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We are trying to provide a scientific basis for liquid 
hydrogen separation distances 
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• Previous work by this group led 
to science-based, reduced, 
gaseous H2 separation distances

• Higher energy density of liquid 
hydrogen over compressed H2

makes it more economically 
favorable for larger fueling 
stations  

• Even with credits for insulation 
and fire-rated barrier wall 75 ft
(22.9 m) offset to building 
intakes and parking make 
footprint large



1-dimensional model (with buoyancy) needs 
validation data
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Xiao et al, IJHE, 2011
Houf & Winters, IJHE, 2013

• No air or moisture condensation considered

• Over-predicts centerline concentration for 80 K 
release



Model will be exercised for some high priority 
scenarios identified by the NFPA 2 code committee 
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 Release from pipe leading from tank to vaporizer or vaporizer itself caused 
by thermal cycles or ice falling from vaporizers

– Modeling results of hydrogen concentration plume and heat flux from a 
subsequent fire will be used for all other separation distance exposures because 
this is the highest risk priority

– Horizontal discharge, ¾”-2” diameter pipe, 20-140 psig

 Flow from trailer venting excess pressure after normal LH2 delivery

– Modeling results will be used to calculate separation distance from air intakes 
and overhead utilities

– Vertical discharge, 3” diameter pipe, 20-140 psig



We are running an experiment, releasing ultra-cold 
hydrogen in the laboratory
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 Accurate control/measurement 
of boundary conditions



We have applied Schlieren imaging and used a laser 
spark to ignite ultra-cold releases

 Multiple diagnostics are used to precisely characterize releases
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Hydrogen was cooled to a liquid and released in the 
laboratory
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 Experimental challenges include avoidance of freezing air and hydrogen



The first study looked at the ignition distance using 
a laser spark to ignite the flows

 Entrained moisture (and possibly air) condenses in the cold flow
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P = 1 bar, T = 290 K, distance = 85 mm P = 1 bar, T = 37 K, distance = 325 mm



The maximum ignition distance scales with the 
effective diameter
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 for a given mass flow, ignition of cold H2 occurs much further from the release point

 temperature affects ignition distance much more than pressure

 a maximum ignition height is achieved at a lower mass flow rate of hydrogen for the 
colder jets

 Maximum ignition distance linearly varies as a function of effective diameter (same 
as room temperature releases)



Simulations (using the unvalidated model) predict 
the mole fraction at the ignition point
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 Simulated jet mean hydrogen mole 
fraction at each ignition point using 
COLDPLUME developed by Houf
and Winters

 No significant trend observed in 
terms of temperature or pressure

 90 % of the data lies within 0.13 -
0.18 mole fraction

 mole fraction at the point of 
ignition is much greater than the 
4% LFL



Radiant fraction for cryogenic hydrogen jet flames 
scales the same as room temperature jet flames
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 Radiometers placed at 5 axial 
locations along the flame 
length to measure radiative 
heat flux

 Hydrogen flames have lower 
radiant heat flux compared to 
methane or syngas flames

 An increase in radiant 
fraction is observed for the 
colder H2 jets due to longer 
flame residence time
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R: Raw image
BG: Background luminosity
pF: Laser power fluctuation
OR: Camera/lens optical response
SB: Background scatter
St: Laser sheet profile variation
I: Corrected intensity
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Planar laser Rayleigh scattering has historically been 
used to measure concentration fields in the lab



Icing observed at the nozzle during cryogenic H2

release, and cold jet condenses moisture
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(air, moisture?)
icing around liq. 
H2 jet column

Array of thermocouples measuring
the plume temperature

 Challenging to provide sufficiently dried air while maintaining experimental integrity



Currently implementing Raman scattering to 
measure concentration field
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 At temperature below 200 K 
H2 plume entrains humid air 
and condenses water vapor

 Mie scattering from 
condensed water vapor 
saturates the camera sensors 
for Rayleigh scattering

 Raman scattering has 
significant wavelength shift 
from laser line



Initial Raman data has good signal, even at low 
temperatures with significant condensation

Instantaneous H2 Raman Signal Mean H2 Raman signal
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Temperatures from 140K (-133 oC, -208 oF) -176K (-97 oC, -143 oF) 



Planning begins this fiscal year for new experiments 
in the coming years

Large scale releases will be used to study other phenomena needed for 
NFPA 2 high-priority scenarios

• Thermal test complex at Sandia Albuquerque

– Flame cell

• Up to 3m diameter pool

• 50 ft. tall indoor cell

• Well characterized ambient conditions

– Humidity

– Water-cooled walls

– Crosswind test facility

• Dispersion in controlled crosswind

• Single-direction flow

• Well-characterized ambient conditions
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Summary
• Cryogenic hydrogen release laboratory has been used to understand cryogenic 

hydrogen ignition and flame radiation

– Ignition distance, flame length, and radiant fraction scale with the same flow variables 
as for room temperature hydrogen releases

– Article in press: Panda, P, Hecht, E.S. Ignition and flame characteristics of cryogenic 
hydrogen releases. International Journal of Hydrogen Energy, 2016. 
http://dx.doi.org/10.1016/j.ijhydene.2016.08.051.

• Trying to make concentration measurements (ideally optically in 2D)

– Raman imaging (lower signal, will require averaging, lower experimental exactness)

– If unsuccessful, extractive probe (can affect flow field, point measurement, average 
concentration only)

• Concentration measurements will be used to validate/further develop model

• Developing internal flow model to understand phase transitions and heat transfer 
in tubes

• Planning new, larger scale experiments in the coming years

– Study pooling and evaporation

– Effect of cross-winds and humidity
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