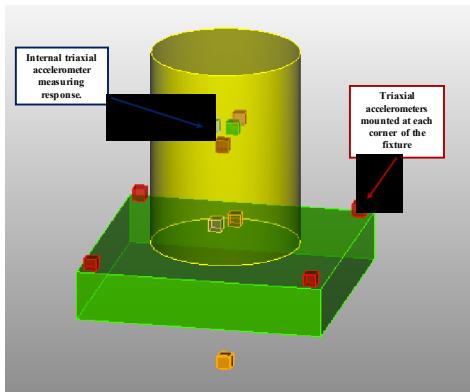
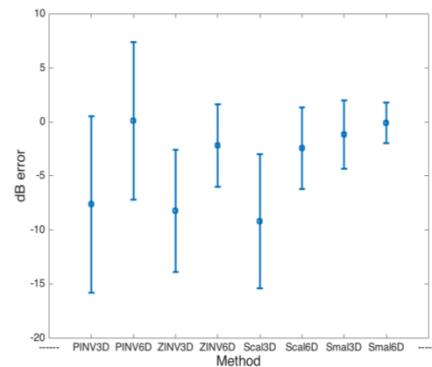


Test fixture for 6 degrees of freedom (DOF) input response

Test fixture for 6 degrees of freedom (DOF) input response



# Input Test Specification for 6 DOF

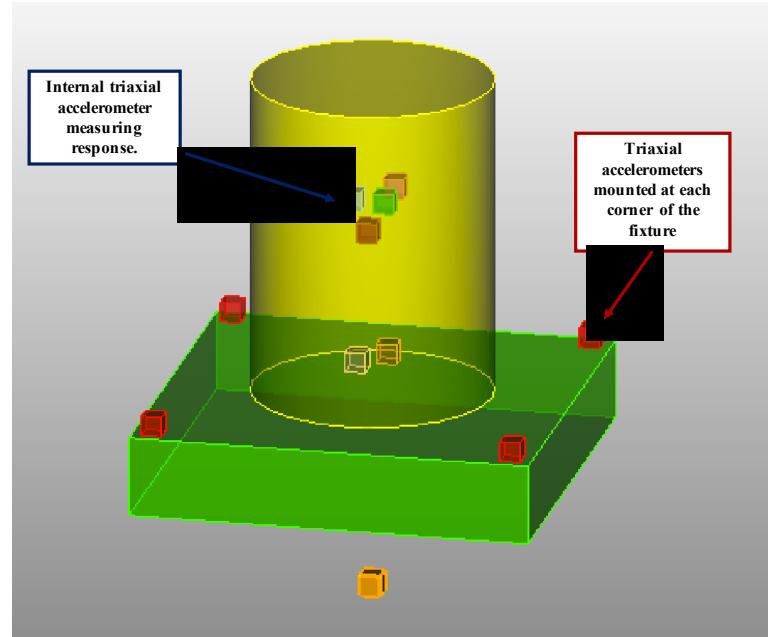
Laura Jacobs, Michael Ross, Greg Tipton,  
Kevin Cross, Norman Hunter, Julie Harvie,  
Garrett Nelson

# Abstract

- Recent studies have found that 6-DOF testing better replicates the stress environment during actual field tests.
- Unfortunately, it is a rare occasion where a field test can be sufficiently instrumented such that the subsystem/component 6-DOF inputs can be directly derived.
- However, a recent flight test of a Sandia system was instrumented sufficiently such that the input could be directly derived for a particular subsystem.
- This is compared to methods for deriving 6-DOF test inputs from field data with limited instrumentation.
  - There are four methods used for deriving 6-DOF input with limited instrumentation.
- In addition to input comparisons, actual response measurement during the flight are compared to the various 6-DOF tests as method for comparing input 6-DOF derivation.
- This work focuses on best methods to replicate an actual field test with a laboratory test.
  - Derivations of environmental specifications will be the focus of future work. This would include straight-line specifications and appropriate probability and statistics (P99/C90 or 1:500)

# Big Picture Steps

- On 6DOF shaker table, build transmissibility function  $[H(\omega)]$  from base input of fixture to internal gages.
- Given flight data with internal responses, use  $[H(\omega)]$  to develop a set of inputs,  $[S_{xx}(\omega)]$ , that will as best as possible replicate internal response from flight if put on 6 DOF shaker table.
- Compare to internal responses of 6 DOF to Flight from various methods of generating 6 DOF input.

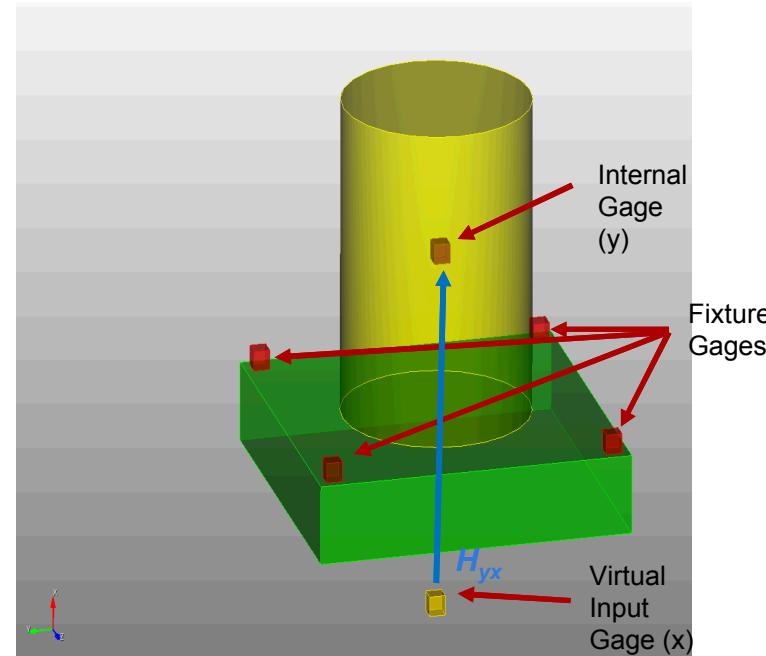


# Standard Math Background

- Transmissibility function is derived from input to output locations of interest internal to the Subsystem.
  - $[H_{yx}] = [G_{xx}]^{-\dagger} [G_{xy}]$
  - $[G_{xy}]$  is the input/output cross-spectral density matrix,  $[G_{xx}]$  is the input auto spectral density matrix, and  $-\dagger$  is the typical Moore-Penrose generalized inverse.
  - $[G_{xx}]$  derived from 4 gages on fixture (discussed on next few slides)
- Positive Semidefinite
  - Determinant  $> 0$
  - Eigenvalues  $> 0$
  - Check at each frequency
- Condition Number
  - Using Singular Value Decomposition  $[X] = [U]*[S]*[V]'$ .
    - the ratio of the largest singular value of  $[S]$  to the smallest
  - *What values are acceptable*
- All Matrices are 3 dimensional and each concept applies at a particular frequency
  - True Throughout the Presentation

# Developing Transmissibility Function

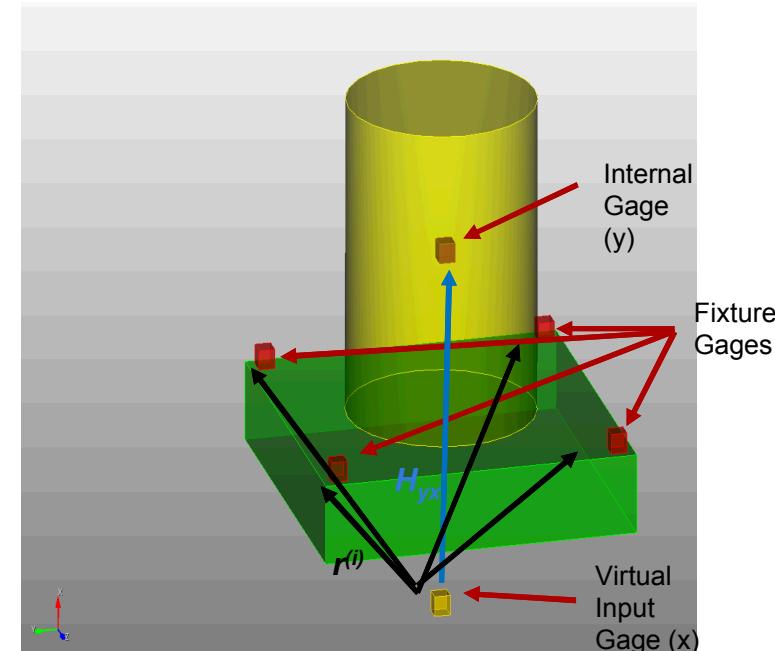
- Transmissibility function is derived from input to output locations of interest internal to the Subsystem.
  - $[H_{yx}] = [G_{xx}]^{-\dagger} [G_{xy}]$
- We want to build this from a 6 DOF input into the base of the fixture.
  - 3 Translational Accelerations
  - 3 Rotational Accelerations
- Assume the fixture remains rigid.
- If we knew 6 DOF input at virtual location we could calculate fixture gage response



# Developing Transmissibility Function

- Assume the fixture remains rigid.
- If we knew 6 DOF input at virtual location we could calculate fixture gage responses

$$\begin{bmatrix} \ddot{x}_1 \\ \ddot{y}_1 \\ \ddot{z}_1 \\ \vdots \\ \ddot{x}_4 \end{bmatrix}_{12 \times 1} = \begin{bmatrix} 1 & 0 & 0 & 0 & r_z^1 & -r_y^1 \\ 0 & 1 & 0 & -r_z^1 & 0 & r_x^1 \\ 0 & 0 & 1 & r_y^1 & -r_x^1 & 0 \\ 1 & 0 & 0 & 0 & r_z^2 & -r_y^2 \\ 0 & 1 & 0 & -r_z^2 & 0 & r_x^2 \\ 0 & 0 & 1 & r_y^2 & -r_x^2 & 0 \\ 1 & 0 & 0 & 0 & r_z^3 & -r_y^3 \\ 0 & 1 & 0 & -r_z^3 & 0 & r_x^3 \\ 0 & 0 & 1 & r_y^3 & -r_x^3 & 0 \\ 1 & 0 & 0 & 0 & r_z^4 & -r_y^4 \\ 0 & 1 & 0 & -r_z^4 & 0 & r_x^4 \\ 0 & 0 & 1 & r_y^4 & -r_x^4 & 0 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \\ r\ddot{x} \\ r\ddot{y} \\ r\ddot{z} \end{bmatrix}_{6 \times 1}$$



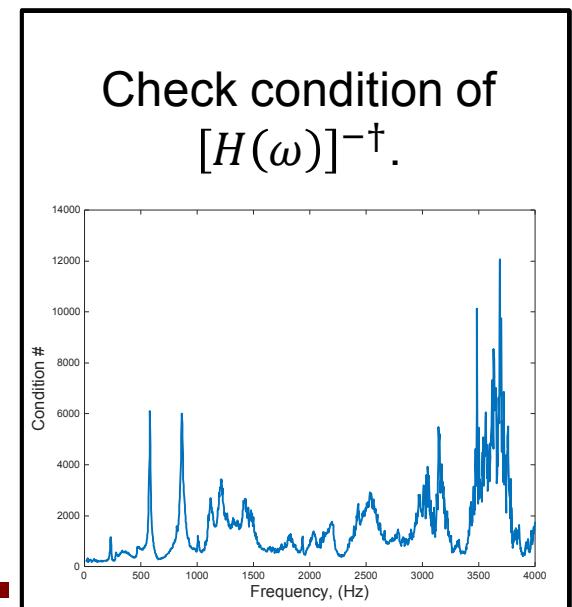
- $\{a_f\} = [R]\{a_x\}$
- $\{a_x\} = [R]\setminus\{a_f\}$  -> least-squares solution ( $A^*x = b$ )

# Numerical Set-up

- We have 10 responses and we need 6 inputs at so many frequency lines.
  - $H$  is  $10 \times 6 \times \# \text{ of frequency spacing}$ .
  - In this presentation, we write the matrices as if they are 2D and drop the # of frequency spacing. But realize each matrix function is solved at each frequency.
  - $X = \text{pinv}(H) Y$ . The solution is the one which  $\text{norm}(X)$  is the smallest.
- Future work may include selection of best gages to get ideal input.

# PINV Method (1)

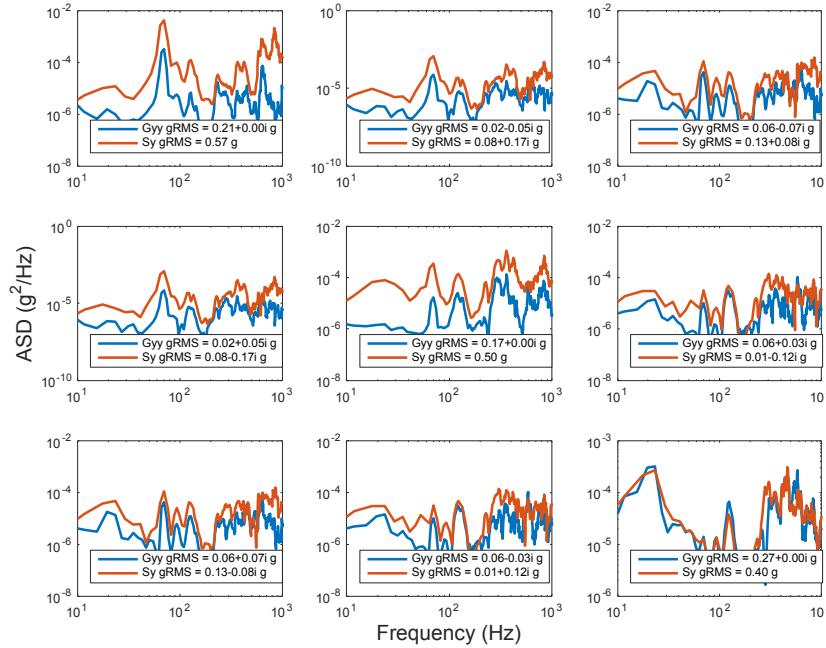
- The concept is relatively simple
  - Typical input-output relation for linear systems
  - $\{Y(\omega)\} = [H(\omega)]\{X(\omega)\}$ .
  - We want to know the input  $\{X(\omega)\} = [H(\omega)]^{-\dagger}\{Y(\omega)\}$ .
- Implementation is a little complex
  - The output  $y(t)$  is provided in the time domain from the flight data.
    - Use Fourier Transform to get  $Y(\omega)$ .
  - Interpolate  $[H(\omega)]$  to same frequency spacing and band as  $Y(\omega)$ .
    - $[H(\omega)]$  had a coarser frequency spacing.
  - Perform Operation  $\{X(\omega)\} = [H(\omega)]^{-\dagger}\{Y(\omega)\}$ .
  - Use  $\{X(\omega)\}$  to calculate  $[S_{xx}]$ .
- Checks
  - Conditioning of  $[H(\omega)]$
  - Positive Semidefinite  $[S_{xx}]$ 
    - Determinant  $> 0$
    - Eigenvalues  $> 0$
    - Check at each frequency



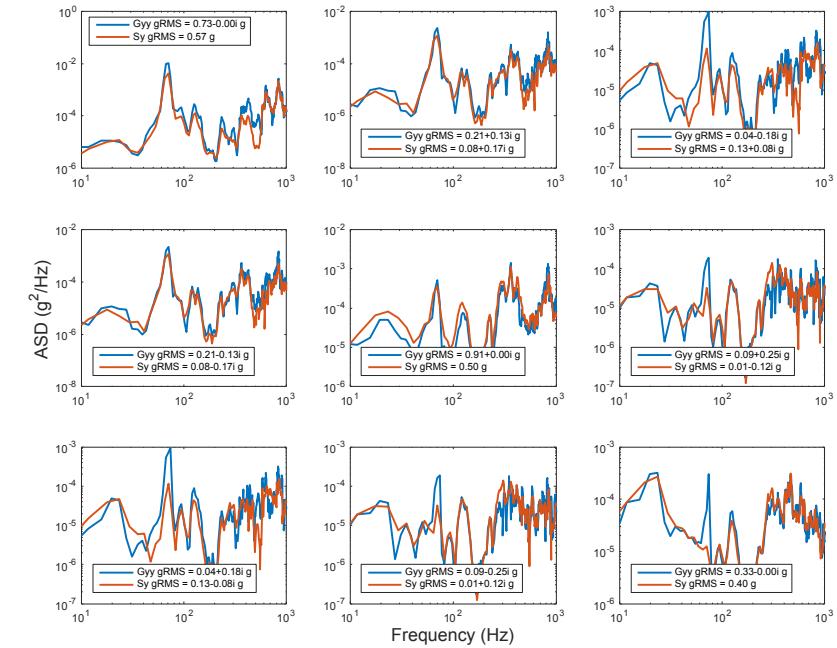
# Method (1) Forward Problem

- Run the Forward Problem as a Check  $[S_y] = [H][S_x][H]'$
- There are going to be some errors

3 DOF



6 DOF



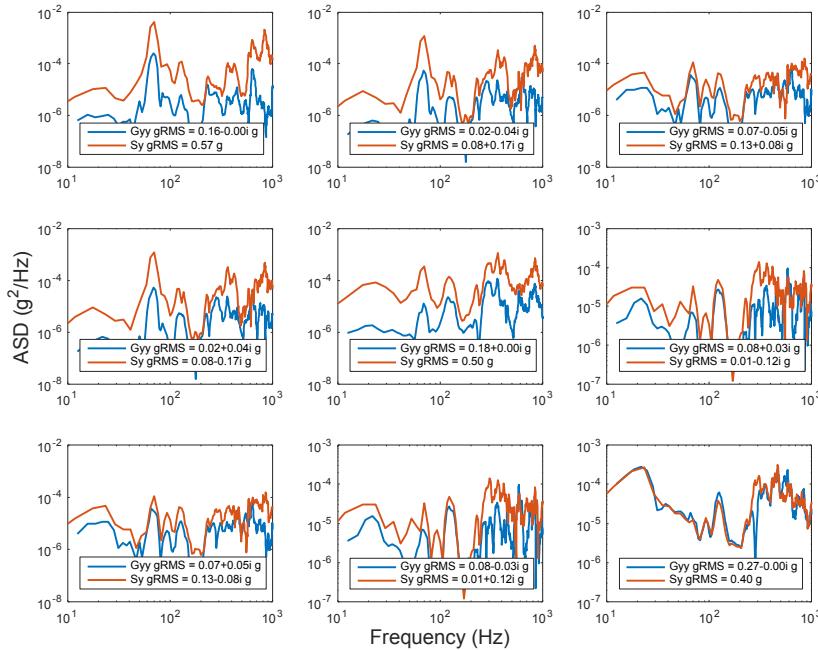
# $S_{xx} = Z^* S_{yy} * Z'$ Method (2)

- Concept
  - $[Z(\omega)] = [H(\omega)]^{-\dagger}$
  - Input Spectral Density Matrix:  $[S_{xx}(\omega)] = [Z(\omega)] * [S_{yy}(\omega)] * [Z(\omega)]'$
  - $[S_{yy}(\omega)]$  is the response spectral density matrix from the flight data.
- Implementation
  - Interpolate  $[S_{yy}(\omega)]$  to match frequency spacing of  $[H(\omega)]$
- Checks
  - Conditioning of  $[H(\omega)]$
  - Positive Semidefinite  $[S_{xx}]$ 
    - Determinant  $> 0$
    - Eigenvalues  $> 0$
    - Check at each frequency

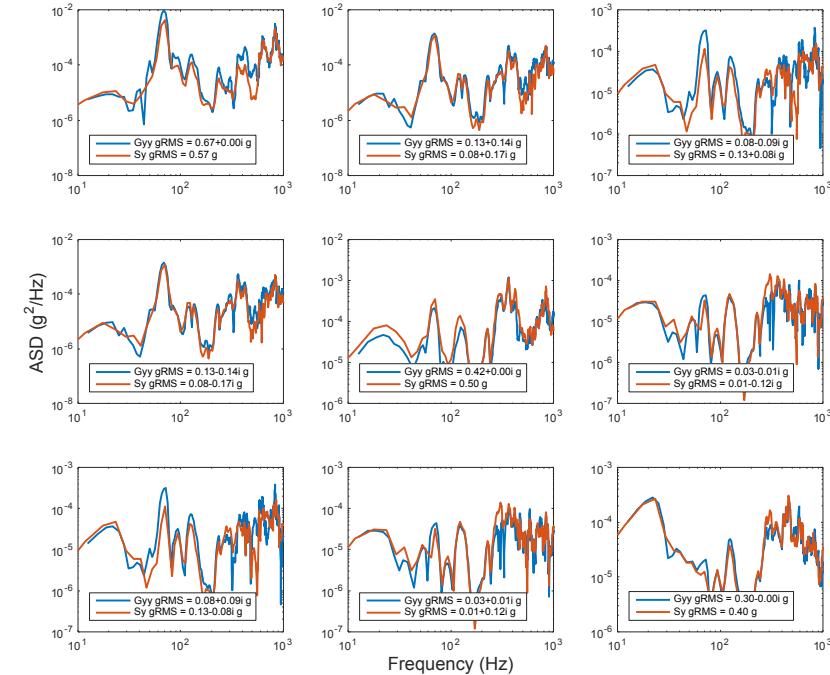
# Method (2) Forward Problem

- Run the Forward Problem as a Check  $[S_y] = [H][S_x][H]'$
- There are going to be some errors

3 DOF



6 DOF



# $S_x = Z^* S_y * Z'$ with Scaling Method (3)



- Smallwood proposed a scaling method to assure that the input SDM is positive semidefinite
  - This is more relevant when we start talking about drawing straight line specifications and coming up with test specifications.
  - Also useful if you just derive the diagonal of the input SDM for specifications
  - It obviously comes at a cost and I wanted to see if I could figure out the cost with this scaling.
- Scaling Concept
  - $[S_{yy}]_{new} = [S_s] [S_{yy}]_{old} [S_s]$
  - $S_{s,ii} = \sqrt{\frac{1}{S_{yy,old,ii}}}$

# $S_x = Z * S_y * Z'$ with Scaling Method (3)

- Scaling Concept Continued

- $[S_{yy}]_{new} = [S_s][S_{yy}]_{old}[S_s]$

- $S_{s,ii} = \sqrt{\frac{1}{S_{yy,old,ii}}}$

- $[S_{xx}(\omega)]_{scaled} = [Z(\omega)] * [S_{yy}(\omega)]_{new} * [Z(\omega)]'$

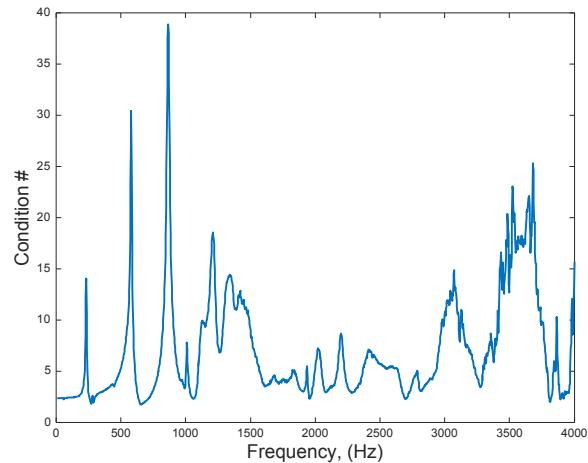
- Scale back the results

- $[S_{xx}]_{actual} = [Z] * [S_s]^{-1} * [H] * [S_{xx}]_{scaled} * [H]^T * [S_s]^{-1} * [Z(\omega)]'$
    - These are a function of frequency.

- Implementation

- Interpolate  $[S_{yy}(\omega)]$  to match frequency spacing of  $[H(\omega)]$

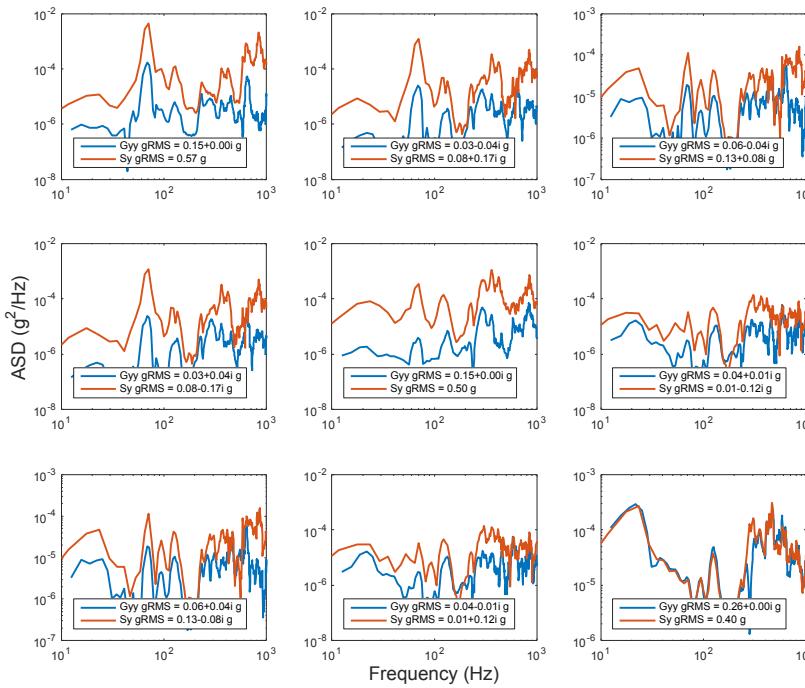
- Same Checks as previous (conditioning, positive semidefinite)



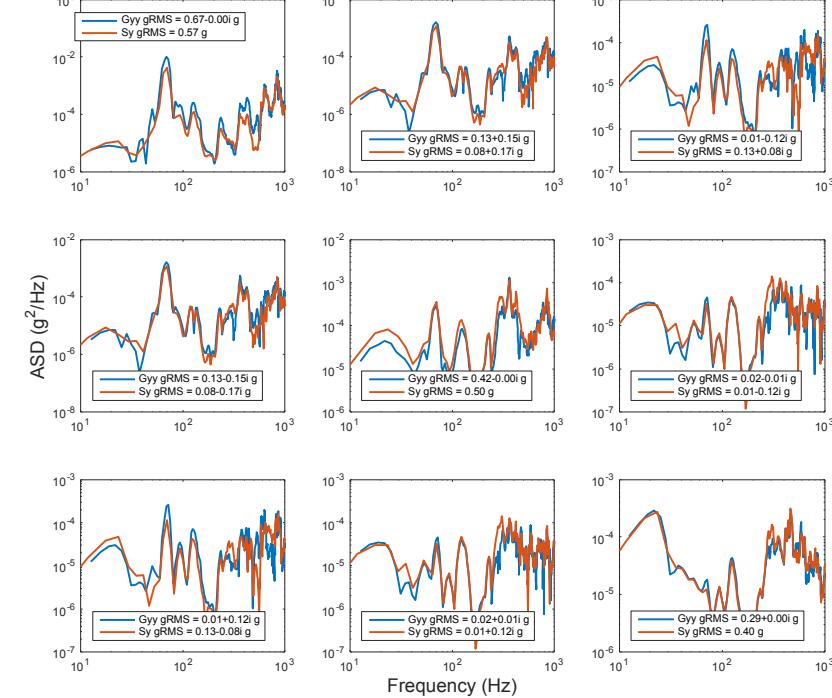
# Method (3) Forward Problem

- Run the Forward Problem as a Check  $[S_y] = [H][S_x][H]'$
- There are going to be some errors

3 DOF



6 DOF



# $S_x = Z^* S_y^* Z'$ with Tikhonov Regularization Method (4)

- Tikhonov for solving  $Ax = b$ 
  - $\hat{x} = [A^T A - \lambda^2 I]^{-1} A^T b$
- We want to solve  $[H][S_x][H]' = [S_y]$ ; Remember these are matrices, but I am going to drop the  $[ ]$ .
  - $A = H, X = S_x H', B = S_y$
  - $S_x H' = [H' H - \lambda^2 I]^{-1} H' S_y$
  - $S_x H' = C$ ; where  $C = [H' H - \lambda^2 I]^{-1} H' S_y$
  - Do another Tikhonov Regularization, but we want to solve for  $S_x$
  - $[S_x H']' = C' \rightarrow H S_x' = C'; \text{Tikhonov } (A = H, X = S_x', B = C')$
  - $\widehat{S_x'} = [H' H - \lambda^2 I]^{-1} H' C'$
  - Iterate with setting  $S_y = H \widehat{S_x'} H'$

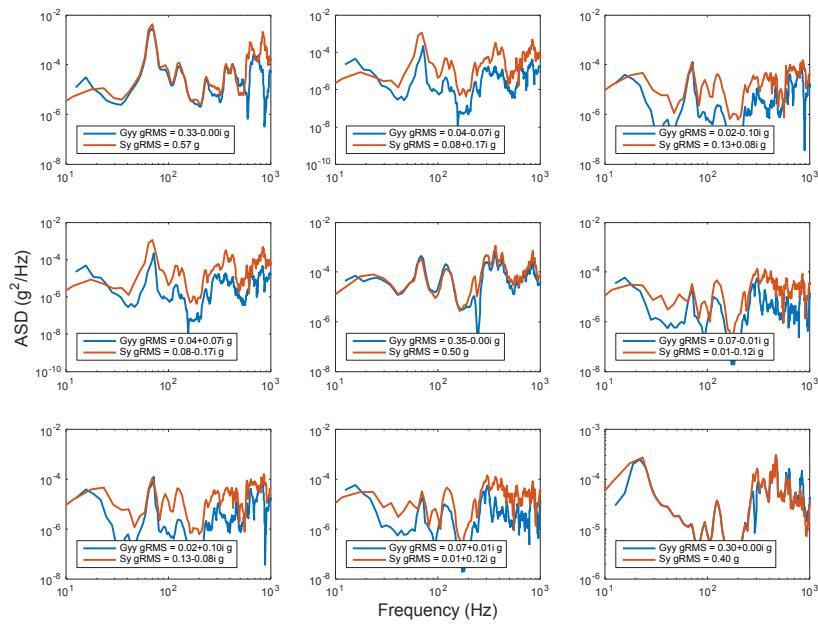
# Method (4) also includes

- We actually don't give it the true  $S_y$ .
- We give it a  $\widehat{S}_y$  that is
  - We provide the autospectral density of the response (diagonal of  $S_y$ ) into  $\widehat{S}_y$ .  $\widehat{S}_{yii} = S_{yii}$ , for  $i = 1, \dots, n$  (size  $S_y$ ).
  - We make sure the phase and coherence of  $\widehat{S}_y$  is compatible with  $H$  and  $S_x$  (Though before first Tikhonov iteration this is a guess of  $diag(1e - 6)$ ).
    - $C = HS_xH'$
    - Normalize off diagonal terms (see Cap 2009)
      - $C_{ijN} = \frac{c_{ij}}{\sqrt{c_{ii}c_{jj}}}$
      - $\widehat{S}_{y_{ijN}} = C_{ijN}$ ; when  $i \neq j$  (Off diagonal Terms)
      - Scale Back Off diagonal terms  $\widehat{S}_{y_{ij}} = \widehat{S}_{y_{ijN}}\sqrt{S_{yii}S_{yjj}}$ , when  $i \neq j$
    - We calculate the  $S_x$  using Tikhonov and  $\widehat{S}_y$  with iterations.

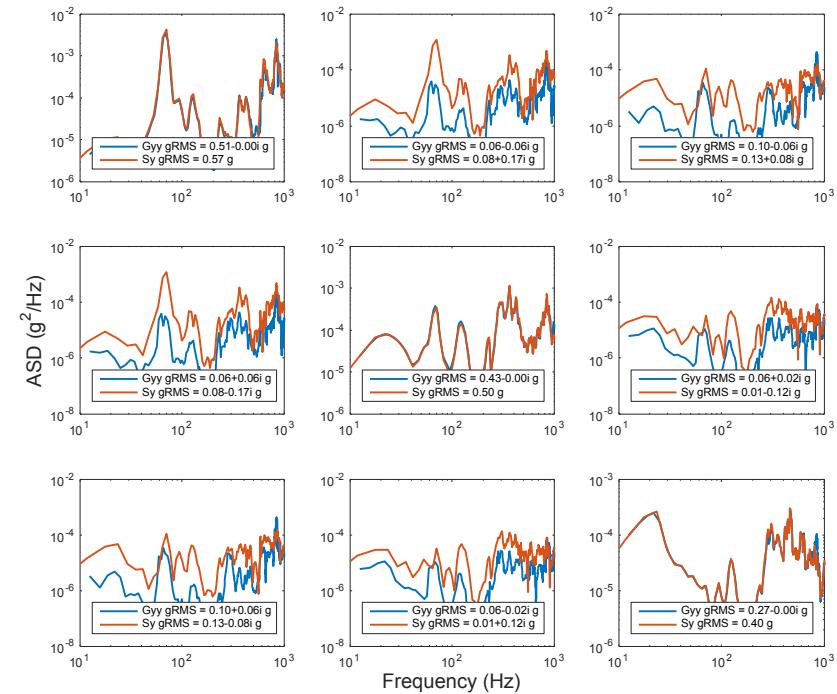
# Method (4) Forward Problem

- Run the Forward Problem as a Check  $[S_y] = [H][S_x][H]'$
- There are going to be some errors

3 DOF



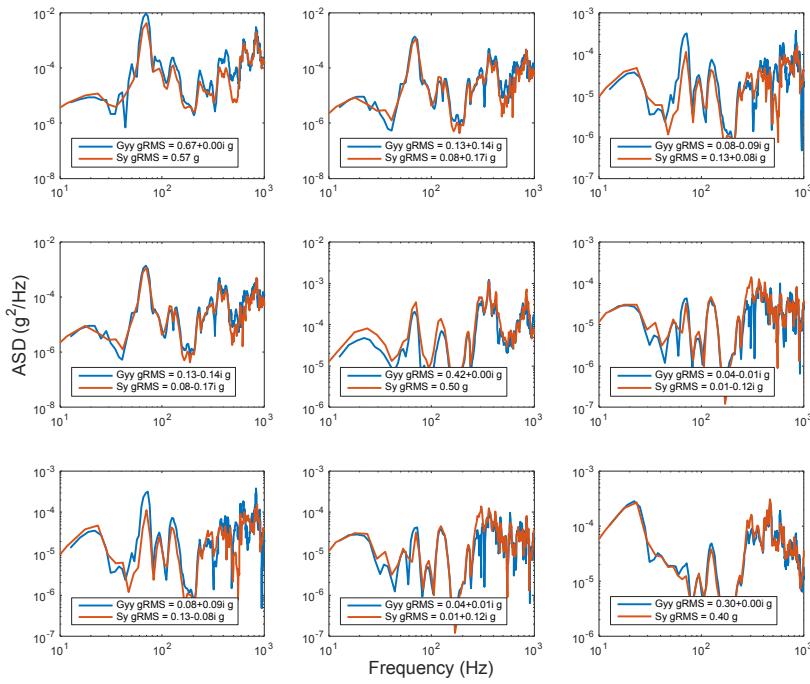
6 DOF



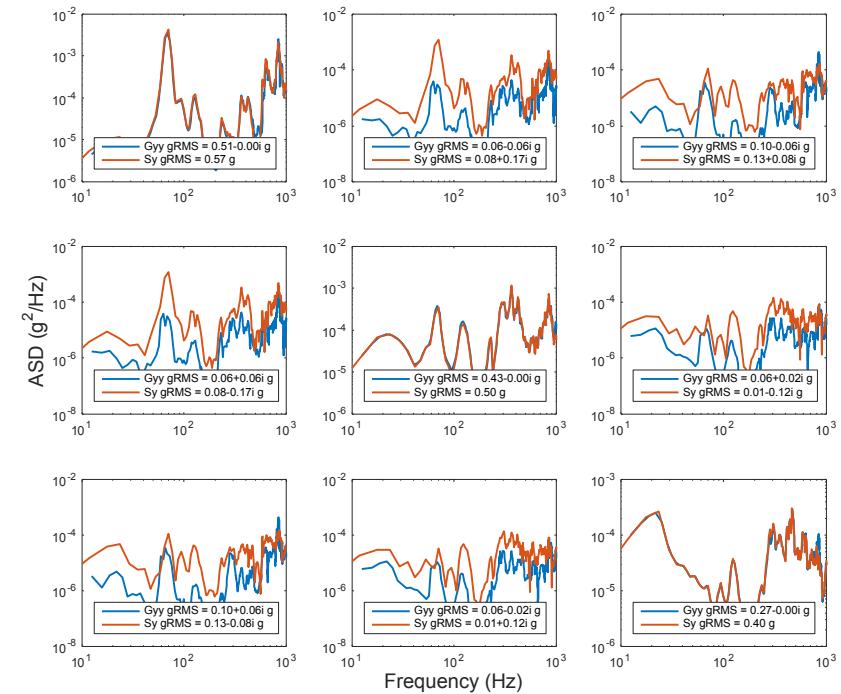
# Method (4) Forward Problem

- Compare Only Tikhonov and Tikhonov + Cap's (modified Off diagonals)

6 DOF Tikhonov Only



6 DOF Tikhonov + Cap



# Results – Deep Thoughts

- We know it is not going to be perfect.
  - We have two different units (one that flew and one that we tested)
  - Numerical issues
- The standard now becomes how did the methods compare to if we just derived straight from the flight test instrumentation with no inverse
  - There has to be some relative comparison to try and account for unit-to-unit at the bare minimum.
  - Recall generally we will have to do some type of inverse, for rarely are subsystems & components instrumented enough.
- Trying to distill all information down is difficult
  - I will walk you through one method.
  - Laura will provide another

# Response Comparisons

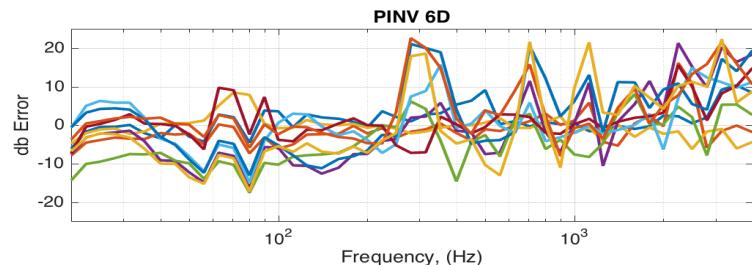
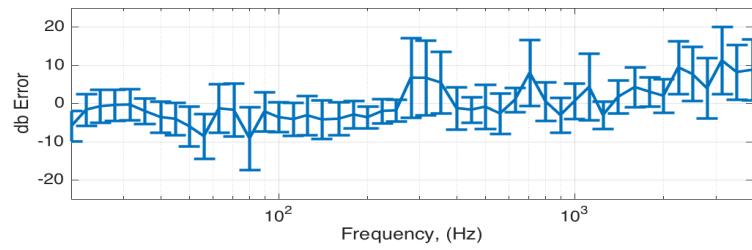
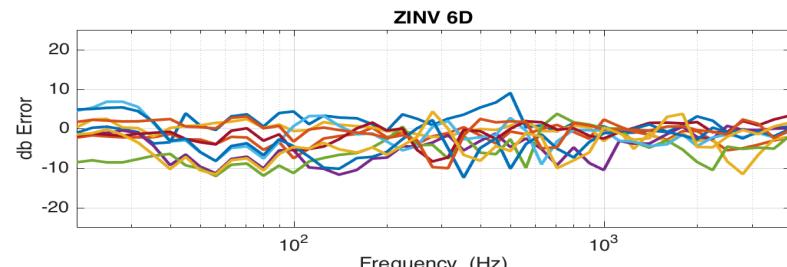
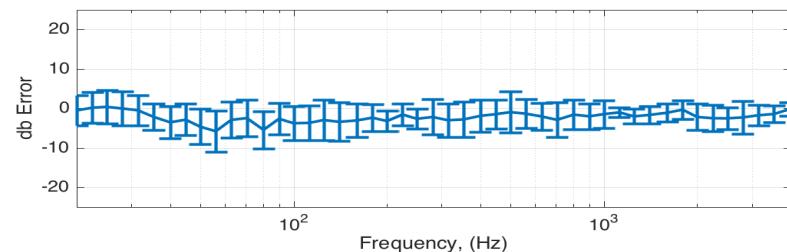
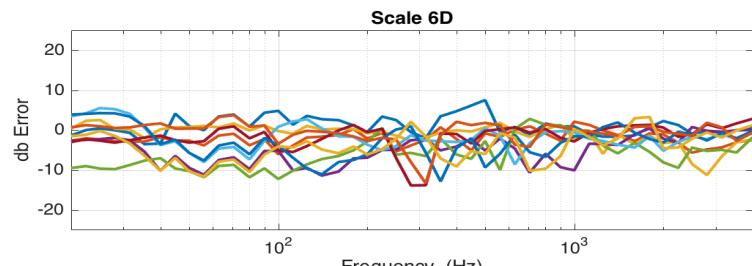
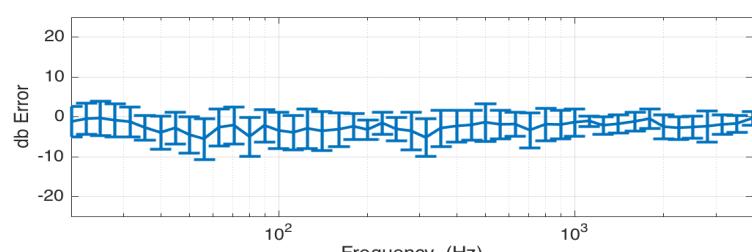
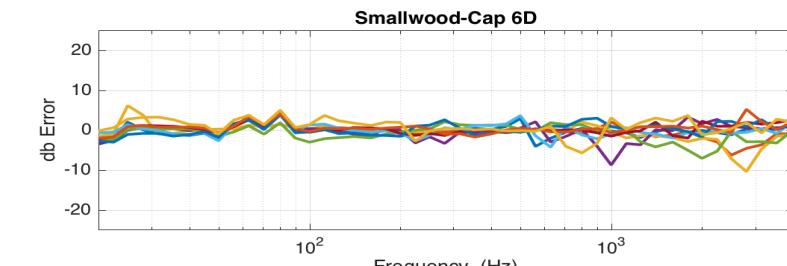
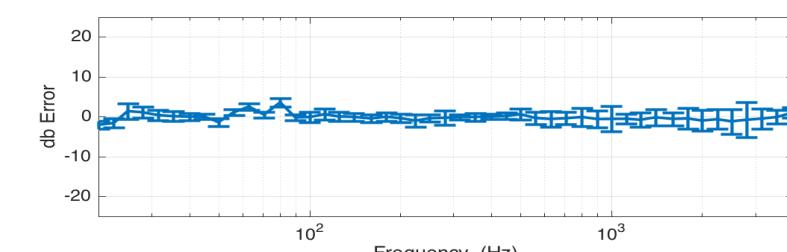
- Let's put the PSD into 6<sup>th</sup> Octaves and form a dB error between method and actual flight
- At each similar instrumented gage (between flight and experiment) there is a *dB* error at each center 6<sup>th</sup> Octave frequency from 10 to 4,000 Hz (53 points).
  - There were 10 similar gages thus each method has 530 *dB* error points
  - We can simply take the mean and standard deviation and plot these to try and give an overall feel for how well each method does compared to deriving straight from flight.

$$dB_{error} = 10 * \log_{10} \frac{G_{method}(\omega_{6th})}{G_{flight}(\omega_{6th})}$$

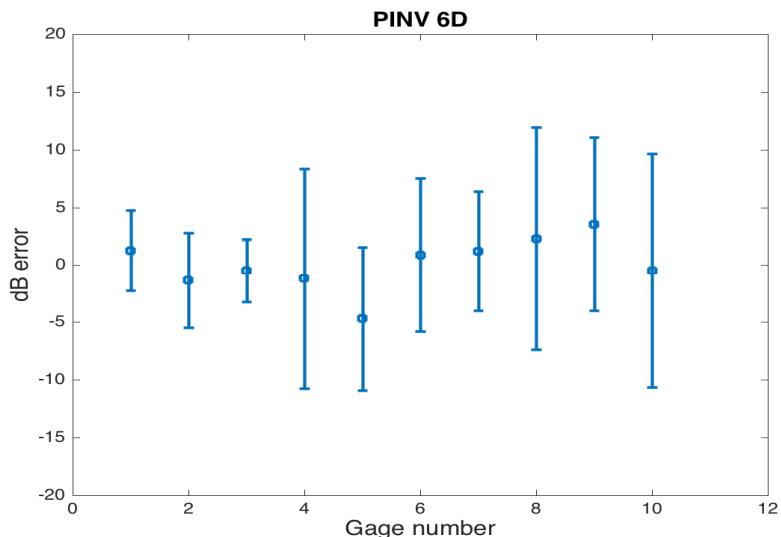
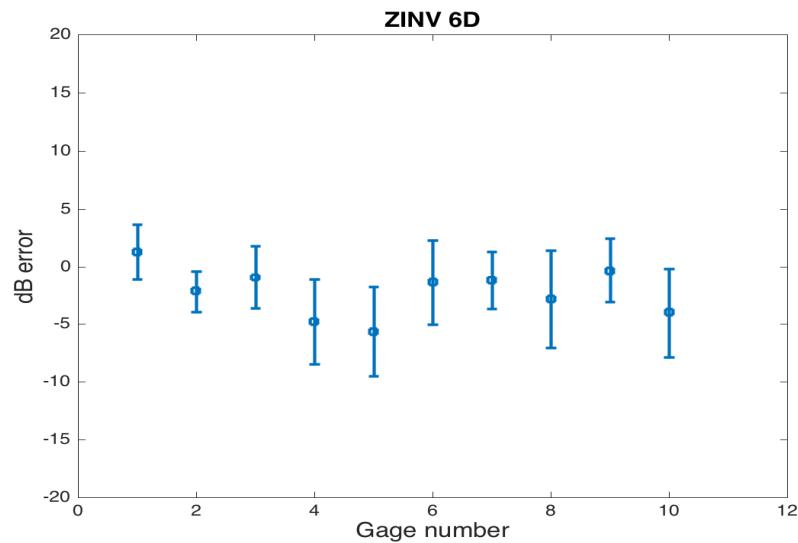
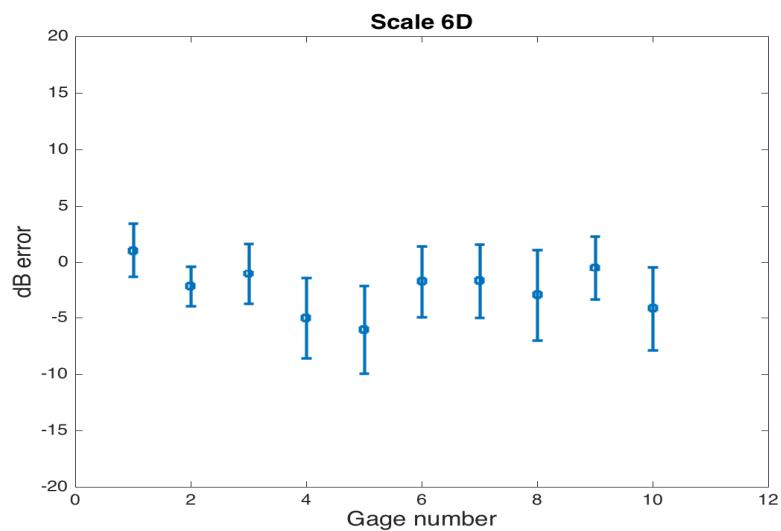
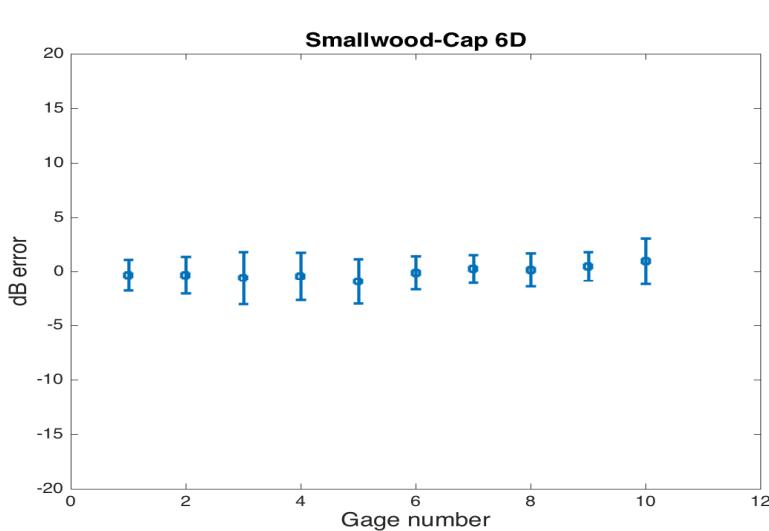
$$G(\omega_{6th})$$

$$= ASD \text{ at 6th octave centers}$$

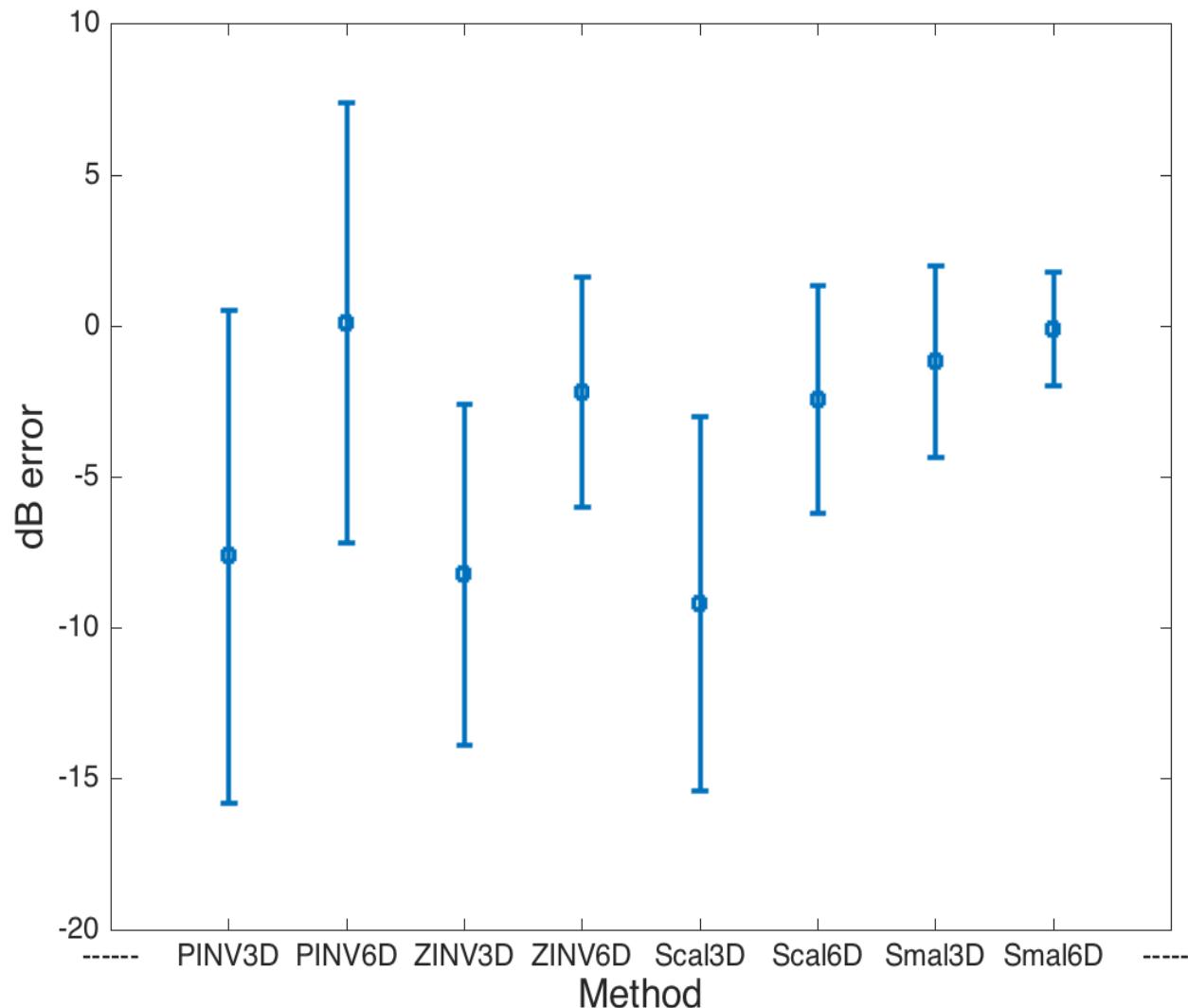
# Comparisons of all Methods Forward Problem



# Comparisons of all Methods Forward Problem



# Comparisons of all Methods Forward Problem



# Conclusions

- Before we can run (well Mike is just trying to up to speed with most in the 6 DOF world), we walked.
  - Eventually we want to derive Environmental Specifications at the 6 DOF level.
- This work looked at how to come up with 6 DOF inputs given responses from an actual flight test.
- Explored 4 different mathematical methods
- It appears that method 4 works the best
  - Though, this is very metric dependent and consultation with PRT & Experimentalist is key.
- It appears that we would prefer 6 DOF over 3 DOF.

# Future Work

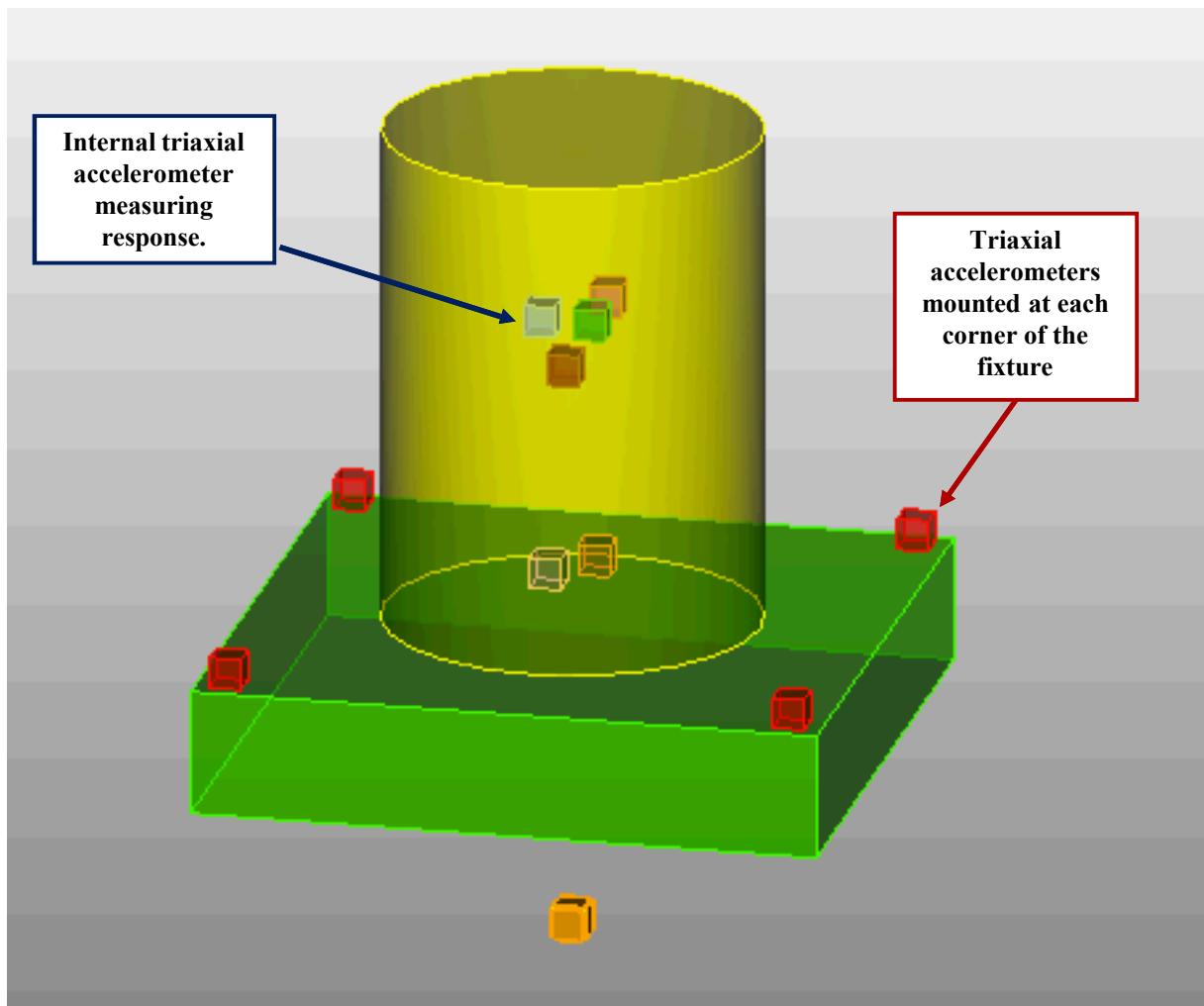
- Develop specifications (straight line, 1/500 or P99/90)
  - Look at given just diagonal of input SDM
    - Experimentalist will figure coherence and phase
  - Maybe just give coherence
  - Positive Semidefinite
- Look at scaling a particular location during input generation such that internal widgets are more important than the legs as an example – Implementing Optimization Algorithm
- What to do when there is only one gage on a component
- Is there an ideal set of gages for inverse
- Look at what happens when we do inverse with certain gages and make predictions at other gages.

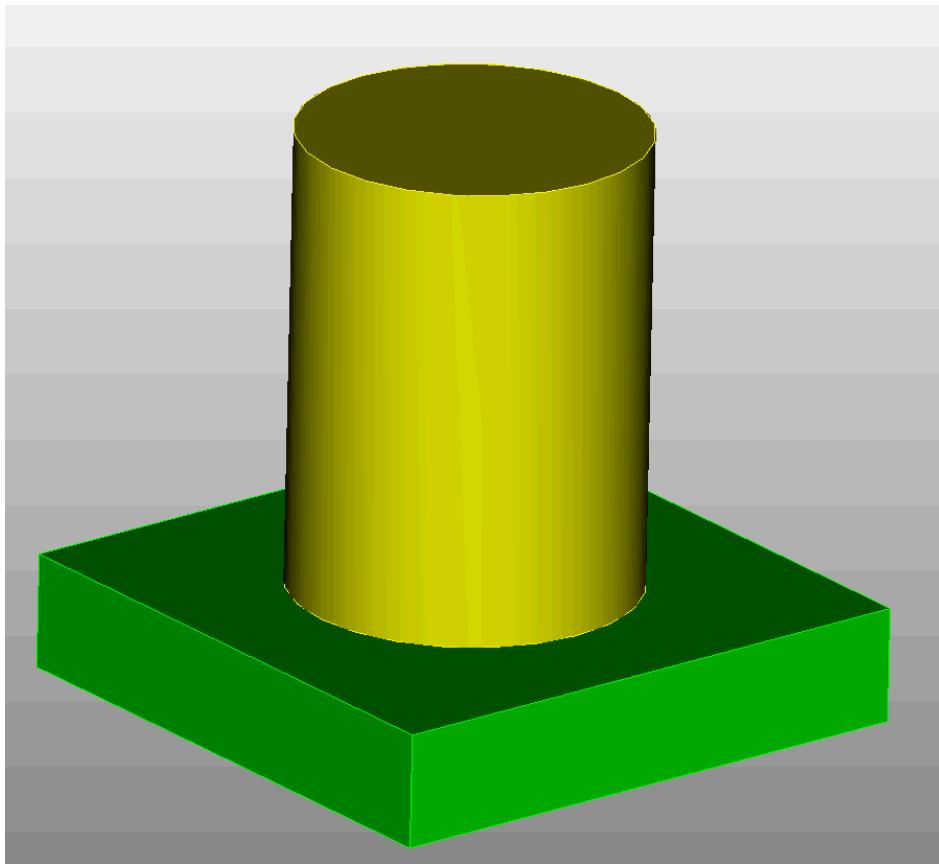
# BACK UPS

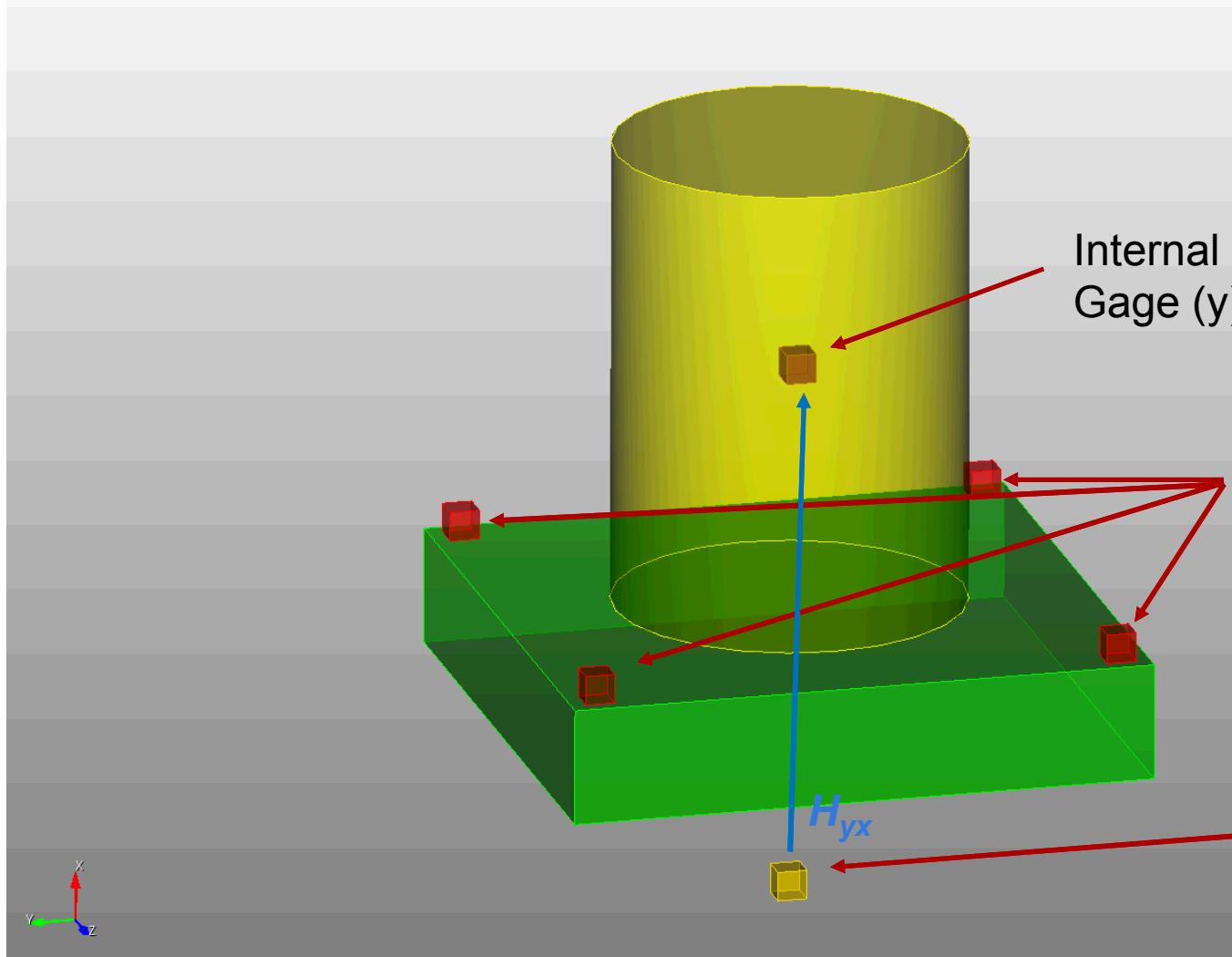
# Big Picture Next Is Envi. Spec Derivation



- In regards to Envi. Specifications
  - I think one could first derive appropriate 6 DOF inputs, then apply appropriate statistics (P99/50 or 1/500), and then envelop
  - Alternatively one could do what we do in the past and at each instrumented flight channel develop appropriate statistics (P99/50), envelop, and then generate 6 DOF input from these.
  - Both methods could suffer from input SDM not being positive semidefinite.
- When do we start trying to match stress states instead of accelerations?
- Also comes the question of how to derive specifications with limited to no instrumentation on say a component A, but component B, C, and D do have instrumentation.





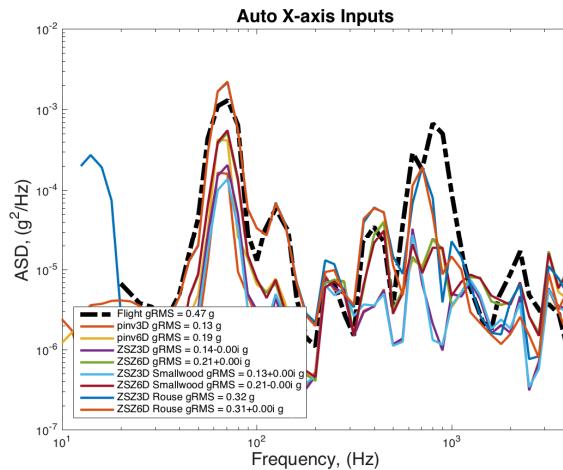
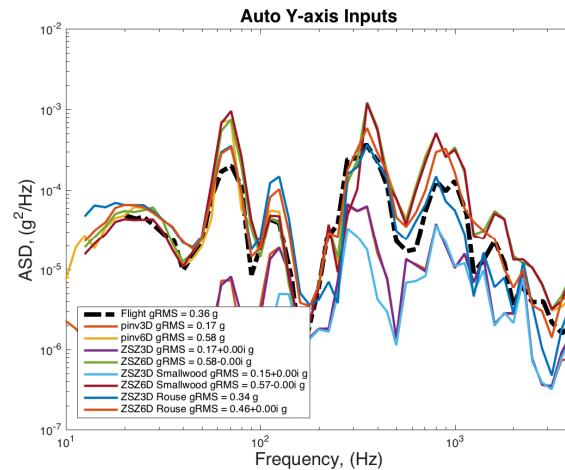
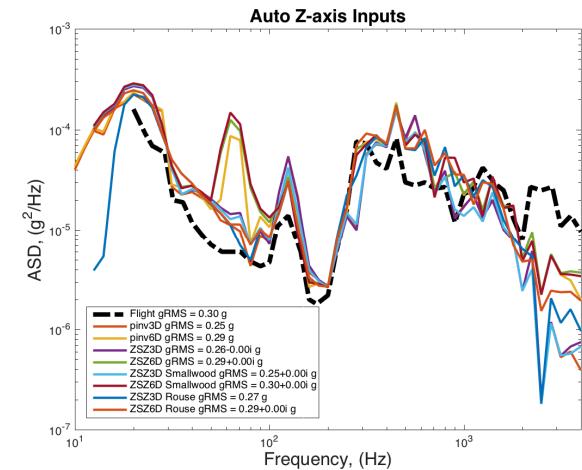


# PINV Method (1)

- The concept is relatively simple
  - Typical input-output relation for linear systems
  - $\{Y(\omega)\} = [H(\omega)]\{X(\omega)\}$ .
  - We want to know the input  $\{X(\omega)\} = [H(\omega)]^{-\dagger}\{Y(\omega)\}$ .
- Implementation is a little complex
  - The output  $y(t)$  is provided in the time domain from the flight data.
    - Use Fourier Transform to get  $Y(\omega)$ .
  - Interpolate  $[H(\omega)]$  to same frequency spacing and band as  $Y(\omega)$ .
    - $[H(\omega)]$  had a coarser frequency spacing.
  - Perform Operation  $\{X(\omega)\} = [H(\omega)]^{-\dagger}\{Y(\omega)\}$ .
  - Convert  $X(\omega)$  into time domain with inverse Fourier Transform
  - Compute input spectral density matrix  $[S_{xx}]$ , given translation and rotation input accelerations:  $x(t), y(t), z(t), rx(t), ry(t), rz(t)$ .

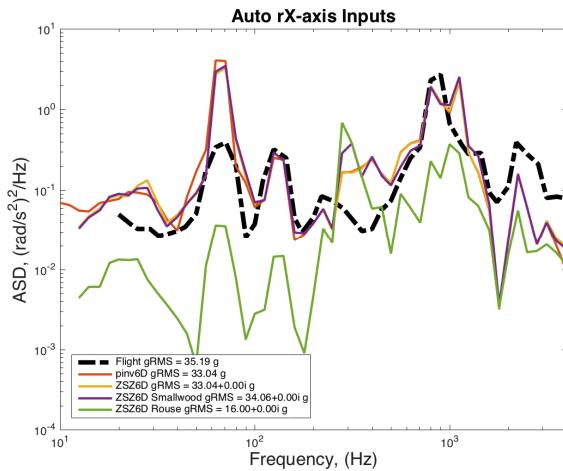
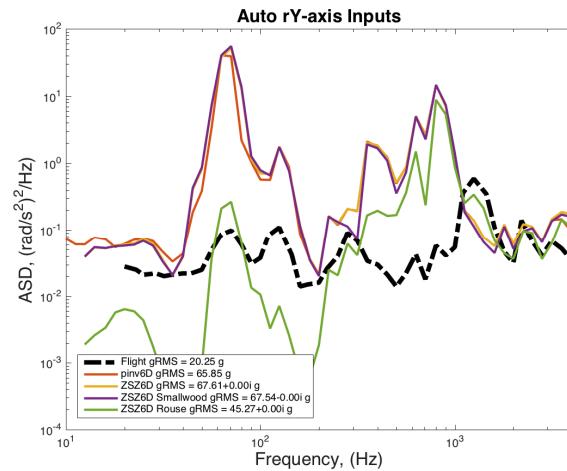
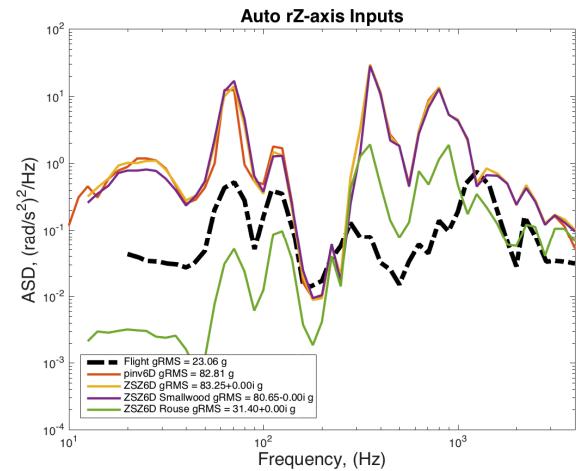
# Comparison of Inputs

- Translation Inputs have 8 comparisons to Flight Test derivation.
  - The 4 methods
  - Each method includes derivation with translations (X, Y, and Z)- 3D
  - Each method includes derivation with translation and rotation - 6D



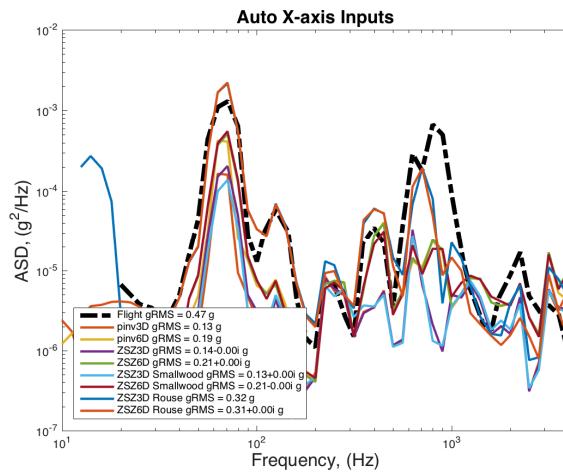
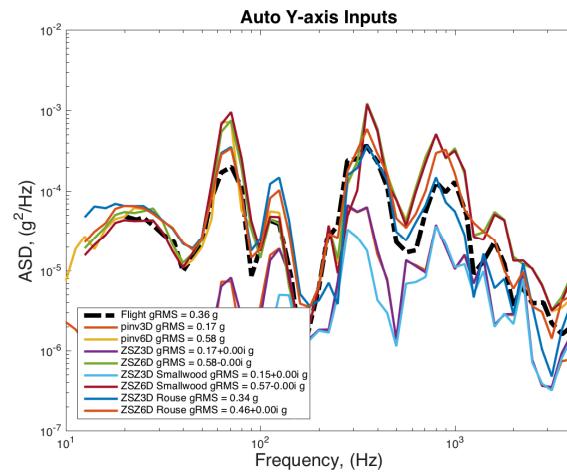
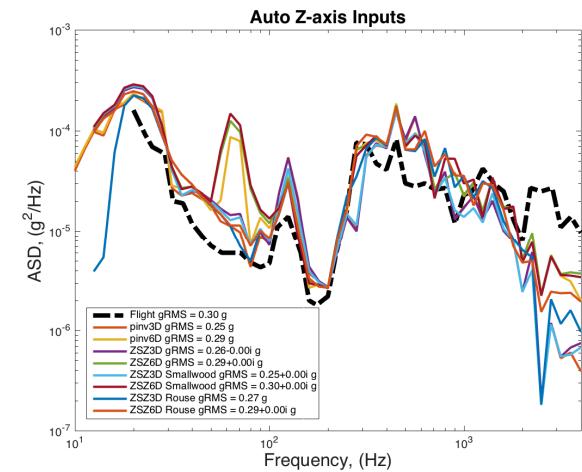
# Comparison of Inputs

- Translation Inputs have 8 comparisons to Flight Test derivation.
  - The 4 methods
  - Each method includes derivation with translations (X, Y, and Z)- 3D
  - Each method includes derivation with translation and rotation - 6D



# Comparison of Inputs

- Translation Inputs have 8 comparisons to Flight Test derivation.
  - The 4 methods
  - Each method includes derivation with translations (X, Y, and Z)- 3D
  - Each method includes derivation with translation and rotation - 6D



# Comparison of Inputs

- Translation Inputs have 8 comparisons to Flight Test derivation.
  - The 4 methods
  - Each method includes derivation with translations (X, Y, and Z)- 3D
  - Each method includes derivation with translation and rotation - 6D

