elevated CO₂ treatments becomes available, the data-model fusion may help estimate
699 parameter changes as ecosystems acclimate over time. The sensitivity of T_{opt_pro} and T_{veg} suggested
700 that these could be key parameters to be measured in the field so as to reduce uncertainties in
701 process-based models. Furthermore, the larger warming potential of CH₄ may result in a more
702 positive feedback of global warming in terrestrial ecosystems.

703 **Acknowledgements**

704 We thank Russell Doughty for his English language editing of this manuscript. Xingjie Lu, Junyi
705 Liang offered technical help on coding and debugging. This work was primarily founded by
706 subcontract 4000144122 from Oak Ridge National Laboratory (ORNL) to the University of
707 Oklahoma. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S.
708 Department of Energy under contract DE-AC05-00OR22725. Research in Yiqi Luo's EcoLab was
709 also financially supported by U.S. DOE DE-SC0008270, DE-SC00114085 and U.S. National
710 Science Foundation (NSF) grant EF 1137293, OIA-1301789. All data sets from this study are
711 available upon request. Relevant measurements were obtained from the SPRUCE webpage
712 (<http://mnspruce.ornl.gov/>), the archival ftp site (<ftp://sprucedata.ornl.gov>), or from the USDA
713 Forest Service. Data and source code of the TECO_SPRUCE_ME model are available at
714 <http://dx.doi.org/10.3334/CDIAC/spruce.046>.

715 **Copyright status:** This manuscript has been co-authored by a Federal employee. The United
716 States Government retains and the publisher, by accepting the article for publication,
717 acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
718 world-wide license to publish or reproduce the published form of this manuscript, or allow others
719 to do so, for United States Government purposes.

720 **References**

721 Atkin, O. K., E. J. Edwards, and B. R. Loveys (2000), Response of root respiration to changes in
722 temperature and its relevance to global warming, *New Phytol.*, 147(1), 141–154, doi:
723 10.1046/j.1469-8137.2000.00683.x.

724 Barber, T. R., Burke, R. A., and Sackett, W. M. (1988). Diffusive flux of methane from warm
725 wetlands. *Global Biogeochemical Cycles*, 2(4), 411-425, doi: 10.1029/GB002i004p00411.

726 Bartlett, K. B., P. M. Crill, J. A. Bonassi, J. E. Richey, and R. C. Harriss (1990), Methane flux
727 from the Amazon River floodplain: Emissions during rising water, *J. Geophys. Res.*, 95(D10),
728 16773, doi:10.1029/JD095iD10p16773.

729 Bender, M., and R. Conrad (1992), Kinetics of CH₄ oxidation in oxic soils exposed to ambient air
730 or high CH₄ mixing ratios, *FEMS Microbiol. Lett.*, 101(4), 261–270, doi:10.1111/j.1574-
731 6968.1992.tb05783.x.

732 Bohn, T. J., Lettenmaier, D. P., Sathulur, K., Bowling, L. C., Podest, E., McDonald, K. C., and
733 Friberg, T. (2007). Methane emissions from western Siberian wetlands: heterogeneity and
734 sensitivity to climate change. *Environmental Research Letters*, 2(4), 045015, doi:10.1088/
735 1748-9326/2/4/045015.

736 Boardman, C. P., Gauci, V., Watson, J. S., Blake, S., and Beerling, D. J. (2011). Contrasting
737 wetland CH₄ emission responses to simulated glacial atmospheric CO₂ in temperate bogs and
738 fens. *New Phytologist*, 192(4), 898-911, doi: 10.1111/j.1469-8137.2011.03849.x.

739 Braswell, B. H., W. J. Sacks, E. Linder, and D. S. Schimel (2005), Estimating diurnal to annual
740 ecosystem parameters by synthesis of a carbon flux model with eddy covariance net
741 ecosystem exchange observations, *Glob. Chang. Biol.*, 11(2), 335–355, doi:10.1111/j.1365-
742 2486.2005.00897.x.

743 Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin (2006), The carbon
744 balance of North American wetlands, *Wetlands*, 26(4), 889–916, doi: 10.1672/0277-
745 5212(2006)26[889:TCBONA]2.0.CO;2

746 Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang (2013), Methane emissions from
747 wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,
748 *Glob. Chang. Biol.*, 19(5), 1325–1346, doi:10.1111/gcb.12131.

749 Bubier, J. L., T. R. Moore, L. Bellisario, N. T. Comer, and P. M. Crill (1995), Ecological controls
750 on methane emissions from a Northern Peatland Complex in the zone of discontinuous
751 permafrost, Manitoba, Canada, *Global Biogeochem. Cycles*, 9(4), 455–470, doi:10.1029/
752 95GB02379.

753 Cao, M., J. B. Dent, and O. W. Heal (1995), Modeling methane emissions from rice paddies,
754 *Global Biogeochem. Cycles*, 9(2), 183–195, doi:10.1029/94GB03231.

755 Cao, M., S. Marshall, and K. Gregson (1996), Global carbon exchange and methane emissions
756 from natural wetlands: Application of a process-based model, *J. Geophys. Res. Atmos.*,
757 101(D9), 14399–14414, doi:10.1029/96JD00219.

758 Cao, M., K. Gregson, and S. Marshall (1998), Global methane emission from wetlands and its
759 sensitivity to climate change, *Atmos. Environ.*, 32(19), 3293–3299, doi: [http://dx.doi.org/10.1016/S1352-2310\(98\)00105-8](http://dx.doi.org/10.1016/S1352-2310(98)00105-8).

760 Carmichael, M. J., E. S. Bernhardt, S. L. Bräuer, and W. K. Smith (2014), The role of vegetation
761 in methane flux to the atmosphere: should vegetation be included as a distinct category in the
762 global methane budget?, *Biogeochemistry*, 119(1), 1–24, doi:10.1007/s10533-014-9974-1.

763 Chanton, J. P., and J. W. H. Dacey (1991), Effects of vegetation on methane flux, reservoirs, and
764 carbon isotopic composition, *Trace gas Emiss. by plants*, 65–92.

766 Chanton, J. P., Martens, C. S., and Kelley, C. A. (1989). Gas transport from methane-saturated,
767 tidal freshwater and wetland sediments. *Limnology and Oceanography*, 34(5), 807-819, doi:
768 10.4319/lo.1989.34.5.0807

769 Conrad, R. (1999), Contribution of hydrogen to methane production and control of hydrogen
770 concentrations in methanogenic soils and sediments, *FEMS Microbiol. Ecol.*, 28(3), 193–202.
771 doi: 10.1111/j.1574-6941.1999.tb00575.x

772 Finzi A.C., Giasson M-A, Gill A.L. 2016. SPRUCE Autochamber CO₂ and CH₄ Flux Data for
773 SPRUCE Experimental Plots. Carbon Dioxide Information Analysis Center, Oak Ridge
774 National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA.
775 doi.org/10.3334/CDIAC/SPRUCE.016

776 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean,
777 J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., & Van Dorland, R.
778 Miller, H.L. (Ed.). (2007). Changes in Atmospheric Constituents and in Radiative Forcing
779 Chapter 2. United Kingdom: Cambridge University Press.

780 Fiedler, S., and M. Sommer (2000), Methane emissions, groundwater levels and redox potentials
781 of common wetland soils in a temperate-humid climate, *Global Biogeochemical Cycles*,
782 14(4), 1081-1093, doi:10.1029/1999GB001255.

783 Frolking, S., and P. Crill (1994), Climate controls on temporal variability of methane flux from a
784 poor fen in southeastern New Hampshire: Measurement and modeling, *Global Biogeochem.
785 Cycles*, 8(4), 385–397, doi:10.1029/94GB01839.

786 Frolking, S., N. Roulet, and J. Fuglestvedt (2006), How northern peatlands influence the Earth's
787 radiative budget: Sustained methane emission versus sustained carbon sequestration, *J.
788 Geophys. Res. Biogeosciences*, 111(G1), 385–397, doi:10.1029/2005JG000091.

789 Gedney, N., P. M. Cox, and C. Huntingford (2004), Climate feedback from wetland methane
790 emissions, *Geophys. Res. Lett.*, 31(20). doi:10.1029/2004GL020919.

791 Gelman, A., and D. B. Rubin (1992), Inference from Iterative Simulation Using Multiple
792 Sequences, *Stat. Sci.*, 7(4), 457–472.

793 Gerard, G., and J. Chanton (1993), Quantification of methane oxidation in the rhizosphere of
794 emergent aquatic macrophytes: defining upper limits, *Biogeochemistry*, 23(2), 79–97,
795 doi:10.1007/BF00000444.

796 Gill, A. L., Giasson, M. A., Yu, R., and Finzi, A. C. (2017). Deep peat warming increases surface
797 methane and carbon dioxide emissions in a black spruce dominated ombrotrophic bog. *Global
798 Change Biology*, 00(1)-14, doi: 10.1111/gcb.13806

799 Granberg, G., H. Grip, M. O. Löfvenius, I. Sundh, B. H. Svensson, and M. Nilsson (1999), A
800 simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed
801 mires, *Water Resour. Res.*, 35(12), 3771–3782, doi:10.1029/1999WR900216.

802 Granberg, G., I. Sundh, B. H. Svensson, and M. Nilsson (2001), Effects of Temperature, and
803 Nitrogen and Sulfur Deposition, on Methane Emission from a Boreal Mire, *Ecology*, 82(7),
804 1982–1998, doi:10.2307/2680063.

805 Griffiths, N. A., and Sebestyen, S. D. (2016). Dynamic vertical profiles of peat porewater
806 chemistry in a northern peatland. *Wetlands*, 36(6), 1119-1130. doi:10.1007/s13157-016-
807 0829-5.

808 Hanson, P. J. et al. (2016a), Attaining Whole-Ecosystem Warming Using Air and Deep Soil
809 Heating Methods with an Elevated CO₂ Atmosphere, *Biogeosciences Discuss.*, 1–48,
810 doi:10.5194/bg-2016-449.

811 Hanson, P. J., A. L. Gill, X. Xu, J. R. Phillips, D. J. Weston, R. K. Kolka, J. S. Riggs, and L. A.

812 Hook (2016b), Intermediate-scale community-level flux of CO₂ and CH₄ in a Minnesota
813 peatland: putting the SPRUCE project in a global context, *Biogeochemistry*, 129(3), 255–272,
814 doi:10.1007/s10533-016-0230-8.

815 Hanson, P.J., J.R. Phillips, J.S. Riggs, and W.R. Nettles. 2017. SPRUCE Large-Collar In Situ CO₂
816 and CH₄ Flux Data for the SPRUCE Experimental Plots: Whole-Ecosystem-Warming.
817 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.
818 Department of Energy, Oak Ridge, Tennessee, U.S.A. [http://dx.doi.org/10.3334/CDIAC/
819 spruce.034](http://dx.doi.org/10.3334/CDIAC/spruce.034)

820 Hayward, P. M., and R. S. Clymo (1982), Profiles of Water Content and Pore Size in Sphagnum
821 and Peat, and their Relation to Peat Bog Ecology, *Proc. R. Soc. London B Biol. Sci.*,
822 215(1200), 299–325, doi:10.1098/rspb.1982.0044.

823 Huang, Y., Jiang, J., Ma, S., Ricciuto, D., Hanson, P. J., and Luo, Y. (2017). Soil thermal
824 dynamics, snow cover and frozen depth under five temperature treatments in an ombrotrophic
825 bog: Constrained forecast with data assimilation. *Journal of Geophysical Research: Biogeosciences*, doi: 10.1002/2016JG003725

826 Humphreys, E. R., T. Andrew Black, K. Morgenstern, Z. Li, and Z. Nesic (2005), Net ecosystem
827 production of a Douglas-fir stand for 3 years following clearcut harvesting, *Glob. Chang.
828 Biol.*, 11(3), 450–464, doi:10.1111/j.1365-2486.2005.00914.x.

829 Iversen CM, Childs J, Norby RJ et al. (2017) SPRUCE S1 Bog Fine-root Production and Standing
830 Crop Assessed With Minirhizotrons in the Southern and Northern Ends of the S1 Bog. Carbon
831 Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of
832 Energy, Oak Ridge, Tennessee, USA, <http://dx.doi.org/10.3334/CDIAC/spruce.019>.

833 Jiang, J., S. Ma, Y. Huang, D. Ricciuto, P. J. Hanson, and Y. Luo (2017), Forecasting responses

835 of a northern peatland carbon cycle to elevated CO₂ and a gradient of experimental warming
836 (in revision)

837 Joabsson, A., T. R. Christensen, and B. Wallén (1999), Vascular plant controls on methane
838 emissions from northern peatforming wetlands, *Tree*, 14. doi: [http://dx.doi.org/10.1016/S0169-5347\(99\)01649-3](http://dx.doi.org/10.1016/S0169-5347(99)01649-3).

840 Kang, H., Freeman, C., and Ashendon, T. W. (2001). Effects of elevated CO₂ on fen peat
841 biogeochemistry. *Science of the Total Environment*, 279(1), 45-50, doi: [https://doi.org/10.1016/S0048-9697\(01\)00724-0](https://doi.org/10.1016/S0048-9697(01)00724-0).

843 Keenan, T. F., M. S. Carbone, M. Reichstein, and A. D. Richardson (2011), The model--data fusion
844 pitfall: assuming certainty in an uncertain world, *Oecologia*, 167(3), 587, doi:10.1007/s00442-011-2106-x.

846 Keenan, T. F., E. A. Davidson, J. W. Munger, and A. D. Richardson (2012), Rate my data:
847 quantifying the value of ecological data for the development of models of the terrestrial
848 carbon cycle, *Ecol. Appl.*, 23(1), 273–286, doi:10.1890/12-0747.1.

849 Kettunen, A., V. Kaitala, A. Lehtinen, A. Lohila, J. Alm, J. Silvola, and P. J. Martikainen (1999),
850 Methane production and oxidation potentials in relation to water table fluctuations in two
851 boreal mires, *Soil Biol. Biochem.*, 31(12), 1741–1749, doi:10.1016/S0038-0717(99)00093-0.

852 Leifeld, J., M. Steffens, and A. Galego-Sala (2012), Sensitivity of peatland carbon loss to organic
853 matter quality, *Geophys. Res. Lett.*, 39(14), n/a-n/a, doi:10.1029/2012GL051856.

854 Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by
855 soils: a review. *European Journal of Soil Biology*, 37(1), 25-50, doi: [https://doi.org/10.1016/S1164-5563\(01\)01067-6](https://doi.org/10.1016/S1164-5563(01)01067-6).

857 Lenhart, T., K. Eckhardt, N. Fohrer, and H.-G. Frede (2002), Comparison of two different

858 approaches of sensitivity analysis, *Phys. Chem. Earth, Parts A/B/C*, 27(9–10), 645–654,
859 doi:[http://dx.doi.org/10.1016/S1474-7065\(02\)00049-9](http://dx.doi.org/10.1016/S1474-7065(02)00049-9).

860 Luo, Y., and J. F. Reynolds (1999), Validity of extrapolating field CO₂ experiments to predict
861 carbon sequestration in natural ecosystems, *Ecology*, 80(5), 1568–1583. doi: 10.1890/0012-
862 9658(1999)080[1568:VOEFCE]2.0.CO;2

863 Luo, Y., S. Wan, D. Hui, and L. L. Wallace (2001), Acclimatization of soil respiration to warming
864 in a tall grass prairie, *Nature*, 413(6856), 622–625. doi:10.1038/35098065

865 Luo, Y., E. Weng, X. Wu, C. Gao, X. Zhou, and L. Zhang (2009), Parameter identifiability,
866 constraint, and equifinality in data assimilation with ecosystem models, *Ecol. Appl.*, 19(3),
867 571–574, doi:10.1890/08-0561.1.

868 Luo, Y., A. Ahlström, S. D. Allison, N. H. Batjes, V. Brovkin, N. Carvalhais, A. Chappell, P.
869 Ciais, E. A. Davidson, and A. Finzi (2015), Towards More Realistic Projections of Soil
870 Carbon Dynamics by Earth System Models, *Global Biogeochem. Cycles*. doi:
871 10.1002/2015GB005239

872 Machacova, K., Bäck, J., Vanhatalo, A., Halmeenmäki, E., Kolari, P., Mammarella, I., Pumpanen,
873 J., Acosta, M., Urban, O. and Pihlatie, M., 2016. *Pinus sylvestris* as a missing source of
874 nitrous oxide and methane in boreal forest. *Scientific reports*, 6. doi:10.1038/srep23410

875 Megonigal, J. P., and Schlesinger, W. H. (1997). Enhanced CH₄ emission from a wetland soil
876 exposed to elevated CO₂. *Biogeochemistry*, 37(1), 77-88, doi: <https://doi.org/10.1023/A:1005738102545>.

877 Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn T, Avis C.A.,
879 Beerling D.J., Chen G., and Eliseev, A. V. (2013). Present state of global wetland extent and
880 wetland methane modelling: conclusions from a model intercomparison project

881 (WETCHIMP). *Biogeosciences*, 10, 753-788, doi: <https://doi.org/10.5194/bg-10-753-2013>.

882 Meng, L., P. G. M. Hess, N. M. Mahowald, J. B. Yavitt, W. J. Riley, Z. M. Subin, D. M. Lawrence,
883 S. C. Swenson, J. Jauhainen, and D. R. Fuka (2012), Sensitivity of wetland methane
884 emissions to model assumptions: application and model testing against site observations,
885 *Biogeosciences*, 9(7), 2793–2819, doi:10.5194/bg-9-2793-2012.

886 Morrissey, L. A., and G. P. Livingston (1992), Methane emissions from Alaska Arctic tundra: An
887 assessment of local spatial variability, *Journal of Geophysical Research: Atmospheres*,
888 97(D15), 16661-16670, doi:10.1029/92JD00063.

889 Neubauer, S. C., and J. P. Megonigal (2015), Moving Beyond Global Warming Potentials to
890 Quantify the Climatic Role of Ecosystems, *Ecosystems*, 18(6), 1000–1013, doi:10.1007/
891 s10021-015-9879-4.

892 Oikawa, P. Y., G. D. Jenerette, S. H. Knox, C. Sturtevant, J. Verfaillie, I. Dronova, C. M.
893 Poindexter, E. Eichelmann, and D. D. Baldocchi (2016), Evaluation of a hierarchy of models
894 reveals importance of substrate limitation for predicting carbon dioxide and methane
895 exchange in restored wetlands, *J. Geophys. Res. Biogeosciences*,
896 doi:10.1002/2016JG003438.

897 Pangala, S. R., Hornibrook, E. R., Gowing, D. J., & Gauci, V. (2015). The contribution of trees to
898 ecosystem methane emissions in a temperate forested wetland. *Global change biology*, 21(7),
899 2642-2654. doi: 10.1111/gcb.12891

900 Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., Sebesteyen, S. D., Kolka, R. K., &
901 Hanson, P. J. (2012). Uncertainty in peat volume and soil carbon estimated using ground-
902 penetrating radar and probing. *Soil Science Society of America Journal*, 76(5), 1911-1918,
903 doi:10.2136/sssaj2012.0040

904 Pitz, S., and J. P. Megonigal (2017), Temperate forest methane sink diminished by tree emissions,
905 *New Phytol.*, n/a--n/a, doi:10.1111/nph.14559.

906 Richardson, A. D. et al. (2010), Estimating parameters of a forest ecosystem C model with
907 measurements of stocks and fluxes as joint constraints, *Oecologia*, 164(1), 25–40,
908 doi:10.1007/s00442-010-1628-y.

909 Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. M. Mahowald,
910 and P. Hess (2011), Barriers to predicting changes in global terrestrial methane fluxes:
911 analyses using CLM4Me, a methane biogeochemistry model integrated in CESM,
912 *Biogeosciences*, 8(7), 1925–1953, doi:10.5194/bg-8-1925-2011.

913 Roulier, S., and N. Jarvis (2003), Analysis of Inverse Procedures for Estimating Parameters
914 Controlling Macropore Flow and Solute Transport in the Dual-Permeability Model MACRO,
915 *Vadose Zo. J.*, 2(3), 349–357, doi:10.2136/vzj2003.3490.

916 Saarnio, S., and Silvola, J. (1999). Effects of increased CO₂ and N on CH₄ efflux from a boreal
917 mire: a growth chamber experiment. *Oecologia*, 119(3), 349-356, doi: <https://doi.org/10.1007/s004420050795>.

918

919 Saarnio, S., Järviö, S., Saarinen, T., Vasander, H., and Silvola, J. (2003). Minor changes in
920 vegetation and carbon gas balance in a boreal mire under a raised CO₂ or NH₄NO₃ supply.
921 *Ecosystems*, 6(1), 0046-0060, doi: <https://doi.org/10.1007/s10021-002-0208-3>.

922 Schipper, L. A., and K. R. Reddy (1996), Determination of Methane Oxidation in the Rhizosphere
923 of *Sagittaria lancifolia* Using Methyl Fluoride, *Soil Sci. Soc. Am. J.*, 60(2), 611–616,
924 doi:10.2136/sssaj1996.03615995006000020039x.

925 Sebestyen, S. D., E. S. Verry, and K. N. Brooks (2011a), *Hydrological responses to forest cover*
926 *changes on uplands and peatlands, in: Peatland biogeochemistry and watershed hydrology*

927 *at the Marcell Experimental Forest*, Peatland biogeochemistry and watershed hydrology at
928 the Marcell Experimental Forest, CRC Press, New York.

929 Sebestyen, S. D., C. Dorrance, D. M. Olson, E. S. Verry, R. K. Kolka, A. E. Elling, and R.
930 Kyllander (2011b), Long-term monitoring sites and trends at the Marcell Experimental
931 Forest, *Peatl. Biogeochem. watershed Hydrol. Marcell Exp. For. CRC Press. Boca Raton,*
932 *FL*, 15–72.

933 Sebestyen S.D., Griffiths NA. 2016. SPRUCE Enclosure Corral and Sump System: Description,
934 Operation, and Calibration. Climate Change Science Institute, Oak Ridge National
935 Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <http://dx.doi.org/10.3334/CDIAC/spruce.030>

936 Segers, R., and S. W. M. Kengen (1998), Methane production as a function of anaerobic carbon
937 mineralization: A process model, *Soil Biol. Biochem.*, 30(8–9), 1107–1117, doi:
938 [http://dx.doi.org/10.1016/S0038-0717\(97\)00198-3](http://dx.doi.org/10.1016/S0038-0717(97)00198-3).

939 Shannon, R. D., and J. R. White (1994), A three-year study of controls on methane emissions from
940 two Michigan peatlands, *Biogeochemistry*, 27(1), 35–60, doi:10.1007/BF00002570.

941 Shannon, R. D., J. R. White, J. E. Lawson, and B. S. Gilmour (1996), Methane Efflux from
942 Emergent Vegetation in Peatlands, *J. Ecol.*, 84(2), 239–246. doi: 10.2307/2261359

943 Shea, K., M. R. Turetsky, and J. M. Waddington (2010), Quantifying diffusion, ebullition, and
944 plant-mediated transport of CH₄ in Alaskan peatlands undergoing permafrost thaw, *AGU*.

945 Shi, X., P. E. Thornton, D. M. Ricciuto, P. J. Hanson, J. Mao, S. D. Sebestyen, N. A. Griffiths, and
946 G. Bisht (2015a), Representing northern peatland microtopography and hydrology within the
947 Community Land Model, *Biogeosciences*, 12(21), 6463–6477, doi:10.5194/bg-12-6463-
948 2015.

950 Shi, Z., Y. Yang, X. Zhou, E. Weng, A. C. Finzi, and Y. Luo (2015b), Inverse analysis of coupled
951 carbon-nitrogen cycles against multiple datasets at ambient and elevated CO₂, *J. Plant Ecol.*,
952 doi:10.1093/jpe/rtv059.

953 Shurpali, N. J., & Verma, S. B. (1998). Micrometeorological measurements of methane flux in a
954 Minnesota peatland during two growing seasons. *Biogeochemistry*, 40(1), 1-15, doi:
955 <https://doi.org/10.1023/A:1005875307146>.

956 Smith, M. J., D. W. Purves, M. C. Vanderwel, V. Lyutsarev, and S. Emmott (2013), The climate
957 dependence of the terrestrial carbon cycle, including parameter and structural uncertainties,
958 *Biogeosciences*, 10(1), 583–606, doi:10.5194/bg-10-583-2013.

959 Spahni, R. et al. (2011), Constraining global methane emissions and uptake by ecosystems,
960 *Biogeosciences*, 8(6), 1643–1665, doi:10.5194/bg-8-1643-2011.

961 Terazawa, K., S. Ishizuka, T. Sakata, K. Yamada, and M. Takahashi (2007), Methane emissions
962 from stems of *Fraxinus mandshurica* var. *japonica* trees in a floodplain forest, *Soil Biol.*
963 *Biochem.*, 39(10), 2689–2692, doi:<http://doi.org/10.1016/j.soilbio.2007.05.013>.

964 Tfaily, M. M., W. T. Cooper, J. E. Kostka, P. R. Chanton, C. W. Schadt, P. J. Hanson, C. M.
965 Iversen, and J. P. Chanton (2014), Organic matter transformation in the peat column at
966 Marcell Experimental Forest: Humification and vertical stratification, *J. Geophys. Res.*
967 *Biogeosciences*, 119(4), 661–675, doi:10.1002/2013JG002492.

968 Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., and Hatano, R.
969 (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland. *Global*
970 *Biogeochemical Cycles*, 21(2), doi: 10.1029/2006GB002790.

971 Turetsky, M. R., C. C. Treat, M. P. Waldrop, J. M. Waddington, J. W. Harden, and A. D. McGuire
972 (2008), Short-term response of methane fluxes and methanogen activity to water table and

973 soil warming manipulations in an Alaskan peatland, *J. Geophys. Res.*, 113, G00A10,
974 doi:10.1029/2007JG000496.

975 Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth (2001), Response of CO₂
976 and CH₄ emissions from peatlands to warming and water table manipulation, *Ecol Appl*, 11.
977 doi: 10.1890/1051-0761(2001)011[0311:ROCACE]2.0.CO;2

978 Van Groenigen, K. J., Osenberg, C. W., and Hungate, B. A. (2011). Increased soil emissions of
979 potent greenhouse gases under increased atmospheric CO₂. *Nature*, 475(7355), 214,
980 doi:10.1038/nature10176.

981 Verry, E.S. (1984), Microtopography and water table fluctuation in a Sphagnum mire. In:
982 Proceedings of the 7th International Peat Congress, Dublin, Ireland. The Irish National Peat
983 Committee / The International Peat Society, 11-31

984 Verville, J. H., S. E. Hobbie, F. S. Chapin, and D. U. Hooper (1998), Response of tundra CH₄ and
985 CO₂ flux to manipulation of temperature and vegetation, *Biogeochemistry*, 41,
986 doi:10.1023/a:1005984701775.

987 Waddington, J. M., Roulet, N. T., & Swanson, R. V. (1996). Water table control of CH₄ emission
988 enhancement by vascular plants in boreal peatlands. *Journal of Geophysical Research: Atmospheres*, 101(D17), 22775-22785. doi: 10.1029/96JD02014.

990 Walter, B. P., and M. Heimann (2000), A process-based, climate-sensitive model to derive
991 methane emissions from natural wetlands: Application to five wetland sites, sensitivity to
992 model parameters, and climate, *Global Biogeochem. Cycles*, 14(3), 745–765,
993 doi:10.1029/1999GB001204.

994 Walter, B. P., M. Heimann, and E. Matthews (2001), Modeling modern methane emissions from
995 natural wetlands 1. Model description and results, *J. Geophys. Res.*, 106(34), 134–189. doi:

996 10.1029/2001JD900165 doi: 10.1029/2001JD900165.

997 Wang, Y.-P., and R. Leuning (1998), A two-leaf model for canopy conductance, photosynthesis
998 and partitioning of available energy I:: Model description and comparison with a multi-
999 layered model, *Agric. For. Meteorol.*, 91(1), 89–111. doi: [https://doi.org/10.1016/S0168-1923\(98\)00061-6](https://doi.org/10.1016/S0168-1923(98)00061-6).

1000

1001 Wang, Y.-P., R. Leuning, H. A. Cleugh, and P. A. Coppin (2001), Parameter estimation in surface
1002 exchange models using nonlinear inversion: how many parameters can we estimate and which
1003 measurements are most useful?, *Glob. Chang. Biol.*, 7(5), 495–510, doi:10.1046/j.1365-
1004 2486.2001.00434.x.

1005 Wang, Y.-P., C. M. Trudinger, and I. G. Enting (2009), A review of applications of model–data
1006 fusion to studies of terrestrial carbon fluxes at different scales, *Agric. For. Meteorol.*, 149(11),
1007 1829–1842, doi:<http://dx.doi.org/10.1016/j.agrformet.2009.07.009>.

1008 Wania, R., I. Ross, and I. C. Prentice (2009a), Integrating peatlands and permafrost into a dynamic
1009 global vegetation model: 1. Evaluation and sensitivity of physical land surface processes,
1010 *Global Biogeochem. Cycles*, 23(3), n/a-n/a, doi:10.1029/2008GB003412.

1011 Wania, R., Ross, I., and Prentice, I. C. (2010), Implementation and evaluation of a new methane
1012 model within a dynamic global vegetation model: LPJ-WHyMe v1. 3.1. *Geoscientific Model
1013 Development*, 3(2), 565-584, doi: <https://doi.org/10.5194/gmd-3-565-2010>.

1014 Weng, E., and Y. Luo (2008), Soil hydrological properties regulate grassland ecosystem responses
1015 to multifactor global change: A modeling analysis, *J. Geophys. Res. Biogeosciences*,
1016 113(G3). doi: 10.1029/2007JG000539

1017 Whalen, S. C., and W. S. Reeburgh (1992), Interannual variations in tundra methane emission: A
1018 4-year time series at fixed sites, *Global Biogeochem. Cycles*, 6(2), 139-159, doi:10.1029/

1019 92GB00430.

1020 Whalen, S. C. (2005). Biogeochemistry of methane exchange between natural wetlands and the
1021 atmosphere. *Environmental Engineering Science*, 22(1), 73-94, doi: <https://doi.org/10.1089/ees.2005.22.73>

1022

1023 Whiting, G. J., and J. P. Chanton (1992), Plant-dependent CH₄ emission in a subarctic Canadian
1024 fen, *Global Biogeochem. Cycles*, 6(3), 225–231, doi:10.1029/92GB00710.

1025 Wilson, R. M. et al. (2016), Stability of peatland carbon to rising temperatures, *Nat. Commun.*, 7,
1026 13723, doi:10.1038/ncomms13723

1027 Wythers, K. R., P. B. Reich, M. G. Tjoelker, and P. B. Bolstad (2005), Foliar respiration
1028 acclimation to temperature and temperature variable Q₁₀ alter ecosystem carbon balance,
1029 *Glob. Chang. Biol.*, 11(3), 435–449, doi:10.1111/j.1365-2486.2005.00922.x.

1030 Xu, T., L. White, D. Hui, and Y. Luo (2006), Probabilistic inversion of a terrestrial ecosystem
1031 model: Analysis of uncertainty in parameter estimation and model prediction, *Global
1032 Biogeochem. Cycles*, 20(2). doi: 10.1029/2005GB002468.

1033 Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-Duc,
1034 and P. A. del Giorgio (2014), Methane fluxes show consistent temperature dependence across
1035 microbial to ecosystem scales, *Nature*, 507(7493), 488–491, doi:10.1038/nature13164.

1036 Zhang, Y., C. Li, C. C. Trettin, H. Li, and G. Sun (2002), An integrated model of soil, hydrology,
1037 and vegetation for carbon dynamics in wetland ecosystems, *Global Biogeochem. Cycles*,
1038 16(4), 9–17, doi:10.1029/2001GB001838.

1039 Zhu, Q., J. Liu, C. Peng, H. Chen, X. Fang, H. Jiang, G. Yang, D. Zhu, W. Wang, and X. Zhou
1040 (2014), Modelling methane emissions from natural wetlands by development and application
1041 of the TRIPLEX-GHG model, *Geosci. Model Dev.*, 7(3), 981–999, doi:10.5194/gmd-7-981-

1042 2014.

1043 Zhu, X., Zhuang, Q., Chen, M., Sirin, A., Melillo, J., Kicklighter, D., Sokolov A., and Song, L.

1044 (2011). Rising methane emissions in response to climate change in Northern Eurasia during

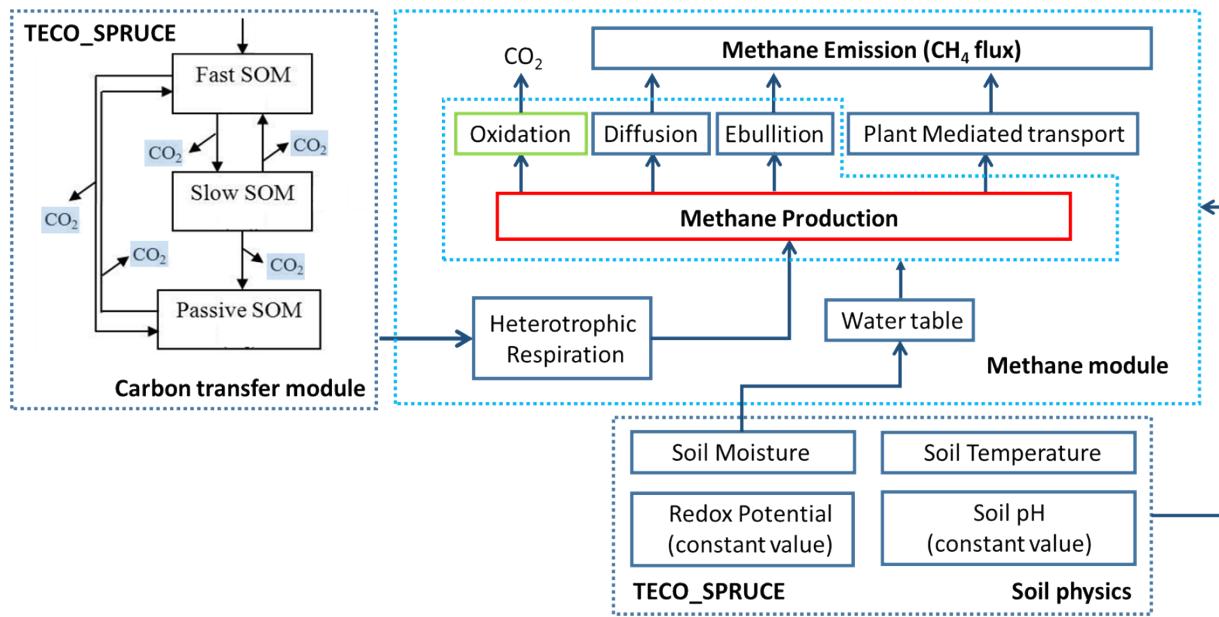
1045 the 21st century. *Environmental Research Letters*, 6(4), 045211, doi:10.1088/1748-

1046 9326/6/4/045211.

1047 Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. McGuire, P. A. Steudler, B. S.

1048 Felzer, and S. Hu (2004), Methane fluxes between terrestrial ecosystems and the atmosphere

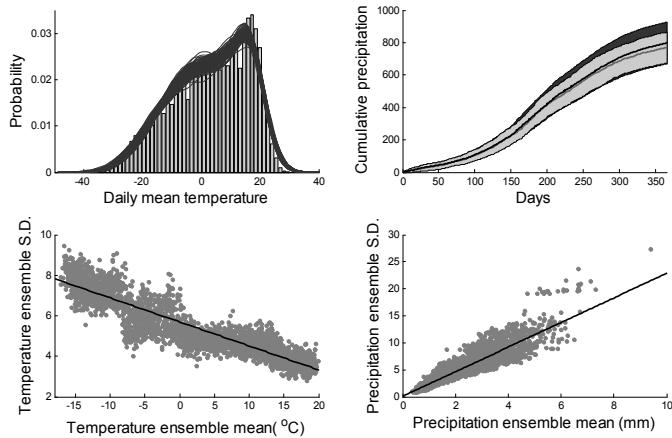
1049 at northern high latitudes during the past century: A retrospective analysis with a process-


1050 based biogeochemistry model, *Global Biogeochem. Cycles*, 18(3), n/a-n/a,

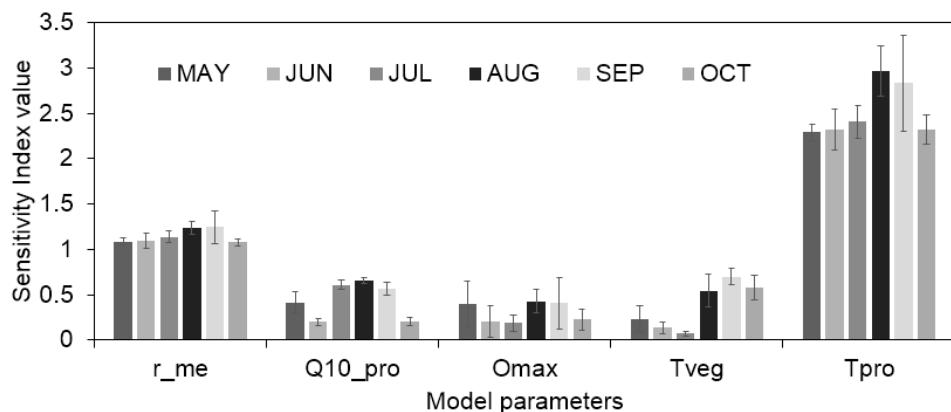
1051 doi:10.1029/2004GB002239.

1053 **Table 1.** Major parameters in CH₄ production, oxidation, diffusion, ebullition and plant mediated
 1054 transportation. Parameters in bold indicate the ones used for initial sensitivity test. Parameters with
 1055 a range indicate the model is sensitive to their values and are used for data assimilation.

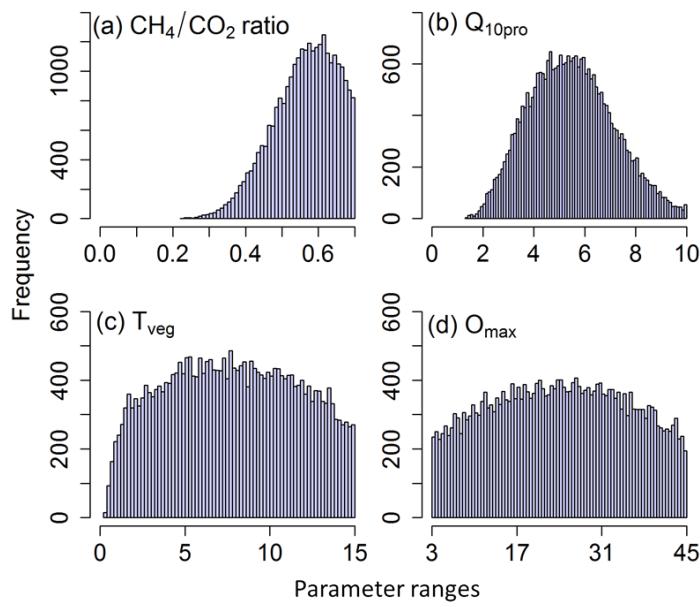
1056


Process	Parameters	Values	Range	Unit	Description	References
CH ₄ production	r_me	0.65	[0.0,0.7]	-	Potential ratio of anaerobically mineralized C released as CH ₄	Zhuang <i>et al.</i> [2004], Segers [1998], Zhu <i>et al.</i> [2014]
	Q_{10_pro}	7.2	[0.0,10]	-	Q ₁₀ for CH ₄ production	Walter and Heimann [2000]
	T_{opt_pro}	20.0		°C	Optimum temperature for CH ₄ production	Wilson <i>et al.</i> [2016]
CH ₄ oxidation	K_{CH4}	5.0	-	μmol L ⁻¹	Michaelis_Menten coefficients	Walter and Heimann [2000], Zhang <i>et al.</i> [2002],
	O_{max}	15.0	[3.0,45.0]	μmol L ⁻¹ h ⁻¹	Maximum oxidation rate	Zhuang <i>et al.</i> [2004]
	Q_{10_oxi}	2.0	-	-	Q ₁₀ for CH ₄ oxidation	Walter and Heimann [2000], Meng <i>et al.</i> [2012]
CH ₄ diffusion	T_{opt_oxi}	10.0		°C	Optimum temperature for CH ₄ production	Zhuang <i>et al.</i> [2004]
	f_{tort}	0.66	-	-	Tortuosity coefficient	Walter and Heimann [2000]
	D_{air}	0.2	-	cm ² s ⁻¹	Molecular diffusion coefficient of CH ₄ in air	Walter and Heimann [2000]
CH ₄ ebullition	D_{water}	0.00002		cm ² s ⁻¹	Molecular diffusion coefficient of CH ₄ in water	Walter and Heimann [2000]
	[CH₄]thre	750	-	μmol L ⁻¹	CH ₄ concentration threshold above which ebullition occurs	Walter and Heimann [2000], Zhu <i>et al.</i> [2014]
Plant-mediated transportation	T_{veg}	0.7	[0.01,15.0]	-	factor of transport ability at plant community level	Walter [1998], Zhuang <i>et al.</i> [2004]

1058


1059 **Figure 1.** Conceptual structure and integration of water table and CH_4 emission modules into

1060 TECO_SPRUCE


1062

1063 **Figure 2.** Historical climate from the USDA MEF site during 1961-2014, and stochastic weather
 1064 generation for 2015-2024. (a) Probability density distribution of daily mean temperature (gray bar
 1065 graph represents historical observation data, black curves represent ensemble of predicted future
 1066 temperatures). (b) Cumulative precipitation within a year (curve and shaded areas represent mean
 1067 and standard deviation, respectively; gray is historical observation data, and black is future
 1068 predictions). (c) and (d) are standard deviations versus means for daily air temperature and
 1069 precipitation, respectively. Credits from *Jiang Jiang et al. [2017]*.

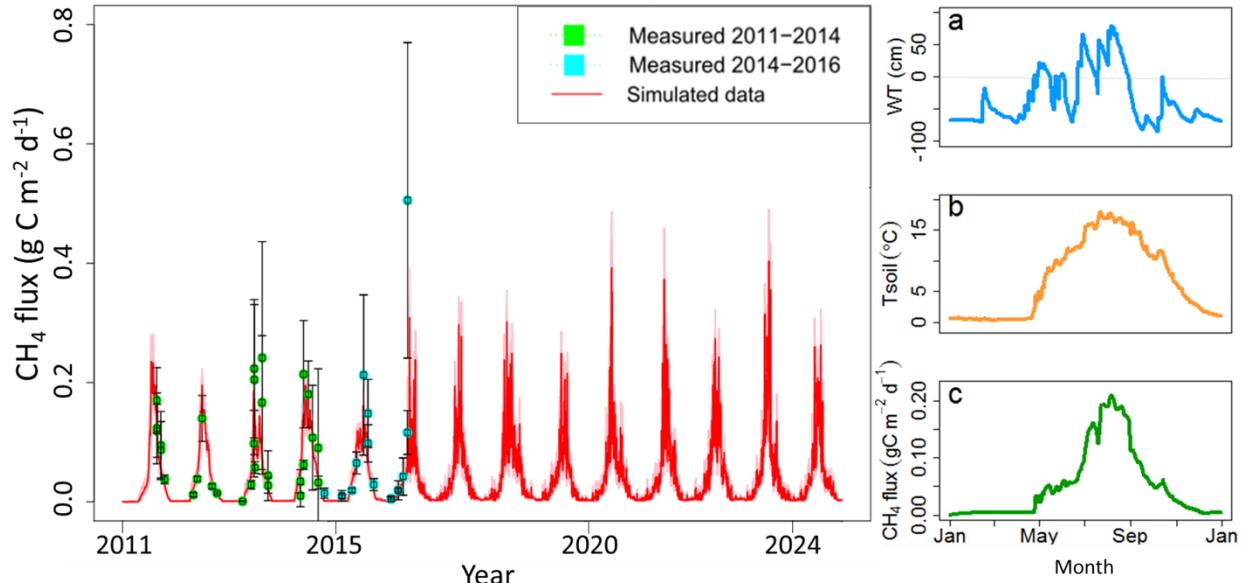
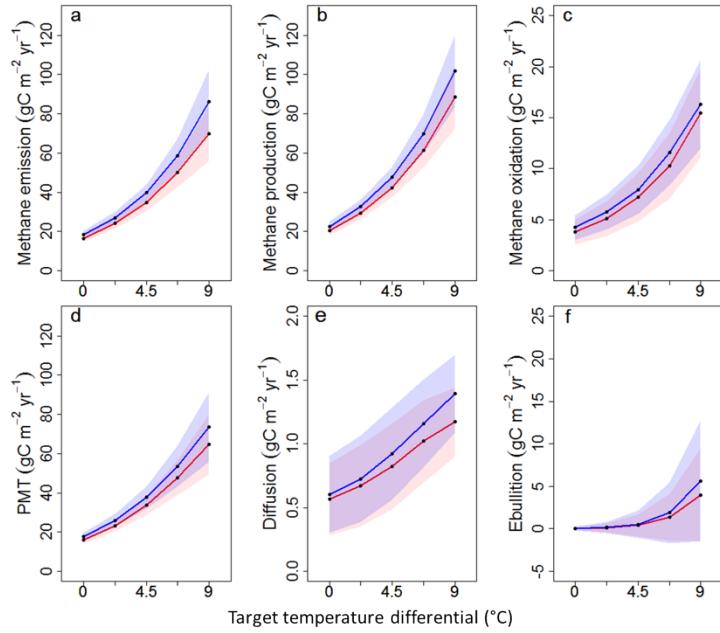
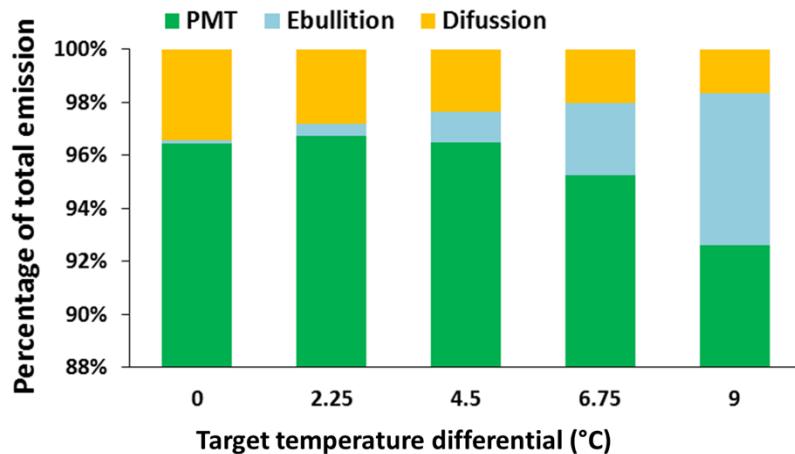

1071
1072
1073
1074

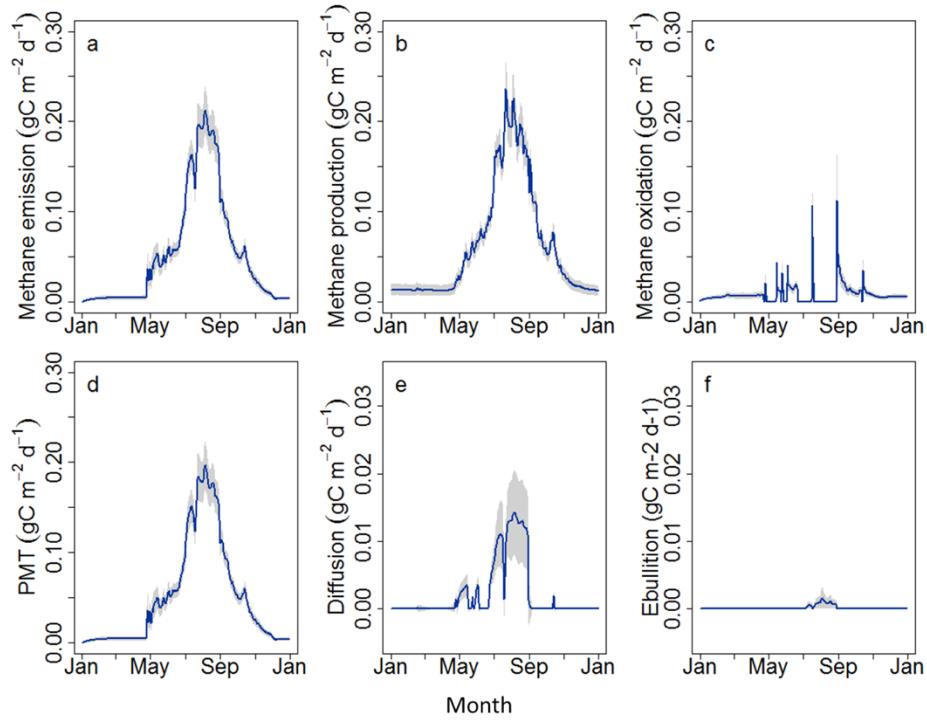
Figure 3. Sensitivity index for the most influential parameters for CH₄ fluxes during the growing season (4-year average of 2011-2014) in May, June, July, August, September and October. The error bar denotes standard deviation.



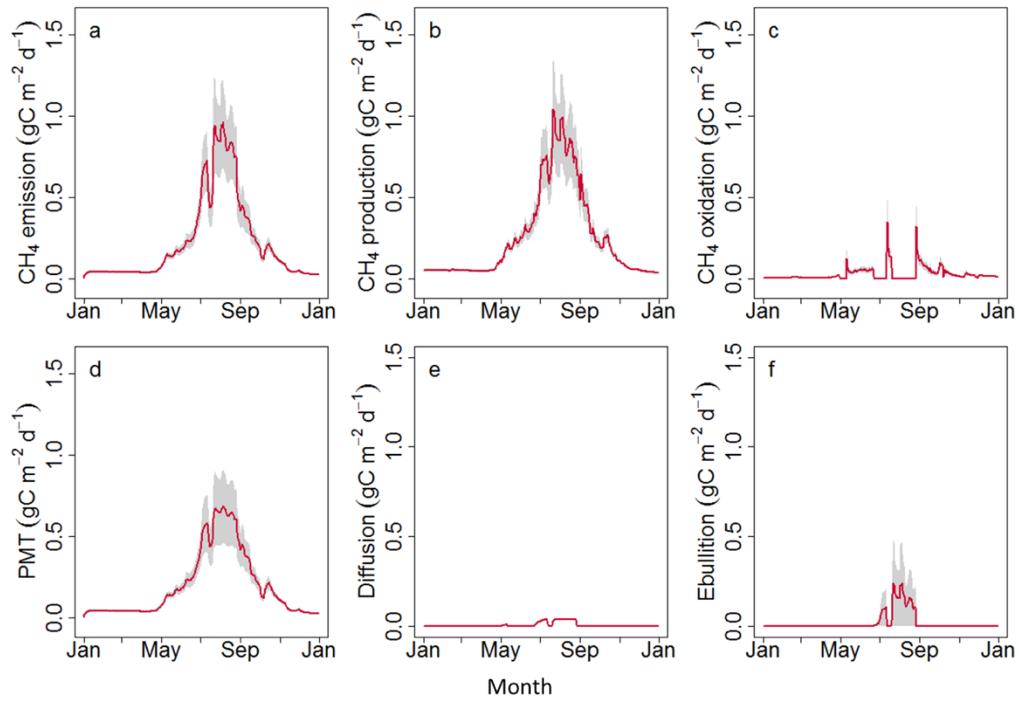
1076
1077

1078 **Figure 4.** Posterior distributions of parameters of 50,000 samples from M-H simulation. (a),
1079 potential ratio of anaerobically mineralized carbon released as CH₄; (b), Q₁₀ for CH₄ production;
1080 (c), maximum oxidation rate; (d) factor of transport ability at plant community level.


1082
 1083
 1084 **Figure. 5.** Forecasting of CH_4 emission dynamics based on stochastically generated weather
 1085 forcing data. Green dots refer to observations from 2011-2014 which were used for data
 1086 assimilation. Blue dots indicate observations from 2015-2016 which were used for model
 1087 validation, error bars indicate the standard deviation of each observation. Red line is simulated
 1088 mean methane emission. The shading area corresponds to 1 standard deviation based on 500
 1089 randomly chosen model simulations with parameters drawn from the posterior distribution. Panel
 1090 a-b are 2011 daily variation of water table, surface soil temperature, and methane emission.


1092
1093

1094 **Figure 6.** Responses of annual CH_4 emission to warming and elevated CO_2 (e CO_2). Red lines
1095 indicate CH_4 fluxes under warming treatments and 380 ppm CO_2 , blue lines indicate CH_4 fluxes
1096 under warming treatments and 880 ppm CO_2 . X-axes indicate the warming treatments of +0°C,
1097 +2.25°C, +4.5°C, +6.75°C and +9 °C above ambient level. Shading area correspond to mean \pm
1098 one standard deviation based on 500 randomly chosen model simulations with parameters drawn
1099 from the posterior distribution.


1100

1101
1102 **Figure 7.** Simulated percentage of total emission in different pathways (plant-mediated
1103 transportation (PMT), ebullition, and diffusion) using the mean value from 100 accepted parameter
1104 sets.

1106
 1107 **Figure 8.** Simulated seasonal methane fluxes variation in 2011 under ambient condition. Blue lines
 1108 indicate CH_4 fluxes under ambient temperature and 380 ppm CO_2 . Shading areas correspond to
 1109 mean \pm one standard deviation based on 500 randomly chosen model simulations with parameters
 1110 drawn from the posterior distribution.

1112
1113
1114
1115
1116
1117

Figure 9. Simulated seasonal methane fluxes variation in 2011 under +9 °C warming condition.
 Red lines indicate CH_4 fluxes under +9 °C warming and 380 ppm CO_2 . Shading areas correspond to mean \pm one standard deviation based on 500 randomly chosen model simulations with parameters drawn from the posterior distribution.