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• Topology optimization is a scheme in which physics
codes are run to design parts automatically, subject to
specified boundary conditions and minimization
objectives.

• We have observed low-frequency surface ripples
present in the output, however, which are difficult to
remove using traditional smoothing methods.

Introduction Frequency formulation
• The possible effect of such penalization is illustrated in

the artificial example of Fig. 2. Compare to the actual
topology optimization output of Fig. 3.

Ripple origin

Fig. 1: A topology optimized shape with quasi-periodic bumps along 
the surface.

• Topology optimization output is formulated as a
discretely sampled material density field 0 ≤ ρ ≤ 100%.

• Intermediate values of ρ are penalized, so that the grid
nodes tend to snap toward 0 or 100%.

• The final surface is taken to be the ρ = 50% isosurface
defined by the nodal grid values.

Fig. 2: Suppose the dashed line represents the true surface 
optimum. The solid orange line shows the result of snapping all ρ < 
50% to 0 and all ρ > 50% to 100%.

Fig. 3: A close-up of a part of the shape of Fig. 1, with the discrete 
grid used by the topology optimization code overlaid. Note the low-
frequency ripples and their similarity to the pattern seen in Fig. 2.

• Consider graph signals �, which are column vectors 
containing a value for each of the N nodes. Any linear 
Laplacian has a matrix representation �.

• Suppose
� �� = λ�  �� , � = 1, 2, … , �.

• By analogy to Fourier series, the � eigenvalues can be 
thought of as frequencies and the � eigenvectors can 
be thought of as oscillatory modes.

• For any �, we can write

� = � ��

�

���

�� .

• If we had �� and ��, then we could filter � according to 
any transfer function �(λ) we wanted:

�′ = ∑ �(λ�) ��
�
��� ��.

• If � = �� (i.e., the Laplacian is symmetric), then

��
� � �� = ��

� �� �� = (� �� )��� .

Rewrite the LHS and RHS using the fact that �� and ��

are eigenvectors of �:

λ�(��
� �� ) = λ�(��

� �� ).
If the λ� are distinct, then

��
� �� = δ�� .

Therefore, once some �� is known, we can calculate the 

corresponding coefficient �� by dotting � with �� :

��
�� = � ��

�

���

��
��� = � ��

�

���

δ�� = �� .

• A method of Vallet and Lévy allows for the explicit 
calculation and filtering of �� and �� even for fairly 
large meshes.
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Results

Proposed method

This poster is adapted from the 2016 IMR research note “Removing low-frequency
artefacts from topology-optimized surfaces” (Elder and Quadros). See references at the
end of the note, especially “Optimal surface smoothing as filter design” (Taubin et al.)
and “Spectral geometry processing with manifold harmonics” (Vallet and Lévy).

Fig. 5: The Gaussian curvature of a topology optimized surface. Red 
regions correspond to positive curvature (hills and valleys), blue 
regions to negative curvature (saddle points), and green regions to 
relatively flat areas (curvature ≈ 0). In this case, the positive 
curvature appears to highlight the low-frequency ripples.

• In Vallet and Lévy’s approach, the vertex coordinates �, �,
and � are filtered to change a mesh’s shape.

• It is not clear how to select � to remove the ripples,
however.

• We have observed that the Gaussian curvature does an
excellent job of highlighting the low-frequency ripples in
topology optimized surfaces. See Fig. 5.

1. Construct a signal, �, defined on the mesh vertices. Set
� = 1 wherever the curvature is positive and above a
certain threshold, and � = 0 everywhere else.

2. Project this signal into frequency space, obtaining a
coefficient �� for each frequency mode:

� = � ��

�

���

��

3. Select a band-stop filter �(λ) for which � → 0 near any
λ� for which �� is large.

• We created a cubic Bézier patch to represent a portion 
of a topology optimized surface, and superimposed a 
sinusoid on top.

• Fig. 6 shows the result of removing all eigenmode
components for which 0.5 ≤ λ ≤ 0.57. Also shown is 
the spectrum of the ripples alone. (We used Python 
and SciPy.)

• Both spectra have a peak near λ = 0.52, due to the 
ripples. This clear correspondence helps to justify the 
curvature approach.

Conclusions
We have identified systematic errors present in 
topology optimized surfaces, and explored a 
processing pipeline for removing them. We suggest 
the use of curvature as a means of locating the errors 
in frequency space, and we remove undesired ripples 
from an example mesh. Future work would bring the 
ideas explored in this poster to full maturity, with 
frequency detection and smoothing implemented for 
topology-optimized surfaces.

Fig. 6: Top: The mesh to be smoothed. We added the prominent 
ripples artificially. Top, previous column: The spectrum of the 
mesh. Bottom, previous column: The spectrum of the ripples we 
added. Note the prominent peak shared by both spectra. Bottom:
The result of removing the aforementioned peak from the 
spectrum of the mesh, then inverting the frequency transform. The 
ripples have been removed, leaving us with a smooth mesh.

• We suggest the following procedure to select �(λ):

• The procedure should identify the largest of ��
�������

.

• Even if the amplitude and overtones of � differ from 
those of the ripples, they will almost certainly have the 
same principal modal components. Analogously, a 
violin and a tuning fork sounding an A4 share a 
fundamental frequency of 440 Hz.

This makes sense because mesh spectra are linear. Thus
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