SAND2016- 12940C

OpenNURBS-based Geometry Library for

Next-Generation Platforms
William Roshan Quadros

Next Generation Platforms (NGP)| |[NGP Challenge Kokkos
* Heterogeneous architectures in memory || * 20 year “just recompile" free ride is over! ||* Kokkos performance portability library
and processors (many integrated core “Just recompile” could result in preserves source code from potentially
(MIC) and GPU devices) approximately 10x slow down detrimental parallel directives
+ Trinity supercomputer at LANL: Cray XC30 || * MPl-only is no longer possible because || Kokkos supports MPI+X" programming
platform with Intel Knights Landing (KNL) not all cores can run MP] model to scale on both KNL MIC-based
MIC Brocessors : : : : | and GPU-based next generation platforms
P Scaling  requires  hybird = programming | |, Kokkos provides performant memory
e Sierra supercomputer at LLNL: IBM model with inter-node and on-node S batterns TG multiple
platform with GPU accelerators parallelism architectures and leverages architecture-
 Performance portability on multiple specific features where possible

; advanced architectures is a challenge  Kokkos uses device specific backend
libraries such as CUDA, pthreads, and

m .

< OpenMP

N Testbed P

S -

= <Gy X Knights Landing Overview . .

il : : I e Hybrid Programming Model

& 3 | T2 Coes +2veucore w512 Three levels of parallelism is required:

1
l

| e oo b e 1) Distributed memory parallelism via MPI
pr— | S==| Node:1-Socket only
. A Fabric: Omni-Path on-package (not shown) .
| o e 2) Shared memory thread level parallelism
B | Seams T GBISKMCDRAN 4007 0DR:50+ | on the MIC device using Kokkos with
Fig 1: NGP compute node with e — O OpenMP runtime
heterogeneous cores and memory Fig 2: Trinity testbed contains KNL 3) Vectorization for 512-bit SIMD Vector

[courtesy of https://github.com/kokkos ] [courtesy of http://www.hotchips.org] Processing Unit (VPU)




Next-Gen Geometry Library
 Uses OpenNURBS as the geometry kernel

° a \/1 E Nk A\Wwvhrid nroocramming

model
* Supports various curves and surfaces

* Includes APl for projecting points on
curves and surfaces for mesh refinement

Kernels for Scaling Study

* Project points on a curve type

- - - - \!
)} ) y ) 9M ) JINU

* Project points on a surface type

 Cone, Cylinder, Sphere, Torus, NURBS ...

Implementation

// data parallel projection of N points on a Surface
class MyClass{
private:
int N; // N points
ON_3dPoint *p; // array of OpenNURBS points
ON_Surface *s;//a OpenNURBS Surface

};

MyClass::projection_method( function arguments )

{
// 1st argument: number of points
Kokkos::parallel for( N, *this);

}

// operator() for Kokkos::parallel for
MyClass::operator()( int k ) const

{ ..
// project Point p[k] on Surface s using OpenNURBS
double u, v;

s->GetClosestPoint( p[k], &u, &v);

ON_3dPoint projected p = s->PointAt(u, v);

}

KNL On-Node Performance

Kernel: Project points on a NURBS surface
Data size: 15,000 points

No. of MPI processes: 1

No. of threads per process: 1 to 256
Thread affinity: Scatter

1000

100

=
o

Time (sec)

1 | |
1 10 100

Number of threads per node

Fig 3: Speedup on KNL

1000

Blue - Scatter
Red - Compact

1000

100

Time (sec)
o

1 I I I
1 10 100 1000

Number of threads per node
Fig 4: Thread affinity

Kernel: Project points on a surface
Data size: 10 to 1E6

No. of MPI processes: 1

No. of threads per process: 64
Thread affinity: Scatter

10000
1000

=
-
o

Time (sec)
o

1
0.1
0.01
1.E+00 1.E+02 1.E+04 1.E+06
Data size

Fig 5: Near linear scaling

=% U.S. DEPARTMENT OF

VT VAT 34

I A" R4

National Nuclear Security Administration

B 3
QN 4




