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Key points:

1. Using a data-model fusion approach, we constrained parameters and quantified uncertainties of
CH, emission forecast.
2. Both warming and elevated air CO, concentrations have a stimulating effect on CH4 emission.

3. The uncertainty in plant-mediated transportation and ebullition increased under warming.
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Abstract: Large uncertainties exist in predicting responses of wetland methane (CH,4) fluxes to
future climate change. However, sources of the uncertainty have not been clearly identified
despite the fact that methane production and emission processes have been extensively explored.
In this study, we took advantage of manual CH,4 flux measurements under ambient environment
from 2011-2014 at the Spruce and Peatland Responses Under Changing Environments (SPRUCE)
experimental site and developed a data-informed process-based methane module. The module was
incorporated into the Terrestrial ECOsystem (TECO) model before its parameters were
constrained with multiple years of methane flux data for forecasting CH,4 emission under five
warming and two elevated CO, treatments at SPRUCE. We found that 9 °C warming treatments
significantly increased methane emission by approximately 400%, and elevated CO, treatments
stimulated methane emission by 10.4% - 23.6% in comparison with ambient conditions. The
relative contribution of plant-mediated transport to methane emission decreased from 96% at the
control to 92% at the 9 °C warming, largely to compensate for an increase in ebullition. The
uncertainty in plant-mediated transportation and ebullition increased with warming and
contributed to the overall changes of emissions uncertainties. At the same time, our modeling
results indicated a significant increase in the emitted CH,4:CO, ratio. This result, together with the
larger warming potential of CH,, will lead to a strong positive feedback from terrestrial ecosystems
to climate warming. The model-data fusion approach used in this study enabled parameter
estimation and uncertainty quantification for forecasting methane fluxes.

Keywords

Data-model fusion, uncertainty, forecasting, methane, wetland, climate change

Plain Language Summary
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Methane (CHy) has 45 times the sustained-flux global warming potential of CO, over a 100-year
scale, and it is directly responsible for approximately 20% of global warming since pre-industrial
time. Wetlands are the single largest natural source of CH4 emission and there is major concern
about potential feedbacks between global climate change and CH4 emissions from wetlands, as
warming and atmospheric CO, are known to affect CH, emissions. However, extensive observed
CH, flux data have not been well used to constrain model predictions of CH4 emission in the future
climate. Using a data-model fusion approach, we constrained parameters and quantified
uncertainties of CH,4 emission forecast. We found both warming and elevated air CO,
concentrations have a stimulating effect on CH4 emission. The uncertainty in plant-mediated

transportation and ebullition increased under warming.
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1. Introduction

Methane (CHy) is the simplest hydrocarbon produced by anaerobic microbes in the terminal step
of organic matter remineralization. CHy4 has 45 times the sustained-flux global warming potential
(SGWP) of CO, over a 100-year scale [Neubauer and Megonigal, 2015], and it is directly
responsible for approximately 20% of global warming since pre-industrial periods [Forster et al.,
2007]. Wetlands are the single largest natural source of emitted CHy [Bridgham et al., 2013] and
there is major concern about potential feedbacks between global climate change and CH,4
emissions from wetlands, as warming and atmospheric CO, are known to affect CH4 emissions
[Zhuang et al., 2004; Bridgham et al., 2006]. However, extensive observed CH, flux data have not
been well used to constrain model predictions of CH4 emission in the future.

Process-based biogeochemistry models have been used to quantify global wetland CH,4 emissions
with different complexities in model structures [Cao et al., 1995; Walter and Heimann, 2000;
Zhang et al., 2002; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011; Zhu et al., 2014].
However, large uncertainties exist in predicting responses of methane emissions to future climate
change [Frolking et al., 2006; Bridgham et al., 2013]. In methane models, the uncertainties in
model predictions stem from: 1) Model structure — process-based models with more details and
controls are being developed at the site level and will be added into global models, but a bottleneck
is the lack of spatially explicit physical, chemical and biological data [Bridgham et al., 2013]; 2)
Parameter values — some conceptual parameters used in methane models are not directly
measurable and there is a limited variety of observational data do not comprehensively address
various CH4 emission pathways that are needed to constrain parameter values using data
assimilation; and 3) Forcing-data [Luo et al., 2015] — water table level and soil temperature are
the two dominant controls on methane flux simulation because a) the water table position

determines the extent of the catotelm zone where methane is largely produced (acrotelms may be
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anoxic and methane may be produced in acrotelm) and the acrotelm where most methane is
oxidized (methane can also be oxidized by methanotrophs in catotelm using Fe3*, NO;-, SO4%, etc.
as electron accepters). [Bartlett et al., 1990; Dise and Gorham, 1993; Bubier et al., 1995; Walter
and Heimann, 2000] and b) soil temperature affects the rates of microbiological processes such as
fermentation, methanogenesis and methanotrophy [Dise and Gorham, 1993; Frolking and Crill,
1994; Kettunen et al., 1999; Walter and Heimann, 2000].

Biogeochemical models and experimental results are generally consistent in showing that climate
warming stimulates CH, emissions. Modeling results under +1 and +2°C warming scenarios found
increases in CH,4 emission in northern wetlands by 17% and 11%, but decreases under higher
elevated temperature due to the effect of soil moisture depletion [Cao et al., 1998]. Short-term
warming and coupled water table level x warming in situ or mesocosm manipulations have been
used at the site level to explore the responses of northern peatland CH4 emission to climate
warming from +0.6 to +2.0 °C. These studies found warming increased CH, fluxes by 15%-550%
or had no effect based on the condition of water table variation and vegetation change [Verville et
al., 1998; Granberg et al., 2001; Updegraff et al., 2001; Turetsky et al., 2008]. However, these
studies only warmed the soil surface , which may have precluded deep soil responses to warming
especially in northern wetlands where a significant fraction of C is stored in deep peat layers.
Nevertheless, methane fluxes measured under warming or elevated CO, (eCO,) have never been
incorporated into models via data-model fusion or used to constrain models in projecting methane
emission under climate change.

Net methane emission includes contributions from plant-mediated transport, diffusion and
ebullition (i.e. bubble release). Over 90% of the methane emission in a Carex-dominated fen near

Schefferville, Quebec, Canada was mediated by plants [Whiting and Chanton, 1992]. Emergent
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plants in a peatland in southern Michigan, USA accounted for 64% - 90% of the net CH, efflux in
plant enclosure experiments [Shannon et al., 1996]. Plant-mediated fluxes averaged 69.8 + 11.8
mg CH; m? d! and accounted for ca. 50% of total fluxes at the Alaska Peatland Experiment site
[Shea et al., 2010]. In the same study, diffusion contributed to less than 9% of total CH,4 flux (up
to 7.6 mg CH; m2 d!) and ebullition accounted for ca. 41% of total CH, flux. However, the
quantity and temporal-spatial scales of experimental studies are limited, so the responses of the
relative contributions of the three processes to climate warming have not been unraveled either
using experiments or modeling approaches.

In process-based methane models, the individual pathway of CH4 emission is related to CH,4 pool
size (CH4 concentration), which is primarily determined by CH, production. Once the parameters
in CHy4 production, plant-mediated transportation, ebullition, and diffusion are constrained by
observed data and the prior range of parameter values with a data-model fusion technique [ Wang
et al., 2009; Richardson et al., 2010; Keenan et al., 2011, 2012; Smith et al., 2013], the simulation
of differential contributions from the three pathways under warming and eCO, may be improved.
The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experimental site
is unique in coupling deep peat heating (to a depth of 2 m) and above-ground warming at +0°C,
+2.25°C, +4.5°C, +6.75°C and +9 °C above ambient temperature along with eCO, treatment
[Hanson et al.,2016a]. Although not enough data are yet available for validating methane emission
under warming treatments, the extensive data sets released or coming out from SPRUCE will
enable parameter estimation, uncertainty quantification, and contribution from each pathway to
better forecast methane fluxes under warming and eCO,.

In this study, we focus on developing a data-informed process-based model using the methane

chamber measurement data from a northern peatland in northern Minnesota where the SPRUCE
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project is occurring. We also looked at differential responses of CH, production, oxidation,
diffusion, ebullition and plant-mediated transportation to warming and eCO,. We hypothesized
that both warming and eCO, would increase methane emission in this ombrotrophic bog, with
differential responses of each process due to the differential temperature dependencies of

methanogenesis and respiration.
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2. Methods

2.1 Site Description and treatments

We took Spruce and Peatland Responses Under Climatic and Environmental Change experiment
(SPRUCE) as our case study site. The SPRUCE project is conducted to study the responses of
northern peatland to climate warming (+0, +2.25, +4.5, +6.75, +9 °C) and elevated atmospheric
CO, concentration (+0 and +500 ppm) [Hanson et al., 2016a]. The SPRUCE experiment is located
in the 8-ha S1 bog that has been at the Marcell Experimental Forest (MEF, N 47° 30.476 W 93°
27.162°, 418 m above mean sea level), a site in northern Minnesota, USA, with a long-term
research program that is administered by the USDA Forest Service. Temperature and precipitation
have been measured since 1961 at the MEF South Meteorological station, which is about 1 km
from the SPRUCE experiment. The mean annual temperature from 1961 to 2009 was 3.4 °C, and
the mean annual precipitation was 780mm [Sebestyen et al., 2011b]. Mean annual air temperatures
have increased approximately 0.4 °C per decade over the last 50 years [Sebestyen et al., 2011b].
Vegetation within the S1 bog is dominated by trees species Picea mariana and Larix laricina, a
variety of ericaceous shrubs, and Sphagnum sp. moss. The bog also has graminoids Carex
trisperma and Eriophorum spissum, as well as forbs Sarracenia purpurea and Smilacina trifolia.
Mean peat depth in this bog is around 2-3m [Parsekian et al., 2012].

The water table typically fluctuates within the top 30 cm of peat at five long-studied bogs on the
MEF [Sebestyen et al., 2011a]. Within SPRUCE, water table levels have been measured half
hourly (except during freezing temperatures) at the meteorological station EM1 on the southwest
side of the experiment site since Jan 2011. The sensor was placed in a hollow (microtopographic
lows that are interspersed among hummocks of bogs [Verry, 1984]). A TruTrack WT-VO water

level sensor was used to measure water table levels that were logged with a Campbell Scientific
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CR1000 data logger. In this study, water table height is expressed as zero at the hollow surface
during late spring or early summer [Sebestyen and Griffiths, 2016]. Community-level CHy
emission were measured once each month during snow-free months beginning during 2011 using
a portable open-path analyzer in each plot at “large collars” (area of 1.13 m?) that have been
previously described [Hanson et al., 2016b; Hanson et al., 2017]. Mean annual air temperature at
2 meters height ranged 1.91-5.10 °C, mean annual soil temperature at 30 cm depth ranged 5.83-
7.06 °C, annual precipitation ranged 651-717 mm during the year 2011-2016. In total, 45 daily
CH,4 chamber measurement data points were integrated from ambient plots from 2011-2016. We
took the mean value if there is more than one plot that have data on the same date, variations in
different ambient plots were not simulated due to our purpose to represent the site level CHy
emission.

2.2 Model description and key processes

2.2.1 Overview of TECO

The process-based biogeochemistry model, TECO (Terrestrial ECOsystem model), simulates
carbon, nitrogen and hydrology cycles in terrestrial ecosystems [ Weng and Luo, 2008]. The model
has four major components: canopy photosynthesis, soil water dynamics, plant growth (allocation
and phenology), and soil carbon and nitrogen transfers. A detailed description of TECO is
available in Weng and Luo [2008] and Shi et al. [2015b]. The canopy sub-module was mainly
derived from Wang and Leuning’s [1998] two-leaf model, which simulated processes of canopy
photosynthesis, conductance, energy balance, and transpiration. The soil water dynamics sub-
module has ten soil layers and simulates soil moisture dynamics based on precipitation,
evapotranspiration and runoff. Evaporation is regulated by the first soil layer water content and the

evaporative demand of the atmosphere. Transpiration is determined by stomatal conductance and
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the soil water content of layers where roots are present. When precipitation exceeds water recharge
to soil water holding capacity, runoff occurs. The C transfer sub-module simulates movement of
C from plants to three soil C pools through litter fall and the decomposition of litter and soil organic
C. Carbon fluxes from litter and soil carbon pools are based on residence time of each C pool and
the C pool sizes [Luo and Reynolds, 1999].

The TECO model has been adapted to the SPRUCE site by Jiang et al. [2017] and Huang et al.
[2017] to study the forecasting uncertainty in terrestrial carbon cycles and soil thermal dynamics.
Five out of 18 parameters related to photosynthesis, respiration, plant growth and C turnover were
constrained by 11 pretreatment data sets from 2011 to 2014 [Jiang et al., 2017]. Since water table
is an important variable determining aerobic and anaerobic belowground environments and further
influence CH4 production, oxidation and diffusion, we improved the model by incorporating
hourly time step water table dynamics and methane production, oxidation, diffusion, ebullition and
plant-aided transportation processes into the model. We followed the original TECO SPRUCE
structure and divided the soil into 10 layers, with first five layers that were 10-cm thick and other
five layers that were 20-cm thick. (most peatland roots are distributed in the top 60 cm peat layer).
The conceptual structure of water table and methane flux models and the incorporation into
TECO_SPRUCE are shown in Fig.1 and further described below.

2.2.2 Water table module

New algorithms were developed and integrated into the hydrological part of TECO to estimate the
water table level and the influence of the water table on soil moisture in the unsaturated zone.
Generally, the water table module followed Granberg’s [Granberg et al., 1999] method and this
approach has been widely applied in global methane models [Zhuang et al., 2004; Wania et al.,

2009a; Zhu et al., 2014]. Based on our observation data, these bog soils are always saturated below
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30cm [Tfaily et al., 2014], except during some extreme droughts [Sebestyen et al., 2011].
Therefore, we set 30cm as the maximum water table depth (z,). The system was considered as a
simple bucket model. The changes in water content of the top 30 cm soil profile can be calculated
by a water balance model characterized by water input and output at hourly time step. The level of
the water table is determined by soil moisture change. We used a constructed function for water-
holding capacity to simulate the dynamics of the water table level. In the unsaturated zone, we use
a quadratic function and the soil volumetric water content (6,,) increases from the vegetation

surface volumetric water content (6;) to the position of the water table (z,,) as follows:

.05+ (@ - 95)(21)2

wt,

6,(z) = min

: (1

where ¢ has a constant value of 0.95, z is the depth in soil (mm), and 6, is adapted from Hayward

and Clymo [1982] and represented as:
95 = max [Bsmin'go - (aszt)]' (2)

where 6 is the minimum volumetric water content still held by capitulum of Sphagnum at the

smin

soil surface and set to 0.25, a, is the linearly decreasing gradient given by:

¢ - esmin

a, =

©
where z,,.... 1s the maximum suction interval given the value 100 mm. Thus, the total volume of
water in soil profile above z, would be:

Vie = @z, 2,0) +15"0,4(2) dz, 4)

where the first part of the equation represents the water content in the saturated zone above z;, and

the second part of the equation refers to the water content in the unsaturated zone. If the whole
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profile is saturated, the height of standing water is represented by the difference of V,,, and z,¢.

The final equation for water table depth is:

3(pz - Vyor) if z,,>0and z,,; < Zgonin
2a,
Z,,=1{ 362V if Zye > Zogmn and z,,, <z, (5)
2(¢ - O i)
= Vior = 2p9) if z,, <0

where a positive value of z,,, indicates the water table is below the hollow surface, and a negative
value of z,,, indicates the water table is above the hollow surface.

2.2.3 Methane module

TECO_SPRUCE_ME explicitly considers the transient and vertical dynamics of CH4 production
(P,,, methanogenesis), CH,4 oxidation (Oy;, methanotrophy) and CH, transport from the soil to the
atmosphere which includes ebullition (Ey,), diffusion (D;g,), and plant-mediated transport (Aey) in
the soil profiles. The structure and processes were adapted from a number of previous studies and
models [Walter and Heimann, 2000; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011].
We assume that soils can be separated in to an unsaturated zone above the water table and a
saturated zone below the water table. Methane oxidation occurs in the unsaturated zone and
rhizosphere (as explained in Section 2.2.3.4), methane production occurs in the saturated zone
[Walter and Heimann, 2000; Zhuang et al., 2004; Zhu et al., 2014; Cao et al., 1996]. To simulate
methane dynamics within the soil, we divided the soil column into 10 layers, with first five layers
that were 10-cm thick and other five layers that were 20-cm thick. Within each soil layer, CH,4

concentration dynamics were calculated by a transient reaction equation:

B(ICH,]) 0Dyl
i = Pro(zt) = 0,(2,t) - B} (20) - App (28) - —5,— (6)
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where [CH4] is soil CH4 concentration (g C m 3), z is the depth in soil (mm), # is time step (hr), P,.,

(z,t) is the CH,4 production rate, O,;(z,t) is the CHy oxidation rate, E,(z,t) is the ebullitive CHy

. . . aDL' u(Z,t) .
(z,t) is the plant-mediated transportation rate. The term gz is the flux

emission rate, and 4,,.,

divergence resulting from the diffusion of methane into/out of soil layer z from the lower/upper
soil layer or the atmosphere (for the first layer). A negative value indicates a reverse transfer
direction determined by the difference of CH4 concentration between adjacent layers. The total
emission of CHy from soil to atmosphere (F CH4(t)) is represented as:

Fep, () = Ep(6) + A o(t) + Dy(8), (7)
where within each time step, E bu(t) is the sum of all the ebullitive CH, emissions in soil layers,
A,,(t) is the sum of all the plant-aided CH4 emissions in soil layers, and D (t) is the diffused flux
from the first soil layer into the atmosphere (a negative value indicates diffused flux from the
atmosphere into the soil).
2.2.3.1 Methane production
Methanogenesis is the terminal step of soil organic carbon decomposition under anaerobic
conditions [Conrad, 1999]. This process is determined by carbon substrate supply and soil
environmental conditions such as water table via O, availability and soil temperature [ Walter and
Heimann, 2000]. In TECO_SPRUCE_ ME, CH,4 production occurs only in the saturated zone of
the soil profile. Similar to CLM4Me [Riley et al., 2011], LPJ-WHyMe [ Wania et al., 2010; Spahni
et al., 2011] and TRIPLEX-GHG [Zhu et al., 2014] models, we assume there are no time delays
between fermentation and methanogenesis so that CH4 production within the catotelm is directly

related to heterotrophic respiration from soil and litter (R, gCm "~ 2~ 1):

Pro(Z't) = Rh(Z't) r_mefstp(zit)prfred s (8)
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where Ry, (z,t) is redistributed in different soil layers by assuming that 50% is associated with roots

and the rest is evenly distributed among the top 0.3 m of soil [Riley et al., 2011]. The distribution
of root biomass was estimated from minirhizotrons and root in-growth cores over the summer of

2013 [Iversen et al., 2017]. The fractions of root biomass in each soil layer (f,,,.(2z)) were

estimated as 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.025, 0.015, 0.005, and 0.005 from the upper boundary
(the soil surface or water surface if the water table is above the soil surface) to a lower boundary.

The parameter 7, is the potential ratio of anaerobically mineralized C released as CH,, which is
an ecosystem specific conversion scaler. The soil environmental scalers, f ., f,p, and f,q are
for soil temperature, pH and redox potential. The factor fg., is a multiplier enhancing CHy
production with increasing soil temperature. It uses a Qo function with a Q;, coefficient for

production (Qy¢,,,), a highest temperature (T,,,) and optimum temperature (T,,) for CH,

max
production. We used Q10pro which refers to a parameter that describes the temperature sensitivity
of the reaction from CO, to CH,4. Q; g, describes temperature sensitivity of the reaction from soil
organic carbon to CO,, which has already been adapted and constrained by Jiang et al. [2017].

Previous studies have shown that in winter when soil temperature is below 0 °C, the

methanogenesis rate is significantly lower than that of rates observed during growing seasons

[Whalen and Reeburgh, 1992; Shannon and White, 1994]. Therefore, CH4 production in the model

only occurs when soil temperature is above 0 ‘C and below an extremely high temperature of 45

°C as shown below:

0 if Tsoil <0
Tsoil(t) - Toptpro .
fsep(t) = Qo p1190 f 0=Tso =< Trnax , 9)
0

if Tsoil > Tmax
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where T, ;(t) is the hourly soil temperature, and T is the optimum temperature for CHy

optpro
production, which varies across ecosystems. In this study we chose an value of 20 °C since this

was the maximum temperature for which methane production was examined in incubations of peat
from this site [Wilson et al., 2016].

The factors f,,; and f,,4 are nominally set to a constant value of 1.0 due to the model sensitivity

[Riley et al., 2011; Meng et al., 2012] and uncertainty in characterizing these two parameters
[Whalen, 2005, Le Mer and Roger, 2001; Wania et al., 2010]. In the CLM4Me model, the effect
of pH and redox potential on net fluxes were tested in the sensitivity analysis, and resulted in less
than a 20% change in net CH4 emission at high latitudes [Riley et al., 2011]. Redox potential does
not have substantial impacts on methane emissions at seven wetland sites including one adjacent
to the Marcell Experimental Forest in north central Minnesota [Meng et al., 2012; Shurpali and
Verma, 1998]. Wania et al. [2010] argued that the pH and redox factors are so poorly characterized
that they should be excluded. Many of the current process-based methane models use a single
value for the pH scaler calculated from the soil property that does not change with time and depth.
In many process-based methane models a step function is used for calculating the redox potential
scaler [Fiedler and Sommer, 2000; Segers and Kengen 1998; Zhang et al., 2002], which is decided
by root distribution, fraction of water filled pore space, the water table position, as well as several
other constant parameters with a single value across different ecosystems such as change rate of
soil redox potential under saturated conditions, cross-sectional area of a typical fine root and fine
root length density. In our model, the potential ratio of anaerobically mineralized C released as
CH, can reflect some of the information on the effects of pH and redox potential to methane

production. We kept f,,;, and f..4 in equation (8) because as more information become available

we might be able to improve their calculation in our later versions.
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2.2.3.2 Methane oxidation
Methane is oxidized by methanotrophs in both the acrotelm (O, as electron accepter) and the
catotelm (Fe**, NOs~, SO4%, etc. as electron accepters). Like in other methane models [Cao et al.,
1996; Zhuang et al., 2004], we only consider CH,4 oxidation in the acrotelm and during the process
of plant-mediated transportation (as explained in Section 2.2.3.4). Given that CH,4 oxidation is
largely controlled by CH4 concentration, it is assumed to follow the Michaelis-Menten kinetics
[Bender and Conrad, 1992] represented by:

0,i(zt) = Oy fenaZ)f 510 (2,8), (10)
where O,,,, is the ecosystem-specific maximum oxidation rate (umol L-! h'!) for CHa, f -y, is the

. . [CH,4](z,t) .
CH,4 concentration coefficient equal to: m, where [CH 4] denotes the soil methane

concentration (g C m_3) at time ¢ and depth z, and Ky, is Michaelis constant. f,,(zt) is an
environmental scaler associated with a Q, function, with Q,,,; and ecosystem-specific optimum

temperature for oxidation (7 y,;)-
2.2.3.3 Aqueous and gaseous diffusion

In process based models, CH4 emission from the soil to the atmosphere is represented by three

(z,t)), and ebullition (E,(z,1)).

ere

pathways: diffusion (D;/(z,t)), plant-mediated transport (A

The CH4 diffusion across soil layers follows Fick’s first law,
[CH,)(z,t)

Dip(2,) = Doy (20—, (11)

where Difu(z,t) is the diffusive flux at depth z (mm) and time t (hour), and [CH4](z,?) is the

corresponding methane concentration (g C m_3). The diffusion coefficient (DCH4(Z,t)) varies

with soil layers, the calculation is adapted and modified from Walter and Heimann [2000] :
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/3
(fair(zrt))
Dcoe(Z't) = q02 X DCH4a ’ (12)

Den,,y far(zt) < 0.05,

Den @ =1p (20, f..(zt) > 0.05. (13)

where D, (z,t) is the CH, diffusivity in soil; Dy, and Dp,,, are the diffusion coefficient of

methane in bulk air (0.2 cm?s” 1) and in water (0.2 - 10~ *em?s” 1) [Walter and Heimann, 2000];

@ is soil porosity; f, .., 1S the fraction of water-filled pore space in soil calculated from soil water
content; and f ;. is the fraction of air-filled pore space in soil calculated by ¢ - f s, Only the
net emission or uptake from first layer (D (t)) directly contributes to the final CHy4 flux exchange

between soil and the atmosphere. For boundary conditions, the methane flux at the bottom
boundary was set to zero. The atmospheric CH, concentration at the soil surface (or water surface
if the water table is at or above the soil surface) is set to 0.076 pM. At the water-air interface the
methane concentrations in both phases are assumed to be in equilibrium. For layers where air

fraction (f,;-(z,t)) < 0.05, the diffusivities for water were used. When f,;.(z,t) > 0.05, the

diffusivities in soil were used.

2.2.3.4 Plant-mediated transportation

Vascular plants enhance CH,4 emissions by transporting CH, from the point of methanogenesis in
the rhizosphere directly to the atmosphere [Joabsson et al., 1999]. When gas is transported through
intercellular spaces (molecular diffusion) or aerenchyma tissues, methane emissions are larger than
through diffusion alone. Because the diffusive CH,4 flux may bypass the soil profiles where it might
otherwise be consumed above water table level by oxygen (O,) or below the interface by Fe3*,
NO;, SO4%, etc. [Chanton and Dacey, 1991]. Conversely, plants could reduce CH, emissions by

releasing O, to the rhizosphere thereby enhancing CH,4 oxidation. In TECO SPRUCE_ME, plant-
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mediated transport is adapted from Walter’s model [ Walter and Heimann, 2000]. We described
two processes: CHy transported through plants and directly into the atmosphere (the ‘chimney
effect’) and enhanced CH,4 oxidation during upward transport in tissues. Briefly, it is modeled as

a function of the vegetation condition (T, ), the fraction of root biomass in each soil layer (f,,;

veg

(2)), the growing state of plants (f ;,.,,en (1)), the fraction of CH4 consumed by oxidation in

rhizosphere (P,,) and the distribution of soil CH4 concentrations in the soil:

Aere(t) = kplaTvegfroot(Z)fgrowth(t) [CH4-](1 - Pox)’ (14)

where k,;, is a rate constant with the unit 0.01 h'!'; The parameter T, g 1s a factor of transport

ability at the plant community level, which is set by species composition and plant density; The

fraction of CH4 consumed by oxidation in rhizosphere, P, is set to 50%, although there is high

ox?
variability of observed values [Gerard and Chanton, 1993; Schipper and Reddy, 1996]. The
multiplier f;,.;,,;(t) describes the effects of the growing stage of vegetation on plant-mediated
methane transport [ Walter and Heimann, 2000; Zhuang et al., 2004], it is determined by leaf area

index (LAI) and soil temperatures (Tsoil),

LAI,,;, if Toou < Tgr
Tmat - Tsuil .
fgrowth(t) =LAy + LAILp, (1 - (Tmai_Tgr)z) if Tgr <Tsou = Thae , (15)
LAI ;
max lf Tmat > Tsoil

where LAL,,;, is the minimum LAI associated with the beginning of plant growth; while LAI, .
is the maximum LAI associated with plant at maturity; We used T gr @S the temperature at which
plants starts to grow; and T, is the temperature at which plants reach maturity. Similar to Walter
and Heimann [2000] and Zhuang et al. [2004], LAL,;, and LAL,,,, were chosen to be 0 and 4,

respectively; T, is equal to 7°C where the annual mean soil temperature is above 5°C, otherwise,
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Ty is equal to 2°C. The annual mean soil temperature at our study site is 5.83-7.06°C, so the value

7°C was used. T, is assumed to equal T 5, + 10°C.
A range of 0-15 for 7., was used in a process based model at five wetland sites [Walter and

Heimann, 2000]. In Zhuang et al.[2004], the value of T, , was given as 0.5 for tundra ecosystems

and 0.0 for boreal forests, as they considered trees to not contribute to plant-mediated transport;
shrubs to mediate some gas transportation; and grasses, ferns, and sedges to be good mediators of
gas transport. The assignments of this parameter are empirical and would be improper for trees
and shrubs that mediate CH, transportation. In our study we give a 0-15 range for 7,,, from those
studies and try to constrain the value by using data assimilation as illustrated below.

2.2.3.5 Ebullition

We assumed that bubbles form when the CH4 concentration exceeded a certain threshold (

[CH ) iye=750 pmol L~ 'Y [Walter and Heimann, 2000] and that bubbles were directly emitted into

the atmosphere when the water table was above the soil surface. Otherwise, the bubbles are added
to the soil layer just above the water table and then continue to diffuse through the soil layers if z

1s below the water level:

Kebu([CH4] (Zrt) - [CH4] thre) if [CH4] > [CH4] thre

Ebu(z't) = 0.0 if [CH4-] < [CH4]thre ’ (15)

where K, is a rate constant of 1.0 h'! [Walter and Heimann, 2000]. No bubbles are formed if z

is above the water level.

2.3 Sensitivity test for data assimilation

The efficiency of data assimilation is affected by the number of observational data sets as well as
the amount of data in each set. In this study, methane emission data is the only available

observational data set for data assimilation. Therefore, we chose only the most sensitive parameters
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for data assimilation because the observational variable is usually sensitive to the changes in
parameter values when a parameter can be constrained by that variable in data assimilation
[Roulier and Jarvis, 2003]. We chose nine key parameters used in TECO_SPRUCE_ME (Table
1) for the initial sensitivity test, and most of the remaining parameters are physical constants. The

sensitivity of parameters are determined by sensitivity index (/) defined as:

W2-y/yo
= 20x/x, (16)

where y, is the model output (methane emission) with an initial value of the independent variable
xo (parameters in Table 1). The independent variable value varied by + Ax with corresponding
dependent variable values y, and y;. Ax was set at 0.25 times of initial values. The sensitivity

index (/) was used by Lenhart et al. [2002] and Zhu et al. [2014] to quantify sensitivity, which was
ranked into four levels, the grading of the index could be found in Lenhart et al. [2002].

2.4 Data Assimilation

Using the Bayesian probabilistic inversion technique, we estimated the posterior distribution of
model parameters based on prior knowledge of parameter ranges (Table 1) and field chamber
measurements of CH4 emissions. Since the whole-ecosystem warming (air heating and deep peat
heating) treatments were recently initiated on August 12, 2015 [Hanson et al., 2017], and the
number of whole-ecosystem warming treatment data points were not enough for data assimilation,
we only compiled chamber measurement data in ambient plots from 2011-2014 for data
assimilation and 2015-2016 for validation. Both the observed data and simulated results were
rescaled to a daily emission unit for comparison. In order to project future methane flux uncertainty
only related to parameter values, we conducted 100 forecasting runs by randomly choosing
parameter sets from their posterior distributions, we randomly picked one set of stochastically

generated environmental variables and used the same set for all the forecasting runs.
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Bayes’ theorem provides an equation in which the posterior probability density function p(8 | Z)
of model parameters for given observations Z is based on prior knowledge of parameter
distribution p(6) and the likelihood function p(Z | 6):

p(8]2) «<pz|0)p(6) (17)
Here we assume the prior knowledge of parameter distribution p(8) is uniformly distributed. Due
to the equifinality and unidentifiable parameters when using only one observation data stream to
constrain multiple parameters [Luo et al., 2009], we only chose 4 parameters with high sensitivity
to run data assimilation and the prior ranges were cited from published papers for the same or
similar ecosystems (Tablel). The errors between each observation data and model simulation
result independently follow normal distribution with a zero mean, so the likelihood function is

represented by:

[Z,) - X))
t€Z; 25%(1)

p(Z|9) X expi - X (18)

where Z,(t) is the only observation stream at time t, X (¢) is the simulated corresponding variable,
and o,(t) is the standard deviation of observation set.

The Markov chain Monte Carlo (MCMC) technique was used for posterior probability distribution
of parameters sampling with adaptive Metropolis-Hastings (M-H) algorithm. A new vector of
candidate parameters was repeatedly proposed based on the accepted parameters in the previous
steps by a normal distribution. The new set of parameter values would be accepted either by
reducing the sum of standard deviation from observation and model, or being randomly accepted
with a probability of 0.05. Detailed information on sampling posterior distribution is well
illustrated in Jiang et al. [2017]. We ran 4 chains of 50,000 simulations with an acceptance rate

around 30%, and used the Gelman-Rubin statistic [Gelman and Rubin, 1992; Xu et al., 2006] to
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check the convergence of sampling chains. Only the second half of accepted parameter values
were used for posterior analysis considering the burn-in period in the first half.

2.5 Stochastic Weather Generation

We generated three hundred sets of 10-year environmental variables (2016-2024). Daily air
temperature and precipitation were stochastically generated based on historical data from 1961-
2014 at the MEF South Meteorological station using a vector autoregressive model (VAR, Fig. 2).
To match the model time step, hourly precipitation was obtained by evenly distributing daily
precipitation for each hour, hourly air temperature was interpolated from daily maximum and
minimum, and soil temperature was calculated from air temperature based on linear regression
between soil temperature and air temperature at S1 Bog from 2011-2014. The generated air
temperature generally follows the same distribution as the historical temperature (Fig. 2a). The
standard deviation of generated temperature decreases with increasing daily mean temperature
(Fig. 2c), which indicates a larger uncertainty of generated future temperature in winter than in
summer. Future prediction of precipitation is similar to the historical precipitation with slightly
higher variation (Fig. 2bd). More details on stochastic weather generation process and the
assignment of environmental forces can be found in Jiang et al. [2017]. We increased both the air
temperature and soil temperature by 2.25 °C, 4.5 °C, 6.75 °C, 9 °C and the atmospheric CO, value

by 500 ppm to simulate CH, emission in different scenarios manipulated at the SPRUCE site.
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3. Results

3.1 Parameters constrained by data assimilation in TECO_SPRUCE_ME

The model output was sensitive to 5 out of 9 tested parameters in the growing season (Fig. 3):
potential ratio of anaerobically mineralized carbon released as CHy (1 ), Q1o for CH, production
(Q10 pro), maximum oxidation rate (Opay), ability of plant-mediated transportation decided by
species composition and plant density (T,e,), and optimum temperature for CH4 production
(Topt pro) With sensitivity index values higher than 0.2. T o and r_me had the highest sensitivity
index values throughout the growing season (sensitivity class >1.00, very high), suggesting the
importance of temperature and soil substrate in methanogenesis to methane emission. Qg pro, Omaxs
and T, rank in the second class of sensitivity and the sensitivity index values varied across
growing season. Qo _pro had the lowest value of sensitivity index in July and October (around
0.2). Omax, and T, had the highest sensitivity index value in peak growing season (Aug, Sep and
Oct, around 0.5), suggesting the importance of plant root transportation and oxidation on methane
emission in response to environmental change.

There are strong interaction effects among r_me, Qio_pro and Ty o as these parameters are
multiplied in the same equation for methane production. We settled a reasonable value of Tqp pro
to 20.0 based on published incubation results [Wilson et al., 2016] and the values cited in other
modeling papers (Zhuang et al., 2004; Zhu et al., 2014), so as to better constrain the other
parameter values using data assimilation. Two out of 4 parameters put into data assimilation were
constrained including r_me and Qo pro (Fig. 4). Histograms of parameter shows that the
distribution of r_me is well constrained with a unimodal shape and the distribution of Q¢ pr 18

edge hitting with a marginal distribution upward (Fig. 4ab). T¢; and O,y has the largest variability
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and wide, slightly-domed distributions (Fig. 4cd), which may have resulted from a limited number
of observation data points and large variation in the CH, emission measurements.

3.2 Simulation, validation and forecast in ambient condition

Our simulated CH, flux well-captured the general seasonal changes in the CH4 emission observed
by the large collar chamber (Fig. 5). The mean annual methane efflux from 2011-2014 was 16.5 +
2.0 g C m? yr'. We applied observational data from January 2015 - August 2016 for model
forecasting validation (Fig. 5), with the parameters constrained in the data assimilation stage using
the observational data from 2011-2014. During the forecasted period of 2015-2016, the seasonal
changes of methane emission is well captured by the model (Fig. 5). To better show the seasonal
variation, we picked the first year in the simulation (2011) and plotted daily variation of water
table (simulated), surface soil temperature (measured), and methane emission (simulated) in panel
a-c (Fig. 5). In general, the highest water table conditions occurred in late spring (May), and
middle-to-late summer (July to August), while lower levels occurred in middle spring (April),
early summer (June), and end of July. Before the month of July when the daily mean soil
temperature was below 10 °C, methane emission was restricted by temperature. During the peak
growing season the decrease of methane emission was mainly driven by low water level. When
the water table was at or above the soil surface, CH4 emission were more sensitive to variability
in soil temperature. During the period from September 2016 - December 2024, the variation
amplitudes of CH, emissions were relatively higher due to the statistically generated weather
forcing data, while the general seasonal pattern remained the same with that from January 2011 -
August 2016 (Fig. 5).

3.3 Responses of water table and CH, emission to warming and elevated CO,
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Our modeling results showed no significant changes of water table elevation in response to whole
ecosystem warming treatment. By using constrained parameter values we were able to simulate
CH, emission in the bog and found that warming significantly increased methane emission by 1.5,
2.1, 3.0, and 4.2 times under +2.25 °C, +4.5 “C, +6.75 “C, and +9 C, respectively (Fig. 6a), while
elevated CO; only had a small stimulating effect (ca. 10.4% - 28.6%) on methane emission (Fig.
6a). Both CH,4 production and oxidation increased by about 4 times above ambient level with 9 °C
warming with enlarged uncertainties especially in the growing seasons (Fig. 6bc, Fig.8bc, 9bc).
Plant-mediated transport is the major pathway of CH4 emission which increased by ca. 4 times
above the ambient level under 9 ‘C warming (Fig. 6d, 8adef, 9adef), however its relative
contribution to methane emission decreased from 96% to 92% due to the increased ebullition (Fig.
7). At the same time, in ambient conditions the uncertainty of plant transported began to increase
in early August (Fig. 8d), but the starting point moved up to late June under 9 °C warming (Fig.
9d). The absolute value of uncertainty was ten times the value without treatment. In ambient
conditions, ebullition contributed 0.13% (0.02 g C m= yr'!) of total emission, while under 9 °C
warming the total amount of bubbles released into the atmosphere increased to 5.7% (4.0 g C m™
yr! ) of total emission (Fig. 7). The uncertainty in plant mediated transportation and ebullition
both increased under warming (Fig. 6df), while the uncertainty in diffusion did not change much
(Fig. 6¢). The simulated results showed that diffusion contributed 3.4% (0.57 g C m2 yr!) of total
emission, and it decreased to 1.7% (1.17 g C m? yr'!) of total emission under 9 °C warming (Fig.

7).
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4. Discussion

4.1 Model performance in reducing uncertainties

Data-model fusion reduced the uncertainty of methane emission estimation by constraining the
CH,4 and CO, ratio, and temperature sensitivity for CH, production. In our model, with 30 data
points of daily methane emission from 2011 to 2014, 2 out of 4 parameters were well-constrained
or marginally edge-hitting. Gill et al. [2017] estimated the mean value of CH, flux Q¢ to be 5.63
(2.92-10.52 with 95% confidence interval) using a linearized Q¢ function [Humphreys et al.,
2005] at the same study site during the 2015 growing season. Our constrained Qo range was 2.34-
6.33 with 95% confidence interval, which overlaps with but has a narrower range than the estimate
by Gill et al. [2017].

Equifinality and identifiability are the symptoms of using only one data stream to constrain
multiple parameters in a model [Wang et al., 2001; Braswell et al., 2005; Luo et al., 2009; Keenan
etal.,2011]. Oikawa et al. [2016] used one year of half hourly eddy covariance CH4 emission data
and constrained 3 parameters in the CH4 module of PEPRMT-DAMM model. Although the
posterior ranges of 2 out of 4 of key parameters in TECO SPRUCE ME have been constrained
and thus the uncertainty has been reduced, there is still some uncertainty due to the unconstrained
parameter O, and lack of observation data available to constrain the other 3 parameters to a
smaller range. More parameters could be constrained with more measurement data available, such
as more data points in an extended length of time, as well as CH, concentration and CH,4 oxidation
in different soil layers.

Our simulated CH, flux captured the general seasonal changes in CH, emissions observed by the
large collar chamber (Fig. 5). Seasonal variations in wetland CH, fluxes are mostly determined by

temporal changes in peatland water volume and soil temperature [Walter et al., 2001, Gedney et
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al., 2004]. We found that soil temperature was the restricting factor when below 10 °C, while
during the peak growing season the decrease of CH4 emission was mainly determined by the lower
water table (Fig. 5). CH4 emission was more sensitive to variability in soil temperature during the
wet time when the water table was at or above the soil surface.

For the purpose of reducing simulation uncertainties by using data assimilation to constrain the
key parameters value, we did not fully incorporate all the processes and scalers described in other
studies, such as the effect of competition between processes [Riley et al., 2011], pH and redox
potential [Cao et al., 1998; Segers and Kengen, 1998; Zhu et al., 2014]. There are always trade-
offs between the desire to include all the mechanisms assumed to be important and 1) reducing
those uncertainties from assumed model structure; 2) lack of prior knowledge of non-key
parameter values; and 3) the computational cost when applying data assimilation.

4.2 Warming and eCQO, effects on CH, emission

By using constrained parameter values we were able to simulate CH4 emission in the bog wetland
and found an exponential increase under warming (Fig. 6a). Wilson et al. [2016] fitted seasonal
flux measurements against the average temperature from Im to 2m below the hollow surface and
also found an exponential increase in CH, emission using chamber flux measurements, also as part
of SPRUCE. Methane emissions were most responsive to warming during the peak growing
season, which could explain greater uncertainty in growing season in response to warming
simulated by the model (Fig. 8a, 9a). We found elevated CO, had a small stimulating effect (ca.
10.4% - 28.6%) on methane emission (Fig. 6a), due to increased substrate supply for
methanogenesis. Because elevated CO, has stimulating effects on soil respiration in TECO model
through increased photosynthesis and thus increased substrate supply for mineralization [Shi et al.,

2015b].
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We compared our results with other modelling and experimental work. The Wetland and Wetland
CH, Inter Comparison of Models Project (WETCHIMP) simulated the change in global methane
emission in response to temperature increase (+3.7 °C) and elevated CO, (step increase from ~300
to 857 ppm) using ten global models [Melton et al. 2013]. A ~160% increase in global CH, flux
was found in ORCHIDEE model with the largest sensitivity to increased CO,, other models results
showed an increase of global CH4 emission from 73.2% +49.1% to 55.4%+25.5%. Our results
showed that elevated CO, treatments stimulated methane emission by 10.4% - 23.6% per unit at
site level. The difference may be attributable to their expectation of an ~13% increase of global
wetland areal extent under the elevated CO, scenarios. Furthermore, different wetland types, such
as bogs and fens, may respond differently to CO, enrichment [Boardman et al., 2011].

Our findings of increased methane emission with CO, enrichment are also consistent with
experiments. Methane emissions in natural wetlands and mesocosms generally have increased with
exposure to elevated atmospheric CO, [Megonigal and Schlesinger, 1997; Saarnio and Silvola,
1999; Saarnio et al., 2003]. In a meta-analysis study, van Groenigen et al. [2011] reported an
increase of methane emission from natural wetlands of 13.2% per area for an atmospheric CO,
concentration increase from 473-780 ppm. In an incubation study, Kang et al. [2001] found no
significant differences in CH, emission regardless a significantly higher biomass in a fen peatland.
Our results showed a much stronger response of methane emission (30%, 100%, 275%, and 400%
under 2.25, 4.5, 6.75, 9°C warming) mainly due to no significant changes in water table elevation
in response to the whole ecosystem warming treatment in this area, which was in agreement with
observed water table depth during the deep peat warming period [Wilson et al., 2016]. The same
pattern of water elevation under warming was also projected by CLM model at the same study site

[Shi et al., 2015a]. Zhu et al. [2011] estimated CH4 emission in Northern Eurasia with the TEM
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model for the period 1971-2100 (annual mean soil temperature gradually increased by ~6°C,
annual precipitation gradually increased by 30%). They found the water table dropped due to the
increased soil temperature, which diminished water table rising after additional rainfall. Using
various datasets on wetland extent, regional methane emission increased by 6-51%. Results from
WETCHIMP showed a slight, non-significant decline in global methane emission with warming
(+3.7 °C), due to a moderate decline in wetland area [Melton et al. 2013]. IAP is the only model
showing a large increase in CH,4 emissions, because it does not simulate increased evaporation
under warmer surface air temperature or an effect decreasing wetland area with increased
evaporation. Wetlands from different regions may also have differential responses to elevated
temperature. In warm regions, methane production may decreas if elevated temperature causes
down-regulation of photosynthesis and henceforth production of substrate for methane production
[Melton et al. 2013]. Bohn et al. [2007] used the VBM model and simulated methane emission in
western Siberia. They found increased methane production with higher temperature alone (0-5°C),
but overall shrinking of wetland area resulted in a net reduction in methane emissions.

Our simulation results showed that the total CH4 production increased by 4 times under 9 °C
warming, while the heterotrophic respiration has only increased by ca. 25% in comparison to
ambient temperatures. That large contrast between methane production and respiration implies a
higher temperature dependence of methanogenesis than respiration. A similar result was also found
at the same site in an incubation study [ Wilson et al., 2016], where they found a positive correlation
between CH,4: CO, emission ratio and increased temperature. Consistently higher temperature
dependence in methanogenesis was also found across the ecosystem (field flux measurement),

community (CHy4 incubation), and species levels (pure culture) [ Yvon-Durocher et al., 2014].
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We did not find differential responses of CH, emission in different layers, while the incubation
study by Wilson et al. [2016] showed that the increased CH4 emission was largely driven by
surface peat (25cm) warming by measuring CH,4 production in different layers (25cm, 75cm,
100cm, 150cm and 200cm). The Qo for CH,4 production (Q,o_pro) may vary in different soil layers
and this parameter value is important when estimating CH, emission under warming. Different
Qo values for surface and catotelm soil may be needed in methane models. One possible solution
is to add o-alkyl carbon (C) content as a function of basal Q, into the equation, because the lack
of reactivity from deep peat to warming was speculated to result from low o-alkyl C [Leifeld et al.,
2012; Tfaily et al., 2014; Wilson et al., 2016].

In order to eliminate the interaction effect betweenr me, Qo_pro and Topt pro when constraining
their values, we set one of the key parameter Topt pro (reference temperature for methanogenesis)
to 20 °C in this ecosystem. A wide range of Topt pro values (-5.5 - 25 °C) have been used in
methane models for various ecosystems. Even in one single ecosystem type, for example, the
boreal forest, the value used in different models varies from 10 °C [Zhuang et al., 2004] to 25 °C
[Zhu et al., 2014]. As Topt pro is an extremely sensitive parameter in TECO SPRUCE ME
model, we carefully estimated the value according to the temperature response of CH,4 production
from surface peat samples incubated within 1 °C of in situ temperatures from the same study site
[Wilson et al., 2016]. In biogeochemical models all the reference temperatures for foliar respiration
[Wythers et al., 2005], soil respiration [Luo et al., 2001], and root respiration [Atkin et al., 2000]
were set to constant values, even when the acclimation effect on Q,( and specific reaction rate at
a reference temperature were considered. This method was chosen partially because the reference
temperature is an intrinsic biological term which is stable under a certain combination of

organisms, for example, the structure of the microbial community, and the concentration and
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quality of soil organic matter. On the other hand, the potential change in reference temperature due
the change in depth and substrate supply could be reflected by the change in Q.

4.3 Differential responses of CH, emission pathways to warming and ¢CQO,

Removal of the vascular plants (Eriophorum vaginatum) in a Swedish boreal peatland decreased
the seasonal CHy flux by 55%-85% [Waddington et al. 1996]. Wania et al. [2010] estimated the
contribution of plant-mediated transport to be 67.8%-84.5% across different sites using the LPJ-
WHyMe model. In Arctic tundra, plant-mediated transport represented 92%-98% of the net
emission measured by static chamber (clipping 100%, 50%, 0% of the phytomass quantity within
the sample chamber [Morrissey and Livingston, 1992]). Plant-mediated transport was 92-96.5%
of total emission at our study site. The contribution of plant mediated CH,4 efflux to total emission
may be underestimated in some biogeochemical models where trees, forbs and shrubs were not
included either because of the low NPP contribution or assumptions about the capacity of these
various plant types to mediate gas transport [ Wania et al. 2010; Zhuang et al. 2004]. Lignified or
suberized plants, such as trees, are considered incapable of transporting CH4. However, in the past
10 years some studies have detected considerable CH, efflux from stems [ 7Terazawa et al., 2007,
Carmichael et al., 2014; Pitz and Megonigal, 2017]. Trees in boreal forests have been found to
emit methane from both stems and shoots [Machacova et al., 2016]. Tree-mediated CH4 emissions
contribute up to 27% of seasonal ecosystem CH4 flux in a temperate forested wetland [Pangala et
al., 2015]. In the TECO model, roots were not separated into tree, shrub, and grass, but we used a
scaler T,.g, a parameter that was determined by type and plant density. This parameter represents
the ability of plant to transport CH,4 at the community level. Plant-mediated transport of CH4 from
deep soil layers may have been over estimated as the trees and shrubs may transport less CHy4 than

grasses and sedges. More data on the relative effects of different plant functional types on CHy
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transport are needed. For the long term projections, vegetation change should be considered as
CH4 emission is sensitive to Tye,. The constant value used for Ty, in global methane emission
models [Zhang et al., 2002; Zhuang et al., 2004; Riley et al., 2011; Zhu et al., 2014] may bias for
CH, emission estimates.

Diffusion accounts for ~5% on average in south Florida wetlands [Barber et al. 1988]. Ebullition
accounts for 10% - 60% of the emission [ Chanton et al. 1989; Tokida et al. 2007]. At the SPRUCE
site, Gill et al. [2017] did chamber measurements but used 30 cm diameter collars to measure
methane emissions at a smaller community level. Trees, shrubs and plants with well-developed
aerenchyma tissues, such as Eriophorum spissum, were excluded at this measurement scale. They
estimated 2015 growing season ebullition fluxes to be 1% of total CH,4 flux measurements averaged
from different warming treatments by considering CH, fluxes > 2 standard deviations of the
median as products of CH, ebullition. We estimated that diffusion and ebullition accounted for
3.4% and 0.1%, respectively. We found that CH, production rate drives the overall pattern of CHy
emission (Fig7 ab). Due to a higher CH,4 concentration in soil layers, the relative contribution of
ebullition increased from 0.13% at the control to 5.7% at the 9°C warming, given the fact that any
“excess” CHy4 is immediately released into the atmosphere when water table is above the soil
surface. Although the absolute value of diffusion fluxes increased from 0.57 at the control to 1.17
g C m? yr! at the 9°C warming, the relative contribution of diffusion decreased to 1.7% from
3.4%. Our model-simulation of ebullition matched the observational data, which implied that
model-data fusion differentiates responses of plant-mediated transportation, diffusion, and
ebullition to climate change. The uncertainty in plant-mediated transportation and ebullition
increased under warming and contributed to the overall change of uncertainty in emission.

4.4 Future Studies
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Existing methane models use a constant value of ecosystem-specific parameters such as Q, for
CH, production (Q;o pro) and potential ratio of anaerobically mineralized carbon released as CH,
(r_me). Under long-term warming conditions, however, ecosystem acclimation to temperature
may result in a change in Qo [Wythers et al., 2005; Gill et al. 2017] and r_me. Through our data-
model fusion framework, the long-term change in parameter values may be detected by combining
the long term CH4; emission measurement data and more data sets coming out such as CHy

concentration in different layers and CH,4 oxidation rate.
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5. Conclusions

We developed a methane module, which included processes of methane production, methane
oxidation, plant mediated methane transportation, diffusion through different layers, and
ebullition, together with water table dynamics. The methane module was integrated into the
Terrestrial ECOsystem (TECO) model. After constraining the parameters with multiple years of
methane emission data in a northern Minnesota peatland, we used the model to forecast CHy
emission until 2024 under five warming and two elevated CO, treatments. We found 9 °C warming
significantly increased methane emission by 4 times above ambient conditions, and elevated CO,
stimulated methane emission by 10.4%-23.6%. The uncertainty in plant-mediated transportation
and ebullition increased under warming and contributed to the overall change of uncertainty in
CH, emission estimates. The model-data fusion approach used in this study enabled parameter
estimation and uncertainty quantification for forecasting methane fluxes. As additional data for
warming and elevated CO, treatments becomes available, the data-model fusion may help estimate
parameter changes as ecosystems acclimate over time. The sensitivity of Ty pro and Ty, suggested
that these could be key parameters to be measured in the field so as to reduce uncertainties in
process-based models. Furthermore, the larger warming potential of CH4 may result in a more

positive feedback of global warming in terrestrial ecosystems.
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1053  Table 1. Major parameters in CH,4 production, oxidation, diffusion, ebullition and plant mediated
1054  transportation. Parameters in bold indicate the ones used for initial sensitivity test. Parameters with
1055  arange indicate the model is sensitive to their values and are used for data assimilation.
1056
Process Parameters Values Range Unit Description References
CH,4 production r_me 0.65 [0.0,0.7] - Potential ratio of anaerobically Zhuang et al. [2004], Segers
mineralized C released as CH;  [1998], Zhu et al. [2014]
Qo_pro 7.2 [0.0,10] - Qo for CH4 production Walter and Heimann [2000]
Topt_pro 20.0 C Optimum temperature for CHy Wilson et al. [2016]
production
CH, oxidation Kcns 5.0 - pumol Michaelis Menten coefficients Walter and Heimann [2000],
Lt Zhang et al. [2002],
Omax 15.0 [3.0,45.0] pmol Maximum oxidation rate Zhuang et al. [2004]
L1 ht
Qo_oxi 2.0 - - Qo for CH,4 oxidation Walter and Heimann [2000],
Meng et al. [2012]
Topt_oxi 10.0 C Optimum temperature for CH, Zhuang et al. [2004]
production
CH,4 diffusion fiort 0.66 - - Tortuosity coefficient Walter and Heimann [2000]
D.ir 0.2 - cm?s'  Molecular diffusion coefficient Walter and Heimann [2000]
of CHy in air
Dyater 0.00002 cm?s!  Molecular diffusion coefficient Walter and Heimann [2000]
of CH4 in water
CH4 ebullition [CHylhre 750 - pmol CH,; concentration threshold Walter and Heimann [2000],
L! above which ebullition occurs  Zhu et al. [2014]
Plant-mediated Tyeg 0.7 [0.01,15.0] - factor of transport ability at Walter [1998], Zhuang et al.

transportation

plant community level

[2004]
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Figure 2. Historical climate from the USDA MEF site during 1961-2014, and stochastic weather
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graph represents historical observation data, black curves represent ensemble of predicted future
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and standard deviation, respectively; gray is historical observation data, and black is future
predictions). (c) and (d) are standard deviations versus means for daily air temperature and

precipitation, respectively. Credits from Jiang Jiang et al. [2017].
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