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We are trying to provide a scientific basis for liquid
hydrogen separation distances

Previous work by this group led
to science-based, reduced,
gaseous H, separation distances
Higher energy density of liquid
hydrogen over compressed H,
makes it more economically
favorable for larger fueling
stations

Even with credits for insulation
and fire-rated barrier wall 75 ft
(22.9 m) offset to building
intakes and parking make
footprint large
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e No air or moisture condensation considered

e QOver-predicts centerline concentration for 80 K
release

1-dimensional model (with buoyancy) needs
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Houf & Winters, IJHE, 2013
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Model will be exercised for some high priority

scenarios identified by the NFPA 2 code committee

J Release from pipe leading from tank to vaporizer or vaporizer itself caused

by thermal cycles or ice falling from vaporizers

— Modeling results of hydrogen concentration plume and heat flux from a
subsequent fire will be used for all other separation distance exposures because

this is the highest risk priority
— Horizontal discharge, %”-2” diameter pipe, 20-140 psig
v" Flow from trailer venting excess pressure after normal LH, delivery
— Modeling results will be used to calculate separation distance from air intakes
and overhead utilities
— Vertical discharge, 3” diameter pipe, 20-140 psig
vt 04| M / ~




;E COMBUSTION

RESEARCH

FACILITY .

- Lﬁ SHydrogen and Fuel Cells Program

We are running an experiment, releasing ultra-cold
hydrogen in the laboratory
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We have applied Schlieren imaging and used a laser
spark to ignite ultra-cold releases
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Hydrogen was cooled to a liquid and released in the

laboratory
pl:e-coolstart of LHe cooling experimen_ts with
00Wlth LN,gaseous He to expt cryogenic H, end of cooling
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» Experimental challenges include avoidance of freezing air and hydrogen !
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The first study looked at the ignition dlstance using
a laser spark to ignite the flows

P=1Dbar, T=290K, distance = 85 mm P=1bar, T=37K, dlstance 325 mm
. - - - - \?_ N --n Y E r l"'lﬂ; "" e .
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The maximum ignition distance scales with the
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for a given mass flow, ignition of cold H, occurs much further from the release point
» temperature affects ignition distance much more than pressure

» a maximum ignition height is achieved at a lower mass flow rate of hydrogen for the
colder jets

» Maximum ignition distance linearly varies as a function of effective diameter (same
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Simulations (using the unvalidated model) predict
the mole fraction at the ignition point
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Radiant fraction for cryogenic hydrogen jet flames
scales the same as room temperature jet flames
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Planar laser Rayleigh scattering has historically been
used to measure concentration fields in the lab

R:  Raw image
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pr Laser power fluctuation

Op: Camera/lens optical response
Sz Background scatter

S,: Laser sheet profile variation
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Icing observed at the nozzle during cryogenic H,
release, and cold jet condenses moisture

Array of thermocouples measuring
the plume temperature
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H, jet column
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Currently implementing Raman scattering to
measure concentration field

» At temperature below 200 K
H, plume entrains humid air
and condenses water vapor

nitrogen camera

» Mie scattering from
condensed water vapor
saturates the camera sensors
for Rayleigh scattering

» Raman scattering has
significant wavelength shift
from laser line
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Initial Raman data has good signhal, even at low
temperatures with significant condensation

Instantaneous H, Raman Signal Mean H, Raman signal
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Planning begins this fiscal year for new experiments
in the coming years

Large scale releases will be used to study other phenomena needed for
NFPA 2 high-priority scenarios

e Thermal test complex at Sandia Albuquerque

— Flame cell
e Up to 3m diameter pool
e 50 ft. tall indoor cell

e Well characterized ambient conditions
— Humidity
— Water-cooled walls

— Crosswind test facility

e Dispersion in controlled crosswind
e Single-direction flow
e Well-characterized ambient conditions
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Summary

e Cryogenic hydrogen release laboratory has been used to understand cryogenic
hydrogen ignition and flame radiation

— lgnition distance, flame length, and radiant fraction scale with the same flow variables
as for room temperature hydrogen releases

— Article in press: Panda, P, Hecht, E.S. Ignition and flame characteristics of cryogenic
hydrogen releases. International Journal of Hydrogen Energy, 2016.
http://dx.doi.org/10.1016/].ijhydene.2016.08.051.

e Trying to make concentration measurements (ideally optically in 2D)

— Raman imaging (lower signal, will require averaging, lower experimental exactness)

— If unsuccessful, extractive probe (can affect flow field, point measurement, average
concentration only)

e Concentration measurements will be used to validate/further develop model

e Developing internal flow model to understand phase transitions and heat transfer
in tubes

e Planning new, larger scale experiments in the coming years
— Study pooling and evaporation
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