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24 Abstract: Large uncertainties exist in predicting responses of wetland methane (CH4) fluxes to 

25 future climate change. However, sources of the uncertainty have not been clearly identified 

26 despite the fact that methane production and emission processes have been extensively explored. 

27 In this study, we took advantage of manual CH4 flux measurements under ambient environment 

28 from 2011-2014 at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) 

29 experimental site and developed a data-informed process-based methane module. The module was 

30 incorporated into the Terrestrial ECOsystem (TECO) model before its parameters were 

31 constrained with multiple years of methane flux data for forecasting CH4 emission under five 

32 warming and two elevated CO2 treatments at SPRUCE. We found that 9 ˚C warming treatments 

33 significantly increased methane emission by approximately 400%, and elevated CO2 treatments 

34 stimulated methane emission by 10.4% - 23.6% in comparison with ambient conditions. The 

35 relative contribution of plant-mediated transport to methane emission decreased from 96% at the 

36 control to 92% at the 9 ˚C warming, largely to compensate for an increase in ebullition. The 

37 uncertainty in plant-mediated transportation and ebullition increased with warming and 

38 contributed to the overall changes of emissions uncertainties. At the same time, our modeling 

39 results indicated a significant increase in the emitted CH4:CO2 ratio. This result, together with the 

40 larger warming potential of CH4, will lead to a strong positive feedback from terrestrial ecosystems 

41 to climate warming. The model-data fusion approach used in this study enabled parameter 

42 estimation and uncertainty quantification for forecasting methane fluxes. 
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46 Methane (CH4) has 45 times the sustained-flux global warming potential of CO2 over a 100-year 

47 scale, and it is directly responsible for approximately 20% of global warming since pre-industrial 

48 time. Wetlands are the single largest natural source of CH4 emission and there is major concern 

49 about potential feedbacks between global climate change and CH4 emissions from wetlands, as 

50 warming and atmospheric CO2 are known to affect CH4 emissions. However, extensive observed 

51 CH4 flux data have not been well used to constrain model predictions of CH4 emission in the future 

52 climate. Using a data-model fusion approach, we constrained parameters and quantified 

53 uncertainties of CH4 emission forecast. We found both warming and elevated air CO2 

54 concentrations have a stimulating effect on CH4 emission. The uncertainty in plant-mediated 

55 transportation and ebullition increased under warming.
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57 1. Introduction

58 Methane (CH4) is the simplest hydrocarbon produced by anaerobic microbes in the terminal step 

59 of organic matter remineralization. CH4 has 45 times the sustained-flux global warming potential 

60 (SGWP) of CO2 over a 100-year scale [Neubauer and Megonigal, 2015], and it is directly 

61 responsible for approximately 20% of global warming since pre-industrial periods [Forster et al., 

62 2007]. Wetlands are the single largest natural source of emitted CH4 [Bridgham et al., 2013] and 

63 there is major concern about potential feedbacks between global climate change and CH4 

64 emissions from wetlands, as warming and atmospheric CO2 are known to affect CH4 emissions 

65 [Zhuang et al., 2004; Bridgham et al., 2006]. However, extensive observed CH4 flux data have not 

66 been well used to constrain model predictions of CH4 emission in the future. 

67 Process-based biogeochemistry models have been used to quantify global wetland CH4 emissions 

68 with different complexities in model structures [Cao et al., 1995; Walter and Heimann, 2000; 

69 Zhang et al., 2002; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011; Zhu et al., 2014]. 

70 However, large uncertainties exist in predicting responses of methane emissions to future climate 

71 change [Frolking et al., 2006; Bridgham et al., 2013]. In methane models, the uncertainties in 

72 model predictions stem from: 1) Model structure – process-based models with more details and 

73 controls are being developed at the site level and will be added into global models, but a bottleneck 

74 is the lack of spatially explicit physical, chemical and biological data [Bridgham et al., 2013]; 2) 

75 Parameter values – some conceptual parameters used in methane models are not directly 

76 measurable and there is a limited variety of observational data do not comprehensively address 

77 various CH4 emission pathways that are needed to constrain parameter values using data 

78 assimilation; and 3) Forcing-data [Luo et al., 2015] – water table level and soil temperature are 

79 the two dominant controls on methane flux simulation because a) the water table position 

80 determines the extent of the catotelm zone where methane is largely produced (acrotelms may be 
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81 anoxic and methane may be produced in acrotelm) and the acrotelm where most methane is 

82 oxidized (methane can also be oxidized by methanotrophs in catotelm using Fe3+, NO3
-, SO4

2-, etc. 

83 as electron accepters). [Bartlett et al., 1990; Dise and Gorham, 1993; Bubier et al., 1995; Walter 

84 and Heimann, 2000] and b) soil temperature affects the rates of microbiological processes such as 

85 fermentation, methanogenesis and methanotrophy [Dise and Gorham, 1993; Frolking and Crill, 

86 1994; Kettunen et al., 1999; Walter and Heimann, 2000]. 

87 Biogeochemical models and experimental results are generally consistent in showing that climate 

88 warming stimulates CH4 emissions. Modeling results under +1 and +2°C warming scenarios found 

89 increases in CH4 emission in northern wetlands by 17% and 11%, but decreases under higher 

90 elevated temperature due to the effect of soil moisture depletion [Cao et al., 1998]. Short-term 

91 warming and coupled water table level × warming in situ or mesocosm manipulations have been 

92 used at the site level to explore the responses of northern peatland CH4 emission to climate 

93 warming from +0.6 to +2.0 °C. These studies found warming increased CH4 fluxes by 15%-550% 

94 or had no effect based on the condition of water table variation and vegetation change [Verville et 

95 al., 1998; Granberg et al., 2001; Updegraff et al., 2001; Turetsky et al., 2008]. However, these 

96 studies only warmed the soil surface , which may have precluded deep soil responses to warming 

97 especially in northern wetlands where a significant fraction of C is stored in deep peat layers. 

98 Nevertheless, methane fluxes measured under warming or elevated CO2 (eCO2) have never been 

99 incorporated into models via data-model fusion or used to constrain models in projecting methane 

100 emission under climate change.

101 Net methane emission includes contributions from plant-mediated transport, diffusion and 

102 ebullition (i.e. bubble release). Over 90% of the methane emission in a Carex-dominated fen near 

103 Schefferville, Quebec, Canada was mediated by plants [Whiting and Chanton, 1992]. Emergent 
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104 plants in a peatland in southern Michigan, USA accounted for 64% - 90% of the net CH4 efflux in 

105 plant enclosure experiments [Shannon et al., 1996]. Plant-mediated fluxes averaged 69.8 ± 11.8 

106 mg CH4 m-2 d-1 and accounted for ca. 50% of total fluxes at the Alaska Peatland Experiment site 

107 [Shea et al., 2010]. In the same study, diffusion contributed to less than 9% of total CH4 flux (up 

108 to 7.6 mg CH4 m-2 d-1) and ebullition accounted for ca. 41% of total CH4 flux. However, the 

109 quantity and temporal-spatial scales of experimental studies are limited, so the responses of the 

110 relative contributions of the three processes to climate warming have not been unraveled either 

111 using experiments or modeling approaches.

112 In process-based methane models, the individual pathway of CH4 emission is related to CH4 pool 

113 size (CH4 concentration), which is primarily determined by CH4 production. Once the parameters 

114 in CH4 production, plant-mediated transportation, ebullition, and diffusion are constrained by 

115 observed data and the prior range of parameter values with a data-model fusion technique [Wang 

116 et al., 2009; Richardson et al., 2010; Keenan et al., 2011, 2012; Smith et al., 2013], the simulation 

117 of differential contributions from the three pathways under warming and eCO2 may be improved. 

118 The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experimental site 

119 is unique in coupling deep peat heating (to a depth of 2 m) and above-ground warming at +0°C, 

120 +2.25°C, +4.5°C, +6.75°C and +9 °C above ambient temperature along with eCO2 treatment 

121 [Hanson et al., 2016a]. Although not enough data are yet available for validating methane emission 

122 under warming treatments, the extensive data sets released or coming out from SPRUCE will 

123 enable parameter estimation, uncertainty quantification, and contribution from each pathway to 

124 better forecast methane fluxes under warming and eCO2. 

125 In this study, we focus on developing a data-informed process-based model using the methane 

126 chamber measurement data from a northern peatland in northern Minnesota where the SPRUCE 
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127 project is occurring. We also looked at differential responses of CH4 production, oxidation, 

128 diffusion, ebullition and plant-mediated transportation to warming and eCO2. We hypothesized 

129 that both warming and eCO2 would increase methane emission in this ombrotrophic bog, with 

130 differential responses of each process due to the differential temperature dependencies of 

131 methanogenesis and respiration. 
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132 2. Methods

133 2.1 Site Description and treatments 

134 We took Spruce and Peatland Responses Under Climatic and Environmental Change experiment 

135 (SPRUCE) as our case study site. The SPRUCE project is conducted to study the responses of 

136 northern peatland to climate warming (+0, +2.25, +4.5, +6.75, +9 °C) and elevated atmospheric 

137 CO2 concentration (+0 and +500 ppm) [Hanson et al., 2016a]. The SPRUCE experiment is located 

138 in the 8-ha S1 bog that has been at the Marcell Experimental Forest (MEF, N 47° 30.476’ W 93° 

139 27.162’, 418 m above mean sea level), a site in northern Minnesota, USA, with a long-term 

140 research program that is administered by the USDA Forest Service. Temperature and precipitation 

141 have been measured since 1961 at the MEF South Meteorological station, which is about 1 km 

142 from the SPRUCE experiment. The mean annual temperature from 1961 to 2009 was 3.4 °C, and 

143 the mean annual precipitation was 780mm [Sebestyen et al., 2011b]. Mean annual air temperatures 

144 have increased approximately 0.4 °C per decade over the last 50 years [Sebestyen et al., 2011b]. 

145 Vegetation within the S1 bog is dominated by trees species Picea mariana and Larix laricina, a 

146 variety of ericaceous shrubs, and Sphagnum sp. moss. The bog also has graminoids Carex 

147 trisperma and Eriophorum spissum, as well as forbs Sarracenia purpurea and Smilacina trifolia. 

148 Mean peat depth in this bog is around 2-3m [Parsekian et al., 2012]. 

149 The water table typically fluctuates within the top 30 cm of peat at five long-studied bogs on the 

150 MEF [Sebestyen et al., 2011a]. Within SPRUCE, water table levels have been measured half 

151 hourly (except during freezing temperatures) at the meteorological station EM1 on the southwest 

152 side of the experiment site since Jan 2011. The sensor was placed in a hollow (microtopographic 

153 lows that are interspersed among hummocks of bogs [Verry, 1984]). A TruTrack WT-VO water 

154 level sensor was used to measure water table levels that were logged with a Campbell Scientific 
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155 CR1000 data logger. In this study, water table height is expressed as zero at the hollow surface 

156 during late spring or early summer [Sebestyen and Griffiths, 2016]. Community-level CH4 

157 emission were measured once each month during snow-free months beginning during 2011 using 

158 a portable open-path analyzer in each plot at “large collars” (area of 1.13 m2) that have been 

159 previously described [Hanson et al., 2016b; Hanson et al., 2017]. Mean annual air temperature at 

160 2 meters height ranged 1.91-5.10 °C, mean annual soil temperature at 30 cm depth ranged 5.83-

161 7.06 °C, annual precipitation ranged 651-717 mm during the year 2011-2016. In total, 45 daily 

162 CH4 chamber measurement data points were integrated from ambient plots from 2011-2016. We 

163 took the mean value if there is more than one plot that have data on the same date, variations in 

164 different ambient plots were not simulated due to our purpose to represent the site level CH4 

165 emission.

166 2.2 Model description and key processes

167 2.2.1 Overview of TECO

168 The process-based biogeochemistry model, TECO (Terrestrial ECOsystem model), simulates 

169 carbon, nitrogen and hydrology cycles in terrestrial ecosystems [Weng and Luo, 2008]. The model 

170 has four major components: canopy photosynthesis, soil water dynamics, plant growth (allocation 

171 and phenology), and soil carbon and nitrogen transfers. A detailed description of TECO is 

172 available in Weng and Luo [2008] and Shi et al. [2015b]. The canopy sub-module was mainly 

173 derived from Wang and Leuning’s [1998] two-leaf model, which simulated processes of canopy 

174 photosynthesis, conductance, energy balance, and transpiration. The soil water dynamics sub-

175 module has ten soil layers and simulates soil moisture dynamics based on precipitation, 

176 evapotranspiration and runoff. Evaporation is regulated by the first soil layer water content and the 

177 evaporative demand of the atmosphere. Transpiration is determined by stomatal conductance and 
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178 the soil water content of layers where roots are present. When precipitation exceeds water recharge 

179 to soil water holding capacity, runoff occurs. The C transfer sub-module simulates movement of 

180 C from plants to three soil C pools through litter fall and the decomposition of litter and soil organic 

181 C. Carbon fluxes from litter and soil carbon pools are based on residence time of each C pool and 

182 the C pool sizes [Luo and Reynolds, 1999]. 

183 The TECO model has been adapted to the SPRUCE site by Jiang et al. [2017] and Huang et al. 

184 [2017] to study the forecasting uncertainty in terrestrial carbon cycles and soil thermal dynamics.  

185 Five out of 18 parameters related to photosynthesis, respiration, plant growth and C turnover were 

186 constrained by 11 pretreatment data sets from 2011 to 2014 [Jiang et al., 2017]. Since water table 

187 is an important variable determining aerobic and anaerobic belowground environments and further 

188 influence CH4 production, oxidation and diffusion, we improved the model by incorporating 

189 hourly time step water table dynamics and methane production, oxidation, diffusion, ebullition and 

190 plant-aided transportation processes into the model. We followed the original TECO_SPRUCE 

191 structure and divided the soil into 10 layers, with first five layers that were 10-cm thick and other 

192 five layers that were 20-cm thick. (most peatland roots are distributed in the top 60 cm peat layer). 

193 The conceptual structure of water table and methane flux models and the incorporation into 

194 TECO_SPRUCE are shown in Fig.1 and further described below.

195 2.2.2 Water table module

196 New algorithms were developed and integrated into the hydrological part of TECO to estimate the 

197 water table level and the influence of the water table on soil moisture in the unsaturated zone. 

198 Generally, the water table module followed Granberg’s [Granberg et al., 1999] method and this 

199 approach has been widely applied in global methane models [Zhuang et al., 2004; Wania et al., 

200 2009a; Zhu et al., 2014]. Based on our observation data, these bog soils are always saturated below 
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201 30cm [Tfaily et al., 2014], except during some extreme droughts [Sebestyen et al., 2011]. 

202 Therefore, we set 30cm as the maximum water table depth (zb). The system was considered as a 

203 simple bucket model. The changes in water content of the top 30 cm soil profile can be calculated 

204 by a water balance model characterized by water input and output at hourly time step. The level of 

205 the water table is determined by soil moisture change. We used a constructed function for water-

206 holding capacity to simulate the dynamics of the water table level. In the unsaturated zone, we use 

207 a quadratic function and the soil volumetric water content (θus) increases from the vegetation 

208 surface volumetric water content (θs) to the position of the water table (zwt) as follows:

209 𝜃𝑢𝑠(𝑧) = min [𝜑,𝜃𝑠 + (𝜑 ‒ 𝜃𝑠)( 𝑧
𝑧𝑤𝑡

)2] ,                                      (1)

210 where  has a constant value of 0.95,   is the depth in soil (mm), and  is adapted from Hayward 𝜑 𝑧 𝜃𝑠

211 and Clymo [1982] and represented as:

212 𝜃𝑠 = 𝑚𝑎𝑥 [𝜃𝑠𝑚𝑖𝑛,𝜑 ‒ (𝑎𝑧𝑧𝑤𝑡)],                                              (2)

213 where  is the minimum volumetric water content still held by capitulum of Sphagnum at the 𝜃𝑠𝑚𝑖𝑛

214 soil surface and set to 0.25,  is the linearly decreasing gradient given by:𝑎𝑧

215                                                            (3)az =
𝜑 ‒ 𝜃𝑠𝑚𝑖𝑛

𝑧𝜃𝑠𝑚𝑖𝑛
,

216 where is the maximum suction interval given the value 100 mm. Thus, the total volume of 𝑧𝜃𝑠𝑚𝑖𝑛 

217 water in soil profile above would be:𝑧𝑏 

218                                    (4)𝑉𝑡𝑜𝑡 = 𝜑(𝑧𝑏 ‒ 𝑧𝑤𝑡) + ∫𝑧𝑤𝑡
0 𝜃𝑢𝑠(𝑧) 𝑑𝑧 ,

219 where the first part of the equation represents the water content in the saturated zone above , and 𝑧𝑏

220 the second part of the equation refers to the water content in the unsaturated zone. If the whole 
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221 profile is saturated, the height of standing water is represented by the difference of and . 𝑉𝑡𝑜𝑡 𝑧𝑏𝜑

222 The final equation for water table depth is:

223   ,                         (5)𝑧𝑤𝑡 = { 3(𝜑𝑧𝑏 ‒ 𝑉𝑡𝑜𝑡)
2𝑎𝑧

3(𝜑𝑧𝑏 ‒ 𝑉𝑡𝑜𝑡)
2(𝜑 ‒ 𝜃𝑠𝑚𝑖𝑛)

‒ (𝑉𝑡𝑜𝑡 ‒ 𝑧𝑏𝜑)

          � 𝑖𝑓 𝑧𝑤𝑡 > 0 𝑎𝑛𝑑 𝑧𝑤𝑡 ≤ 𝑧𝜃𝑠𝑚𝑖𝑛 
  

𝑖𝑓 𝑧𝑤𝑡 > 𝑧𝜃𝑠𝑚𝑖𝑛 𝑎𝑛𝑑  𝑧𝑤𝑡 < 𝑧𝑏
 

𝑖𝑓 𝑧𝑤𝑡 < 0

 

224 where a positive value of  indicates the water table is below the hollow surface, and a negative 𝑧𝑤𝑡

225 value of  indicates the water table is above the hollow surface.𝑧𝑤𝑡

226 2.2.3 Methane module

227 TECO_SPRUCE_ME explicitly considers the transient and vertical dynamics of CH4 production 

228 (Pro, methanogenesis), CH4 oxidation (Oxi, methanotrophy) and CH4 transport from the soil to the 

229 atmosphere which includes ebullition (Ebu), diffusion (Difu), and plant-mediated transport (Aere) in 

230 the soil profiles. The structure and processes were adapted from a number of previous studies and 

231 models [Walter and Heimann, 2000; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011]. 

232 We assume that soils can be separated in to an unsaturated zone above the water table and a 

233 saturated zone below the water table. Methane oxidation occurs in the unsaturated zone and 

234 rhizosphere (as explained in Section 2.2.3.4), methane production occurs in the saturated zone 

235 [Walter and Heimann, 2000; Zhuang et al., 2004; Zhu et al., 2014; Cao et al., 1996]. To simulate 

236 methane dynamics within the soil, we divided the soil column into 10 layers, with first five layers 

237 that were 10-cm thick and other five layers that were 20-cm thick. Within each soil layer, CH4 

238 concentration dynamics were calculated by a transient reaction equation:

239   ,              (6)
∂([𝐶𝐻4])

∂𝑡 = 𝑃𝑟𝑜(𝑧,𝑡) ‒ 𝑂𝑥𝑖(𝑧,𝑡) ‒ 𝐸𝑏𝑢(𝑧,𝑡) ‒ 𝐴𝑒𝑟𝑒(𝑧,𝑡) ‒
∂𝐷𝑖𝑓𝑢(𝑧,𝑡)

∂𝑧
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240 where [CH4] is soil CH4 concentration ( ),  is the depth in soil (mm), t is time step (hr), g C m ‒ 3 𝑧 𝑃𝑟𝑜

241  is the CH4 production rate,  is the CH4 oxidation rate,  is the ebullitive CH4 (𝑧,𝑡) 𝑂𝑥𝑖(𝑧,𝑡) 𝐸𝑏𝑢(𝑧,𝑡)

242 emission rate, and  is the plant-mediated transportation rate. The term  is the flux 𝐴𝑒𝑟𝑒(𝑧,𝑡)
∂𝐷𝑖𝑓𝑢(𝑧,𝑡)

∂𝑧

243 divergence resulting from the diffusion of methane into/out of soil layer z from the lower/upper 

244 soil layer or the atmosphere (for the first layer). A negative value indicates a reverse transfer 

245 direction determined by the difference of CH4 concentration between adjacent layers. The total 

246 emission of CH4 from soil to atmosphere ( ) is represented as:𝐹𝐶𝐻4
(𝑡)

247 ,                                 (7)𝐹𝐶𝐻4
(𝑡) = 𝐸𝑏𝑢(𝑡) + 𝐴𝑒𝑟𝑒(𝑡) + 𝐷0(𝑡)

248 where within each time step,  is the sum of all the ebullitive CH4 emissions in soil layers, 𝐸𝑏𝑢(𝑡)

249  is the sum of all the plant-aided CH4 emissions in soil layers, and  is the diffused flux 𝐴𝑒𝑟𝑒(𝑡) 𝐷0(𝑡)

250 from the first soil layer into the atmosphere (a negative value indicates diffused flux from the 

251 atmosphere into the soil).

252 2.2.3.1 Methane production

253 Methanogenesis is the terminal step of soil organic carbon decomposition under anaerobic 

254 conditions [Conrad, 1999]. This process is determined by carbon substrate supply and soil 

255 environmental conditions such as water table via O2 availability and soil temperature [Walter and 

256 Heimann, 2000]. In TECO_SPRUCE_ME, CH4 production occurs only in the saturated zone of 

257 the soil profile. Similar to CLM4Me [Riley et al., 2011], LPJ-WHyMe [Wania et al., 2010; Spahni 

258 et al., 2011] and TRIPLEX-GHG [Zhu et al., 2014] models, we assume there are no time delays 

259 between fermentation and methanogenesis so that CH4 production within the catotelm is directly 

260 related to heterotrophic respiration from soil and litter ( ):Rh, g C m ‒ 2ℎ ‒ 1

261  ,                                         (8)𝑃𝑟𝑜(𝑧,𝑡) = Rh(𝑧,𝑡) 𝑟_𝑚𝑒𝑓𝑠𝑡𝑝(𝑧,𝑡)𝑓𝑝𝐻𝑓𝑟𝑒𝑑
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262 where  is redistributed in different soil layers by assuming that 50% is associated with roots Rh(𝑧,𝑡)

263 and the rest is evenly distributed among the top 0.3 m of soil [Riley et al., 2011]. The distribution 

264 of root biomass was estimated from minirhizotrons and root in-growth cores over the summer of 

265 2013 [Iversen et al., 2017]. The fractions of root biomass in each soil layer ( ) were 𝑓𝑟𝑜𝑜𝑡(𝑧)

266 estimated as 0.1, 0.25, 0.25, 0.2, 0.1, 0.05, 0.025, 0.015, 0.005, and 0.005 from the upper boundary 

267 (the soil surface or water surface if the water table is above the soil surface) to a lower boundary. 

268 The parameter  is the potential ratio of anaerobically mineralized C released as CH4, which is 𝑟_𝑚𝑒

269 an ecosystem specific conversion scaler. The soil environmental scalers, , , and  are 𝑓𝑠𝑡𝑝 𝑓𝑝𝐻 𝑓𝑟𝑒𝑑

270 for soil temperature, pH and redox potential. The factor  is a multiplier enhancing CH4 𝑓𝑠𝑡𝑝

271 production with increasing soil temperature. It uses a Q10 function with a  coefficient for Q10

272 production ( ), a highest temperature ( ) and optimum temperature ( ) for CH4 Q10𝑝𝑟𝑜 Tmax Topt

273 production. We used  which refers to a parameter that describes the temperature sensitivity Q10𝑝𝑟𝑜

274 of the reaction from CO2 to CH4.  describes temperature sensitivity of the reaction from soil Q10𝑅ℎ

275 organic carbon to CO2, which has already been adapted and constrained by Jiang et al. [2017]. 

276 Previous studies have shown that in winter when soil temperature is below 0 ℃, the 

277 methanogenesis rate is significantly lower than that of rates observed during growing seasons 

278 [Whalen and Reeburgh, 1992; Shannon and White, 1994]. Therefore, CH4 production in the model 

279 only occurs when soil temperature is above 0 ℃ and below an extremely high temperature of 45 

280 ℃ as shown below:

281   ,                         (9)𝑓𝑠𝑡𝑝(𝑡) = { 0

Q10

𝑇𝑠𝑜𝑖𝑙(𝑡) ‒ 𝑇𝑜𝑝𝑡𝑝𝑟𝑜
10

𝑝𝑟𝑜  
0

         �
𝑖𝑓 𝑇𝑠𝑜𝑖𝑙 < 0 

  
𝑖𝑓 0 ≤ 𝑇𝑠𝑜𝑖𝑙 ≤ 𝑇𝑚𝑎𝑥 

 
𝑖𝑓 𝑇𝑠𝑜𝑖𝑙 > 𝑇𝑚𝑎𝑥
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282 where  is the hourly soil temperature, and  is the optimum temperature for CH4 𝑇𝑠𝑜𝑖𝑙(𝑡) 𝑇𝑜𝑝𝑡𝑝𝑟𝑜

283 production, which varies across ecosystems. In this study we chose an value of 20 ℃ since this 

284 was the maximum temperature for which methane production was examined in incubations of peat 

285 from this site [Wilson et al., 2016]. 

286 The factors  and  are nominally set to a constant value of 1.0 due to the model sensitivity 𝑓𝑝𝐻 𝑓𝑟𝑒𝑑

287 [Riley et al., 2011; Meng et al., 2012] and uncertainty in characterizing these two parameters 

288 [Whalen, 2005, Le Mer and Roger, 2001; Wania et al., 2010]. In the CLM4Me model, the effect 

289 of pH and redox potential on net fluxes were tested in the sensitivity analysis, and resulted in less 

290 than a 20% change in net CH4 emission at high latitudes [Riley et al., 2011]. Redox potential does 

291 not have substantial impacts on methane emissions at seven wetland sites including one adjacent 

292 to the Marcell Experimental Forest in north central Minnesota [Meng et al., 2012; Shurpali and 

293 Verma, 1998]. Wania et al. [2010] argued that the pH and redox factors are so poorly characterized 

294 that they should be excluded. Many of the current process-based methane models use a single 

295 value for the pH scaler calculated from the soil property that does not change with time and depth. 

296 In many process-based methane models a step function is used for calculating the redox potential 

297 scaler [Fiedler and Sommer, 2000; Segers and Kengen 1998; Zhang et al., 2002], which is decided 

298 by root distribution, fraction of water filled pore space, the water table position, as well as several 

299 other constant parameters with a single value across different ecosystems such as change rate of 

300 soil redox potential under saturated conditions, cross-sectional area of a typical fine root and fine 

301 root length density. In our model, the potential ratio of anaerobically mineralized C released as 

302 CH4 can reflect some of the information on the effects of pH and redox potential to methane 

303 production. We kept , and  in equation (8) because as more information become available 𝑓𝑝𝐻 𝑓𝑟𝑒𝑑

304 we might be able to improve their calculation in our later versions.
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305 2.2.3.2 Methane oxidation

306 Methane is oxidized by methanotrophs in both the acrotelm (O2 as electron accepter) and the 

307 catotelm (Fe3+, NO3
-, SO4

2-, etc. as electron accepters). Like in other methane models [Cao et al., 

308 1996; Zhuang et al., 2004], we only consider CH4 oxidation in the acrotelm and during the process 

309 of plant-mediated transportation (as explained in Section 2.2.3.4). Given that CH4 oxidation is 

310 largely controlled by CH4 concentration, it is assumed to follow the Michaelis-Menten kinetics 

311 [Bender and Conrad, 1992] represented by: 

312 ,                                          (10)𝑂𝑥𝑖(𝑧,𝑡) = Omax 𝑓𝐶𝐻4(𝑧,𝑡)𝑓𝑠𝑡𝑜(𝑧,𝑡)

313 where   is the ecosystem-specific maximum oxidation rate (μmol L-1  h-1) for CH4,  is the Omax 𝑓𝐶𝐻4

314 CH4 concentration coefficient equal to: , where  denotes the soil methane 
[𝐶𝐻4](𝑧,𝑡)

𝐾𝐶𝐻4 + [𝐶𝐻4](𝑧,𝑡) [𝐶𝐻4]

315 concentration ( ) at time  and depth , and  is Michaelis constant.  is an g C m ‒ 3 𝑡 𝑧 𝐾𝐶𝐻4 𝑓𝑠𝑡𝑜(𝑧,𝑡)

316 environmental scaler associated with a  function, with  and ecosystem-specific optimum Q10 Q10𝑜𝑥𝑖

317 temperature for oxidation ( ). 𝑇𝑜𝑝𝑡𝑜𝑥𝑖

318 2.2.3.3 Aqueous and gaseous diffusion

319 In process based models, CH4 emission from the soil to the atmosphere is represented by three 

320 pathways: diffusion ( ), plant-mediated transport ( ), and ebullition ( ).𝐷𝑖𝑓(𝑧,𝑡) 𝐴𝑒𝑟𝑒(𝑧,𝑡) 𝐸𝑏𝑢(𝑧,𝑡)

321 The CH4 diffusion across soil layers follows Fick’s first law,

322 ,                                                  (11)𝐷𝑖𝑓𝑢(𝑧,𝑡) =  𝐷𝐶𝐻4
(𝑧,𝑡)

∂[𝐶𝐻4](𝑧,𝑡)
∂𝑧

323 where  is the diffusive flux at depth z (mm) and time t (hour), and [CH4](z,t) is the 𝐷𝑖𝑓𝑢(𝑧,𝑡)

324 corresponding methane concentration ( ). The diffusion coefficient (  varies g C m ‒ 3 𝐷𝐶𝐻4
(𝑧,𝑡))

325 with soil layers, the calculation is adapted and modified from Walter and Heimann [2000] :
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326  ,              (12)𝐷𝑐𝑜𝑒(𝑧,𝑡) =
(𝑓𝑎𝑖𝑟(𝑧,𝑡))

10
3

𝜑2 × 𝐷𝐶𝐻4𝑎

327     (13)𝐷𝐶𝐻4
(𝑧,𝑡) = { 𝐷𝐶𝐻4𝑊

,    𝑓𝑎𝑖𝑟(𝑧,𝑡) ≤  0.05,
𝐷𝑐𝑜𝑒(𝑧,𝑡),   𝑓𝑎𝑖𝑟(𝑧,𝑡) >  0.05. �

328 where  is the CH4 diffusivity in soil;  and  are the diffusion coefficient of 𝐷𝑐𝑜𝑒(𝑧,𝑡) 𝐷𝐶𝐻4𝑎 𝐷𝐶𝐻4𝑤

329 methane in bulk air ( ) and in water ( ) [Walter and Heimann, 2000]; 0.2 cm2𝑠 ‒ 1 0.2 ∙  10 ‒ 4 cm2𝑠 ‒ 1

330  is soil porosity;  is the fraction of water-filled pore space in soil calculated from soil water 𝜑 𝑓𝑤𝑎𝑡𝑒𝑟

331 content; and  is the fraction of air-filled pore space in soil calculated by . Only the 𝑓𝑎𝑖𝑟 𝜑 ‒ 𝑓𝑤𝑎𝑡𝑒𝑟

332 net emission or uptake from first layer ( ) directly contributes to the final CH4 flux exchange 𝐷0(𝑡)

333 between soil and the atmosphere. For boundary conditions, the methane flux at the bottom 

334 boundary was set to zero. The atmospheric CH4 concentration at the soil surface (or water surface 

335 if the water table is at or above the soil surface) is set to 0.076 μM. At the water-air interface the 

336 methane concentrations in both phases are assumed to be in equilibrium. For layers where air 

337 fraction ( ) < 0.05, the diffusivities for water were used. When  > 0.05, the 𝑓𝑎𝑖𝑟(𝑧,𝑡) 𝑓𝑎𝑖𝑟(𝑧,𝑡)

338 diffusivities in soil were used.

339 2.2.3.4 Plant-mediated transportation 

340 Vascular plants enhance CH4 emissions by transporting CH4 from the point of methanogenesis in 

341 the rhizosphere directly to the atmosphere [Joabsson et al., 1999]. When gas is transported through 

342 intercellular spaces (molecular diffusion) or aerenchyma tissues, methane emissions are larger than 

343 through diffusion alone. Because the diffusive CH4 flux may bypass the soil profiles where it might 

344 otherwise be consumed above water table level by oxygen (O2) or below the interface by Fe3+, 

345 NO3
-, SO4

2-, etc. [Chanton and Dacey, 1991]. Conversely, plants could reduce CH4 emissions by 

346 releasing O2 to the rhizosphere thereby enhancing CH4 oxidation. In TECO_SPRUCE_ME, plant-
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347 mediated transport is adapted from Walter’s model [Walter and Heimann, 2000]. We described 

348 two processes: CH4 transported through plants and directly into the atmosphere (the ‘chimney 

349 effect’) and enhanced CH4 oxidation during upward transport in tissues. Briefly, it is modeled as 

350 a function of the vegetation condition ( the fraction of root biomass in each soil layer (𝑇𝑣𝑒𝑔), 𝑓𝑟𝑜𝑜𝑡

351 ), the growing state of plants ( )), the fraction of CH4 consumed by oxidation in (𝑧) 𝑓𝑔𝑟𝑜𝑤𝑡ℎ(𝑡

352 rhizosphere ( ) and the distribution of soil CH4 concentrations in the soil:𝑃𝑜𝑥

353  ,                          (14)𝐴𝑒𝑟𝑒(𝑡) = 𝑘𝑝𝑙𝑎𝑇𝑣𝑒𝑔𝑓𝑟𝑜𝑜𝑡(𝑧)𝑓𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) [𝐶𝐻4](1 ‒ 𝑃𝑜𝑥)

354 where  is a rate constant with the unit 0.01 h-1; The parameter  is a factor of transport 𝑘𝑝𝑙𝑎 𝑇𝑣𝑒𝑔

355 ability at the plant community level, which is set by species composition and plant density; The 

356 fraction of CH4 consumed by oxidation in rhizosphere, , is set to 50%, although there is high 𝑃𝑜𝑥

357 variability of observed values [Gerard and Chanton, 1993; Schipper and Reddy, 1996]. The 

358 multiplier  describes the effects of the growing stage of vegetation on plant-mediated 𝑓𝑔𝑟𝑜𝑤𝑡ℎ(𝑡)

359 methane transport [Walter and Heimann, 2000; Zhuang et al., 2004], it is determined by leaf area 

360 index (LAI) and soil temperatures (Tsoil),

361 ,             (15)𝑓𝑔𝑟𝑜𝑤𝑡ℎ(𝑡) = { 𝐿𝐴𝐼𝑚𝑖𝑛   

𝐿𝐴𝐼𝑚𝑖𝑛 +  𝐿𝐴𝐼𝑚𝑎𝑥(1 ‒ (𝑇𝑚𝑎𝑡 ‒ 𝑇𝑠𝑜𝑖𝑙

𝑇𝑚𝑎𝑖 ‒ 𝑇𝑔𝑟 )2)
𝐿𝐴𝐼𝑚𝑎𝑥

       �
𝑖𝑓 𝑇𝑠𝑜𝑖𝑙 < 𝑇𝑔𝑟 

  
𝑖𝑓 𝑇𝑔𝑟 ≤ 𝑇𝑠𝑜𝑖𝑙 ≤ 𝑇𝑚𝑎𝑡 

 
𝑖𝑓 𝑇𝑚𝑎𝑡 > 𝑇𝑠𝑜𝑖𝑙

 

362 where  is the minimum LAI associated with the beginning of plant growth; while  𝐿𝐴𝐼𝑚𝑖𝑛 𝐿𝐴𝐼𝑚𝑎𝑥

363 is the maximum LAI associated with plant at maturity; We used  as the temperature at which 𝑇𝑔𝑟

364 plants starts to grow; and  is the temperature at which plants reach maturity. Similar to Walter 𝑇𝑚𝑎𝑡

365 and Heimann [2000] and Zhuang et al. [2004],  and  were chosen to be 0 and 4, 𝐿𝐴𝐼𝑚𝑖𝑛 𝐿𝐴𝐼𝑚𝑎𝑥

366 respectively;   is equal to 7°C where the annual mean soil temperature is above 5°C, otherwise, 𝑇𝑔𝑟
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367  is equal to 2°C. The annual mean soil temperature at our study site is 5.83-7.06°C, so the value 𝑇𝑔𝑟

368 7°C was used.  is assumed to equal  + 10°C.𝑇𝑚𝑎𝑡 𝑇𝑔𝑟

369 A range of 0-15 for Tveg was used in a process based model at five wetland sites [Walter and 

370 Heimann, 2000]. In Zhuang et al.[2004], the value of  was given as 0.5 for tundra ecosystems 𝑇𝑣𝑒𝑔

371 and 0.0 for boreal forests, as they considered trees to not contribute to plant-mediated transport; 

372 shrubs to mediate some gas transportation; and grasses, ferns, and sedges to be good mediators of 

373 gas transport. The assignments of this parameter are empirical and would be improper for trees 

374 and shrubs that mediate CH4 transportation. In our study we give a 0-15 range for Tveg from those 

375 studies and try to constrain the value by using data assimilation as illustrated below.

376 2.2.3.5 Ebullition 

377 We assumed that bubbles form when the CH4 concentration exceeded a certain threshold (

378 =750 ) [Walter and Heimann, 2000] and that bubbles were directly emitted into [𝐶𝐻4]𝑡ℎ𝑟𝑒  μmol L ‒ 1

379 the atmosphere when the water table was above the soil surface. Otherwise, the bubbles are added 

380 to the soil layer just above the water table and then continue to diffuse through the soil layers if  𝑧

381 is below the water level:

382  ,         (15)𝐸𝑏𝑢(𝑧,𝑡) = { 𝐾𝑒𝑏𝑢([𝐶𝐻4](𝑧,𝑡) ‒ [𝐶𝐻4]𝑡ℎ𝑟𝑒)          𝑖𝑓 [𝐶𝐻4] > [𝐶𝐻4]𝑡ℎ𝑟𝑒
  0.0                                                             𝑖𝑓 [𝐶𝐻4] ≤ [𝐶𝐻4]𝑡ℎ𝑟𝑒  �

383 where  is a rate constant of 1.0 h-1 [Walter and Heimann, 2000]. No bubbles are formed if  𝐾𝑒𝑏𝑢 𝑧

384 is above the water level. 

385 2.3 Sensitivity test for data assimilation

386 The efficiency of data assimilation is affected by the number of observational data sets as well as 

387 the amount of data in each set. In this study, methane emission data is the only available 

388 observational data set for data assimilation. Therefore, we chose only the most sensitive parameters 
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389 for data assimilation because the observational variable is usually sensitive to the changes in 

390 parameter values when a parameter can be constrained by that variable in data assimilation 

391 [Roulier and Jarvis, 2003]. We chose nine key parameters used in TECO_SPRUCE_ME (Table 

392 1) for the initial sensitivity test, and most of the remaining parameters are physical constants. The 

393 sensitivity of parameters are determined by sensitivity index (I) defined as:

394 , (16)I =
(𝑦2 ‒ 𝑦1)/𝑦0

2∆𝑥/𝑥0

395 where  is the model output (methane emission) with an initial value of the independent variable 𝑦0

396  (parameters in Table 1). The independent variable value varied by  with corresponding 𝑥0 ± ∆x

397 dependent variable values  and .  was set at 0.25 times of initial values. The sensitivity 𝑦2  𝑦1 ∆x

398 index (I) was used by Lenhart et al. [2002] and Zhu et al. [2014] to quantify sensitivity, which was 

399 ranked into four levels, the grading of the index could be found in Lenhart et al. [2002].

400 2.4 Data Assimilation

401 Using the Bayesian probabilistic inversion technique, we estimated the posterior distribution of 

402 model parameters based on prior knowledge of parameter ranges (Table 1) and field chamber 

403 measurements of CH4 emissions. Since the whole-ecosystem warming (air heating and deep peat 

404 heating) treatments were recently initiated on August 12, 2015 [Hanson et al., 2017], and the 

405 number of whole-ecosystem warming treatment data points were not enough for data assimilation, 

406 we only compiled chamber measurement data in ambient plots from 2011-2014 for data 

407 assimilation and 2015-2016 for validation. Both the observed data and simulated results were 

408 rescaled to a daily emission unit for comparison. In order to project future methane flux uncertainty 

409 only related to parameter values, we conducted 100 forecasting runs by randomly choosing 

410 parameter sets from their posterior distributions, we randomly picked one set of stochastically 

411 generated environmental variables and used the same set for all the forecasting runs. 
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412 Bayes’ theorem provides an equation in which the posterior probability density function  𝑝(𝜃│𝑍)

413 of model parameters for given observations  is based on prior knowledge of parameter 𝑍

414 distribution  and the likelihood function :𝑝(𝜃)  𝑝(𝑍│𝜃)

415                                                       (17)𝑝(𝜃│𝑍) ∝ 𝑝(𝑍│𝜃)𝑝(𝜃) 

416 Here we assume the prior knowledge of parameter distribution  is uniformly distributed. Due 𝑝(𝜃)

417 to the equifinality and unidentifiable parameters when using only one observation data stream to 

418 constrain multiple parameters [Luo et al., 2009], we only chose 4 parameters with high sensitivity 

419 to run data assimilation and the prior ranges were cited from published papers for the same or 

420 similar ecosystems (Table1). The errors between each observation data and model simulation 

421 result independently follow normal distribution with a zero mean, so the likelihood function is 

422 represented by:

423 (18)𝑝(𝑍│𝜃) ∝ 𝑒𝑥𝑝{ ‒ ∑𝑡 ∈ 𝑍𝑖

[𝑍𝑖(𝑡) ‒ 𝑋(𝑡)]2

2𝜎2
𝑖(𝑡) }

424 where   is the only observation stream at time ,  is the simulated corresponding variable, 𝑍𝑖(𝑡) 𝑡 𝑋(𝑡)

425 and  is the standard deviation of observation set.𝜎𝑖(𝑡)

426 The Markov chain Monte Carlo (MCMC) technique was used for posterior probability distribution 

427 of parameters sampling with adaptive Metropolis-Hastings (M-H) algorithm. A new vector of 

428 candidate parameters was repeatedly proposed based on the accepted parameters in the previous 

429 steps by a normal distribution. The new set of parameter values would be accepted either by 

430 reducing the sum of standard deviation from observation and model, or being randomly accepted 

431 with a probability of 0.05.  Detailed information on sampling posterior distribution is well 

432 illustrated in Jiang et al. [2017]. We ran 4 chains of 50,000 simulations with an acceptance rate 

433 around 30%, and used the Gelman-Rubin statistic [Gelman and Rubin, 1992; Xu et al., 2006] to 
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434 check the convergence of sampling chains. Only the second half of accepted parameter values 

435 were used for posterior analysis considering the burn-in period in the first half. 

436 2.5 Stochastic Weather Generation 

437 We generated three hundred sets of 10-year environmental variables (2016-2024). Daily air 

438 temperature and precipitation were stochastically generated based on historical data from 1961-

439 2014 at the MEF South Meteorological station using a vector autoregressive model (VAR, Fig. 2).

440 To match the model time step, hourly precipitation was obtained by evenly distributing daily 

441 precipitation for each hour, hourly air temperature was interpolated from daily maximum and 

442 minimum, and soil temperature was calculated from air temperature based on linear regression 

443 between soil temperature and air temperature at S1 Bog from 2011-2014. The generated air 

444 temperature generally follows the same distribution as the historical temperature (Fig. 2a). The 

445 standard deviation of generated temperature decreases with increasing daily mean temperature 

446 (Fig. 2c), which indicates a larger uncertainty of generated future temperature in winter than in 

447 summer. Future prediction of precipitation is similar to the historical precipitation with slightly 

448 higher variation (Fig. 2bd). More details on stochastic weather generation process and the 

449 assignment of environmental forces can be found in Jiang et al. [2017]. We increased both the air 

450 temperature and soil temperature by 2.25 ˚C, 4.5 ˚C, 6.75 ˚C, 9 ˚C and the atmospheric CO2 value 

451 by 500 ppm to simulate CH4 emission in different scenarios manipulated at the SPRUCE site. 
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453 3. Results

454 3.1 Parameters constrained by data assimilation in TECO_SPRUCE_ME

455 The model output was sensitive to 5 out of 9 tested parameters in the growing season (Fig. 3): 

456 potential ratio of anaerobically mineralized carbon released as CH4 (r_me), Q10 for CH4 production 

457 (Q10_pro), maximum oxidation rate (Omax), ability of plant-mediated transportation decided by 

458 species composition and plant density (Tveg), and optimum temperature for CH4 production 

459 (Topt_pro) with sensitivity index values higher than 0.2. Topt_pro and r_me had the highest sensitivity 

460 index values throughout the growing season (sensitivity class >1.00, very high), suggesting the 

461 importance of temperature and soil substrate in methanogenesis to methane emission. Q10_pro, Omax, 

462 and Tveg rank in the second class of sensitivity and the sensitivity index values varied across 

463 growing season. Q10_pro had the lowest value of sensitivity index in July and October (around 

464 0.2). Omax, and Tveg had the highest sensitivity index value in peak growing season (Aug, Sep and 

465 Oct, around 0.5), suggesting the importance of plant root transportation and oxidation on methane 

466 emission in response to environmental change. 

467 There are strong interaction effects among r_me, Q10_pro and Topt_pro as these parameters are 

468 multiplied in the same equation for methane production. We settled a reasonable value of Topt_pro 

469 to 20.0 based on published incubation results [Wilson et al., 2016] and the values cited in other 

470 modeling papers (Zhuang et al., 2004; Zhu et al., 2014), so as to better constrain the other 

471 parameter values using data assimilation. Two out of 4 parameters put into data assimilation were 

472 constrained including r_me and Q10_pro (Fig. 4). Histograms of parameter shows that the 

473 distribution of r_me is well constrained with a unimodal shape and the distribution of Q10_pro is 

474 edge hitting with a marginal distribution upward (Fig. 4ab). Tveg and Omax has the largest variability 
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475 and wide, slightly-domed distributions (Fig. 4cd), which may have resulted from a limited number 

476 of observation data points and large variation in the CH4 emission measurements. 

477 3.2 Simulation, validation and forecast in ambient condition

478 Our simulated CH4 flux well-captured the general seasonal changes in the CH4 emission observed 

479 by the large collar chamber (Fig. 5). The mean annual methane efflux from 2011-2014 was 16.5 ± 

480 2.0 g C m-2 yr-1. We applied observational data from January 2015 - August 2016 for model 

481 forecasting validation (Fig. 5), with the parameters constrained in the data assimilation stage using 

482 the observational data from 2011-2014. During the forecasted period of 2015-2016, the seasonal 

483 changes of methane emission is well captured by the model (Fig. 5). To better show the seasonal 

484 variation, we picked the first year in the simulation (2011) and plotted daily variation of water 

485 table (simulated), surface soil temperature (measured), and methane emission (simulated) in panel 

486 a-c (Fig. 5). In general, the highest water table conditions occurred in late spring (May), and 

487 middle-to-late summer (July to August), while lower levels occurred in middle spring (April), 

488 early summer (June), and end of July. Before the month of July when the daily mean soil 

489 temperature was below 10 °C, methane emission was restricted by temperature. During the peak 

490 growing season the decrease of methane emission was mainly driven by low water level. When 

491 the water table was at or above the soil surface, CH4 emission were more sensitive to variability 

492 in soil temperature. During the period from September 2016 - December 2024, the variation 

493 amplitudes of CH4 emissions were relatively higher due to the statistically generated weather 

494 forcing data, while the general seasonal pattern remained the same with that from January 2011 - 

495 August 2016 (Fig. 5). 

496 3.3 Responses of water table and CH4 emission to warming and elevated CO2
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497 Our modeling results showed no significant changes of water table elevation in response to whole 

498 ecosystem warming treatment. By using constrained parameter values we were able to simulate 

499 CH4 emission in the bog and found that warming significantly increased methane emission by 1.5, 

500 2.1, 3.0, and 4.2 times under +2.25 ℃, +4.5 ℃, +6.75 ℃, and +9 ℃, respectively (Fig. 6a), while 

501 elevated CO2 only had a small stimulating effect (ca. 10.4% - 28.6%) on methane emission (Fig. 

502 6a). Both CH4 production and oxidation increased by about 4 times above ambient level with 9 ˚C 

503 warming with enlarged uncertainties especially in the growing seasons (Fig. 6bc, Fig.8bc, 9bc). 

504 Plant-mediated transport is the major pathway of CH4 emission which increased by ca. 4 times 

505 above the ambient level under 9 ˚C warming (Fig. 6d, 8adef, 9adef), however its relative 

506 contribution to methane emission decreased from 96% to 92% due to the increased ebullition (Fig. 

507 7). At the same time, in ambient conditions the uncertainty of plant transported began to increase 

508 in early August (Fig. 8d), but the starting point moved up to late June under 9 ˚C warming (Fig. 

509 9d). The absolute value of uncertainty was ten times the value without treatment. In ambient 

510 conditions, ebullition contributed 0.13% (0.02 g C m-2 yr-1) of total emission, while under 9 ˚C 

511 warming the total amount of bubbles released into the atmosphere increased to 5.7% (4.0 g C m-2 

512 yr-1 ) of total emission (Fig. 7). The uncertainty in plant mediated transportation and ebullition 

513 both increased under warming (Fig. 6df), while the uncertainty in diffusion did not change much 

514 (Fig. 6e). The simulated results showed that diffusion contributed 3.4% (0.57 g C m-2 yr-1) of total 

515 emission, and it decreased to 1.7% (1.17 g C m-2 yr-1) of total emission under 9 ˚C warming (Fig. 

516 7).
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518 4. Discussion  

519 4.1 Model performance in reducing uncertainties

520 Data-model fusion reduced the uncertainty of methane emission estimation by constraining the 

521 CH4 and CO2 ratio, and temperature sensitivity for CH4 production. In our model, with 30 data 

522 points of daily methane emission from 2011 to 2014, 2 out of 4 parameters were well-constrained 

523 or marginally edge-hitting. Gill et al. [2017] estimated the mean value of CH4 flux Q10 to be 5.63 

524 (2.92-10.52 with 95% confidence interval) using a linearized Q10 function [Humphreys et al., 

525 2005] at the same study site during the 2015 growing season. Our constrained Q10 range was 2.34-

526 6.33 with 95% confidence interval, which overlaps with but has a narrower range than the estimate 

527 by Gill et al. [2017].

528 Equifinality and identifiability are the symptoms of using only one data stream to constrain 

529 multiple parameters in a model [Wang et al., 2001; Braswell et al., 2005; Luo et al., 2009; Keenan 

530 et al., 2011]. Oikawa et al. [2016] used one year of half hourly eddy covariance CH4 emission data 

531 and constrained 3 parameters in the CH4 module of PEPRMT-DAMM model. Although the 

532 posterior ranges of 2 out of 4 of key parameters in TECO_SPRUCE_ME have been constrained 

533 and thus the uncertainty has been reduced, there is still some uncertainty due to the unconstrained 

534 parameter Omax and lack of observation data available to constrain the other 3 parameters to a 

535 smaller range.  More parameters could be constrained with more measurement data available, such 

536 as more data points in an extended length of time, as well as CH4 concentration and CH4 oxidation 

537 in different soil layers.

538 Our simulated CH4 flux captured the general seasonal changes in CH4 emissions observed by the 

539 large collar chamber (Fig. 5). Seasonal variations in wetland CH4 fluxes are mostly determined by 

540 temporal changes in peatland water volume and soil temperature [Walter et al., 2001; Gedney et 
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541 al., 2004]. We found that soil temperature was the restricting factor when below 10 °C, while 

542 during the peak growing season the decrease of CH4 emission was mainly determined by the lower 

543 water table (Fig. 5). CH4 emission was more sensitive to variability in soil temperature during the 

544 wet time when the water table was at or above the soil surface.

545 For the purpose of reducing simulation uncertainties by using data assimilation to constrain the 

546 key parameters value, we did not fully incorporate all the processes and scalers described in other 

547 studies, such as the effect of competition between processes [Riley et al., 2011], pH and redox 

548 potential [Cao et al., 1998; Segers and Kengen, 1998; Zhu et al., 2014]. There are always trade-

549 offs between the desire to include all the mechanisms assumed to be important and 1) reducing 

550 those uncertainties from assumed model structure; 2) lack of prior knowledge of non-key 

551 parameter values; and 3) the computational cost when applying data assimilation. 

552 4.2 Warming and eCO2 effects on CH4 emission

553 By using constrained parameter values we were able to simulate CH4 emission in the bog wetland 

554 and found an exponential increase under warming (Fig. 6a). Wilson et al. [2016] fitted seasonal 

555 flux measurements against the average temperature from 1m to 2m below the hollow surface and 

556 also found an exponential increase in CH4 emission using chamber flux measurements, also as part 

557 of SPRUCE. Methane emissions were most responsive to warming during the peak growing 

558 season, which could explain greater uncertainty in growing season in response to warming 

559 simulated by the model (Fig. 8a, 9a). We found elevated CO2 had a small stimulating effect (ca. 

560 10.4% - 28.6%) on methane emission (Fig. 6a), due to increased substrate supply for 

561 methanogenesis. Because elevated CO2 has stimulating effects on soil respiration in TECO model 

562 through increased photosynthesis and thus increased substrate supply for mineralization [Shi et al., 

563 2015b].
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564 We compared our results with other modelling and experimental work. The Wetland and Wetland 

565 CH4 Inter Comparison of Models Project (WETCHIMP) simulated the change in global methane 

566 emission in response to temperature increase (+3.7 °C) and elevated CO2 (step increase from ~300 

567 to 857 ppm) using ten global models [Melton et al. 2013]. A ~160% increase in global CH4 flux 

568 was found in ORCHIDEE model with the largest sensitivity to increased CO2, other models results 

569 showed an increase of global CH4 emission from 73.2% ±49.1% to 55.4%±25.5%. Our results 

570 showed that elevated CO2 treatments stimulated methane emission by 10.4% - 23.6% per unit at 

571 site level. The difference may be attributable to their expectation of  an ~13% increase of global 

572 wetland areal extent under the elevated CO2 scenarios. Furthermore, different wetland types, such 

573 as bogs and fens, may respond differently to CO2 enrichment [Boardman et al., 2011].

574 Our findings of increased methane emission with CO2 enrichment are also consistent with 

575 experiments. Methane emissions in natural wetlands and mesocosms generally have increased with 

576 exposure to elevated atmospheric CO2 [Megonigal and Schlesinger, 1997; Saarnio and Silvola, 

577 1999; Saarnio et al., 2003]. In a meta-analysis study, van Groenigen et al. [2011] reported an 

578 increase of methane emission from natural wetlands of 13.2% per area for an atmospheric CO2 

579 concentration increase from 473-780 ppm. In an incubation study, Kang et al. [2001] found no 

580 significant differences in CH4 emission regardless a significantly higher biomass in a fen peatland. 

581 Our results showed a much stronger response of methane emission (30%, 100%, 275%, and 400% 

582 under 2.25, 4.5, 6.75, 9°C warming) mainly due to no significant changes in water table elevation 

583 in response to the whole ecosystem warming treatment in this area, which was in agreement with 

584 observed water table depth during the deep peat warming period [Wilson et al., 2016]. The same 

585 pattern of water elevation under warming was also projected by CLM model at the same study site 

586 [Shi et al., 2015a]. Zhu et al. [2011] estimated CH4  emission in Northern Eurasia with the TEM 
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587 model for the period 1971–2100 (annual mean soil temperature gradually increased by ~6°C, 

588 annual precipitation gradually increased by 30%). They found the water table dropped due to the 

589 increased soil temperature, which diminished water table rising after additional rainfall. Using 

590 various datasets on wetland extent,  regional methane emission increased by 6-51%. Results from 

591 WETCHIMP showed a slight, non-significant decline in global methane emission with warming 

592 (+3.7 °C), due to a moderate decline in wetland area [Melton et al. 2013]. IAP is the only model 

593 showing a large increase in CH4 emissions, because it does not simulate increased evaporation 

594 under warmer surface air temperature or an effect decreasing wetland area with increased 

595 evaporation. Wetlands from different regions may also have differential responses to elevated 

596 temperature. In warm regions, methane production may decreas if elevated temperature causes 

597 down-regulation of photosynthesis and henceforth production of substrate for methane production 

598 [Melton et al. 2013]. Bohn et al. [2007] used the VBM model and simulated methane emission in 

599 western Siberia. They found increased methane production with higher temperature alone (0-5°C), 

600 but overall shrinking of wetland area resulted in a net reduction in methane emissions.

601 Our simulation results showed that the total CH4 production increased by 4 times under 9 ˚C 

602 warming, while the heterotrophic respiration has only increased by ca. 25% in comparison to 

603 ambient temperatures. That large contrast between methane production and respiration implies a 

604 higher temperature dependence of methanogenesis than respiration. A similar result was also found 

605 at the same site in an incubation study [Wilson et al., 2016], where they found a positive correlation 

606 between CH4: CO2 emission ratio and increased temperature. Consistently higher temperature 

607 dependence in methanogenesis was also found across the ecosystem (field flux measurement), 

608 community (CH4 incubation), and species levels (pure culture) [Yvon-Durocher et al., 2014]. 
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609 We did not find differential responses of CH4 emission in different layers, while the incubation 

610 study by Wilson et al. [2016] showed that the increased CH4 emission was largely driven by 

611 surface peat (25cm) warming by measuring CH4 production in different layers (25cm, 75cm, 

612 100cm, 150cm and 200cm). The Q10 for CH4 production (Q10_pro) may vary in different soil layers 

613 and this parameter value is important when estimating CH4 emission under warming. Different 

614 Q10 values for surface and catotelm soil may be needed in methane models. One possible solution 

615 is to add o-alkyl carbon (C) content as a function of basal Q10 into the equation, because the lack 

616 of reactivity from deep peat to warming was speculated to result from low o-alkyl C [Leifeld et al., 

617 2012; Tfaily et al., 2014; Wilson et al., 2016]. 

618 In order to eliminate the interaction effect between r_me, Q10_pro and Topt_pro when constraining 

619 their values, we set one of the key parameter Topt_pro (reference temperature for methanogenesis) 

620 to 20 ˚C in this ecosystem. A wide range of Topt_pro values (-5.5 - 25 ˚C) have been used in 

621 methane models for various ecosystems. Even in one single ecosystem type, for example, the 

622 boreal forest, the value used in different models varies from 10 ˚C [Zhuang et al., 2004] to 25 ˚C 

623 [Zhu et al., 2014]. As Topt_pro is an extremely sensitive parameter in TECO_SPRUCE_ME 

624 model, we carefully estimated the value according to the temperature response of CH4 production 

625 from surface peat samples incubated within 1 ˚C of in situ temperatures from the same study site 

626 [Wilson et al., 2016]. In biogeochemical models all the reference temperatures for foliar respiration 

627 [Wythers et al., 2005], soil respiration [Luo et al., 2001], and root respiration [Atkin et al., 2000] 

628 were set to constant values, even when the acclimation effect on Q10 and specific reaction rate at 

629 a reference temperature were considered. This method was chosen partially because the reference 

630 temperature is an intrinsic biological term which is stable under a certain combination of 

631 organisms, for example, the structure of the microbial community, and the concentration and 
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632 quality of soil organic matter. On the other hand, the potential change in reference temperature due 

633 the change in depth and substrate supply could be reflected by the change in Q10.

634 4.3 Differential responses of CH4 emission pathways to warming and eCO2

635 Removal of the vascular plants (Eriophorum vaginatum) in a Swedish boreal peatland decreased 

636 the seasonal CH4 flux by 55%-85% [Waddington et al. 1996]. Wania et al. [2010] estimated the 

637 contribution of plant-mediated transport to be 67.8%-84.5% across different sites using the LPJ-

638 WHyMe model. In Arctic tundra, plant-mediated transport represented 92%-98% of the net 

639 emission measured by static chamber (clipping 100%, 50%, 0% of the phytomass quantity within 

640 the sample chamber [Morrissey and Livingston, 1992]). Plant-mediated transport was 92-96.5% 

641 of total emission at our study site. The contribution of plant mediated CH4 efflux to total emission 

642 may be underestimated in some biogeochemical models where trees, forbs and shrubs were not 

643 included either because of the low NPP contribution or assumptions about the capacity of these 

644 various plant types to mediate gas transport [Wania et al. 2010; Zhuang et al. 2004]. Lignified or 

645 suberized plants, such as trees, are considered incapable of transporting CH4. However, in the past 

646 10 years some studies have detected considerable CH4 efflux from stems [Terazawa et al., 2007; 

647 Carmichael et al., 2014; Pitz and Megonigal, 2017]. Trees in boreal forests have been found to 

648 emit methane from both stems and shoots [Machacova et al., 2016]. Tree-mediated CH4 emissions 

649 contribute up to 27% of seasonal ecosystem CH4 flux in a temperate forested wetland [Pangala et 

650 al., 2015]. In the TECO model, roots were not separated into tree, shrub, and grass, but we used a 

651 scaler Tveg, a parameter that was determined by type and plant density. This parameter represents 

652 the ability of plant to transport CH4 at the community level. Plant-mediated transport of CH4 from 

653 deep soil layers may have been over estimated as the trees and shrubs may transport less CH4 than 

654 grasses and sedges. More data on the relative effects of different plant functional types on CH4 
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655 transport are needed. For the long term projections, vegetation change should be considered as 

656 CH4 emission is sensitive to Tveg. The constant value used for Tveg in global methane emission 

657 models [Zhang et al., 2002; Zhuang et al., 2004; Riley et al., 2011; Zhu et al., 2014] may bias for 

658 CH4 emission estimates.

659 Diffusion accounts for ~5% on average in south Florida wetlands [Barber et al. 1988]. Ebullition 

660 accounts for 10% - 60% of the emission [Chanton et al. 1989; Tokida et al. 2007]. At the SPRUCE 

661 site, Gill et al. [2017] did chamber measurements but used 30 cm diameter collars to measure 

662 methane emissions at a smaller community level. Trees, shrubs and plants with well-developed  

663 aerenchyma tissues, such as Eriophorum spissum, were excluded at this measurement scale. They 

664 estimated 2015 growing season ebullition fluxes to be 1% of total CH4 flux measurements averaged 

665 from different warming treatments by considering CH4 fluxes > 2 standard deviations of the 

666 median as products of CH4 ebullition. We estimated that diffusion and ebullition accounted for 

667 3.4% and 0.1%, respectively. We found that CH4 production rate drives the overall pattern of CH4 

668 emission (Fig7 ab). Due to a higher CH4 concentration in soil layers, the relative contribution of 

669 ebullition increased from 0.13% at the control to 5.7% at the 9˚C warming, given the fact that any 

670 “excess” CH4 is immediately released into the atmosphere when water table is above the soil 

671 surface. Although the absolute value of diffusion fluxes increased from 0.57 at the control to 1.17 

672 g C m-2 yr-1 at the 9˚C warming, the relative contribution of diffusion decreased to 1.7% from 

673 3.4%. Our model-simulation of ebullition matched the observational data, which implied that 

674 model-data fusion differentiates responses of plant-mediated transportation, diffusion, and 

675 ebullition to climate change. The uncertainty in plant-mediated transportation and ebullition 

676 increased under warming and contributed to the overall change of uncertainty in emission. 

677 4.4 Future Studies
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678 Existing methane models use a constant value of ecosystem-specific parameters such as Q10 for 

679 CH4 production (Q10_pro) and potential ratio of anaerobically mineralized carbon released as CH4 

680 (r_me). Under long-term warming conditions, however, ecosystem acclimation to temperature 

681 may result in a change in Q10 [Wythers et al., 2005; Gill et al. 2017] and r_me. Through our data-

682 model fusion framework, the long-term change in parameter values may be detected by combining 

683 the long term CH4 emission measurement data and more data sets coming out such as CH4 

684 concentration in different layers and CH4 oxidation rate. 
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686 5. Conclusions

687 We developed a methane module, which included processes of methane production, methane 

688 oxidation, plant mediated methane transportation, diffusion through different layers, and 

689 ebullition, together with water table dynamics. The methane module was integrated into the 

690 Terrestrial ECOsystem (TECO) model. After constraining the parameters with multiple years of 

691 methane emission data in a northern Minnesota peatland, we used the model to forecast CH4 

692 emission until 2024 under five warming and two elevated CO2 treatments. We found 9 ̊ C warming 

693 significantly increased methane emission by 4 times above ambient conditions, and elevated CO2 

694 stimulated methane emission by 10.4%-23.6%. The uncertainty in plant-mediated transportation 

695 and ebullition increased under warming and contributed to the overall change of uncertainty in 

696 CH4 emission estimates. The model-data fusion approach used in this study enabled parameter 

697 estimation and uncertainty quantification for forecasting methane fluxes. As additional data for 

698 warming and elevated CO2 treatments becomes available, the data-model fusion may help estimate 

699 parameter changes as ecosystems acclimate over time. The sensitivity of Topt_pro and Tveg suggested 

700 that these could be key parameters to be measured in the field so as to reduce uncertainties in 

701 process-based models. Furthermore, the larger warming potential of CH4 may result in a more 

702 positive feedback of global warming in terrestrial ecosystems. 
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1053 Table 1. Major parameters in CH4 production, oxidation, diffusion, ebullition and plant mediated 

1054 transportation. Parameters in bold indicate the ones used for initial sensitivity test. Parameters with 

1055 a range indicate the model is sensitive to their values and are used for data assimilation.

1056
Process  Parameters Values Range Unit Description References 

CH4  production r_me  0.65 [0.0,0.7] - Potential ratio of anaerobically 

mineralized C released as CH4

Zhuang et al. [2004], Segers 

[1998], Zhu et al. [2014]

 Q10_pro  7.2 [0.0,10] - Q10 for CH4 production Walter and Heimann [2000]

 Topt_pro 20.0 ℃ Optimum temperature for CH4 

production

Wilson et al. [2016]

CH4  oxidation KCH4 5.0 - μmol 

L-1

Michaelis_Menten coefficients Walter and Heimann [2000], 

Zhang et al. [2002], 

 Omax 15.0 [3.0,45.0] μmol 

L-1  h-1

Maximum oxidation rate Zhuang et al. [2004]

 Q10_oxi 2.0 - - Q10 for CH4 oxidation Walter and Heimann [2000], 

Meng et al. [2012]

 Topt_oxi 10.0  ℃ Optimum temperature for CH4 

production

Zhuang et al. [2004]

CH4  diffusion ftort 0.66 - - Tortuosity coefficient Walter and Heimann [2000]

 Dair 0.2 - cm2s-1 Molecular diffusion coefficient 

of CH4 in air

Walter and Heimann [2000]

 Dwater 0.00002  cm2s-1 Molecular diffusion coefficient 

of CH4 in water

Walter and Heimann [2000]

CH4  ebullition [CH4]thre 750 - μmol 

L-1

 CH4 concentration threshold 

above which ebullition occurs

Walter and Heimann [2000],

 Zhu et al. [2014]

      

Plant-mediated 

transportation

Tveg 0.7 [0.01,15.0] - factor of transport ability at 

plant community level

Walter [1998], Zhuang et al. 

[2004]
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1058

1059 Figure 1. Conceptual structure and integration of water table and CH4 emission modules into 

1060 TECO_SPRUCE 
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1063 Figure 2. Historical climate from the USDA MEF site during 1961-2014, and stochastic weather 

1064 generation for 2015-2024. (a) Probability density distribution of daily mean temperature (gray bar 

1065 graph represents historical observation data, black curves represent ensemble of predicted future 

1066 temperatures). (b) Cumulative precipitation within a year (curve and shaded areas represent mean 

1067 and standard deviation, respectively; gray is historical observation data, and black is future 

1068 predictions). (c) and (d) are standard deviations versus means for daily air temperature and 

1069 precipitation, respectively. Credits from Jiang Jiang et al. [2017].
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1071
1072 Figure 3. Sensitivity index for the most influential parameters for CH4 fluxes during the growing 

1073 season (4-year average of 2011-2014) in May, June, July, August, September and October.  The 

1074 error bar denotes standard deviation.
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1076
1077
1078 Figure 4. Posterior distributions of parameters of 50,000 samples from M-H simulation. (a),  

1079 potential ratio of anaerobically mineralized carbon released as CH4; (b), Q10 for CH4 production; 

1080 (c), maximum oxidation rate; (d) factor of transport ability at plant community level.
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1082
1083
1084 Figure. 5. Forecasting of CH4 emission dynamics based on stochastically generated weather 

1085 forcing data. Green dots refer to observations from 2011-2014 which were used for data 

1086 assimilation. Blue dots indicate observations from 2015-2016 which were used for model 

1087 validation, error bars indicate the standard deviation of each observation. Red line is simulated 

1088 mean methane emission. The shading area corresponds to 1 standard deviation based on 500 

1089 randomly chosen model simulations with parameters drawn from the posterior distribution. Panel 

1090 a-b are 2011 daily variation of water table, surface soil temperature, and methane emission.



57

1092
1093
1094 Figure 6. Responses of annual CH4 emission to warming and elevated CO2 (eCO2). Red lines 

1095 indicate CH4 fluxes under warming treatments and 380 ppm CO2, blue lines indicate CH4 fluxes 

1096 under warming treatments and 880 ppm CO2. X-axes indicate the warming treatments of +0°C, 

1097 +2.25°C, +4.5°C, +6.75°C and +9 °C above ambient level. Shading area correspond to mean ± 

1098 one standard deviation based on 500 randomly chosen model simulations with parameters drawn 

1099 from the posterior distribution.
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1101
1102 Figure 7. Simulated percentage of total emission in different pathways (plant-mediated 

1103 transportation (PMT), ebullition, and diffusion) using the mean value from 100 accepted parameter 

1104 sets.
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1106
1107 Figure 8. Simulated seasonal methane fluxes variation in 2011 under ambient condition. Blue lines 

1108 indicate CH4 fluxes under ambient temperature and 380 ppm CO2. Shading areas correspond to 

1109 mean ± one standard deviation based on 500 randomly chosen model simulations with parameters 

1110 drawn from the posterior distribution.
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1112
1113 Figure 9. Simulated seasonal methane fluxes variation in 2011 under +9 °C warming condition. 

1114 Red lines indicate CH4 fluxes under +9 °C warming and 380 ppm CO2. Shading areas correspond 

1115 to mean ± one standard deviation based on 500 randomly chosen model simulations with 

1116 parameters drawn from the posterior distribution.
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