EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-SR-743277

NUEN-618 Class Project:
Actually Implicit Monte Carlo

R. M. Vega, T. A. Brunner

December 14, 2017



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



NUEN-618 Class Project: Actually Implicit Monte Carlo
Richard M. Vega and Thomas A. Brunner

December 11, 2017

1 Introduction

This research describes a new method for the solution of the thermal radiative transfer
(TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo
(AIMC). This section aims to introduce the TRT equations, as well as the current workhorse
method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed
here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in
this section as well.

1.1 The Thermal Radiative Transfer Equations

The TRT equations consist of a transport equation for the radiation angular intensity I,
and a conservation equation for the material energy, often written in terms of the material
temperature 7', specific energy e, or energy density U,,. The transport equation, assuming
no scattering and no external volumetric sources (which is a valid assumption in a wide
variety of problems) can be written as:

101

-—4+Q-VI I=0B 1

oy + +o0l =0B, (1)
where c is the speed of light, € is the direction of flight, ¢ is the absorption opacity, and B
is Planck’s function. The quantities in this equation have the following dependencies:

I=1(r,Q,ut),
o=o(r,v,T(t)),
B=BWT() .

where r is the position in space, v is the photon frequency, t is time, and 7" is the material
temperature. We will mainly be concerned here with the case where the material opacities



Vega, Brunner 1 INTRODUCTION

have no dependence on photon frequency, also known as the Gray approximation. Given
this approximation, we can integrate equation 1 over all photon frequencies

107 coaT*
2241 Q.-VT T = 2
c Ot + VIto A’ (2)
where ~
I(r,ﬂ,t):/ I(r,Q,u,t)dv,
0
and

00 T4
/ B, T)dv = @z
0 47

The material energy equation can be written as

p(;j:/OOO/AWJ(I—B)deV, (3)

where p is the density and e is the specific energy related to the temperature via the equation
of state (EOS). Again, assuming opacities independent of photon frequency, we can carry

out the frequency integral
p% = /A oZdQ) — coaT™ . (4)

1.2 The Implicit Monte Carlo Method

The IMC method is based upon a particular linearization and discretization in time of
the TRT equations presented in the previous subsection. The resulting equations do not
necessarily need to be solved via Monte Carlo, making the name of the method even more
questionable. In any case, it is the linearization and discretization that is of concern here,
and not the method of solution. Further details of the IMC method can be found in its
original derivation by Fleck and Cummings[l], and the dissertation by Wollaber.[2] The
first step is to replace the specific energy with the energy density U,,, and the T terms
with the radiation energy density U,

pe =Up, ; U, =aT*, (5)

in order to linearize the TRT equations

107 coU,
-—+Q-VI+0oT=
-y +Q-VI+to e (6)
82” +coU, = /Aﬂ oTdS) . (7)
We then make the following definition
ou,
T =
/8 (r7 ) aUm J
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in order to eliminate Uy, from the material energy equation

L ou, -
S —i—caUr—/AwaldQ. (8)

Thus far, no approximations have been made. The IMC discretization then assumes
oc=on,=0(r,T (t,)) and B=0n=0xT(tn)) .

where t,, is the start time of timestep n. Before going forward, it should be noted that
this assumption makes it impossible for the method to be fully implicit. Furthermore,
equations 7 and 8 are no longer equivalent because S has been fixed to its value at the
beginning of the time step. Inserting these approximations and discretizing the remaining
variables implicitly in time gives

1 InJrl _In nUnJrl
ET + Q- VIn_H + UnIn+1 = CUT; ’ (9)
1 n+1l _ yn
B[]TAtUr + CO'nU::LJrl == //4 O'nIn+1dQ 5 (10)
n+1l _
%TtUWL + CO'nUT.TH—l == /[l UnIn+1dQ . (11)

Solving for U™ in equation 10 gives

1 B, At
n+l _ (__ - n . Fn= nIn"H QO . 12
Ur <1 + CUnﬁnAt> UT * <1 + CUanAt> //47r 7 I ( )

We then define the Fleck factor

£, = 1
" 14 copfBaAt’
to write this as )
urtl = fU" 4+ — // (1= fn) onZ" Q) . (13)
COp, A

Substituting this into equations 9 and 11 gives

1 InJrl _n

1
LI 2T Q. vt 4 gyt = Sty J| a-syertiae, s
A TV e w0 T 47r( fu)o a, (14
n+l _ 711
%—Fcanfnu?: / fronT"TdSY . (15)
t 4

The IMC solution then proceeds as follows:

1. Solve equation 14 for the angular intensity at the end of the time step Z"*!, using
standard solution methods for the linear Boltzmann transport equation, such as the
Monte Carlo method or the discrete ordinates method.
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2. Use I to solve equation 15 for UZTL.
3. Use the EOS to get T"*! (and hence U*1) given Ut

4. Repeat this process for each time step.

It should be noted that we began the derivation assuming no scattering, and equation 14
appears to have a scattering source in the second term on the right hand side. The dis-
cretization presented here essentially approximates the absorption and re-emission process
as a scattering event. This is useful because the re-emission time scale is likely far smaller
than the time step.

1.3 The IMC Method as a Newton Iteration

Before moving on to the proposed method, we wish to put in writing a fact that many
experts in the field know, yet is not presented clearly in the literature. This fact is that the
IMC method can be viewed in the context of a single Newton iteration for the linearized,
and then implicitly discretized TRT equations 9 and 10. Newton iteration to solve the

system
f(x)=0, (16)

can be written as
J (x(l)> Ax) = —f (x(l)) ;o oxUD = x4 A (17)

where J is the Jacobian of f. In the case of the linearized, and then implicitly discretized
TRT equations

m (U, ) gz (U =UD) + coUPT — [[, oZ"H1dQ 0
= , (U;H_l,In—i_l) B ﬁ (In—i-l _ In) +Q. vz’n-H 4 O‘In+l _ %U;H_l 0
(18)
Note that ¢ and 8 have not been fixed at the beginning of the time step, and hence
equation 18 is still non-linear. The Jacobian is given by

Imu,. Im,
J:( . I), (19)

Jru, ez
where 1
Im,u, = GAt +co, (20)
Tz = —/A o () dS, (21)
Jrv, == (22)
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1
Jr1 = E+Q V() + (23)

A single newton iteration is completed by solving the following system

T I\ (60U, m (U, I"
o Imz _(m( N\ (24)
Ty Iy ) \ 6T r(UP,I")

where we have used the values of U, and Z at the beginning of the time step as our initial
guess. We then use a Schur complement to write

(72 = T, (T) ™ Tz) 0T = = (U2, T) + Ty, (Taw,) " m (U TY) . (25)

With a little bit of algebra, it can easily be shown that

Jru, (o) = 47/[1 — fa)on (1) d2, (26)
and ,
n n —1
o, (Imu,) = i (1= 1fn) - (27)

Plugging these into equation 25 gives

1In+l_In 1 1
S T 4 Q-VI'T - QT 4 0, T — P

c At
n+1 1 n
— f) on TV + — 1L —FT 0, I"dQ =
47r 4 T

— o+ T — T+

confn n, *
iyt 47T oI (28)

+ Qv 4o, T = C”"f”U”+ — // — f) oI, (29)
4

The final result is

1 InJrl _n
c At
which we recognize as equation 14. Thus, the IMC method is simply performing a single

Newton iteration of the linearized TRT equations, using the temperature and radiation
intensity at the beginning of the time step as the initial guess.
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2 Proposed Method

Many attempts have been made to improve the accuracy and stability of the time discretiza-
tion of the IMC method, and a detailed history of these attempts and other improvements
is discussed in the article “Four Decades of Implicit Monte Carlo,” by Wollaber.[3] As the
name of that article implies, the IMC method despite its short-comings, has proven a robust
tool for the solution of the TRT equations over a relatively long period of time.

Iterative techniques to fully resolve the non-linearities of the TRT equations, and hence
solve them implicitly are straight-forward enough when using deterministic methods, but
introduce unwanted complexity when applied to stochastic methods such as the Monte
Carlo method, and the alternative presented here is not immune to such issues. Among
these issues, two are unavoidable:

e In order to iterate over a time step, the state of the particles at the beginning of
the time step must be kept in memory, leading to duplicate copies of all particles in
census.

e Testing for convergence will be complicated by the stochastic error inherent in the
Monte Carlo method, making it unlikely to reach a desired convergence tolerance
without running an absurd number of particles.

Despite these complications, attempts at quite sophisticated iterative techniques and two-
step methods have been made.[3][4][5] To our knowledge, no one has yet attempted the
most obvious of these given the derivation above.

At the end of the previous section, we showed that the IMC method can be derived in the
context of a single Newton iteration. An obvious claim might be that a simple way to make
the IMC method actually implicit would be to continue the Newton iteration procedure to
convergence. Perhaps such iteration would be too costly given the number of particles that
would need to be simulated in order to reduce the stochastic error below the convergence
tolerance; however, surely any number of iterations more than 1 would improve accuracy
and stability when compared the standard IMC method.

What equation would be have to solve at each iteration in order to accomplish this? After all,
the popularity of the IMC method stems from equation 14 so closely resembling a standard
transport equation; an equation for which a wealth of information about its numerical
solution is available. To derive the equation to be solved at each iteration, we denote the
most recent iterate with an asterisk. In this case, each Newton iteration must solve the

system
Jr Jr oU, m (U}, Z*
e Jins _(m@nTy 0
r,Up r,J 0L r (U;"k’ I*)
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where §U, = U — U and 6 = ™" — Z*. We again use a Schur complement to write

(2= T, ) Taz) 0T = = (UL T) 4+ T, (T,) m (UL T . (31)

Again, with a little bit of algebra, it can easily be shown that

v ;uUr)_l I = ;/A (1= f")o*(-)dQ, (32)

and )
* * -1 *
o (Tmu,) = s (L=s) . (33)
Plugging these into equation 31 gives
1 In—i—l _
At)?(_'— Q- VInJrl —W—F O'*InJrl —ﬁ—
c

1 1
— 1— o'z d0 + — TR AQ =
= a-rertas [ u—praT

1z ?—W—g*/fw%—

c At
1 * * ny co* % *
47T6*A7f (1_f )(Ur Ur) Ar (I f )UT‘+
x THO . (34)
gy o .

The final result is

11‘n+1 _In

At Q.- VIt 4 ot =
C

CO'*f* * 1 * * n 1 * *TNn
(T v g - @ -on) 4 - [ a-pyemae. e

The only difference between this and equation 14 is that the collisional term, the faux
scattering term, and the emission term use the opacity and Fleck factor evaluated at the
most recent estimate of the temperature (¢* and f*), and the emission source has an extra
term in it. Note that this term was present in the IMC derivation, however in that case
U} = U, and hence the second term in the emission source evaluated to zero.
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3 Results

Before presenting the results, we would like to acknowledge that they are incomplete but
promising. We choose as our testing ground a typical Marshak wave problem where a semi-
infinite domain (x > 0) is initially at 7" = 0.05, and a radiation source at 7' = 1 is placed
at x = 0. For simplicity, a = o3, = ¢ = 1, where oy, is the Stefan-Boltzmann constant
used to convert the boundary source temperature into particles per cm? per second. The
absorption opacity is ¢ = 0.1773, the material density p = 1, and the material is an ideal
gas with ¢, = 7.14.

Figure 1 shows the solution at t = 50 using standard IMC with various numbers of uniform
timesteps N. The way in which the numerical solution strays from the analytical or reference
solution as the timesteps get larger is a known deficiency of the IMC method, sometimes
referred to as overheating. In particular, this error violates the maximum principle which
in this case should limit the temperature inside the domain below the source temperature
of unity. Instead of the hump-shaped wave that should appear, overheating causes the
temperature wave to curve upwards, and suddenly drop to zero at the wave-front.
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00 05 10 15 20 25 30 35 40

xT

Figure 1: Solution for the test problem at ¢ = 50 using standard IMC, using various uniform
timestep sizes indicated here by the number of timesteps V.

If instead we were to start with a small timestep, and slowly ramp up to the timesteps taken
in Figure 1, we would get Figure 2. In this figure, the initial time step taken is At = 0.01,
and it is increased by 10% each timestep until the desired timestep size is reached, at
which point the timestep is kept uniform throughout the duration of the simulation. It is
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Figure 2: Solution for the test problem at ¢t = 50 using standard IMC, using eventually uni-
form timestep sizes of the same size as in Figure 1, starting with At = 0.01, and increasing
by 10% each step until the size limit is reached.

recognized that the legend in this case is misleading, since N no longer indicates the number
of steps taken, but the number of steps that would have been taken if the timestep size were
uniform from the start. The legend is only kept the same for comparison to Figure 1. It
appears that the only improvement gained from slowly ramping the timestep to its desired
value is the offset in time at which the overheating begins.

Now that we have our test case, we perform the same exact problem using just two Newton
iterations (i.e. one more iteration than standard IMC) per timestep. The results are shown
in Figures 3 and 4. It appears that even without ramping up the timestep, the solution for
the same time step sizes are drastically more accurate, and the only noticeable error occurs
in the first few zones of the domain. If we ramp the timestep using just two iterations, even
this small error is avoided, and the solution for all timestep sizes are visibly indistinguishable
from the reference solution.
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Figure 3: Solution for the test problem at ¢ = 50, using two iterations per timestep, using
various uniform timestep sizes indicated here by the number of timesteps N.
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Figure 4: Solution for the test problem at ¢ = 50, using two iterations per timestep, using
eventually uniform timestep sizes of the same size as in Figure 3, starting with At = 0.01,
and increasing by 10% each step until the size limit is reached..
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