
OpenNURBS-based Geometry Library for
Next-Generation Platforms

William Roshan Quadros

• Heterogeneous architectures in memory
and processors (many integrated core
(MIC) and GPU devices)

• Trinity supercomputer at LANL: Cray XC30
platform with Intel Knights Landing (KNL)
MIC processors

• Sierra supercomputer at LLNL: IBM
platform with GPU accelerators

Testbed

Next Generation Platforms (NGP)

Fig 2: Trinity testbed contains KNL
[courtesy of http://www.hotchips.org]

• 20 year “just recompile" free ride is over!
“Just recompile” could result in
approximately 10x slow down

• MPI-only is no longer possible because
not all cores can run MPI

• Scaling requires hybird programming
model with inter-node and on-node
parallelism

• Performance portability on multiple
advanced architectures is a challenge

NGP Challenge

Fig 1: NGP compute node with
heterogeneous cores and memory

[courtesy of https://github.com/kokkos]

Kokkos
• Kokkos performance portability library

preserves source code from potentially
detrimental parallel directives

• Kokkos supports MPI+“X” programming
model to scale on both KNL MIC-based
and GPU-based next generation platforms

• Kokkos provides performant memory
access patterns across multiple
architectures and leverages architecture-
specific features where possible

• Kokkos uses device specific backend
libraries such as CUDA, pthreads, and
OpenMP

Hybrid Programming Model
Three levels of parallelism is required:

1) Distributed memory parallelism via MPI

2) Shared memory thread level parallelism
on the MIC device using Kokkos with
OpenMP runtime

3) Vectorization for 512-bit SIMD Vector
Processing Unit (VPU)

SAND2016-12940C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND No. 2011-XXXXP

KNL On-Node Performance

// data parallel projection of N points on a Surface
class MyClass{

private:
int N; // N points
ON_3dPoint *p; // array of OpenNURBS points
ON_Surface *s; // a OpenNURBS Surface
…

};

MyClass::projection_method(function arguments)
{

// 1st argument: number of points
Kokkos::parallel_for(N, *this);

}

// operator() for Kokkos::parallel_for
MyClass::operator()(int k) const
{ …

// project Point p[k] on Surface s using OpenNURBS
double u, v;
s->GetClosestPoint(p[k], &u, &v);
ON_3dPoint projected_p = s->PointAt(u, v);

}

Fig 3: Speedup on KNL

Implementation

Fig 5: Near linear scaling

Kernels for Scaling Study

• Project points on a curve type
• Line, Circle, Ellipse, Spline, NURBS …

• Project points on a surface type
• Cone, Cylinder, Sphere, Torus, NURBS …

Kernel: Project points on a NURBS surface
Data size: 15,000 points
No. of MPI processes: 1
No. of threads per process: 1 to 256
Thread affinity: Scatter

1

10

100

1000

1 10 100 1000

0.01

0.1

1

10

100

1000

10000

1.E+00 1.E+02 1.E+04 1.E+06

Next-Gen Geometry Library
• Uses OpenNURBS as the geometry kernel

• Uses MPI + Kokkos hybrid programming
model

• Supports various curves and surfaces

• Includes API for projecting points on
curves and surfaces for mesh refinement

Number of threads per node

Ti
m

e
(s

ec
)

Kernel: Project points on a surface
Data size: 10 to 1E6
No. of MPI processes: 1
No. of threads per process: 64
Thread affinity: Scatter

Data size

Ti
m

e
(s

ec
)

1

10

100

1000

1 10 100 1000

Fig 4: Thread affinity

Number of threads per node

Ti
m

e
(s

ec
)

Blue - Scatter
Red - Compact

