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Abstract
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large num-
ber of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilat-
eral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straight-
forward way turns out to be extremely difficult and leads to very complex and computationally
expensive schemes. The reason for this failure is that the construction of the basis functions on
elements with a very general shape is a non-trivial and complex task. In this project we developed
a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numer-
ical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal
and polyhedral unstructured meshes. We successfully formulated, implemented and tested these
methods and studied both theoretically and numerically their stability, robustness and accuracy for
diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the bihar-
monic equations.

Background and Research Objectives
In over sixty years since its introduction, a clear theoretical foundation of the FEM has been de-
veloped for many Partial Differential Equations (PDEs) and the existence of a clear theory with
rigorous error bounds has become one of the attractions of this methodology. Finite Elements are a
powerful numerical tool that is being used in a large number of engineering applications. The clas-
sical FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending
the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely
difficult and leads to very complex and computationally expensive schemes. The reason for this
failure is that the construction of the basis functions on elements with a very general shape is a non-
trivial and complex task. Nonetheless, there are many advantages in using polygonal/polyhedral
meshes over purely triangular/tetrahedral or quadrilateral/hexahedral ones:

(a) polygonal/polyhedral meshes significantly simplify the partitioning of domains with complex
geometry;

(b) they can reduce the complexity of adaptive mesh refinement and coarsening algorithms as no
special treatment of hanging nodes is required to maintain the conformity of the mesh;

(c) they may be dictated by the data coming from multi-physics applications. Therefore, extend-
ing the finite element techniques to polygonal/polyhedral meshes while keeping their solid
theoretical foundation is of great interest to the community of physicists and engineers.

However, doing that in a computationally efficient way without sacrificing the accuracy of the
numerical approximation is a formidable task for the reasons that we will explain below. Instead,
the virtual element approach is a very effective strategy to accomplish this task. To explain the
challenge in extending finite elements to general polygonal/polyhedral meshes let us summarize
the basic steps involved in the construction of a finite element method:

(1) rewrite the PDE in a weak form: multiply by a test function, integrate over the domain,
integrate by parts moving one derivative from the unknown onto the test function;

(2) partition the domain into elements and identify the degrees of freedom, e.g., the solution
values at the vertices of the elements;
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. First mesh of the sequence used for the patch test; first row: (a) smoothly deformed quadrilaterals; (b)

smoothly deformed hexagons; (c) tilted hexagons; (d) smoothly deformed Voronoi; second row: (e) regular octagons

and quadrilaterals; (f) regular hexagons; (g) randomly deformed quadrilaterals; (h) highly skewed quadrilaterals.

(i) VEM and the PFEM-VEM always pass the patch test, with relative errors in the L2 norm and

the H1 seminorm of the order of machine precision. In contrast, the PFEM does not pass the

patch test.

(ii) VEM and the PFEM-VEM always satisfy the consistency condition KeN = R to machine-

precision accuracy, whereas PFEM only does so approximately (see columns ||E||F in Tables 2

and 4).

(iii) VEM, PFEM and PFEM-VEM satisfy the consistency condition NT KeN = NT R on all

meshes. This result is in agreement with Proposition 3.2.

We interpret the behavior noted in (ii) and (iii) as follows. Proposition 3.2 implies that the pro-

jection of the condition KeN = R on the subspace of linear polynomials is always met. Indeed,

if we take linear polynomials in the set {x y}, their degrees of freedom are the columns of matrix

N. Instead, the relation KeN = R is guaranteed to be satisfied to machine precision only by the

VEM since the VEM is designed to satisfy this relation, whereas for the PFEM it depends on the

accuracy of the quadrature rule that is used.

4.1.2. Convergence for Poisson problem

Referring to the Poisson boundary-value problem in (3.1), we choose f(x) in accordance with the

exact solution u(x) = 16xy(1 � x)(1 � y). The Dirichlet boundary condition u = 0 is imposed on

Figure 1: Example of 2D meshes with very general shape cells: (a) smoothly remapped quadrilat-
eral cells; (b) voronoi cells; (c) oblique hexagonal cells; (d) smoothly remapped hexagonal cells;
(e) quadrilateral and octagonal cells; ( f ) regular hexagonal cells; (g) randomized quadrilateral
cells; (h) highly skewed quadrilateral cells. The VEM works on all these kinds of meshes.

(3) identify the shape functions and their gradients on each element;

(4) compute the elemental mass matrix and stiffness matrix by computing or approximating the
integrals of the pairwise products of the shape functions and their gradients;

(5) assemble all the elemental matrices, solve the resulting linear system and post-process the
numerical solution (if needed).

A straightforward extension of steps 1-5 to polygonal meshes has led to the development of the
Polygonal Finite Element Methods (PFEMs) and how to perform an effective, accurate and robust
polyhedral extensions is still an open issue. Moreover, PFEM are a generalization of the linear
Galerkin FEM and thus provides a low-order approximation. How to build higher-order accurate
approximations, e.g., quadratic, is also an open issue. The critical point in the PFEM approach is
represented by step 3: the construction of the elemental shape functions. On triangular/tetrahedral
and quadrilateral/hexahedral elements the basis functions are determined as the unique solution
of a polynomial interpolation problem for the degrees of freedom; hence, they are polynomials
and are expressed by relatively simple formulas. For example, the shape functions of the linear
Galerkin FEM on a triangle and a tetrahedron are the linear Lagrangian interpolants whose value
is one at a given vertex and zero at the other vertices. The situation is completely different on
general polygonal and polyhedral elements because:

- the solutions of such interpolation problems are no longer polynomials;

- they are not uniquely determined, i.e., many different constructions for such interpolants are
possible such as the Wachspress interpolants, the Sybson interpolants, the natural neighbor
interpolants, the harmonic interpolants (just to mention a few);
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(a) (b)

Figure 13. Meshes (a) and (b) in the sequence of unstructured hexahedral meshes.

is exactly computed. The VEM does so by construction; let us see what happens when we
use a quadrature formula on the reference element. For simplicity, take vh = �i, p1 = x. On
mapping back to the reference element, the exact element sti↵ness matrix can be written as

Z

⌦e

r�i · rx dx =

Z

⌦0

J�T
F (r⇠Ni) · J�T

F (r⇠x) det(JF ) d⇠,

which is approximated using a quadrature formula. Now, the function x when seen on the
reference element becomes x � F , i.e., the first component F1 of the map F . It is readily
verified that

J�T
F (r⇠F1) =

(⇥
1 0 0

⇤T
in 3D,⇥

1 0
⇤T

in 2D,

so that

J�T
F (r⇠Ni) · J�T

F (r⇠F1) det(JF ) = first component of J�T
F (r⇠Ni) det(JF )

= first component of cof(JF )(r⇠Ni)

where cof(JF ) is the cofactor matrix of JF , i.e., the matrix such that

J�1
F =

1

det(JF )
cof(JF )T.

Hence, to verify that the method passes the patch test, we need to check if cof(JF )(r⇠Ni)
is exactly integrated by the chosen quadrature formula. It is clear that cof(JF )(r⇠Ni) has
polynomial components; we need to check the degree with respect to each scalar variable.

Copyright c� 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 1:1–44
Prepared using nmeauth.cls

Figure 2: Example of 3D unstructured meshes of polyhedral cells
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(a) (b) (c)

Fig. 4. Wachspress shape functions on polyhedra. (a) Cube; (b) Dodecahedron; and (c) Tetrakaidecahedron.

mean value coordinates to higher-dimensional polytopes have been realized [30, 80, 81], and they

have been used in finite element computations [43, 44]. An extension of metric coordinates [16]

to polyhedra is adopted by Kraus and Steinmann [47] for nonlinear continuum computations on

polyhedral meshes.

Recently, Floater et al. [70] presented simple formulas and an e�cient computer implementation

for the generalization of Wachspress coordinates to convex polyhedra proposed by Ju et al. [79].

The algorithm is applicable to polyhedra in IR3 that have vertices with valence of three or more. We

now present the essential formulas. Let ⌦e ⇢ IR3 be an open, convex polyhedron with vertices V ,

edges E, and faces F . Let v be a vertex in V . In general there are k � 3 faces incident on v. Denote

these by f1, f2, . . . , fk in some anticlockwise order as seen from outside ⌦e. Let n1,n2, . . . ,nk be

the outward unit normals to these faces, respectively. Let hi(x) > 0 be the perpendicular distance

of x from the face fi, which can be expressed as the scalar product

hi(x) = (v � x) · ni. (2.19)

The Wachspress shape functions �v(x) : ⌦e ! IR (v 2 V ) are defined by the formula [70]

�v(x) =
wv(x)P

u2V

wu(x)
, wv(x) :=

1

h1(x)

k�1X

i=2

(ni ⇥ ni+1) · n1

hi(x)hi+1(x)
. (2.20)

The above expression for Wachspress shape functions satisfies the linear precision condi-

tion (2.2) [79]. A few plots of Wachspress shape functions on polyhedra are illustrated in Fig. 4.

3. Polygonal and Polyhedral Finite Elements

In 1975, Wachspress [2] constructed rational shape functions for polygons, but applications of

finite elements on polygons and polyhedra are of more recent origin. Since the early 1990s, many

new developments on finite elements on polygons and polyhedra have been conceived. Ghosh and

coworkers [82, 83, 84] introduced a Voronoi-based assumed-stress-hybrid finite element approach

Figure 3: Example of 3D shape functions used in the Polyhedral Finite Element Method

- no explicit formula is available for such interpolants and their gradients.

As no explicit formula is available, using such interpolants as basis functions is awkward: PFEMs
are necessarily based on numerical quadratures and at each quadrature node the evaluation of a
basis function requires the numerical resolution of an implicit and non-linear problem. As a result,
depending on the accuracy of the quadrature rule and the number of quadrature nodes we may
obtain either poor accuracy of the approximation (too few nodes) or a very expensive scheme
(too many nodes). These issues become even more pronounced in 3D, making straightforward
generalization of PFEMs prohibitively complex and computationally expensive. Instead, in the
virtual element formulation, only the part of the finite element space that refers to polynomials is
constructed, while the behavior of the method on the rest of the space is approximated following a
stability criterion. This fact has a dramatic impact on the computational complexity that is greatly
simplified as the implementation of VEM does not require the explicit construction of the shape
functions.

The VEM is characterized by an order of accuracy higher than one in the energy norm and an
order of regularity higher than zero (numerical solutions with continuous derivatives). The high
order of accuracy is achieved by ensuring the exactness of the methods when the solution is a
polynomial of degree higher than one. This property is normally achieved in the finite element
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Fig. 7. Rate of convergence for the two-dimensional Poisson problem using VEM, PFEM and PFEM-VEM. All

methods deliver optimal convergence rates of 2 and 1 in the L2 norm and the H1 seminorm, respectively.

PFEM PFEM-VEM

Mesh Nodes h
||u � uh||0,⌦

||u||0,⌦

|u � uh|1,⌦

|u|1,⌦

||u � uh||0,⌦

||u||0,⌦

|u � uh|1,⌦

|u|1,⌦

8(a) 275 0.530 1.1 ⇥ 10�3 7.7 ⇥ 10�3 1.1 ⇥ 10�15 1.8 ⇥ 10�14

8(b) 1177 0.347 6.7 ⇥ 10�4 8.9 ⇥ 10�3 2.3 ⇥ 10�15 4.1 ⇥ 10�14

8(c) 13489 0.175 2.8 ⇥ 10�4 8.8 ⇥ 10�3 3.9 ⇥ 10�14 1.7 ⇥ 10�12

8(d) 106327 0.083 1.4 ⇥ 10�4 9.0 ⇥ 10�3 1.8 ⇥ 10�13 1.5 ⇥ 10�11

Table 8. Relative errors in the L2 norm and the H1 seminorm for the three-dimensional patch test. PFEM does not

pass the patch test, whereas PFEM-VEM passes the patch test.

results for the relative error norms are listed in Table 9, and the plots of the rate of convergence

of the methods are depicted in Fig. 9. On the meshes chosen, we observe that both methods

deliver the optimal rate of convergence in the L2 norm and the H1 seminorm. However, unlike

the two-dimensional case, note that the error in the H1 seminorm for the patch test in three

dimensions with PFEM stagnates to O(10�3) (see Table 8), and therefore it is expected that the

rate of convergence with the PFEM will deteriorate on more refined meshes. This inference is also

consistent with the analysis for the patch test presented in Reference [67].

Figure 4: Comparison of the convergence curves versus the mesh size parameter h for the VEM,
the PFEM, and the combination VEM-PFEM when solving a benchmark problem for the Poisson
equation. The relative errors are evaluated by using the L2 norm (steepest slopes) and H1 norms
(top slopes).

method only on meshes of triangles and quadrilaterals in 2D and tetrahedra and hexahedra in 3D.
The high order of regularity is normally achieved by a suitable choice of the degrees of freedom
and, consequently, of the definition of the projection operators.

Scientific Approach and Results
We discuss the three major points where we were particularly successful, the dissemination activity
and the follow up of this project.

(1) Comparison with Polygonal/Polyhedral FEMs and hourglass stabilization
Generalized barycentric coordinates such as Wachspress and mean value coordinates have been

the unique available finite element formulation for polygonal and polyhedral meshes for about
three decades. The VEM is an alternative, consistent and stable finite element method that works
on polygonal and polyhedral elements. In the VEM, we use a projection operator to decompose the
stiffness matrix into two terms: the consistency matrix and the stability matrix. This latter matrix
must be positive semi-definite and is only required to scale like the consistency matrix. The VEM
decomposition still provides a robust and efficient generalized barycentric coordinate Galerkin
method if we adopt the consistent VEM matrix and we compute the stabilization term by using the
generalized barycentric coordinates. This facilitates post-processing of field variables and visual-
ization in the VEM, and on the other hand, provides a means to exactly satisfy the patch test with
efficient numerical integration in polygonal and polyhedral finite elements. In [12] we compare
the accuracy and performance of the method with respect to the traditional polygonal/polyhedral
FEMs and for Poisson problems in the two- and three-dimensional space we establish that linearly
complete generalized barycentric interpolants deliver optimal rates of convergence in the L2 norm
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Figure 5: Test 2. Solution with a corner singularity on an L-shaped domain
using distorted quadrilateral meshes. E↵ectivity index for the virtual element
schemes using m = 2 (left plot) and m = 3 (right plot).
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Figure 6: Test 1. The mesh after four adaptive refinements for the virtual
element schemes using m = 2 (left plot) and m = 3 (right plot).

27

Figure 5: Example of a local mesh refinement driven by the residual-based a posteriori estimator,
see [3]

and the H1 seminorm.

In [9] we investigate the connections between the VEM and the hourglass control techniques
that was developed by Belytschko and collaborators in the early ’80s to stabilize underintegrated
C0 Lagrange finite element methods. In particular, we prove theoretically that the variational ap-
proach adopted in the VEM affords a generalized and robust means to stabilize underintegrated
finite elements and the virtual element formulation is the natural theoretical setting to explain the
hourglass stabilization techniques. In this work we mainly focus on the heat conduction equation
and we develop the virtual element method and assess its performance for the isoparametric 4-node
quadrilateral and the 8-node hexahedral element. In addition, we show quantitative comparisons of
the consistency and stabilization matrices in the VEM with those in the hourglass control method
of Belytschko and coworkers. Numerical examples in two and three dimensions for different sta-
bilization parameters reveal that the virtual element method satisfies the patch test and delivers
optimal rates of convergence in the L2 norm and the H1 seminorm for Poisson problems on quadri-
lateral, hexahedral, and arbitrary polygonal meshes.

(2) Conforming VEM: grid adaptivity using residual based a posteriori estimators and meth-
ods with arbitrary regularity
A posteriori error estimation and adaptivity are very useful in the context of the virtual element

and mimetic discretization methods due to the flexibility of the meshes to which these families
of numerical schemes can be applied. Nevertheless, developing error estimators for virtual and
mimetic methods is not a straightforward task due to the lack of knowledge of the basis functions.
In the new virtual element setting, we developed a residual based a posteriori error estimator that
immediately applies also to its mimetic counterpart [3]. For such estimator we proved the reliabil-
ity and we showed the numerical performance when it is combined with an adaptive strategy for
the mesh refinement.

In a second work, we developed and analyzed a new family of virtual element methods on
unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular
discrete spaces. The degrees of freedom are (a) solution and derivative values of various degree

5
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=0, m=1α =1, m=2α =2, m=3α

=0, m=2α
=1, m=3α

=2, m=4α

FIG. 1. Degrees of freedom for α = 0,1,2 and m = α + 1,α + 2. The symbols shown in the plots represent vertex values (dot),
vertex first-order derivatives (one circle), vertex first- and second-order derivatives (two circles), edge values (square), first-order
normal derivatives (arrow), first- and second-order normal derivatives (double arrow).

Find uh ∈ Vh such that:

Ah
(
uh,vh

)
=

(
fh,vh

)
h, ∀vh ∈ Vh (3.1)

has a unique solution uh, and we have “good” approximation properties. If m ! 1 is the target degree of
accuracy, and the solution u of (2.4) is smooth enough, we want to have

||u−uh||1 " C hm|u|m+1, (3.2)

where C is a positive constant independent of h.

3.1 Local discrete spaces

We denote a generic mesh vertex by v and its coordinate vector by xv, a generic mesh edge by e and
its length by |e|, the area of polygon P by |P| and its boundary by ∂P. The orientation of each edge e is
reflected by its unit normal vector ne, which is fixed once and for all. For any polygon P and any edge
e of ∂P, we define the unit normal vector nP,e that points out of P. We denote the set of mesh vertices
by V and the set of mesh edges by E .

We refer to the integer number α ! 0 as the regularity index and to the integer number m ! α + 1
as the consistency index. For any integer s ! 0, we define the functional space

s(∂P) :=
{

v ∈ L2(∂P) : v|e ∈ s(e), ∀e ∈ ∂P
}

.

Now, let α j := max{2(α − j) + 1,m − j}, so that, for example, α0 := max{2α + 1,m} and α1 :=
max{2α − 1,m − 1}. We define the operator ∇ jv as the collection of the derivatives of order j of the

Figure 6: Degrees of freedom on a pentagonal cell for the VEM with regularity α = 0,1,2 (left,
middle, and right panel) and accuracy provided by polynomials of degree m = 1,2,3, see [4]

THE NONCONFORMING VIRTUAL ELEMENT METHOD 7

k = 1 k = 2 k = 3 k = 4

Figure 3.1. Degrees of freedom of a triangular cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

k = 1 k = 2 k = 3 k = 4

Figure 3.2. Degrees of freedom of a quadrilateral cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

k = 1 k = 2 k = 3 k = 4

Figure 3.3. Degrees of freedom of a hexagonal cell for k = 1, 2, 3, 4; edge
moments are marked by a circle; cell moments are marked by a square.

Let s = (s1, . . . , sd) be a d-dimensional multi-index with the usual notation that |s| =
Pd

i=1 si and xs =
Qd

i=1 xsi
i where x = (x1, . . . , xd) 2 Rd. For ` � 0, the symbols M`(e)

and M`(K) denote the set of scaled monomials on e and K:

(3.4) M`(e) =

⇢✓
x � xe

he

◆s

, |s|  `

�
and M`(K) =

⇢✓
x � xK

hK

◆s

, |s|  `

�
.

In V k
h (K) we can choose the following degrees of freedom:

(i) all the moments of vh of order up to k � 1 on each edge/face e 2 @K:

(3.5) µk�1
e (vh) =

⇢
1

|e|

Z

e

vh m ds, 8m 2 Mk�1(e)

�
8e ⇢ @K;

Figure 7: Nonconforming degrees of freedom for an hexagonal cell for the polynomial degree
k = 1,2,3,4.

at suitable nodes and (b) solution moments inside polygons. The convergence of the method was
proven theoretically, an optimal error estimate was derived and the proper behavior of the method
was confirmed through numerical experiments.

(3) The nonconforming virtual element formulation
The first virtual element formulation can be considered as an extension of the classical conforming
FEM, which is usually stated on simplicial and quadrilateral/hexahedral elements, to polygonal
and polyhedral elements. During the first year of this project we realized that a nonconforming
formulation is also possible. The nonconforming formulation offers a major advantage with respect
to the conforming one: it does not require a hierarchical construction of the virtual element space
when the number of dimensions is increased. Therefore, the total number of degrees of freedom
is smaller in 3D than that required by the conforming VEM. Moreover, as in the case of Stokes
equations, the method is the same for any number of space dimensions. In [2] we first developed the
nonconforming VEM for the approximation of second order elliptic problems (Poisson equation).
The method is designed in two and three dimensions (but the formulation is indeed the same for

6
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VEM PFEM PFEM-VEM

Mesh
||u � uh||0,⌦

||u||0,⌦

|u � uh|1,⌦

|u|1,⌦

||u � uh||0,⌦

||u||0,⌦

|u � uh|1,⌦

|u|1,⌦

||u � uh||0,⌦

||u||0,⌦

|u � uh|1,⌦

|u|1,⌦

5(a) 3.1 ⇥ 10�16 3.1 ⇥ 10�15 5.6 ⇥ 10�4 4.4 ⇥ 10�3 1.8 ⇥ 10�16 3.1 ⇥ 10�15

5(b) 1.3 ⇥ 10�15 9.6 ⇥ 10�15 3.1 ⇥ 10�5 1.2 ⇥ 10�3 3.3 ⇥ 10�16 9.2 ⇥ 10�15

5(c) 3.1 ⇥ 10�16 4.3 ⇥ 10�15 8.2 ⇥ 10�5 1.4 ⇥ 10�3 2.2 ⇥ 10�16 4.5 ⇥ 10�15

5(d) 6.5 ⇥ 10�16 5.0 ⇥ 10�15 8.1 ⇥ 10�4 1.1 ⇥ 10�2 2.2 ⇥ 10�16 4.6 ⇥ 10�15

5(e) 5.5 ⇥ 10�16 5.3 ⇥ 10�15 2.9 ⇥ 10�4 6.0 ⇥ 10�3 2.7 ⇥ 10�16 5.1 ⇥ 10�15

5(f) 6.0 ⇥ 10�16 3.7 ⇥ 10�15 1.1 ⇥ 10�4 1.8 ⇥ 10�3 2.2 ⇥ 10�16 3.5 ⇥ 10�15

5(g) 1.9 ⇥ 10�16 2.7 ⇥ 10�15 1.0 ⇥ 10�5 9.9 ⇥ 10�5 1.6 ⇥ 10�16 2.6 ⇥ 10�15

5(h) 1.9 ⇥ 10�14 8.3 ⇥ 10�14 5.6 ⇥ 10�5 4.9 ⇥ 10�4 4.1 ⇥ 10�15 2.2 ⇥ 10�14

Table 1. Relative errors in the L2 norm and the H1 seminorm for the two-dimensional patch test. Both VEM and

PFEM-VEM pass the patch test.

VEM PFEM PFEM-VEM

Mesh ||E||F ||NT E||F ||E||F ||NT E||F ||E||F ||NT E||F
5(a) 9.2 ⇥ 10�17 2.9 ⇥ 10�17 2.8 ⇥ 10�3 1.9 ⇥ 10�17 2.5 ⇥ 10�17 1.6 ⇥ 10�17

5(b) 2.8 ⇥ 10�17 5.1 ⇥ 10�18 1.9 ⇥ 10�4 4.7 ⇥ 10�18 1.1 ⇥ 10�17 2.0 ⇥ 10�18

5(c) 4.4 ⇥ 10�17 2.0 ⇥ 10�17 3.0 ⇥ 10�4 1.5 ⇥ 10�17 3.7 ⇥ 10�17 1.4 ⇥ 10�17

5(d) 1.1 ⇥ 10�16 3.7 ⇥ 10�17 5.1 ⇥ 10�3 1.5 ⇥ 10�17 1.9 ⇥ 10�17 1.3 ⇥ 10�17

5(e) 4.3 ⇥ 10�17 1.4 ⇥ 10�17 1.2 ⇥ 10�3 1.9 ⇥ 10�17 1.5 ⇥ 10�17 1.0 ⇥ 10�17

5(f) 4.1 ⇥ 10�17 1.6 ⇥ 10�17 4.4 ⇥ 10�4 2.3 ⇥ 10�17 2.5 ⇥ 10�17 9.8 ⇥ 10�18

5(g) 5.2 ⇥ 10�17 1.9 ⇥ 10�17 2.6 ⇥ 10�5 1.5 ⇥ 10�17 2.3 ⇥ 10�17 9.1 ⇥ 10�18

5(h) 1.2 ⇥ 10�14 2.5 ⇥ 10�15 3.7 ⇥ 10�4 5.2 ⇥ 10�17 2.1 ⇥ 10�16 6.4 ⇥ 10�17

Table 2. Approximation errors ||E||F and ||NT E||F (Frobenius norm) for the patch test, where E = KeN�R. All

the methods manifest linear consistency in agreement with Proposition 3.2.

(a) (b) (c) (d) (e)

Fig. 6. Sequence of meshes generated by refining the mesh in Fig. 5d.

@⌦. For the VEM, the right-hand side of (3.2) is computed via the approximation

`(w) =

Z

⌦e

fw dx ⇡
Z

⌦e

⇧(f)⇧(w) dx.

Figure 8: An example of a sequence of remapped hexagonal meshes used for convergence tests.
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Figure 6.2. Relative error curves with respect to the mesh size h for the nu-
merical solution of the Poisson problem with constant di↵usion coe�cients
on a sequence of meshes of smoothly remapped hexagons, see Fig. 6.1-(a).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).
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Figure 6.3. Relative error curves with respect to the mesh size h for the nu-
merical solution of the Poisson problem with constant di↵usion coe�cients
on a sequence of meshes of randomized quadrilateral cells, see Fig. 6.1-(b).
The VEM is based on the polynomials of degree k = 1 (circles), k = 2
(squares), k = 3 (diamonds), k = 4 (triangles), k = 5 (stars).

Figure 9: Convergence curves for the nonconforming VEM applied to a benchmark problem for
the Poisson equation. The relative errors are measured by using the L2 norm (left panel) and the
H1 norm right panel

any number of spatial dimensions), and in [] we highlight the main differences with the conforming
VEM and the classical nonconforming finite element methods. For this method, we provide the
complete error analysis and establish the equivalence with the family of mimetic finite difference
methods previously developed by the PI with other authors. Furthermore, we verified the theory
and validated the performance of the proposed method by a set of numerical experiments.

The nonconforming formulation is currently one of the three major VEM formulations, the
other two being the conforming formulation and the mixed formulation. During this project we
developed a unified framework for the conforming and nonconforming VEM and extended the
nonconforming formulation to general second order elliptic problems in two and three dimen-
sions. In our approach, cf. [10], we split the differential operator of the continuum setting into its
symmetric and non-symmetric parts and established conditions for stability and accuracy on their
discrete counterparts. Under these conditions, we may provide optimal H1- and L2-error estimates,
which are confirmed by numerical experiments on a set of polygonal meshes. The accuracy of the
numerical approximation provided by the two methods was also shown to be comparable. An ex-
ample of these results, extracted from [10], is shown in Figure 9; the calculations are carried on the
sequence of meshes depicted in Figure 8. In the second and third year of the project, we continued
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the development of the nonconforming virtual element formulations and designed new VEM for
the Stokes equations and the biharmonic problem.

In the Stokes equations, the pressure is approximated using discontinuous piecewise polyno-
mials, while each component of the velocity is approximated using the nonconforming virtual
element space. On each mesh element the local virtual space contains the space of polynomials
of up to a given degree, plus suitable non-polynomial functions. The virtual element functions are
implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary
conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial func-
tions is not required. This approach makes it possible to construct nonconforming (virtual) spaces
for any polynomial degree regardless of the parity, for two-and three-dimensional problems, and
for meshes with very general polygonal and polyhedral elements. In [7] we show that the non-
conforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity
and pressure approximations in the energy norm. Numerical examples confirm the convergence
analysis and the effectiveness of the method in providing high-order accurate approximations.

Finally, we developed the nonconforming virtual element method for the numerical resolution
of the biharmonic problem [1]. This work began during the final stages of project and was finished
and published after the end of the project. This method uses both internal and boundary degrees of
freedom locally defined on each mesh element to represent the functions of a special finite element
space. The convergence of the method is theoretically proved by deriving optimal convergence
rates, and a set of numerical experiments confirms the theoretical expectations.

(4) Dissemination of results

• In 2014 the PI has been invited to be the Guest Editor of the special issue on Recent tech-
niques for PDE discretization on polyhedral meshes for the international journal Mathemat-
ical Models & Methods in Applied Sciences, cf. [5], co-Editors Prof. N. Bellomo and Prof.
F. Brezzi;

• during the FY14-FY15-FY16 the PI co-organized the following minisymposia at interna-
tional conferences:

2016.
Co-organizer with A. Cangiani and S. Weisser of the minisymposium ”PDE Discretisa-
tion Methods on Polygonal and Polyhedral Meshes” within the MAFELAP 2016 Con-
ference (The Mathematics of Finite Elements and Applications), to be held at Brunel
University, Uxbridge (London), June 14-17, 2016.

2015.
(i) Co-organizer with N. Sukumar, A. Gillette, J. Bishop of the minisymposium ”Polyg-
onal and Polyhedral Discretizations in Computational Mechanics”, at the 13th US Na-
tional Congress of Computational Mechanics, to be held in San Diego, California, 26-
30 July, 2015;

(ii) Co-organizer with K. Lipnikov of the minisymposterium ”Advanced discretizations
for complex applications”, at the SIAM Conference on Computational Science, to be
held in Salt Lake City, Utah, 14-18 March 2015;
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2014.
Co-organizer with L. Beirao da Veiga, A. Buffa, A. Ern, M. Gerritsma, J. Evans, of the
minisymposium “Structure-preserving and polyhedral discretizations”, at the XI World
Congress of Computational Mechanics, held in Barcelona, Spain, 20-25 July 2014;

• during the project the Pi and the co-Pi was invited in several international workshops, con-
gresses and domestic and foreign research institutions to deliver talks an poster presentations
on the research activity of the project.

(5) Follow up
The virtual element methodology developed in this project has paved the way to some interesting
further applications and developments, that we briefly review here. Most of this work was carried
out after the end of the project, and, thus, was not funded directly by the project.

• The connection between the VEM and other schemes for solving PDEs on unstructured
polygonal/polyhedral mesh has been investigated in [11]. The major result of this work is
that the VEM, the Hybrid High-Order (HHO) method by Di Pietro and Ern and the Hybridiz-
able Discontinuous Galerkin (HDG) method by Cockburn and collaborators are in fact just
different instances of a more general family of numerical methods call Gradient Discretisa-
tions by Droniou and coauthors;

• the VEM method developed in [6] for the advection-diffusion-reaction equation in diffusive
regime has been extended to the advection-dominated regime by introducing the Stream-
line Upwind/Petrov-Galerkin stabilization. Theoretical and experimental investigations have
shown the optimality of the method so that optimal convergence rates and robustness also in
presence of strong advective layers in the solution have been shown.

• The new LDRD project Novel Algorithms for Ab-Initio DFT Calculations of Large-Scale
Material Systems, #20180428ER, have been funded for the FY18-FY19-F20 to develop the
VEM technology for solving the Schrodinger and Kohn-Sham equations for the numerical
modeling of applications from Computational Quantum Chemistry;

• at the end of the project the Pi and the co-Pi were invited to write a chapter in the book
Generalized barycentric coordinates in computer graphics and computational mechanics,
edited by Prof. K. Hormann and Prof. N. Sukumar, and published by CRC Press in October
2017, see [8]. This chapter offers a short overview of the VEM and the results obtained
during the project.

Anticipated Impact on Mission
This research has provided unique capabilities in the DOE complex by developing world-class
algorithms with a strong theoretical foundation for the numerical treatment of partial differential
equations. These algorithms can be ported to high-end HPC technologies and have natural con-
nections with potential large proposals in the Co-Design and Extreme-Scale Solvers categories.
Even if our project was mainly focused to the design and analysis of new numerical methods
and their implementation and testing were carried out mostly on academic problems, these new
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capabilities position us uniquely towards future opportunities in the areas mentioned above. We
expect indeed that virtual element algorithms may impact the numerical modeling in a wide range
of multi-physics applications, including climate and environmental modeling (e.g., climate, ocean
and sea-ice modeling, ASCEM Project), plasma physics (e.g., Fokker-Planck equation in inertial
confinement fusion simulations) and other CFD-based applications. This will lead to new funding
in fundamental research on numerical methods by working with Office of Science ASCR man-
agers.

Conclusion
In this project we developed a new type of finite elements, dubbed Virtual Element Method (VEM),
that is particularly suitable to the numerical treatment of variational problems in weak form on
very general meshes. The new family of numerical methods have been studied from the theoretical
and numerical viewpoint, and stability, robustness and accuracy have been assessed for general
elliptic problems like convection-reaction-diffusion equation in the diffusive domain, the Stokes
equations and the biharmonic equations. The work carried out in the project led us to the devel-
opment of the nonconforming VEM, which is currently one of the three major formulations. As a
follow up of this project, we mention the study of the connections between the VEM and other nu-
merical techniques suitable to polygonal/polyhedral meshes, the development of the SUPG-VEM
for advection-diffusion problem for the advection-dominated regime, and new LDRD-ER project
funded to development the VEM for Schrodinger and Kohn-Sham equations.
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