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Diffeomorphism Group Representations
in Relativistic Quantum Field Theory

Gerald A. Goldin and David H. Sharp

It has been an honor to present this talk in memory of my friend and colleague S.

Twareque Ali, who passed away in January 2016. – G. A. Goldin

Abstract. We explore the role played by the diffeomorphism group and
its unitary representations in relativistic quantum field theory. From
the quantum kinematics of particles described by representations of the
diffeomorphism group of a space-like surface in an inertial reference
frame, we reconstruct the local relativistic neutral scalar field in the
Fock representation. An explicit expression for the free Hamiltonian is
obtained in terms of the Lie algebra generators (mass and momentum
densities). We suggest that this approach can be generalized to fields
whose quanta are spatially extended objects.
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1. Introduction

The focus of this article is on the role played by diffeomorphism groups and
their representations in relativistic quantum field theory (QFT).

We highlight the important fact that diffeomorphism group represen-
tations arise naturally if one starts with the well-known Fock representation
of the free, neutral relativistic scalar field, describing noninteracting bosons
[6, 7]; and we show how this occurs. The mass density and the momentum
flux density obtained in this way are reference frame-dependent constructs;
they are not local in spacetime, and not Lorentz covariant. However, they
are essential to the description of what one actually measures – particle lo-
cations at particular times, and/or trajectories. Indeed, such measurements
are always taking place in a specific inertial reference frame.

.
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Our main idea is to reverse the direction of this construction. That is,
we propose to start with a fixed frame of reference, and with respect to that
frame, to obtain the quantum kinematics described by unitary representations
of the group of diffeomorphisms of space and its semidirect product with the
group of scalar functions. Then we identify hierarchies of such representations,
and introduce intertwining creation and annihilation fields. Only at that point
do we introduce the spacetime symmetry group (the Poincaré group in this
case) which provides the information needed to construct local relativistic
fields out of the intertwining fields.

In Sec. 2 of this article, we briefly review results on diffeomorphism group
representations in nonrelativistic quantum theory. Sec. 3 highlights our earlier
characterization of hierarchies of representations. In Sec. 4 is about obtaining
current algebra and the corresponding diffeomorphism group representations
from the field theory of relativistic neutral scalar bosons. In Sec. 5, we discuss
more generally how one can begin with “nonrelativistic” representations of
the diffeomorphism group and the current algebra, and obtain a relativistic
quantum field from them. We also express the free relativistic Hamiltonian
explicitly in terms of the original particle density and current operators. Sec. 6
mentions some possible directions opened up by our approach.

2. Diffeomorphism groups in Galilean quantum theory

Diffeomorphism groups and their unitary representations play a fundamental
role in nonrelativistic (Galilean) quantum theory [1, 2]. To set the stage, we
review this briefly.

Let Σ be the manifold of physical space. Of course Σ can be regarded as
a submanifold of spacetime, with (for example) t = 0. In Galilean theory, Σ
is independent of the velocity of the observer. Let D = C∞0 (Σ) be the group
of compactly-supported smooth real-valued functions on Σ, under pointwise
addition, and let K = Diff 0(Σ) be the group of compactly supported C∞

diffeomorphisms of Σ, under composition. Let G = D × K be the natural
semidirect product of these groups. Then the irreducible, continuous unitary
representations of G describe the quantum kinematics of a wide variety of
physical systems.

For (f, φ) ∈ D × K, let us write a continuous unitary representation
(CUR) of G as U(f)V (φ). Under very general conditions, one may realize
the representation in a Hilbert space H = L2

µ(Γ,M), with [2]

[U(f)Ψ](γ) = exp i〈γ, f〉Ψ(γ),

[V (φ)Ψ](γ) = χφ(γ)Ψ(φγ)

√
dµφ
dµ

(γ) ; (2.1)

where: Γ is a configuration space whose elements (denoted γ) are continuous
linear functionals on D; 〈γ, f〉 denotes the value of γ at f ; M is a complex
inner product space (accommodating vector-valued wave functions), and Ψ ∈
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H takes values inM; φγ denotes the natural group action of a diffeomorphism
φ ∈ K on Γ; µ is a measure on Γ quasiinvariant under diffeomorphisms;
dµφ/dµ is the Radon-Nikodym derivative of the transformed measure with
respect to the original one; and χφ(γ) is a unitary 1-cocycle acting inM. Each
of these has a fairly direct physical interpretation in quantum mechanics.

The Lie algebra of self-adjoint local current operators is defined in a
continuous unitary representation U(f)V (φ) of G by:

ρ(f) = m lim
s→0

U(sf)− I
is

, J(g) = ~ lim
s→0

V (φ g
s )− I
is

(2.2)

where: f ∈ D, g ∈ vect∞0 (Σ), and φ g
s is the flow generated by the vector field

g under the real parameter s; m is a unit mass, and ~ is Planck’s constant
(over 2π). Here ρ describes the (space-averaged) mass density, and J the
(space-averaged) momentum flux density. Then:

[ρ(f 1), ρ(f 2)] = 0, [ρ(f), J(g)] = i~ρ(Lgf)

[J(g1), J(g2)] = −i~J([g1,g2]) , (2.3)

where [g1,g2] is the Lie bracket of the vector fields.
This framework unifies descriptions of the quantum kinematics of a wide

variety of systems. Particular families of representations describe configura-
tion spaces and exchange statistics for N -particle systems, including systems
of indistinguishable particles satisfying bosonic statistics, fermionic statis-
tics, and parastatistics. In (2 + 1)-dimensional spacetime, one obtains any-
onic (braid group) statistics and non-abelian braid statistics. Tightly-bound
composite particles (quantum dipoles, quadrupoles, etc.) are also described.

One further obtains configuration spaces of infinite but locally finite par-
ticle systems, as in statistical mechanics, as well as infinite systems with accu-
mulation points. Systems of extended configurations, such as vortex patches,
filaments, and tubes, arise also obtained in this framework [2, 3, ?].

3. Hierarchies of representations

The irreducible unitary diffeomorphism group representations fall naturally
into hierarchies, whose intertwining operators (satisfying a natural commu-
tator bracket with the densities and currents) create and annihilate objects
of the same kind. These intertwining operators have an interpretation as
“second-quantized” fields, which are general enough to describe not only point
particles but extended objects [4, 5].

For example, consider a family of N -particle representations, where N =
0, 1, 2, .... We have the Hilbert spaces HN , and the unitary representations
UN (f)VN (φ). We are entitled to call the family a hierarchy if for each N
there exists an operator-valued distribution ψ∗N : HN → HN+1 (the creation
field), such that for all h ∈ D, f ∈ D, and φ ∈ K,

UN+1(f)ψ∗N (h) = ψ∗N (UN=1(f)h)UN (f) , (3.1)

VN+1(φ)ψ∗N (h) = ψ∗N (VN=1(φ)h)VN (φ) . (3.2)
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Physically, if we begin with an N -particle state, create a new particle in state
h and then transform the resulting (N+1)-particle state by the unitary group
representation UN+1 (or respectively, VN+1), the result is the same as if we
first transform the N -particle state by UN (resp. VN ), and then create the
new particle in the state obtained by transforming the 1-particle state h by U1

(resp. V1). The construction is nontrivial because creation and annihilation
within a hierarchy must respect the particle statistics (bosonic, fermionic, or
anyonic). When H1 = L2(R3,C), as in the 1-particle representation of D×K,
we write ψ∗(h) =

∫
ψ∗(x)h(x)d3x. We call ψ∗(x) an intertwining field for the

hierarchy. In effect, ψ∗(x) creates a particle at x ∈ Σ, and its adjoint ψ(x)
annihilates a particle at x. These ideas were used to obtain q-commutation
relations for anyons. [?, ?].

Consequently ψ∗ and ψ also obey natural brackets with the local cur-
rent algebra generating the group representations. Furthermore they obey
a bracket with each other: canonical commutation relations, when they in-
tertwine N -particle Bose representations; anticommutation relations when
they intertwine N -particle Fermi representations; and q-commutation rela-
tions when they intertwine N -anyon representations (in 2-space), where q is
the anyonic phase. They are non-relativistic fields.

In terms of ψ∗ and ψ, we may write the current algebra generators
(formally) as operator-valued distributions:

ρ(x) = ψ∗(x)ψ(x), J(x) = (1/2i){ψ∗(x)∇ψ(x)− [∇ψ∗(x)]ψ(x)} . (3.3)

We thus have a rather beautiful unifying, current-algebraic description
of a wide variety of distinct nonrelativistic quantum systems as representa-
tions of a local symmetry group. It is then natural to ask if there a role to
be played by the diffeomorphism group and its representations in relativistic
quantum field theories.

4. The diffeomorphism group and the free relativistic neutral
scalar Bose field

Suppose we begin with the free neutral scalar relativistic field in the Fock
representation. We use the following notational conventions to write the main
equations of interest.

In Minkowski spacetime, xµ = (x0,x), with µ = 0, 1, 2, 3; and where
x0 = ct; the metric tensor gµν = diag [1,−1,−1,−1]. The covariant momen-
tum 4-vector is pµ = (p 0,p), where p 0 = E/c, E being the energy. The wave
number 4-vector is k = (k0,k), where E = ~ω and k0 = ω/c = E/~c, and
p = ~k. Since E 2 = p2c2+m2c4, we have ω2 = k2c2+(m2c4/~2). For a given

value of k, we thus also write k0 = ωk/c, where ωk =
√

k2c2 + (m2c4/~2) .
Let a∗k and ak be (respectively) creation and annihilation operators

for the free relativistic neutral scalar field in the Fock representation, for a
particle with energy E = ~ωk and 3-momentum p = ~k. Then we have,

[ak1 , a
∗
k2

] = ωk1δ
(3)(k1 − k2). (4.1)
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From these (relativistic) operators, one constructs the (nonrelativistic) fields
from which particle measurement operators are obtained [?]:

φ1(x) =

∫
k0>0

d3k

k0

1

(2π)3/2
(k0)1/2 e−ikxak , (4.2)

and setting t = 0 and k0 = ωk, we have

φ1(x, 0) =

∫
d3k

ω
1/2
k

1

(2π)3/2
e−ik·xak . (4.3)

Then φ1 and φ∗1 satisfy the equal-time canonical commutation relations of
the intertwining fields ψ and ψ∗ discussed above; i.e., without any coefficient
in the δ-function:

[φ1(x0,x), φ∗1(y0,y)]x0=y0 = δ(3)(x− y). (4.4)

Next ρ and J can be defined in terms of these field operators on each
N -particle subspace of the Fock representation, using Eq. (3.3). They in turn
satisfy the local current algebra (2.3). When exponentiated, we obtain the
N -boson representations of the semidirect product group G – i.e., ”nonrel-
ativistic” quantum mechanics existing in within relativistic quantum field
theory. We also highlight the remarkable fact that ρ and J (unlike the rela-
tivistic fields) are actually defined as distributions over space at a fixed time.

This construction is the one whose direction we want to reverse. That
is, having obtained ψ and ψ∗ by intertwining diffeomorphism group repre-
sentations at t = 0 is a specific inertial reference frame, we write relativistic
creation and annihilation operators a∗k and ak using the inverse transform of
the equations above. From these, we construct the relativistic quantum field.

5. Relativistic QFT from diffeomorphism group
representations: general approach

5.1. Motivation

The spacetime symmetry group informs us how to relate one inertial frame
of reference to another. Traditionally, relativistic QFT begins with the intro-
duction of fields assumed to be covariant with respect to the Poincaré group,
encoding the physics of special relativity into the theory right from the start.

But the group of diffeomorphisms of spacetime is, in a sense, incompat-
ible with the Poincaré symmetry. With the exception of (1 + 1)-dimensional
spacetime, general diffeomorphisms disrupt the Minkowskian causal struc-
ture. More specifically, call a diffeomorphism of Minkowski space M causal if
for any pair of points x, y ∈M , it preserves the sign (+, 0,−) of (x−y)2 = (x−
y)µ(x− y)µ (summation convention, with the Minkowski metric). In (1 + 1)-
dimensional spacetime, an infinite-dimensional group of causal diffeomor-
phisms exists, defined by independent actions on each of the two light cone co-
ordinates. But in Minklowski spacetimes having more than one space dimen-
sion, the causal diffeomorphisms are limited to the finite-dimensional group of
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Poincaré transformations together with uniform dilations. In Galileian space-
time, on the other hand, diffeomorphisms that act on spatial coordinates only
(possibly in a time-dependent way) are among those respecting the causal
structure. Thus in the Galilean case we have an infinite-dimensional group.

This incompatibility of general spacetime diffeomorphisms with special
relativity, together with the value of the diffeomorphism group approach in
describing general quantum kinematics, leads us to the idea of describing
measurements of particles or other entities (field quanta) in a fixed inertial
frame – the frame in which the actual measurements occur. Then we need
not worry about covariance; the measurement operators can be noncovariant
and nonlocal in the spacetime (although local in space at a fixed time). Of
course, the corresponding operators for measurements taken in a different
inertial reference frame will be different, and not obtainable directly from
the first set of operators until after covariant fields (or some other way of
encoding the spacetime symmetry) have been introduced. We thus defer the
construction of fields covariant under the spacetime symmetry until later.

Our idea is natural if we focus on describing spatial configurations in
a relativistic theory (with Poincaré symmetry). One must grapple with the
fact that the shapes of spacetime regions, the particular choices of spacelike
surfaces such as hyperplanes in Minkowskian spacetime, and the shapes of
regions within those surfaces, change with the reference frame of the observer.
Therefore, since we are forced at some stage to deal with noncovariant objects,
it makes sense to begin with them. This is why we specify a frame of reference
before beginning the constructions that lead to particle configuration spaces,
and without having yet identified the spacetime symmetry.

5.2. Anticipated steps

Thus we envision the following steps in the program.
1. Choose an inertial frame of reference F (the frame of the observer).

We have not yet built in how observations in one inertial frame are related
to those in another.

2. Call the spacetime as observed from F by the name MF . Introduce
a coordinate system for MF in which the coordinate x refers to space, and t
to time. A “spacelike” surface ΣF , coordinatized by x, is obtained by setting
t = 0 in MF . We postulate a Euclidean metric on ΣF , which is to play the
role of the manifold Σ in the earlier discussion. Evidently this approach is
general enough to include spatial manifolds ΣF having nontrivial topology,
as well as higher-dimensional spacetimes (e.g., 10- or 26-dimensional) with
some of the spatial dimensions compactified.

It is natural to regard the different spacetimes MF as fibers in a bundle
over a base space of inertial frames. Each fiber carries a copy of the theory.
The spacetime symmmetry should eventually establish the isomorphism of
the theories (diffeomorphism group representations, etc.) in different fibers.

3. Define the group G = D × K with respect to ΣF and consider its
continuous unitary representations as discussed above. We remark that even
in relativistic QFT, we need to describe (spatial) configurations based on
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observable locations and motions of entities (particles, excitations). Unitary
representations of G(ΣF ) are natural because one-parameter groups of diffeo-
morphisms (i.e., flows) describe possible smooth motions of configurations in
physical space. The infinitesimal generators of such flows are local currents.

4. Identify one or more hierarchies of representations, describing config-
urations consisting of entities of the same type (to be interpreted as quanta
of the same field). Introduce creation and annihilation fields as operators
intertwining the unitary representations in the hierarchy.

At this stage in the general development, we have a full description of the
field quanta, but we do not yet have the field – nor do we have a description
of the dynamics, which is to be provided as usual by a Hamiltonian operator.

5. The next step is to introduce a (covariant) relativistic field, defined
making use of the creation and annihilation fields intertwining the hierarchy
of diffeomorphism group representations in inertial frame F . This is where the
particular choice of spacetime symmetry (relating different reference frames)
is introduced. The configuration-space entities in the hierarchy of diffeomor-
phism group representations are interpreted as quanta of this field as observ-
able in the reference frame F .

6. Finally, write the Hamiltonian H describing the (relativistic) dynam-
ics. While H may be expressed in terms of the relativistic quantum field,
the preceding construction means that it may also be expressed explicitly in
terms of the local currents (the infinitesimal generators in the diffeomorphism
group representations with which we started), together with the (nonrelativis-
tic) intertwining fields. At the end of the construction, the physics described
by the relativistic field and Hamiltonian should not depend on the particular
reference frame F with which we began.

5.3. Constructing the relativistic free neutral scalar field

Carrying out first four steps in (3 + 1)-dimensioanl Minkowski space, for the
hierarchy of N -particle Bose representations of G = D × K, we obtain the
creation and annihilation fields φ∗1, φ in Fock space satisfying Eq. (4.4).

To construct the relativistic field φ(x), we use the three-dimensional
inverse transforms of φ1(x, 0) and φ∗1(x, 0), corresponding to Eq. (4.3); thus,

1

(2π)3/2

∫
d3xφ1(x, 0)eik·x = ak/ω

1/2
k , (5.1)

and correspondingly for the adjoint. This is precisely the point where rela-
tivistic invariance has been put in “by hand” – the definitions of a∗k and ak
from the intertwining fields φ∗1 and φ1 are such as to satisfy a relativistic
bracket.

Then the relativistic field is, as usual,

φ(x) =
1

(2π)3/2
√

2

∫
k0>0

d3k

k0
(ake

−ikx + a∗ke
ikx) . (5.2)

We stress that both φ1 and φ are operator-valued distributions in the same
Hilbert space, for any value of c — including the Galilean limit c→∞.
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5.4. The free relativistic Hamiltonian in terms of local currents

We conclude by expressing the free relativistic Hamiltonian in terms of dif-
feomorphism group generators (i.e., local currents), in this representation. In
a calculation beginning with

H =

∫
d3k

k0
~ωk a

∗
kak =

1

2

∫
d3x : π(x)2+∇φ(x) ·∇φ(x)+m2φ(x)2 : (5.3)

where the colons : : denote normal ordering, we obtain the singular-looking
expression,

H =

∫ ∫
d3x d3y F (x− y) ρ(x) exp

∫ y

x

1

2ρ(x′)
K(x′)dx′ , (5.4)

where K(x) = ∇ρ(x) + 2iJ(x), and F (x − y) =
∫
d3k ωk exp[ik · (x − y)].

One can obtain the Galilean free Hamiltonian explicitly as a limiting case of
the above relativistic Hamiltonian.

We remark that there are ways to make mathematical sense of the ap-
parently singular expressions in Eq. (5.4) involving products and quotients
of the (spatially) local density and current operators.

6. Discussion and concluding remarks

The example of the free relativistic boson field serves as a model for more
general quantum field theories built up from hierarchies of diffeomorphism
group representations.

The relativistic fermion case is not quite as straightforward as the bo-
son field. Had we used the hierarchy of fermionic N -particle representations
of the group, we would have obtained fields satisfying equal-time canonical
anticommutation relations acting in the Fock space of antisymmetric wave
functions. But we must take account of particle spin; in the spinless case, af-
ter introducing the Hamiltonian, one cannot satisfy the important propoerty
of local causality.

Note, however, that ruling out spin 0 fermions does not mean that an-
tisymmetric N -particle representations of diffeomorphism groups are irrel-
evant. If we consider spin 1 bosons, for example, we need to include both
symmetric and antisymmetric spatial wave functions in order to allow for all
of the possible spin symmetries under particle exchange.

One natural direction in which to extend these ideas is to non-Fock
representations of G describing infinitely many particles. A second direction
is toward representations of G describing configurations of extended objects.
Intertwining such representations are fields that create vortex loops, strings,
or more general embedded manifolds. Fock-like representations of relativistic
fields whose quanta have spatial extent would be of great interest from this
point of view.

We also anticipate the value of studying interacting relativistic quantum
fields constructed from diffeomorphism group representations.
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