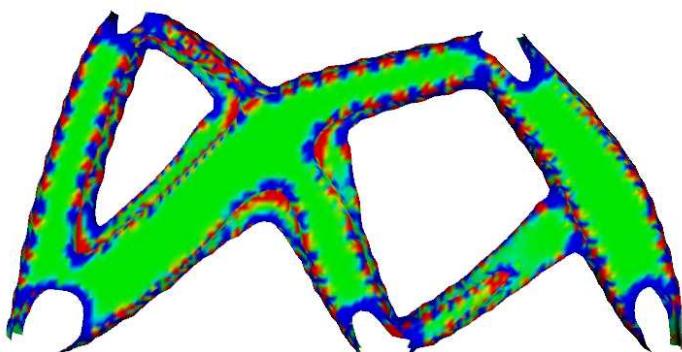


REMOVING LOW-FREQUENCY ARTEFACTS FROM TOPOLOGY-OPTIMIZED SURFACES

S. S. Elder and W. R. Quadros



Salvatore S. Elder
School of Applied & Engineering Physics
Cornell University
sse34@cornell.edu

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-18464 C

Topology-optimized parts

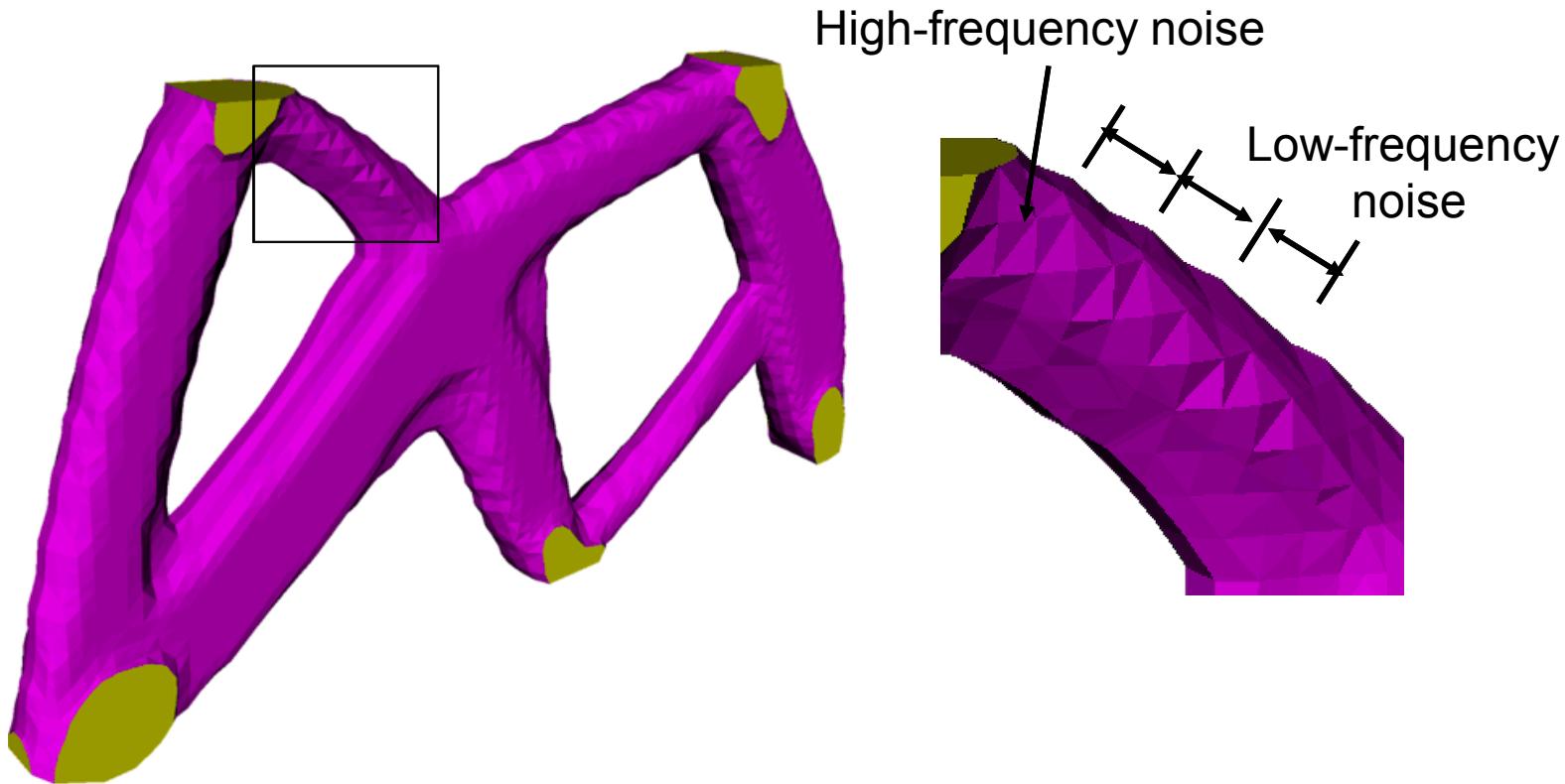
Thermal

Thermal + Structural

Structural

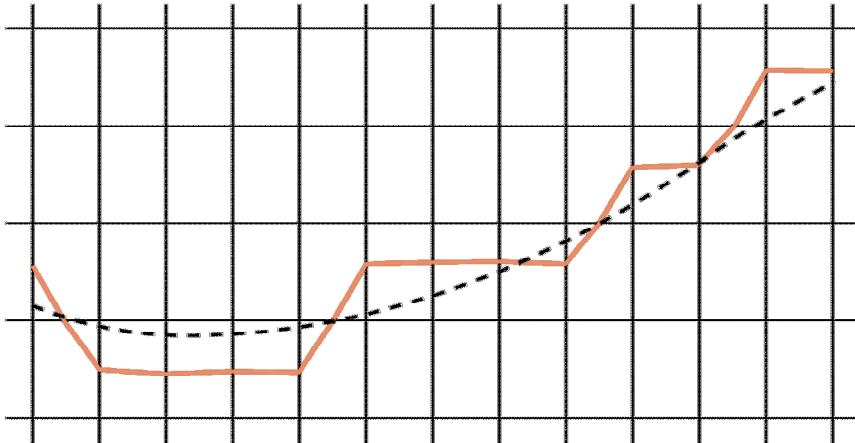
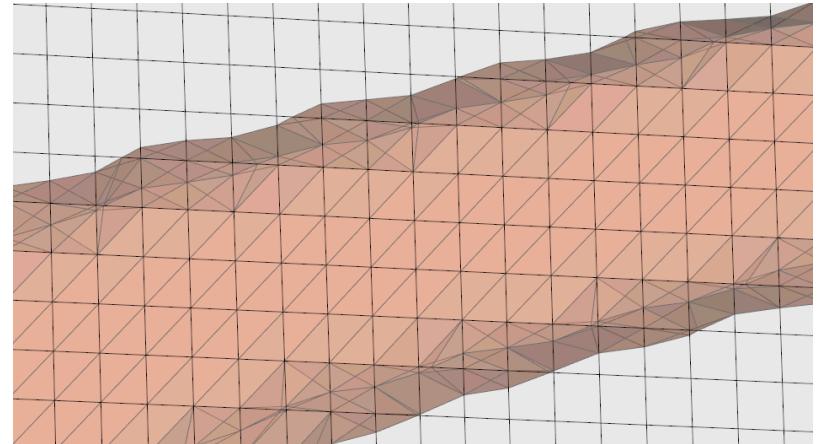
Error categorization by frequency

- High-frequency: “random noise”
- Low-frequency: “ripples”



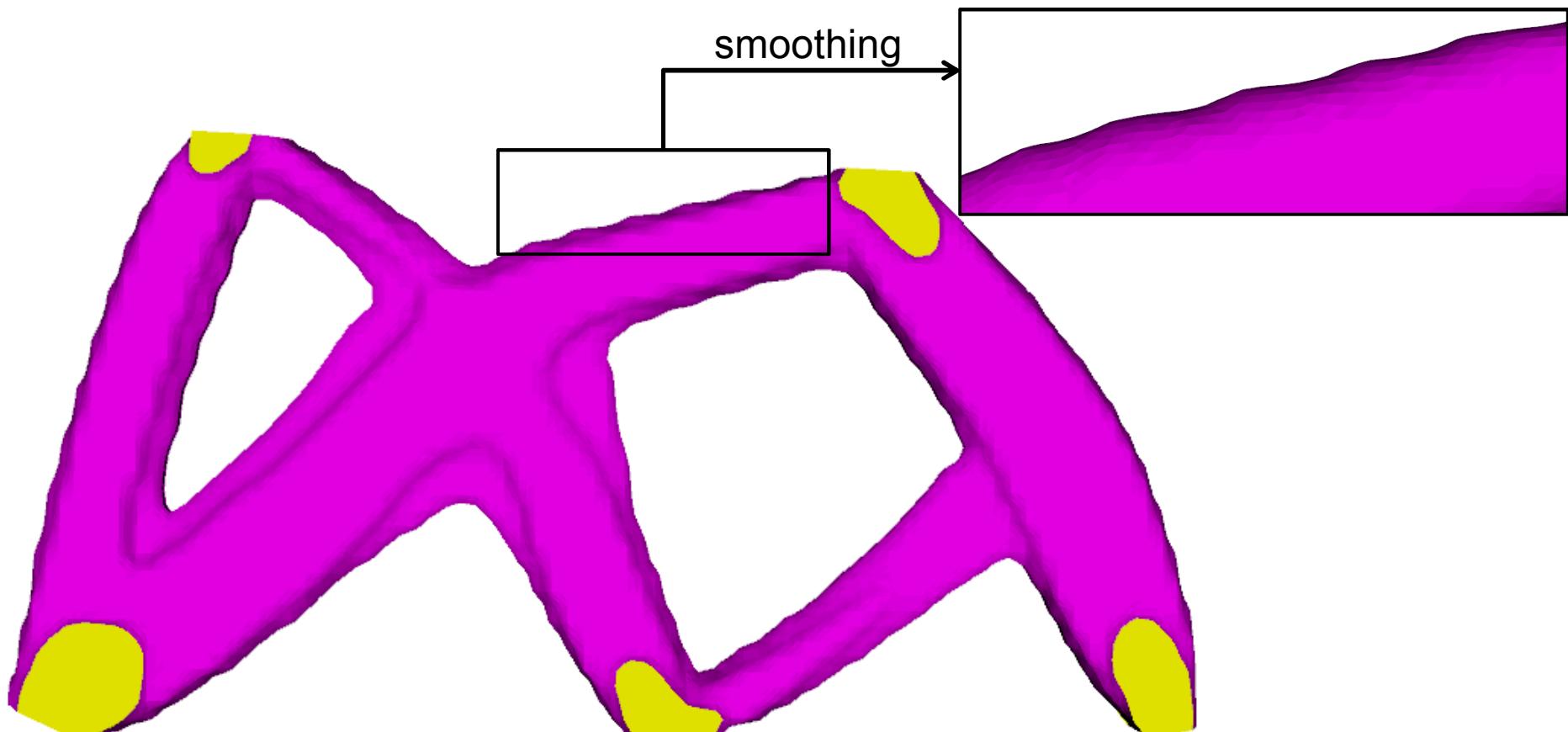
Density penalization

- Topology optimization is computed on a density field
- Nonbinary densities are penalized, causing “snapping” near the surface



Persistence of low frequencies

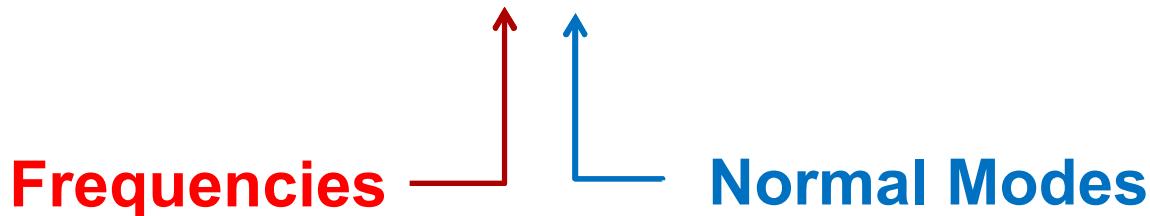
- Local “averaging” methods often preserve ripples



How to define frequency?

- Signals \mathbf{x} are column vectors containing a value for each of the N nodes. Laplacian = matrix \mathbf{L} .
- Eigenvalue problem:

$$\blacksquare \quad \mathbf{L} \mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad i = 1, 2, \dots, N$$



- Differential Equations 101: $\sin \omega x$ are eigenfunctions of

$$L = -\nabla^2 = -\frac{d^2}{dx^2}$$

Properties

- **Completeness:**

$$\mathbf{x} = \sum_{i=1}^N c_i \mathbf{v}_i \quad \text{Fourier series}$$

- **Orthogonality:**

If $\mathbf{L} = \mathbf{L}^T$ then

$$\mathbf{v}_m^T (\mathbf{L} \mathbf{v}_n) = (\mathbf{v}_m^T \mathbf{L}^T) \mathbf{v}_n = (\mathbf{L} \mathbf{v}_m)^T \mathbf{v}_n$$

$$\lambda_n (\mathbf{v}_m^T \mathbf{v}_n) = \lambda_m (\mathbf{v}_m^T \mathbf{v}_n)$$

If the λ_i are distinct, then

$$(\mathbf{v}_m^T \mathbf{v}_n) = \delta_{mn}$$

Explicit frequency method

- Once \mathbf{v}_i are known, find c_j with inner product:

$$\mathbf{x} = \sum_{i=1}^N c_i \mathbf{v}_i$$

$$\mathbf{v}_j^T \mathbf{x} = \sum_{i=1}^N c_i \mathbf{v}_j^T \mathbf{v}_i = \sum_{i=1}^N c_i \delta_{ji} = c_j$$

- Reconstruct \mathbf{x} applying transfer function f :

- $\mathbf{x}' = \sum_{i=1}^N f(\lambda_i) c_i \mathbf{v}_i$

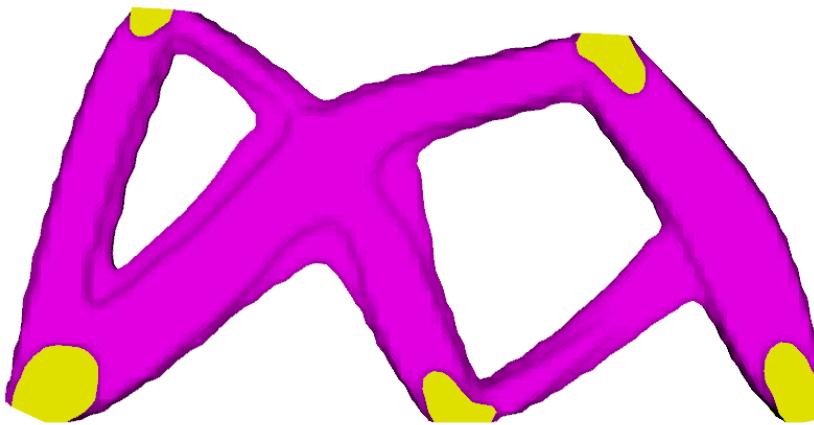
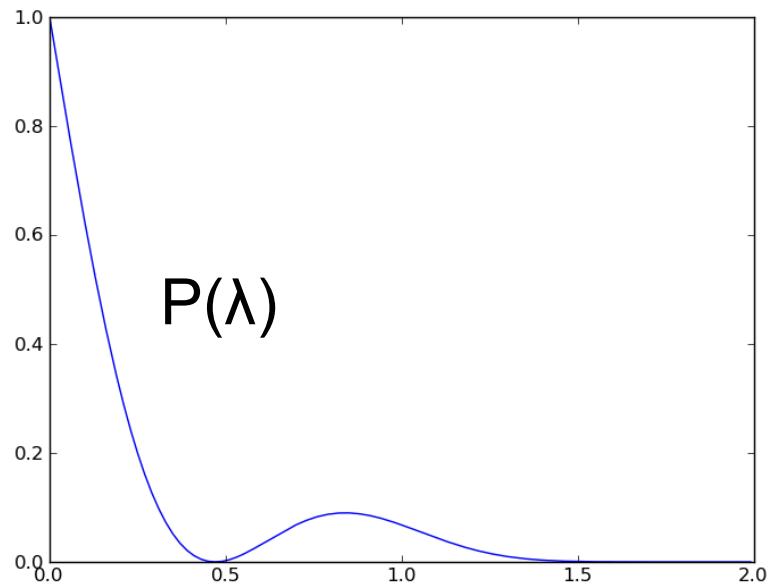
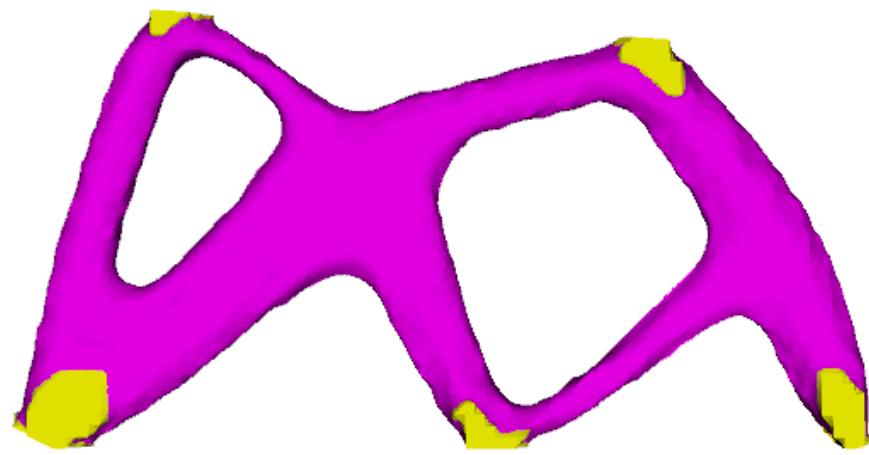
Polynomial filters

- $P(\mathbf{L})$ has eigenvalues $P(\lambda_i)$.

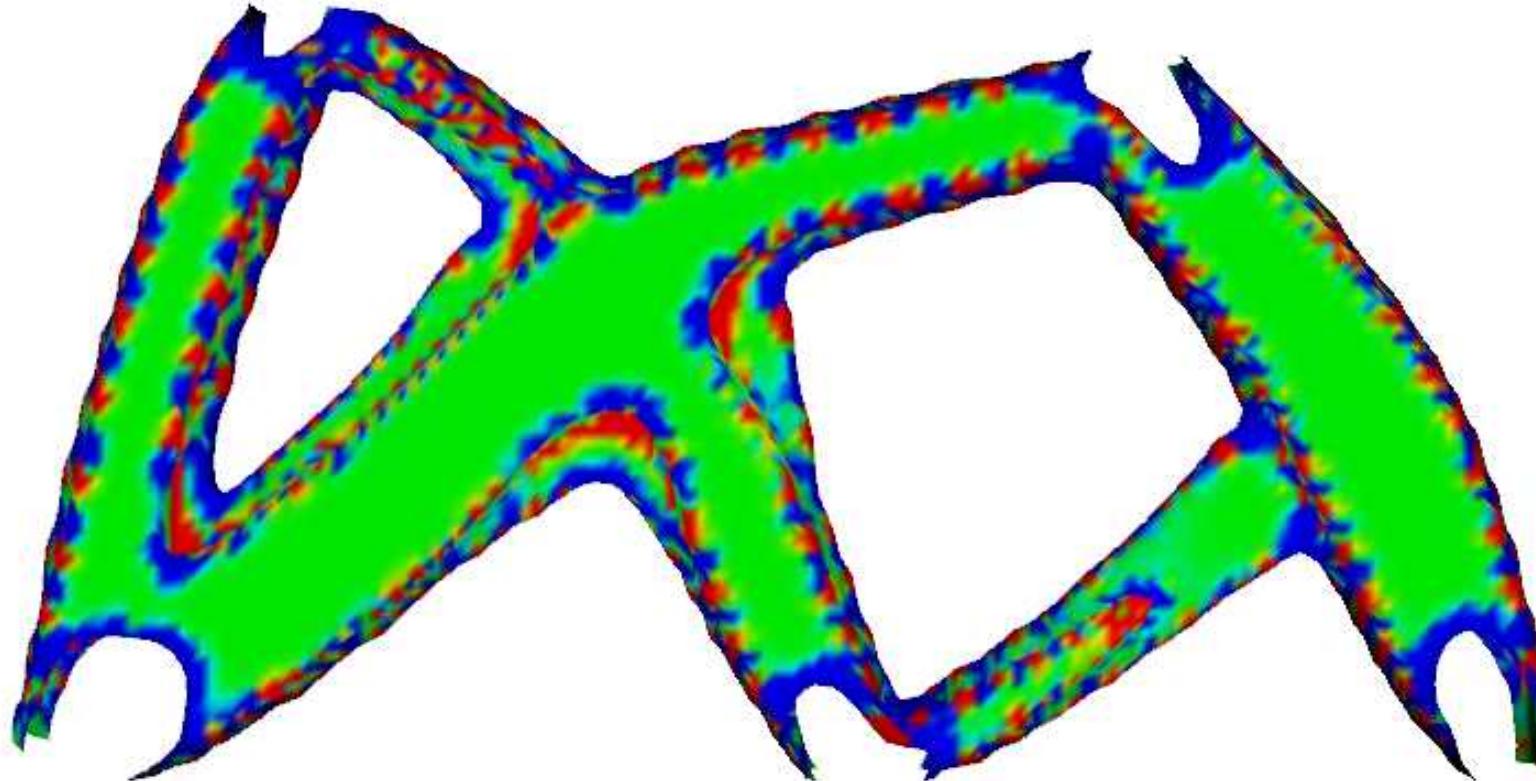
$$\mathbf{x} = \sum_{i=1}^N c_i \mathbf{v}_i$$

$$P(\mathbf{L}) \mathbf{x} = \sum_{i=1}^N c_i P(\mathbf{L}) \mathbf{v}_i = \sum_{i=1}^N P(\lambda_i) c_i \mathbf{v}_i$$

Polynomials are hard to control!



Curvature highlights ripples



positive

zero

negative

Proposed method

1. Construct signal γ . Set $\gamma = 1$ for red nodes and $\gamma = 0$ elsewhere.

2. Project into frequency space:

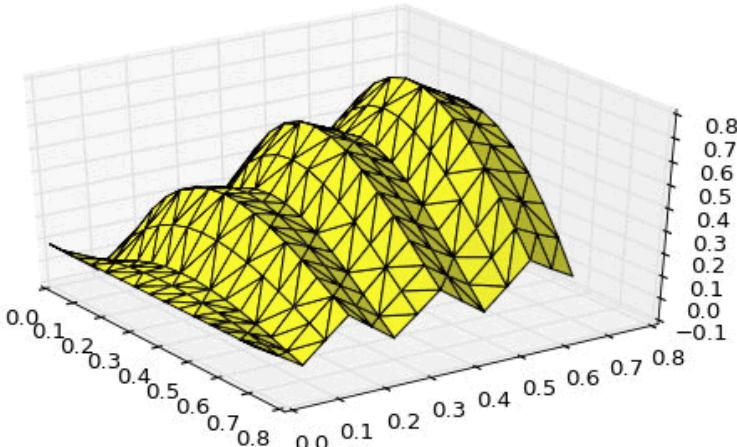
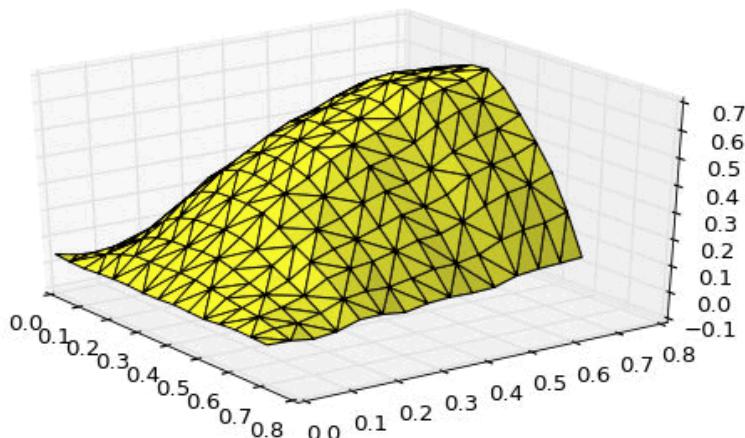
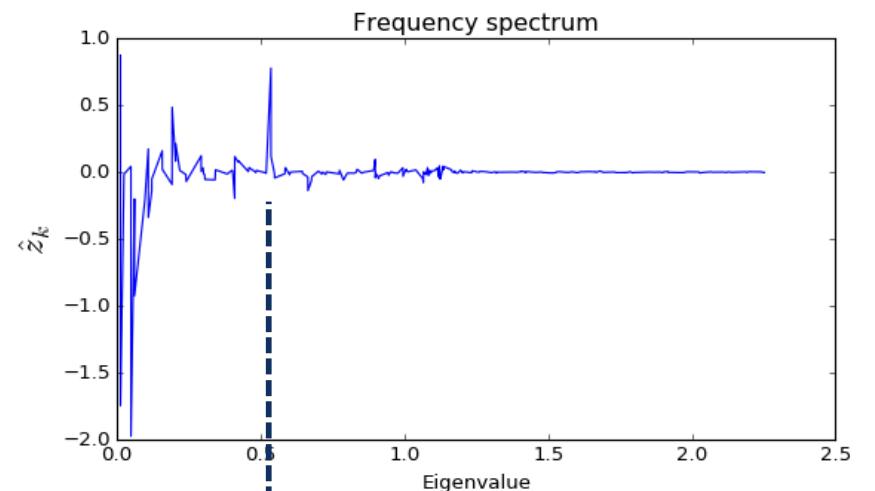
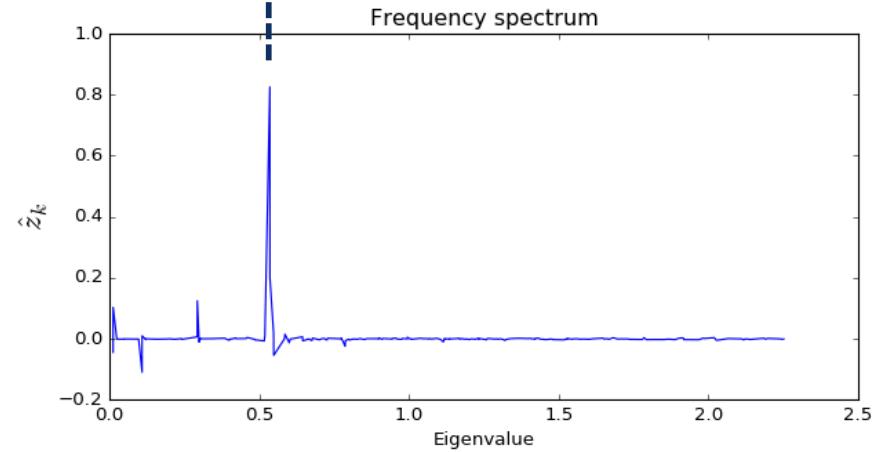
$$\gamma = \sum_{i=1}^N a_i \mathbf{v}_i$$

3. Choose $f \rightarrow 0$ near any λ_m for which a_m is large.

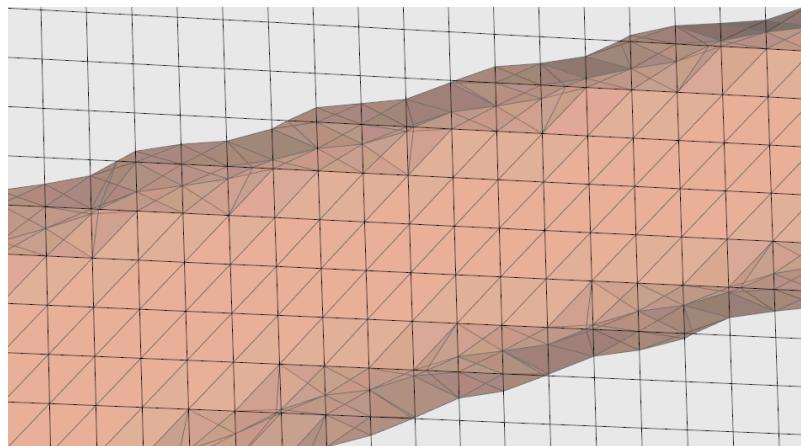
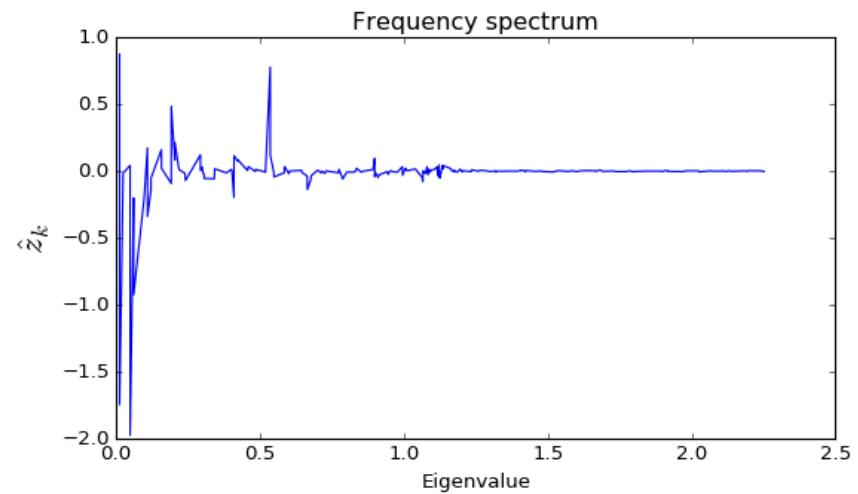
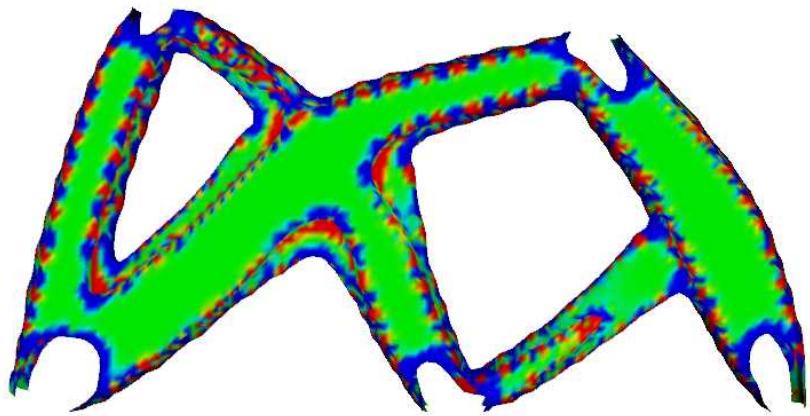
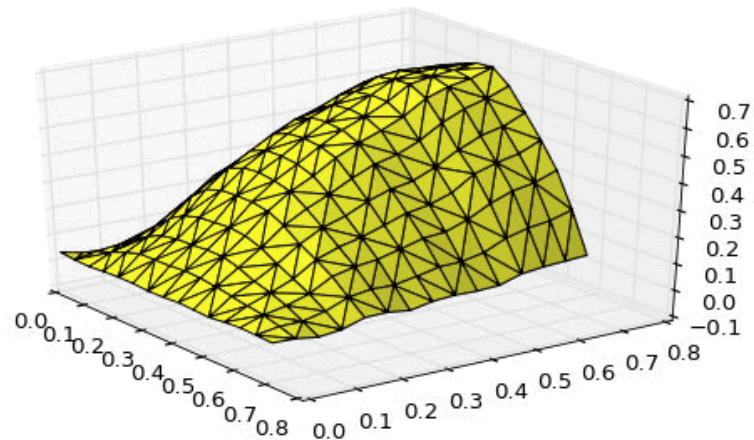
4. Filter shape with f .

Mesh spectra are linear

$$\mathbf{x}^{\text{smooth}} + \mathbf{x}^{\text{ripples}} = \sum_{i=1}^N (c_i^{\text{smooth}} + c_i^{\text{ripples}}) \mathbf{v}_i$$



Summary



Thank You!