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Abstract )=,

= Recent studies have found that 6-DOF testing better replicates the stress environment
during actual field tests.

= Unfortunately, it is a rare occasion where a field test can be sufficiently instrumented
such that the subsystem/component 6-DOF inputs can be directly derived.

= However, a recent flight test of a Sandia system was instrumented sufficiently such that
the input could be directly derived for a particular subsystem.

= This is compared to methods for deriving 6-DOF test inputs from field data with limited
instrumentation.

= There are four methods used for deriving 6-DOF input with limited instrumentation.

= |n addition to input comparisons, actual response measurement during the flight are
compared to the various 6-DOF tests as method for comparing input 6-DOF derivation.

= This work focuses on best methods to replicate an actual field test with a laboratory
test.

= Derivations of environmental specifications will be the focus of future work. This would
include straight-line specifications and appropriate probability and statistics (P99/C90 or
1:500)



Big Picture Steps Luf— =

= On 6DOF shaker table, build
transmissibility function
|H(w)] from base input of fixture
to internal gages.

= Given flight data with internal
responses, use [H(w)] to develop a
set of inputs, [S,,(w)], that will as
best as possible replicate internal
response from flight if put on 6
DOF shaker table.

= Compare to internal responses of 6
DOF to Flight from various methods
of generating 6 DOF input.




Standard Math Background =,

=  Transmissibility function is derived from input to output locations of interest internal to
the Subsystem.

. [ny] = [Gxx]_jL [ny]
= [Gyy] is the input/output cross-spectral density matrix, [Gyy] is the input auto
spectral density matrix, and —1 is the typical Moore-Penrose generalized inverse.
= [G,,] derived from 4 gages on fixture (discussed on next few slides)
= Positive Semidefinite
= Determinant >0
= Eigenvalues >0
= Check at each frequency
= Condition Number
= Using Singular Value Decomposition [X] = [U]*[S]*[V]'.
= the ratio of the largest singular value of [S] to the smallest
=  What values are acceptable
= All Matrices are 3 dimensional and each concept applies at a particular frequency
= True Throughout the Presentation



Developing Transmissibility Function

= Transmissibility function is derived from input to output
locations of interest internal to the Subsystem.

. [ny] = [Gxx]_T [ny]

= \We want to build this from a 6
DOF input into the base of the
fixture.

= 3 Translational Accelerations

Internal
Gage
(y)

Fixture

. . Gages
= 3 Rotational Accelerations

= Assume the fixture remains rigid.
= |f we knew 6 DOF input at virtual

location we could calculate fixture
gage response




Developing Transmissibility Function

= Assume the fixture remains rigid.

= |f we knew 6 DOF input at virtual location we
could calculate fixture gage responses
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= {ar} = [Rl{a,}

= {a,} = [RI\{as} ->least-squares solution (A*x =b)
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Numerical Set-up

= We have 10 responses and we need 6 inputs at so many
frequency lines.

= His 10x6x#of frequency spacing.

= |n this presentation, we write the matrices as if they are 2D
and drop the # of frequency spacing. But realize each matrix
function is solved at each frequency.

= X =pinv(H) Y. The solution is the one which norm(X) is the
smallest.

= Future work may include selection of best gages to get
ideal input.




PINV Method (1) L

=  The concept is relatively simple
= Typical input-output relation for linear systems
= {Y(w)} = [H(w)][{X(w)}.
= We want to know the input {X(w)} = [H(w)] T{Y (w)}.
= |mplementation is a little complex
= The output y(t) is provided in the time domain from the flight data.
= Use Fourier Transform to get Y (w).
= Interpolate [H(w)]to same frequency spacing and band as Y (w).
= [H(w)] had a coarser frequency spacing.

= Perform Operation {X(w)} = [H(w)] T{Y (w)}. Check condition of
= Use {X(w)}to calculate [S,,]. [H(w)]~T.
= Checks " T

= Conditioning of [H(w)]
= Positive Semidefinite [S,,]
= Determinant>0

Condition #

= Eigenvalues >0

= Check at each frequency e W WA T W
| Frequency, (Hz) I




Method (1) Forward Problem S,

= Run the Forward Problem as a Check [S, ] = [H][S,][H]'

= There are going to be some errors

3 DOF 6 DOF
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S.=2*S,,*Z' Method (2) ) .

= Concept
* [Z(w)] = [H)]?
= Input Spectral Density Matrix: [S,,(w)] = [Z(w)] * [Syy(a))] * [Z(w)]'
= [Sy,(w)] is the response spectral density matric from the flight data.
= |mplementation
= Interpolate [S,, (w)] to match frequency
spacing of [H(w)]
" Checks
= Conditioning of [H(w)]
= Positive Semidefinite [S,,]
= Determinant >0

= Eigenvalues >0
= Check at each frequency




Method (2) Forward Problem

= Run the Forward Problem as a Check [S, ] = [H][S,][H]'

= There are going to be some errors

3 DOF
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S,=2*S, *Z’ with Scaling Method (3) @&

= Smallwood proposed a scaling method to assure that the input
SDM is positive semidefinite

= This is more relevant when we start talking about drawing straight line
specifications and coming up with test specifications.

= Also useful if you just derive the diagonal of the input SDM for
specifications

= |t obviously comes at a cost and | wanted to see if | could figure out the
cost with this scaling.

= Scaling Concept
[Syy]new — [SS] [Syy]old[ss]

1

" Ssii =

S yy,old,ii




S,=2*S, *Z’ with Scaling Method (3) @&
= Scaling Concept Continued I
* [Syy] . = [Ssl[Syy] ,,[Ss]

Condition #

1

| S P i
S, .
Syy,old,u MU

" [Sex(@scatea = [Z(@)]* [Syy(@)]  *[Z(w)]

0 500 1(;00 15‘00 2(;00 25‘00 3(;00 35‘00 4000
new Frequency, (Hz)

= Scale back the results

* [Sxxlactuar = [Z] * [Ss]_l * [H] * [Syxlscatea * [H]" [Ss]_l * [Z(w)]
= These are a function of frequency.

= |mplementation

= Interpolate [S,, (w)] to match frequency
spacing of [H(w)]

= Same Checks as previous (conditioning, positive semidefinite)




Method (3) Forward Problem =

= Run the Forward Problem as a Check [S, ] = [H][S,][H]'

= There are going to be some errors
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Gyy gRMS = 0.15+0.00i g
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S,=2*S,*Z" with Tikhonov =N
Regularization Method (4)

= Tikhonov for solving Ax = b
= £ =[ATA - 221]"1ATb

= We want to solve [H][S,|[H] = [Sy]; Remember these are
matrices, but | am going to drop the [].
= A=HX=SHB=S5,
= S,H' =[H'H — 221]7'H'S,
* SyH' = C;whereC = [H'H — 2*I]"'H'S,,
" Do another Tikhonov Regularization, but we want to solve for S,
= [S,H']'=C" - HS, =C";Tikhonov(A=H,X=S,,B=2C")
= ST =[H'H — 22I]"'H'C’
" lterate with setting S, = HSH'




Method (4) also includes ) S,

" We actually don’t give it the true §,,.
" WegiveitaS, thatis
= We provide the autospectral density of the response (diagonal of S,,)
into Sy, Sy = Sy, fori=1,..,n(size S,).

= We make sure the phase and coherence ofS"; is compatible with H
and S, (Though before first Tikhonov iteration this is a guess of
diag(le — 6)).

* C=HSH'
= Normalize off diagonal terms (see Cap 2009)

2 Syl.jN = Cijn; wheni # j (Off diagonal Terms)
= Scale Back Off diagonal terms S/y\ij = Syl.qu/SyiiSyjj,wheni * J

= We calculate the S, using Tikhonov and 3’; with iterations.

J.S. Cap, D.G. Tipton, D.O. Smallwood, “The Derivation of Random Vibration Specifications From Field Test Data for Use with a Six Degree-of-Freedom Shaker Test,” 80" Shock and Vibration Symposium, San
Diego, CA, October 25-29, 2009.




Method (4) Forward Problem B

= Run the Forward Problem as a Check [S, ] = [H][S,][H]'

= There are going to be some errors

3 DOF 6 DOF
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Method (4) Forward Problem B

= Compare Only Tikhonov and Tikhonov + Cap’s (modified Off
diagonals)
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Results — Deep Thoughts ) B,

= We know it is not going to be perfect.
= We have two different units (one that flew and one that we tested)

= Numerical issues

= The standard now becomes how did the methods compare to
if we just derived straight from the flight test instrumentation
with no inverse

= There has to be some relative comparison to try and account for unit-
to-unit at the bare minimum.

= Recall generally we will have to do some type of inverse, for rarely are
subsystems & components instrumented enough.
= Trying to distill all information down is difficult
= | will walk you through one method.
= Laura will provide another



Response Comparisons

Let’s put the PSD into 6%
Octaves and form a dB
error between method and
actual flight

),

-

N
— m w
dBurror = 10 * log Gmethod (Wetn)

10
Gflight (wetn)

G(wetn)

\ = ASD at 6th octave centers )

= At each similar instrumented gage (between flight and

experiment) there is a dB error at each center 6t Octave
frequency from 10 to 4,000 Hz (53 points).

= There were 10 similar gages thus each method has 530 dB error points

= We can simply take the mean and standard deviation and plot these to
try and give an overall feel for how well each method does compared to
deriving straight from flight.




Comparisons of all Methods Forward Problem -
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Comparisons of all Methods Forward Problem @,
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Comparisons of all Methods Forward Problem @,
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Conclusions )=,

= Before we can run (well Mike is just trying to up to speed with
most in the 6 DOF world), we walked.

= Eventually we want to derive Environmental Specifications at the 6
DOF level.

= This work looked at how to come up with 6 DOF inputs given
responses from an actual flight test.

= Explored 4 different mathematical methods

= |t appears that method 4 works the best

= Though, this is very metric dependent and consultation with PRT &
Experimentalist is key.

= |t appears that we would prefer 6 DOF over 3 DOF.




Future Work )=,

= Develop specifications (straight line, 1/500 or P99/90)

= Look at given just diagonal of input SDM
= Experimentalist will figure coherence and phase

= Maybe just give coherence
= Positive Semidefinite

= Look at scaling a particular location during input generation
such that internal widgets are more important than the legs
as an example — Implementing Optimization Algorithm

= What to do when there is only one gage on a component
= |sthere an ideal set of gages for inverse

= Look at what happens when we do inverse with certain gages
and make predictions at other gages.



BACK UPS




Big Picture Next Is Envi. Spec Derivation @i

= |n regards to Envi. Specifications

= | think one could first derive appropriate 6 DOF inputs, then apply
appropriate statistics (P99/50 or 1/500), and then envelop

= Alternatively one could do what we do in the past and at each
instrumented flight channel develop appropriate statistics (P99/50),
envelop, and then generate 6 DOF input from these.

= Both methods could suffer from input SDM not being positive
semidefinite.
= When do we start trying to match stress states instead of
accelerations?

= Also comes the question of how to derive specifications with
limited to no instrumentation on say a component A, but
component B, C, and D do have instrumentation.
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PINV Method (1) )

= The concept is relatively simple
= Typical input-output relation for linear systems
" {Y(w)} = [H(){X(w)}.
= We want to know the input {X(w)} = [H(0)] T{Y (w)}.
= |mplementation is a little complex
* The output y(t) is provided in the time domain from the flight data.
= Use Fourier Transform to get Y (w).
Interpolate [H (w)]to same frequency spacing and band as Y (w).
= [H(w)] had a coarser frequency spacing.
= Perform Operation {X(w)} = [H(w)] T{Y (w)}.
= Convert X(w) into time domain with inverse Fourier Transform

= Compute input spectral density matrix [S,,], given translation and
rotation input accelerations: x(t), y(t), z(t), rx(t), ry(t), rz(t).




Comparison of Inputs ) .

= Translation Inputs have 8 comparisons to Flight Test
derivation.
= The 4 methods
= Each method includes derivation with translations (X, Y, and Z)- 3D
= Each method includes derivation with translation and rotation - 6D

Auto X-axis Inputs Auto Y-axis Inputs Auto Z-axis Inputs

102 102 10
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— —
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10 523D gRMS =0.14-0.00i g 10 Z523D gRMS = 0.17+0.00i g 523D gRMS = 0.26-0.00i g
ZS76D gRMS = 0.21+0.00i g 7576 gRMS = 0.58-0.00i g 7576 gRMS = 0.29+0.00i g
753D Smallwood gRMS = 0.13+0.00i g 753D Smallwood gRMS = 0.15+0.00i g 753D Smallwood gRMS = 0.25+0.00i g
2526D Smallwood gRMS = 0.21-0.00i g 2526D Smallwood gRMS = 0.57-0.00i g 2576D Smallwood gRMS = 0.30+0.00i g
2523D Rouse gRMS =0.32g 2523D Rouse gRMS =0.34 g 2523D Rouse gRMS =0.27 g
2SZ6D Rouse gRMS =0.3140.00i g 2SZ6D Rouse gRMS = 0.46+0.00i g 2SZ6D Rouse gRMS = 0.2040.00i g
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Comparison of Inputs T .

= Translation Inputs have 8 comparisons to Flight Test
derivation.
= The 4 methods
= Each method includes derivation with translations (X, Y, and Z)- 3D
= Each method includes derivation with translation and rotation - 6D
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Comparison of Inputs ) .

= Translation Inputs have 8 comparisons to Flight Test
derivation.
= The 4 methods
= Each method includes derivation with translations (X, Y, and Z)- 3D
= Each method includes derivation with translation and rotation - 6D

Auto X-axis Inputs Auto Y-axis Inputs Auto Z-axis Inputs

102 102 10
10 10
— —
N 10t N 10
< <
) ) 1
2 I \ 2 1 \
a W a -
Z,:’ 105 Z,:’ 10 v
—m Flight gRMS = 0479 = Flight gRMS = 036 ¥ A\ = Flight gAMS = 030 g
pinvaD gRMS = 0.13 g N —— pinvaD gRMS = 0.17 g 106 | | ——pIVADgRMS =0.25 g
pinv6D gRMS = 0.19 g pinv6D gRMS = 0.58 g pinv6D gRMS = 0.29 g
10 523D gRMS =0.14-0.00i g 10 Z523D gRMS = 0.17+0.00i g 523D gRMS = 0.26-0.00i g
ZS76D gRMS = 0.21+0.00i g 7576 gRMS = 0.58-0.00i g 7576 gRMS = 0.29+0.00i g
753D Smallwood gRMS = 0.13+0.00i g 753D Smallwood gRMS = 0.15+0.00i g 753D Smallwood gRMS = 0.25+0.00i g
2526D Smallwood gRMS = 0.21-0.00i g 2526D Smallwood gRMS = 0.57-0.00i g 2576D Smallwood gRMS = 0.30+0.00i g
2523D Rouse gRMS =0.32g 2523D Rouse gRMS =0.34 g 2523D Rouse gRMS =0.27 g
2SZ6D Rouse gRMS =0.3140.00i g 2SZ6D Rouse gRMS = 0.46+0.00i g 2SZ6D Rouse gRMS = 0.2040.00i g
1 0-7 L L 1 0-7 L L 1 0-7 L L
10’ 10? 10° 10’ 10? 10° 10’ 10? 10°

Frequency, (Hz) Frequency, (Hz) Frequency, (Hz)




Comparison of Inputs T .

= Translation Inputs have 8 comparisons to Flight Test
derivation.
= The 4 methods
= Each method includes derivation with translations (X, Y, and Z)- 3D
= Each method includes derivation with translation and rotation - 6D
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