

Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An In-Situ Electron Microscopy Study

Jeremy R. Eskelsen^a, Jie Xu^b, Michelle Chiu^a, Ji-Won Moon^c, Branford Wilkins^a, David E. Graham^c, Baohua Gu^a, Eric M. Pierce^{a†*}

^aEnvironmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831

^bGeological Sciences, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968

^cBiosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6038, Oak Ridge, TN 37831

KEYWORDS¹: liquid cell electron microscopy, metal sulfides, nanoparticles, dissolution, structural defect, sphalerite, zinc blende, wurtzite.

*Corresponding Author: Eric M. Pierce

Phone: (865) 574-9968

Fax: (865) 576-8646

Email: pierceem@ornl.gov

¹ This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

22 **ABSTRACT:** The dissolution of metal sulfides, such as ZnS, is an important biogeochemical
23 process affecting fate and transport of trace metals in the environment. However, currently
24 studies of in-situ dissolution of metal sulfides and the effects of structural defects on dissolution
25 are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized
26 via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were
27 produced by an anaerobic, metal-reducing bacterium *Thermoanaerobacter* sp. X513 in a Zn-
28 amended, thiosulfate-containing growth medium either in the presence or absence of silver (Ag),
29 whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with
30 either H₂S-rich gas or Na₂S solution. The size distribution, crystal structure, aggregation
31 behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-
32 resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive
33 spectroscopy. The characterization results show that both the biogenic and abiogenic samples
34 were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles
35 were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained
36 structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining
37 effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e.,
38 ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-
39 cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects)
40 were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS
41 nanoparticle samples with the largest average particle size. Analysis of the dissolution results
42 (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing
43 biogenic ZnS nanoparticles ($\gamma = 0.799 \text{ J/m}^2$) have a significantly higher surface energy than the
44 abiogenic ZnS nanoparticles ($\gamma = 0.277 \text{ J/m}^2$). Larger defect-bearing biogenic ZnS nanoparticles

45 were thus more reactive than the smaller quantum-dot-sized ZnS nanoparticles. These findings
46 provide new insight into the factors that affect the dissolution of metal sulfide nanoparticles in
47 relevant natural and engineered scenarios, and have important implications for tracking the fate
48 and transport of sulfide nanoparticles and associated metal ions in the environment. Moreover,
49 our study exemplified the use of an in-situ method (i.e., LCTEM) to investigate nanoparticle
50 behavior (e.g., dissolution) in aqueous solutions.

51 **INTRODUCTION**

52 Solid–fluid interfacial reactions that govern the formation of fine-grained nanoparticulate
53 metal sulfides have relevance to a range of areas with energy and industrial applications (e.g.,
54 sedimentary sulfide ore deposit formation, geochemical cycling of elements in the earth’s crust,
55 contaminated site remediation, and semiconductor research).^{1, 2} From an environmental
56 perspective, the influence that the formation of fine-grained metal sulfides can have on the
57 world’s aquatic resources and the geochemical cycling of elements cannot be overstated. For
58 example, the bioavailability and transport of metals ions (e.g., Fe, Zn, and Hg) in anoxic
59 environments—such as marine ecosystems near hydrothermal vents, stream biofilms, acid mine
60 drainage, and the pores of anaerobic sediments—is directly controlled by the production of
61 sulfides by sulfate-reducing bacteria.^{3–9} Sulfate-reducing bacteria are ubiquitous in natural
62 systems, where they obtain electrons by oxidizing organic carbon compounds to reduce sulfate to
63 sulfide, which is the dominant process for sulfide production in low-temperature (<100 °C)
64 environments.¹⁰ Furthermore, recognition that nanoparticulate biogenic metal sulfides, such as
65 zinc sulfide (ZnS) and mercury sulfide, can persist in oxic waters for months, transporting metals
66 to other ecosystem compartments, has broad interest; the process is influenced in part by the

67 nanoparticles' size-dependent properties (e.g., surface free energy) and their interaction with
68 dissolved organic molecules, which can serve as capping agents.¹¹⁻¹⁶ For example, Priadi et al.¹⁶
69 reported that amorphous ZnS nanoparticles became a dominant form of zinc in the Seine River
70 downstream sections, thereby controlling the partitioning of this trace metal between suspended
71 particles and aqueous solution. Thus, developing a detailed understanding of the mechanisms
72 that govern the growth and dissolution of biogenic sulfides (e.g., ZnS, mercury sulfide [HgS],
73 cadmium sulfide [CdS], etc.) is of interest to a range of scientific disciplines, including low
74 temperature geochemistry, microbial ecology, environmental engineering, and materials science.
75 Here we use ZnS as a model system to investigate the relationship that exist between
76 nanoparticle dissolution rates and their morphology and crystal structure. Zinc sulfide was
77 chosen due to its relevance for biogeochemical cycles and industrial applications, as well as their
78 exclusive monosulfide phase (i.e., one oxidation state of zinc and one oxidation state for sulfur),
79 which allows us to focus on the nanoparticles' morphology and crystal structure attributes.
80 Furthermore, the ZnS crystal structure is similar to a wide range of environmentally important
81 metal sulfides, such as CdS and HgS, and is expected to behave similarly during nanoparticle
82 growth and dissolution.¹⁷

83 The crystallization and growth of ZnS nanoparticles are initiated by the formation of small
84 soluble complexes [Zn₃S₃(H₂O)₆ rings] ~7 Å in size that grow to ~9.7 Å by cross-linking to form
85 nanoscale clusters [i.e., Zn₄S₆(H₂O)₄⁻⁴ or Zn₆S₄(H₂O)₄⁻⁴] that are structurally similar to
86 sphalerite.¹⁸⁻²³ When nucleation rates are high and growth rates are slow, nanoparticle crystallites
87 persist, especially in the presence of capping agents. For example, capping agents have been
88 used to synthesize ZnS nanocrystals for optical applications, and it has been demonstrated in
89 controlled laboratory conditions that small thiol-complexes can also serve a similar role as a

90 capping agent for ZnS nanoparticles that form in the natural systems^{12, 13} Such thiol complexes
91 persist in anaerobic transition zone porewaters where metal sulfides form, such as at the
92 groundwater–surface water interface, in wetlands, and in the anaerobic zones of biofilms.^{6, 24-26}

93 Following the initial nucleation event where ions and molecules crystallize to form
94 nanoparticles, particle growth can occur via two processes (1) classical growth via an Ostwald
95 ripening (OR) and/or LaMer mechanism and (2) non-classical growth via an oriented attachment
96 mechanism (OA) (i.e., cluster growth).²⁷ The classical growth process occurs when smaller
97 unstable particles dissolve and their dissolved components diffuse and support the growth of
98 larger nanoparticles.^{28, 29} The non-classical growth process (OA) proceeds from the joining of
99 two or more interacting nuclei or crystallites to form a larger nanoparticle.³⁰ The OA mechanism
100 has been proposed to play an important role in the formation of defects, such as twin boundaries,
101 stacking faults, and dislocations. Both of the aforementioned mechanisms are critical steps in
102 nanoparticle growth, with the OA mechanisms being known to occur first for some materials
103 followed by an OR process when the aqueous condition is tightly controlled.³¹ The presence or
104 absence of additional solutes in the aqueous solution during nanoparticle formation serves a key
105 function in controlling the surface reactivity and shape of nanoparticles.^{31, 32} For example, often
106 in quantum dot nanoparticle synthesis, capping agents are utilized to physically separate the
107 nanoparticles, to stabilize the small particles, and to inhibit particle–particle fusion (OA).³³ The
108 role of additional solutes in aqueous solutions can be classed into three types of OA conditions:
109 inhibiting, neutral, and promoting. Inhibiting solutions contain components such as capping
110 agents or, in the case of metal sulfides, metal impurities that favor stronger sulfide interactions
111 over the primary medium to disrupt OA by physical separation or modification of the surface
112 structure/composition. Neutral solutions are those that are devoid of additional impurities, thus

113 enabling OA to occur naturally. Promoting solutions contain reactive agents that enhance
114 particle–particle interactions and thus facilitate the arrangement of nanoparticles close together,
115 thereby increasing the likelihood for OA. Previous studies on ZnS have focused primarily on
116 nanoparticle formation, aggregation, and stability, instead of focusing on understanding how
117 growth mechanisms influence dissolution. One approach to improving our understanding of the
118 role of structural defects and capping agents on ZnS dissolution is to conduct beam-induced
119 dissolution experiments using *in situ* liquid cell transmission electron microscopy (LCTEM).
120 Liquid cell TEM has been used to investigate the formation and aggregation of nanoparticles in
121 real time under aqueous environments.^{34, 35} Studies that focus on precipitation of nanostructures
122 by ionic interactions and metal reduction are being conducted by various groups.³⁶ Some studies
123 have focused on dissolution experiments of the oxidative etching of palladium nanocrystals,
124 while theoretical modeling of chemical pathways under ionization by the electron beam has also
125 been investigated.^{37, 38}

126 The primary objectives of this study were to elucidate how crystal growth conditions and the
127 presence or absence of defects influence ZnS nanoparticle dissolution behavior. To this end, we
128 conducted first-of-their-kind beam-induced LCTEM experiments with both biogenic and abiotic
129 ZnS nanoparticles produced under different OA conditions, specifically neutral and promotion,
130 and related the observed dissolution behavior to changes in surface free energy.

131 **EXPERIMENTAL**

132 **Synthesis of ZnS Nanoparticle Samples.** Four samples of nanoparticulate ZnS were
133 synthesized using either abiotic or biotic techniques. We briefly describe the synthesis of each
134 sample below. For additional details see the Supporting Information and Moon et al.^{39, 40}.

135 **Abiogenic ZnS.** Two abiotic samples, referred to as abio-ZnS1 and abio-ZnS2, were
136 synthesized from different sulfide sources under oxic and anoxic conditions. The first, abio-
137 ZnS1, was synthesized under oxic conditions by rapidly mixing aqueous solutions of ZnCl₂ (0.5
138 mM) and Na₂S (0.5 mM). Stock solutions of ZnCl₂ (4.7 mM) and Na₂S (4.7 mM) were prepared
139 by dissolving analytical-grade ZnCl₂ crystals and pre-rinsed Na₂S crystals in deionized water
140 (18.2 MΩ/cm² resistivity). A serial dilution of each stock solution was used to prepare the ZnCl₂
141 and Na₂S sample solutions, which were then mixed, sealed, and allowed to react for more than
142 10 days in the dark to prevent photooxidation of the surface sulfides of the produced ZnS
143 nanoparticles by dissolved O₂ during nanoparticle formation.^{41, 42}

144 The second abiotic ZnS sample (abio-ZnS2) was prepared by mixing H₂S containing-gas with
145 an anoxic solution of 1 M zinc acetate. The gas mixture was microbially produced by a
146 thermophilic bacterial culture (*Thermoanaerobacter* sp. X513) grown in a medium that
147 contained a 6 mM thiosulfate source. The gases present in the headspace (including H₂S) were
148 transferred from the bioreactor by sparging N₂ carrier gas into the bioreactor solution medium,
149 followed by the vent gas mixture flowing through a tube connecting the bioreactor and the zinc
150 acetate solution container.

151 **Biogenic ZnS.** Two biotic ZnS samples, referred to as bio-ZnS1 and bio-ZnS2, were
152 extracellularly synthesized in the absence (bio-ZnS1) and presence (bio-ZnS2) of traces of silver
153 (Ag) using the metal-reducing thermophilic bacterium *Thermoanaerobacter* sp. X513.⁴³ Details
154 of the synthesis and media used in this study are described briefly in the Supplemental
155 Information. For additional details on the synthesis and media see Moon et al.^{39, 40}. The source
156 of the Zn used was 5 mM ZnCl₂ and 4.5 mM ZnCl₂:0.5 mM AgNO₃ for bio-ZnS1 and bio-ZnS2
157 samples, respectively, and the sulfur source was 5.33 mM thiosulfate. After 48 h of incubation at

158 65 °C with 2 vol % mid-log growth phase cells, anoxic ZnCl₂ solution and the ZnCl₂:AgNO₃
159 solution mixtures were added drop wise (<2 mL per minute) to a 900 L and 100 L vessel,
160 respectively. The resulting ZnS nanoparticles from the bio-ZnS1 and bio-ZnS2 samples were
161 collected after 24 h of reacting and were repeatedly washed by continuously suspending and
162 centrifuging the sample.

163 **Characterization of ZnS Nanoparticle Samples.** As-prepared samples were characterized by
164 X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission
165 scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-
166 resolution TEM (HRTEM), selected area electron diffraction (SAED), and electron energy loss
167 spectroscopy (EELS). The XRD and FTIR results for abio-ZnS2, bio-ZnS1, and bio-ZnS2 are
168 described elsewhere.^{39, 40, 44} Details of the TEM, scanning TEM, and X-ray energy dispersive
169 spectroscopy (EDS) techniques are provided in the Supporting Information.

170 **Liquid Cell Transmission Electron Microscopy.** LCTEM was performed on a Hitachi HF-
171 3300 S/TEM using a Protochips Poseidon 200 liquid flow holder (SI Fig. S1). A small bottom E-
172 chip (Protochips) containing a silicon nitride window with 4 × 8 microwells (20 μm × 20 μm ×
173 0.17 μm with no spacer) or 8 × 16 microwells (10 μm × 10 μm × 0.170 μm) and a large chip
174 containing a single silicon nitride window (550 μm × 20 μm) were used to create a static liquid
175 environment in the STEM. The micowell bottom windows and the narrow window of the large
176 chip were chosen to minimize window bowing in the vacuum environment of the STEM. This
177 played an important role in obtaining higher resolution images in STEM mode. The liquid cell
178 holder was argon plasma cleaned for 5 minutes in a Fischione plasma cleaner with the E-chips
179 and O-rings removed. The E-chips were soaked in acetone for about 1 minute, then soaked in
180 methanol for 1 minute. The chips were then removed from the methanol and dried on a paper

181 filter membrane. Care was taken to ensure the last of the methanol did not dry directly on the
182 windows. A paper filter membrane cut into a wedge was used to carefully wick the methanol
183 away from the window when needed. The chips were placed on a cleaned glass slide and plasma
184 cleaned for about 1 minute (3×20 second intervals using a controlled amount of room air as the
185 gas source) in a Harrick model PDC-32G plasma cleaner on the high setting to create a
186 hydrophilic surface on the silicon nitride membranes. The O-rings were carefully cleaned and
187 loaded into the liquid cell holder followed by the small bottom E-chip.

188 A solution of the aqueous ZnS sample (0.5 μ L) was then dispensed onto the window of the
189 bottom E-chip while carefully holding the chip in place with tweezers to prevent the small chip
190 from adhering to the end of the micropipette tip. The large top chip was placed on top of the
191 bottom E-chip when the solution was nearly dry (i.e., with only a small amount of visible water
192 layer remaining on the small chip). This drying process was performed to attain the thinnest
193 aqueous layer to maximize the imaging resolution in STEM mode. The large top chip was then
194 checked to ensure that the bottom chip and top chip windows were well aligned relative to each
195 other and also in the holder. Once properly seated the top clamp of the holder was placed and the
196 chips were rechecked to ensure proper seating. The liquid cell was then secured with three
197 screws to hermetically seal the system (SI Fig. S1 and Fig.S2). A Hummingbird leak check
198 station was used with an adapter for the HF-3300 holder to test the quality of the seal in the
199 liquid cell system. The tubing ports were left open to air and pumped down to about 6×10^{-6}
200 mbar ($\sim 4.5 \times 10^{-6}$ torr) prior to inserting the liquid cell holder into the TEM to ensure a hermetic
201 seal. The beam current at the sample was checked using the Faraday cup on a Gatan double tilt
202 holder.

203 Single particle and total area (video frame) dissolution curves were extracted from the dark
204 field (DF) images using ImageJ software.⁴⁵ The DF frames were chosen owing to the difficulty
205 of extracting particle areas in bright field (BF) images due to changes in intensities caused by
206 diffraction contrast and regions of overlapping particles. Each frame in the stack was processed
207 with bright outliers under 2 pixels and the threshold of 50 removed. A mean filter with a 2 pixel
208 radius was then applied to assist in the thresholding for particle analysis. The global thresholding
209 was adjusted to minimize the inclusion of background noise in the total area extraction. This was
210 crucial for the last few frames, in which most of the nanoparticles were dissolved. Individual
211 particle areas were extracted from the threshold images by selecting a region that included the
212 nanoparticle of interest with any additional particles touching the edge of the selected region.
213 The nanoparticle area was extracted with areas touching the edges and areas smaller than 20
214 pixels² excluded. This allowed the extraction of only the nanoparticle region of interest with all
215 neighboring particles and background noise excluded. Similarly, total area extraction was
216 performed on the threshold images using the particle analysis component with edges included
217 and areas smaller than 20 pixels² excluded. Examples of the single particle and total area data
218 extractions are shown in SI Fig. S3 and S4.

219 **Dissolution Rate Calculation:** The change in radius as a function of time for an isolated ZnS
220 nanoparticle (assuming a spherical particle) was fit by using a modified form of the Kelvin
221 equation [Eq. (1)] as discussed by Jiang et al.³⁷

$$222 \quad \frac{d(r)}{dt} = ae^{\frac{r_c}{r}} \quad (1)$$

$$223 \quad r_t = r_{t-\Delta t} - ae^{\frac{r_{crit}}{r_{t-\Delta t}}} \quad (2)$$

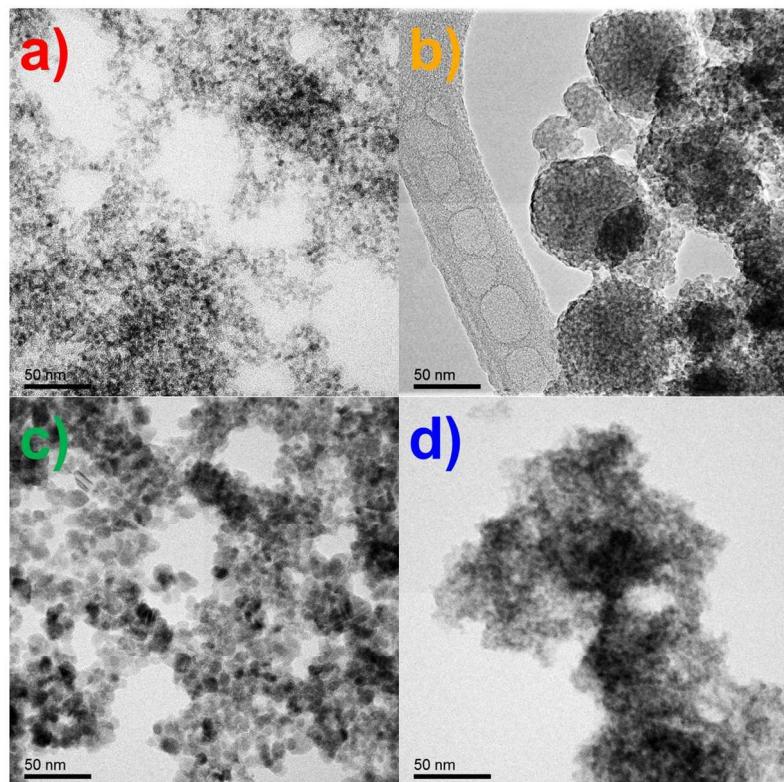
$$224 \quad a = \frac{Ks_0}{\rho} \quad (3)$$

225 where r_t is the nanoparticle radius at some time point t , r_0 is the initial nanoparticle radius, Δt is a
226 small change in time and in this case is the frame rate (2 s/frame), K is a constant related to the
227 dissolution environment, S_0 is the bulk solubility of the ZnS phase, and ρ is the density of the
228 bulk ZnS phase. Images were collected at the same magnification to maintain a relatively
229 constant dissolution environment. The critical radius, r_c , at which the nanoparticle is stable is
230 related to the surface energy of the particle by the modified Kelvin equation:³⁷

$$231 \quad r_c = \frac{2\gamma V_m N_A}{10^{18} R T} \quad (4)$$

232 where γ is the surface free energy of the nanoparticle in J/m², V_m is the molecular volume of the
233 ZnS phase of the nanoparticle, N_A is Avogadro's number, 10^{18} is a conversion factor for the
234 surface energy to J/nm², R is the ideal gas constant, and T is the temperature in Kelvin. V_m for the
235 sphalerite form of ZnS is 0.03939 nm³/molecule.⁴⁶ The data was nonlinear least squares fit to the
236 equations above using a Levenberg–Marquardt algorithm in MathCAD. Single nanoparticle
237 dissolution curves for each sample type were fit simultaneously with a and r_c being fit globally,
238 while the r_0 values for each curve were fit individually.

239 After obtaining the r_c values for each sample, Eq. (4) was rearranged to Eq. (5) and used to
240 solve for the apparent surface free energy (γ).


$$241 \quad \gamma = \frac{10^{18} r_c R T}{2 V_m N_A} \quad (5)$$

242

243 RESULTS AND DISCUSSION

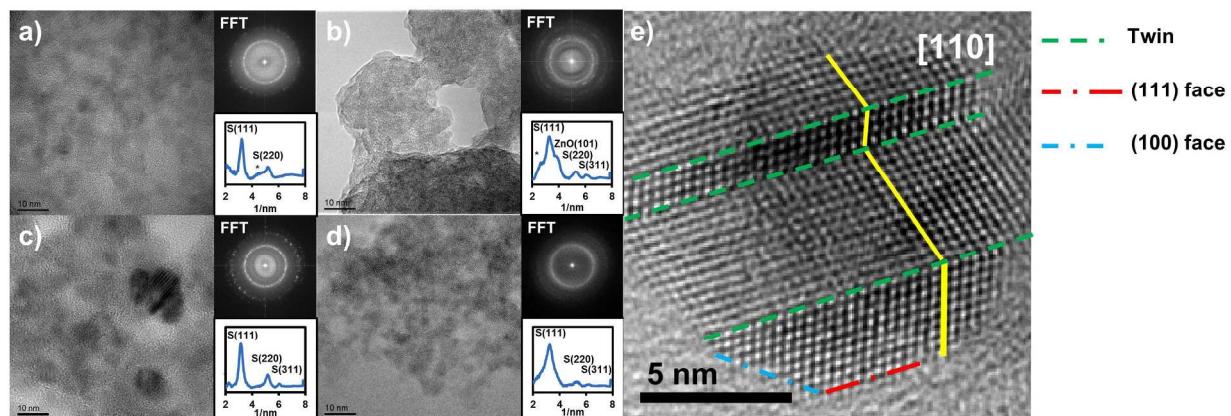
244 **Particle Size and Chemical Characterization.** The transmission electron micrographs reveal
245 a tendency for all the ZnS samples to aggregate after being deposited onto TEM grids. The abio-
246 ZnS1, bio-ZnS1, and bio-ZnS2 samples displayed a similar pattern under the microscope, that is,
247 a loose, disordered packing arrangement after being deposited onto the grid (Fig. 1). The average

248 particle size based on TEM measurements was estimated to be 4.57 ± 1.0 nm for abio-ZnS1
249 ($n = 210$), 8.22 ± 2.88 nm for bio-ZnS1 ($n = 206$), and 3.17 ± 1.09 nm for bio-ZnS2 ($n = 220$).
250 Conversely, the abio-ZnS2 sample, which was produced by bubbling H_2S gas, resulted in large
251 aggregates that consisted of smaller particles with an average size of 2.87 ± 0.74 nm ($n = 200$).
252 These results illustrate that the bio-ZnS1 sample contained the largest individual nanoparticles;
253 the sizes of the individual nanoparticles present in abio-ZnS1, abio-ZnS2, and bio-ZnS2 were
254 statistically the same. This is similar to the observations of others, who observed that the largest
255 nanoparticles resulted from biogenic processes.⁴

256
257 **Fig. 1.** TEM images of the four ZnS samples. a) abio-ZnS1, produced abiotically with zinc chloride and sodium
258 sulfide; b) abio-ZnS2, produced abiotically with zinc acetate and biologically produced H_2S gas; c) bio-ZnS1,
259 produced biologically with *Thermoanaerobacter* sp. X513; d) bio-ZnS2, produced biologically with
260 *Thermoanaerobacter* sp. X513 with added Ag.

261
262 X-ray EDS maps confirm the presence of Zn and S in all the abiogenic and biogenic samples
263 (Fig. S5). The results also showed that the abio-ZnS2, bio-ZnS1, and bio-ZnS2 contained carbon
264 in the ZnS aggregates, whereas the abio-ZnS1 had relatively little. The stronger carbon peaks are
265 likely the result of capping agents, more specifically acetate in the abio-ZnS2 sample and organic
266 compounds from microbial metabolites in the bio-ZnS1 and bio-ZnS2 samples. All of the
267 samples, especially the aggregated areas demonstrated the presence of oxygen in the EDS
268 analysis with the abio-ZnS2 sample being the most prominent. The oxygen peak is likely due to
269 adsorbed water molecules since these samples were not dried at elevated temperatures prior to
270 imaging.

271 **High-Resolution Transmission Electron Microscopy and Structural Characterization.**
272 The crystal structure of the ZnS samples were analyzed using Fast Fourier Transform (FFT) of
273 HRTEM images and SAED patterns, and were determined to be predominantly sphalerite (zinc
274 blend) (Fig. S6 and S7). The calculated d-spacing for the dominant faces, based on the SAED
275 patterns of the samples, are compared to sphalerite reference patterns in Table 1, showing high
276 consistency.


277 **Table 1.** Selected area electron diffraction results for the ZnS samples along with literature values for sphalerite⁴⁷

Sample	Lattice spacings (Å)		
	Miller index		
	111	220	311
abio-ZnS1	3.14	1.92	1.64
abio-ZnS2	3.05	1.87	1.63
bio-ZnS1	3.14	1.91	1.64
bio-ZnS2	3.09	1.88	1.63
sphalerite ⁴⁷	3.1231	1.9125	1.631

278

279 Beam damage was observed in select sample locations where the electron beam was focused
280 for extended periods of time. This is evident by the transformation of ZnS to ZnO as observed by
281 the additional reflections in the FFT of the HRTEM image for abio-ZnS2 (Fig. 2b).^{48,49}

282

283 **Fig. 2.** HRTEM images of the ZnS nanoparticles with corresponding fast-Fourier transforms of the HRTEM images
284 and corresponding background-subtracted radial distance profiles. Sphalerite (S) and zincite (ZnO) peaks are
285 assigned. a) abio-ZnS1, b) abio-ZnS2, c) bio-ZnS1, d) bio-ZnS2. HRTEM image of the bio-ZnS1 sample viewed
286 down the {110} zone axis, showing multiple twins along the {111} faces and nanoparticle surface faces (e).

288

289 **Influence of Aqueous Conditions on Formation and Growth Mechanisms.** As previously
290 mentioned, the aqueous condition during nanoparticle formation can influence OA, thereby
291 controlling the surface reactivity of nanoparticles and thus individual nanoparticles' size and
292 shape.^{31, 32} We evaluated this by synthesizing nanoparticles in solutions with agents that either
293 promoted, inhibited, or had relatively little influence on the OA of the nanoparticles. In the case
294 of bio-ZnS1, multiple defects were observed in TEM images (i.e., stacking faults, dislocations,
295 and twinning), which are likely the result of biogenic polymers serving to promote OA (Fig. 2e).

296 The occurrence of structural defects in the biogenic nanocrystals is likely an intrinsic feature of
297 ZnS crystallites formed in low-temperature aqueous solutions, and these defects become more
298 apparent with increasing crystallite size. As discussed in several previous studies,^{4, 18} the dipole–
299 dipole interactions between ZnS nuclei formed in low-temperature aqueous environments and
300 water molecules can cause significant structural strains. Although previous computational results
301 (e.g., those in Spano et al.,⁵⁰) suggest that such strains could modify nanosized ZnS from
302 sphalerite-like structures to bubble-like polyhedral structures, to the best of our knowledge the
303 latter ones have never been reported in experimental work. Instead, stacking disorders frequently
304 have been observed in nanocrystals of metal chalcogenides.^{51, 52} Therefore, the water-induced
305 structural strains in the ZnS nanostructures are more likely released on account of variations in
306 the stacking orders of the {111} faces (e.g., stacking faults) rather than relaxing the overall
307 nanoparticle structure. Therefore, the stacking faults observed in the bio-ZnS1 samples are a
308 combination of OA- and water-induced structural strain, with OA probably being the dominant
309 mechanism contributing to the defect sites.

310 Formation of the bio-ZnS1 sample likely occurs through the OA promotion interactions. In the
311 absence of Ag, organic media components and bacterial by-products play the dominant role in
312 the formation of the multiple defects observed in the larger nanoparticles by mediating the OA
313 process. Organic molecules and proteins from microbial activity (e.g., aliphatics [lipids] and
314 amines) were identified in these samples (see FTIR spectra in SI Fig. S8). The twinning in the
315 bio-ZnS1 samples was observed along the {111} faces of the crystals and is consistent with
316 twinning observed by Xu et al.⁴ and Huang et al.⁵³ Multiple defects, such as twinning, were also
317 observed in individual particles. The twinning leads to the formation of {111} and {100} faces
318 on the outside of the nanoparticles (Fig. 2e). Twinning or stacking faults in the bio-ZnS1 sample

319 were observed in about 1% of all the nanoparticles, yet this is an underestimate because
320 nanocrystals were aligned out of the zone axis required to observe twinning along these
321 boundaries. Twinning at the polar {111} faces may have been facilitated by the stabilization of
322 the nonpolar {110} faces through the binding of nonpolar organic molecules such as aliphatics
323 (lipids), leaving the {111} faces exposed to react with neighboring particles through OA
324 mechanisms.

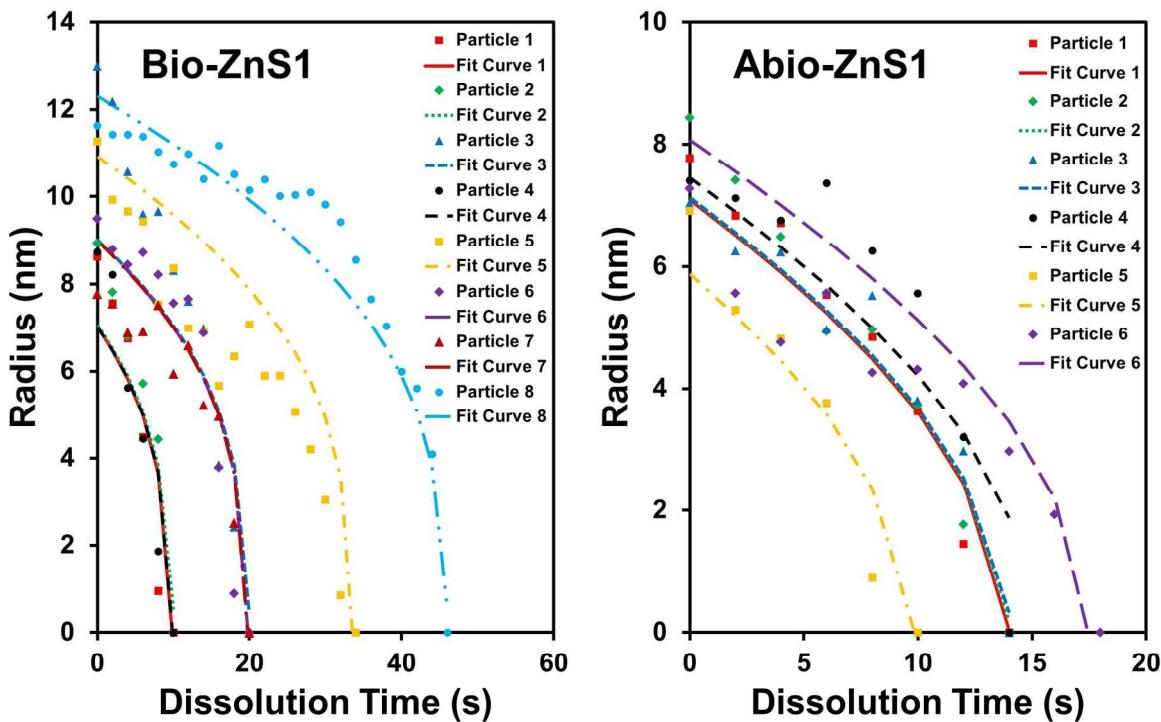
325 We did not observe a significant fraction of defects in the other three samples (abio-ZnS1,
326 abio-ZnS2, and bio-ZnS2), which were synthesized either in the presence of an inhibitor (e.g.,
327 acetate or Ag) or in neutral solutions (devoid of either an inhibitors or promoters).

328 The composition of the abio-ZnS2 and bio-ZnS2 solutions appears to inhibit OA, resulting in
329 smaller nanoparticles that lack defects (i.e., twins and stacking faults). Although both inhibit the
330 formation of defects, the way it occurs differs between acetate and Ag. The inhibition of abio-
331 ZnS2 OA is influenced by the presence of acetate in the solution. Acetate is known to stabilize
332 quantum-dot-sized nanoparticles, and acetate is present on the surface of these particles (see
333 FTIR spectra for abio-ZnS2 in SI Fig. S8).⁵⁴ Although a known stabilizer, acetate around metals
334 is easily displaced by sulfides upon exposure to H₂S gas.⁵⁵ Because acetate is a polar molecule
335 and the ZnS sphalerite phase can form polar faces,^{23, 56} we propose here that binding of acetate to
336 ZnS nanoparticles favors the polar faces (i.e., {111} and {100}), thus stabilizing these high-
337 surface-energy faces and leaving the lower-surface-energy nonpolar faces exposed. Interactions
338 of these non-polar faces led to flocculation of the ZnS nanoparticles (Fig. 1). Similar effects were
339 observed for thioglycerol-capped ZnS nanoparticles formed in ethanol and water solutions at 60
340 °C.⁵⁷ Thus, the polarity of the capping agent in solution plays a significant role in particle
341 aggregation.

342 Unlike bio-ZnS1, the bio-ZnS2 sample was synthesized in the presence of Ag ions, and the
343 resulting ZnS nanoparticles lack defects. However, we cannot fully explain the reason for the
344 lack of defects in the bio-ZnS2 sample. One plausible explanation is the difference in aqueous
345 reaction free energies between Zn and Ag, which may result in localized nucleation of Ag_2S
346 along the edges of abio-ZnS2 crystals and thus limit OA.⁵⁸ Although plausible, we did not
347 positively identify Ag in EDS maps of the bio-ZnS2 sample likely because of the low
348 concentration of Ag (1:10 Ag to Zn).

349 A few crystallites ~4 nm in size in the abio-ZnS1 sample were observed to have defects,
350 specifically single twin boundaries, which could be the result of water-induced structural strain.
351 Under the neutral solution synthesis conditions, OA appear to be minimal, suggesting nucleation
352 as the driver for growth rather than OA.

353 **In Situ ZnS Nanoparticle Dissolution.** LCTEM was used to conduct *in situ* dissolution
354 experiments on each ZnS nanoparticle sample to evaluate the influence of the presence of defects
355 on the dissolution behavior of ZnS nanoparticles. All LCTEM measurements were performed in
356 scanning TEM (STEM) mode. Here we focus our discussion on bio-ZnS1 and abio-ZnS1, which
357 represent ZnS nanoparticles with and without defects, respectively. The abio-ZnS2 and bio-ZnS2
358 samples were excluded from these measurements because of the particle size, the confounding
359 effects of Ag (bio-ZnS2), and the tightly packed aggregates that made it difficult to avoid near-
360 neighbor interactions. Individual ZnS nanoparticles can be clearly seen in simultaneously
361 captured BF and DF STEM images for bio-ZnS1 (SI Fig. S9).


362 In addition to clearly observing distinct nanoparticles, we find that changes in beam dose (e.g.,
363 magnification changes) can influence nanoparticle dissolution (Supporting Information video).
364 This is consistent with the theoretical calculations of Schneider et al.³⁸, which demonstrate that

365 higher beam doses can increase the types and amounts of reactive electrolysis byproducts, such
366 as the formation of pH-lowering hydronium ions [Eq. (6)]. Based on Schneider's heterogeneous
367 model predictions,³⁸ the electron-beam-induced reactions, such as pH changes and formation of
368 solvated electrons, occur only in the localized area of the electron beam during imaging, and the
369 reactions achieve steady state in milliseconds.^{38, 59} Here we assume that the localized pH effect
370 represents the driving force for the dissolution of the ZnS nanoparticles. An example
371 demonstrating that the beam effects are localized is displayed in SI Fig. S10.

373 Computationally calculated surface energies for the sphalerite form of ZnS range from 0.38 to
374 2.56 J/m² depending on the crystal face with reported total average surface free energies ranging
375 from 0.79 to 1.00 J/m².^{23,60} In all cases the lowest energy crystal face is the {110} face with
376 mean values ranging from 0.39 to 0.65 J/m². Other predominant crystal faces, such as the {111}
377 and {100} faces, have values ranging from 0.87 to 1.84 J/m² and 1.21 to 2.56 J/m² respectively.⁶⁰
378 Experimentally measured surface energies of ZnS nanoparticles have ranged from 0.50 to 0.58
379 J/m².⁶¹

380 Individual nanoparticle dissolution curves of the bio-ZnS1 and abio-ZnS1 samples and their
381 corresponding fitted curves are shown in Fig. 3. The corresponding a , r_c , r_0 , and calculated γ
382 values for each sample type are shown in **Table 2**. Overall, the calculated surface energies of the
383 ZnS samples are within reasonable value ranges compared to the previously reported ones.^{23, 61}
384 The bio-ZnS1 sample has the highest surface energy, while the abio-ZnS1 sample has the lowest
385 average surface energy.

386

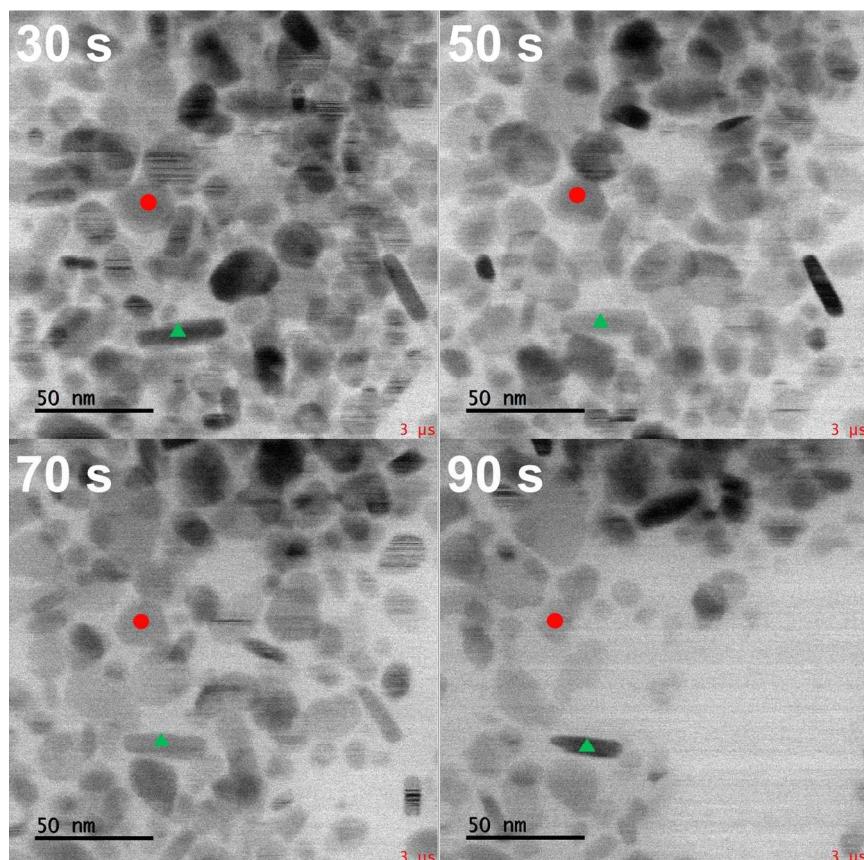
387 **Fig. 3.** Nonlinear least squares fit of individual ZnS nanoparticles dissolution for the bio-ZnS1 and abio-ZnS1
 388 samples.

389

390 **Table 2.** Nonlinear least squares fit values for the dissolution of different bio-ZnS1 and abio-ZnS1 samples

Parameters	bio-ZnS1	abio-ZnS1
a	0.061	0.272
r_c (nm)	15.3	5.298
r_0 (nm)	7.016, 7.065, 9.019, 7.022, 10.92, 8.99, 8.987, 12.312	7.09, 7.109, 7.127, 7.451, 5.875, 8.073
γ (J/m²)	0.799	0.277
Average NRMSE%	14.92	11.68

391

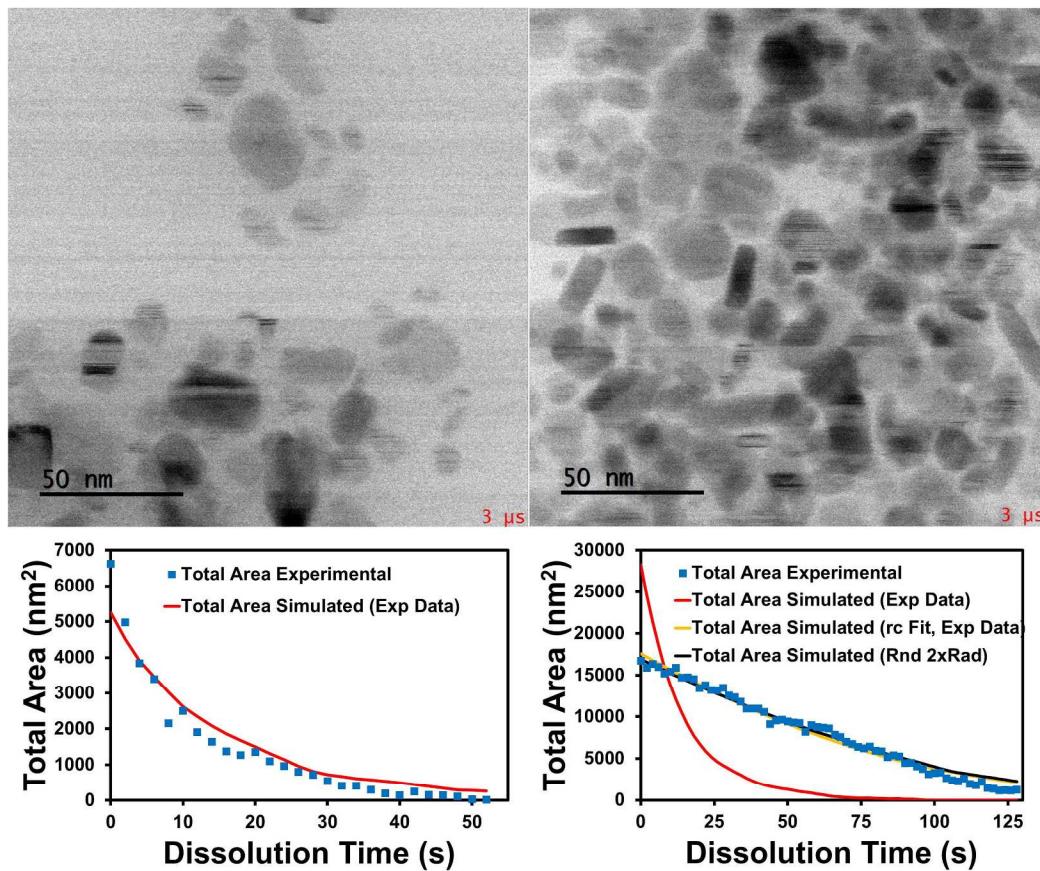

392 Previous work on ZnS nanoparticle dissolution in EDTA attributed the lower surface free
 393 energy (0.50 J/m²) relative to the average surface free energy (0.86 J/m²) to the hydration and
 394 hydroxylation of ZnS nanoparticle surfaces, yet the impacts of specific crystal faces on the

395 measured surface energies are not discussed.⁶¹ Hamad's calculations predict that the most stable
396 morphology (i.e., a set of faces enclosing a particle) of the sphalerite form of ZnS is completely
397 enclosed by the {110} set of faces.²³ As mentioned above the calculated surface energies for the
398 {110} faces range from 0.39 to 0.65 J/m².^{23, 60} Thus, it is possible that the lower surface energies
399 of the abio-ZnS1 samples in this work, as well as those observed by Zhang et al.²³, are a result
400 of small nanoparticles bounded by predominantly {110} faces resulting in the lower measured
401 surface free energies.

402 This brings into question why does the bio-ZnS1 samples have a higher surface free energy
403 (0.80 J/m²). As discussed above the bio-ZnS1 sample has many defects consisting of twin
404 boundaries predominantly on the {111} sets of faces as well as stacking faults when viewed
405 down the [110] zone axis. The effect of this twinning along the {111} faces results in more of the
406 {111} and {100} crystal faces on the outside of the nanoparticle. These faces are seen as the
407 edges of the 2D projection of the 3D nanocrystal as shown in Fig. 2e by the blue and red lines.
408 Since the measured areas are a result of this projection, the observed dissolution behavior is
409 related to the specific crystal faces observed by this projection onto the detector. Closer
410 examination of the bio-ZnS1 dissolution images reveals what appear to be two types of
411 nanoparticles, round faceted and rod-like particles (red circles and green triangles in Fig. 4,
412 respectively). During the dissolution, some of the rod-like structures are observed to rotate down
413 to reveal a structure resembling the round faceted particles, illustrating that a single type of
414 nanoparticle is present in bio-ZnS1 (Fig. S11). In the cases where the rod-like structures do not
415 rotate downward, the dissolution direction is faster in the long axis. This behavior results in an
416 anisotropic dissolution of the crystal (Fig. 4 green triangles). Considering the significant number
417 of defects observed in the HRTEM images of this sample and the fact that the lower energy faces

418 dissolve more slowly, based on Eqs. (1) and (3), the slowest dissolving face is likely the {110}
419 face, while the faster dissolving faces are the {111} and {100} faces. The {110} face is
420 perpendicular to the {111} and {100} faces. The presence of these more reactive faces in the
421 higher-defect-containing bio-ZnS1 sample has led to the higher surface energies observed for
422 this sample and is in good agreement with calculated energies for the {111} faces of the
423 sphalerite form of ZnS.^{23,60}

424


425

426 **Fig. 4.** Time-dependent still frames of the bio-ZnS1 nanoparticle dissolution, showing the preferred dissolution of
427 specific faces in the liquid cell. Anisotropic dissolution is observed in the last stages for both the round faceted (red
428 circles) and the rodlike (green triangles) particles.

429

430 Some previous studies suggested that dissolution occurs more rapidly at defect locations.⁴
431 Even with the maximum resolution selected for our liquid cell images, we were unable to clearly
432 observe dissolution along the twin boundaries in the bio-ZnS1 sample. However, specific faces
433 were observed to retreat inward faster than others, but without higher resolution LCTEM images,
434 we cannot definitively determine if the defect sites control the observed dissolution retreat.

435 For estimating the total area dissolution in the LCTEM images, a single frame was modeled
436 using the calculated a and r_c values (Table 2). The initial nanoparticle radii were measured in the
437 first frame using the BF images and entered as the starting r_0 values. The sum of the areas was
438 then calculated as each of the nanoparticles dissolved in the simulation. The total calculated area
439 was minimized to best fit the data with a multiplying factor, α , to account for an overestimate in
440 the total area due to particle–particle overlap and the differences in the area between the BF and
441 DF images. This method generated an accurate prediction for regions of the sample with well-
442 separated nanoparticles (Fig. 5a). In image locations with nanoparticles in close proximity to one
443 another, the agreement between measured and calculated is poor (Fig. 5b). Other researchers
444 have observed similar behavior and suggest that neighboring nanoparticles can slow the
445 dissolution of other nanoparticles when space between them is tight.³⁷ This close packing effect
446 explains the poor agreement between measured and calculated dissolution. In order to further
447 explore the impact of particle packing on dissolution, we consider the possibility that adjacent
448 nanoparticles in the tightly packed image may dissolve as a single unit. The results of this
449 analysis is shown in Fig. 5b and illustrate that if we assume the radius is two times the size of the
450 individual particles, we are able to capture the phenomenon. Future studies are needed to better
451 explain the impact of neighboring nanoparticles on the estimate of total area dissolution rate.

452

453 **Fig. 5.** First frames of the bio-ZnS1 nanoparticle solution in a) well dispersed and b) aggregated areas of the sample.

454 The corresponding total measured areas and simulated data are shown for each dissolution video.

455

456

457

Table 3. Parameters used for total area dissolution for bio-ZnS1 sample

	Avg. Particle Radius	Standard. Deviation	\square	α	NRMSE	N
Exp. (a)	7.1	2.9	15.3	0.517	6.2	55
Exp. (b)	7.5	2.6	15.3	0.896	39.912	160
Exp. (b), r_c Fit	7.5	2.6	2.96	0.558	4.361	160
Exp. (b), 2 \times radius	15.5	5.3	15.3	0.251	1.137	80

Avg. Particle Radius – average radius for particles in image.
 Std. Dev. – standard deviation of the radius for particles in image.
 N – number of particles.
 α – multiplying factor.
 NRMSE – normalized root mean squared error.
 Exp. (a) – Experiment (a) for well dispersed particles.
 Exp. (b) – Experiment (b) for aggregated area of sample.
 Exp. (b), r_c Fit – Experiment (b) refined r_c for aggregated area of sample using experimental radii.
 Exp. (b), 2 \times radius – Experiment (b) two times the particle radius for aggregated area of sample.

458

459 This study demonstrates that LCTEM is a viable technique for evaluating the dynamics of ZnS
 460 nanoparticle stability. Furthermore, the results show that biogenic ZnS nanoparticles with defects
 461 are more reactive than smaller quantum-dot-sized nanoparticles, and that the formation
 462 conditions, which include the presence of other trace elements and organic molecules, can have a
 463 significant impact on ZnS nanoparticle size and ultimately dissolution behavior. Last, these
 464 results provide new insight into the factors that govern the formation, aggregation, and stability
 465 of biogenic ZnS nanoparticles in environmental systems, and thus have broader implications for
 466 predicting the bioavailability and fate of Zn, Cd, and Hg in water-sediment systems, especially at
 467 transition zones or interfaces where steep changes in microbial community, water chemistry, and
 468 redox conditions occur.

469

470

471 **ASSOCIATED CONTENT**472 **Supporting Information**

473 The Supporting Information is available free of charge on the ACS Publications website.

474 Provided in the Supporting Information are details of materials synthesis and microscopy
475 sample preparation and imaging, additional details on liquid-cell TEM, examples of image
476 analysis, supplemental STEM and TEM information, example dissolution videos for the abio-
477 ZnS1 and bio-ZnS1, and data for the single particle fits.

478 **AUTHOR INFORMATION**

479 ***Corresponding Author:** pierceem@ornl.gov, **Phone:** (865) 574-9968, **Fax:** (865) 576-8646
480 **Author Contributions:** **EMP** conceived and organized the research study; **JWM and JRE**
481 synthesized the samples tested; **JRE, JX, MC**, and **EMP** collected, analyzed, and interpreted the
482 microscopy data; and **JRE, JX, DG, JWM, BG**, and **EMP** contributed to the manuscript. All
483 authors have given approval to the final version of the manuscript.

484 **ACKNOWLEDGMENT**

485 This research was sponsored by the Office of Biological and Environmental Research (BER),
486 Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area
487 at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle LLC for DOE
488 under contract DE-AC05-00OR22725. The nanoparticle biosynthesis was sponsored in part by
489 the DOE Advanced Manufacturing Office, Low Temperature Material Synthesis Program (CPS
490 24762).

491 **The authors declare no competing financial interest.**

492 **REFERENCES**

493 1. Hochella, M. F.; Lower, S. K.; Maurice, P. A.; Penn, R. L.; Sahai, N.; Sparks, D. L.;
494 Twining, B. S., Nanominerals, mineral nanoparticles, and Earth systems. *Science* **2008**, *319*,
495 1631-1635.

496 2. Hochella, M. F.; Aruguete, D. M.; Kim, B.; Madden, A. S., Naturally occurring inorganic
497 nanoparticles: General assessment and a global budget for one of Earth's last unexplored
498 geochemical components. In *Nature's Nanostructures*, Guo, H.; Barnard, A., Eds. Pan Stanford
499 Publishing: Victoria, Australia, 2012.

500 3. Hochella, M. F.; Moore, J. N.; Putnis, C. V.; Putnis, A.; Kasama, T.; Eberl, D. D., Direct
501 observation of heavy metal-mineral association from the Clark Fork River Superfund Complex:
502 implications for metal transport and bioavailability. *Geochimica et Cosmochimica Acta* **2005**, *69*,
503 1651-1663.

504 4. Xu, J.; Murayama, M.; Roco, C. M.; Veeramani, H.; Michel, F. M.; Rimstidt, J. D.;
505 Winkler, C.; Hochella, M. F., Highly-defective nanocrystals of ZnS formed via dissimilatory
506 bacterial sulfate reduction: A comparative study with their abiogenic analogues. *Geochimica et*
507 *Cosmochimica Acta* **2016**, *180*, 1-14.

508 5. Moreau, J. W.; Webb, R. I.; Banfield, J. F., Ultrastructure, aggregation-state, and crystal
509 growth of biogenic nanocrystalline sphalerite and wurtzite. *American Mineralogist* **2004**, *89*,
510 950-960.

511 6. Moreau, J. W.; Weber, P. K.; Martin, M. C.; Gilbert, B.; Hutcheon, I. D.; Banfield, J. F.,
512 Extracellular proteins limit the dispersal of biogeogenic nanoparticles. *Science* **2007**, *316*, 1600-
513 1603.

514 7. Labrenz, M.; Druschel, G.; Thomsen-Ebert, T.; Gilbert, B.; Welch, S. A.; Kemner, K. M.;
515 Logan, G. A.; Summons, R. E.; De Stasio, G.; Bond, P. L.; Lia, B.; Kelly, S.; Banfield, J. F.,
516 Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. *Science*
517 **2000**, *290*, 1744-1747.

518 8. Hsu-Kim, H.; Mullaugh, K. M.; Tsang, J. J.; Yucel, M.; Luther III, G. W., Formation of
519 Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications
520 for sulfide bioavailability to chemoautotrophs. *Geochemical Transactions* **2008**, *9*, (6), 1-14.

521 9. Luther III, G. W.; Rozan, T. F.; Taillerfert, M.; Nuzzio, D. B.; Di Meo, C.; Shank, T. M.;
522 Lutz, R. A.; Cary, S. C., Chemical speciation drives hydrothermal vent ecology. *Nature* **2001**,
523 *410*, 813-816.

524 10. Trudinger, P. A.; Chambers, L. A.; Smith, J. W., Low-temperature sulphate reduction:
525 biological vs. abiological. *Canadian Journal of Earth Science* **1985**, *22*, 1910-1918.

526 11. Liu, J.; Aruguete, D. M.; Jinschek, J. R.; Rimstidt, J. D.; Hochella, M. F., The non-
527 oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function
528 of grain size, shape, and aggregation state. *Geochimica et Cosmochimica Acta* **2008**, *72*, 5984-
529 5996.

530 12. Gondikas, A. P.; Jang, E. K.; Hsu-Kim, H., Influence of amino acids cysteine and serine
531 on aggregation kinetics of zinc and mercury sulfide colloids. *Journal of Colloid and Interface*
532 *Science* **2010**, *347*, 167-171.

533 13. Gondikas, A. P.; Masion, A.; Auffan, M.; Lau, B. L. T.; Hsu-Kim, H., Early-stage
534 precipitation kinetics of zinc sulfide nanoclusters forming in the presence of cysteine. *Chemical*
535 *Geology* **2012**, *329*, 10-17.

536 14. Rozan, T. F.; Lassman, M. E.; Ridge, D. P.; Luther III, G. W., Evidence of iron, copper,
537 and zinc complexation as multinuclear sulphide clusters in oxic rivers. *Nature* **2003**, *406*, 879-
538 882.

539 15. Theberge, S. M.; Luther III, G. W.; Farrenkopf, A. M., On the existence of free and metal
540 complexed sulfide in the Arabian Sea and its oxygen minimum zone. *Deep-Sea Research* **1997**,
541 *44*, 1381-1390.

542 16. Priadi, C.; Le Pape, P.; Morin, G.; Ayrault, S.; Maillot, F.; Juillot, F.; Hochreutener, R.;
543 Llorens, I.; Testemale, D.; Proux, O.; Brown, G. E., X-ray absorption fine structure evidence for
544 amorphous zinc sulfide as a major zinc species in suspended matter from the Seine River
545 downstream of Paris, Ile-de-France. *Environmental Science and Technology* **2012**, *46*, 3712-
546 3720.

547 17. Zhang, H.; Banfield, J. F., Energy Calculations Predict Nanoparticle Attachment
548 Orientations and Asymmetric Crystal Formation. *Journal of Physical Chemistry Letters* **2012**, *3*,
549 (19), 2882-2886.

550 18. Gilbert, B.; Banfield, J. F., Molecular-scale processes involving nanoparticulate minerals
551 in biogeochemical systems. In *Molecular Geomicrobiology*, Banfield, J. F.; Cervini-Silva, J.;
552 Nealson, K. H., Eds. Mineralogical Society of America and Geochemical Society: 2005; pp 109-
553 156.

554 19. Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.;
555 Brus, L. E., Nucleation and growth of CdSe and ZnS quantum crystallite seeds, and vice versa, in
556 inverse micelle media. *Journal of American Chemical Society* **1990**, *112*, 1327-1332.

557 20. Daskalakis, K. D. a. H., G.R., The solubility of sphalerite (ZnS) in sulfidic solutions at 25
558 °C and 1 atm pressure. *Geochimica et Cosmochimica Acta* **1993**, *57*, 4923-4931.

559 21. Helz, G. R.; Charnock, J. M.; Vaughan, D. J.; Garner, C. D., Multinuclearity of aqueous
560 copper and zinc bisulfide complexes: an EXAFS investigation. *Geochimica et Cosmochimica
561 Acta* **1993**, *54*, 15-25.

562 22. Luther III, G. W.; Theberge, S. M.; Rickard, D. T., Evidence for aqueous clusters as
563 intermediates during zinc sulfide formation. *Geochimica et Cosmochimica Acta* **1999**, *63*, 3159-
564 3169.

565 23. Hamad, S.; Cristol, S.; Catlow, C. R. A., Surface Structures and Crystal Morphology of
566 ZnS: Computational Study. *The Journal of Physical Chemistry B* **2002**, *106*, (42), 11002-11008.

567 24. Shea, D.; MacCrenan, W. A., Role of biogenic thiols in the solubility of sulfide minerals.
568 *Science of the Total Environment* **1988**, *73*, 135-141.

569 25. Vairavamurthy, A.; Mopper, K., Field methods for determination of traces of thiols in
570 natural water. *Analytica Chimica Acta* **1990**, *236*, 363-370.

571 26. Zhang, J.; Wang, F., Thiols in wetland interstitial waters and their role in mercury and
572 methylmercury speciation. *Limnology and Oceanography* **2004**, *49*, (6), 2276-2286.

573 27. Teng, H., How Ions and Molecules Organize to Form Crystals. *Elements* 2013, pp 189-
574 194.

575 28. Vreeland, E.; Watt, J.; Schober, G.; Hance, B.; Austin, M.; Price, A.; Fellows, B.;
576 Monson, T.; Hudak, N.; Maldonado-Camargo, L.; Bohorquez, A.; Rinaldi, C.; Huber, D.,
577 Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism. *Chemistry of Materials*
578 **2015**, *27*, 6059-6066.

579 29. Burton, W.; Cabrera, N.; Frank, F., The growth of crystals and the equilibrium structure
580 of their surfaces. *Royal Society of London Philosophical Transactions A* **1951**, *243*, 299-358.

581 30. De Yoreo, J. J.; Gilber, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.;
582 Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F.
583 Meldrum, F. C.; Colfen, H.; Dove, P. M., Crystallization by particle attachment in syntetic,
584 biogenic, and geologic environments. *Science* **2015**, *349*, (6247), aaa6760-1-9.

585 31. Zhang, J.; Lin, Z.; Lan, Y.; Ren, G.; Chen, D.; Huang, F.; Hong, M., A Multistep
586 Oriented Attachment Kinetics: Coarsening of ZnS Nanoparticle in Concentrated NaOH. *Journal*
587 *of the American Chemical Society* **2006**, *128*, (39), 12981-12987.

588 32. Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A., Defining Rules for the Shape
589 Evolution of Gold Nanoparticles. *Journal of the American Chemical Society* **2012**, *134*, (35),
590 14542-14554.

591 33. Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.;
592 Engheta, N.; Kagan, C. R.; Murray, C. B., Improved Size-Tunable Synthesis of Monodisperse
593 Gold Nanorods through the Use of Aromatic Additives. *ACS Nano* **2012**, *6*, (3), 2804-2817.

594 34. Hufschmid, R.; Newcomb, C.; Grate, J.; De Yoreo, J. J.; Browning, N.; Qafoku, N.,
595 Direct visualization of aggregate morphology and dynamics in a model soil organic-mineral
596 system. *Environmental Science and Technology Letters* **2017**, *4*, (5), 186-191.

597 35. Grogan, J. M.; Rotkina, L.; Bau, H. H., In situ Liquid-Cell Electron Microscopy of
598 Colloid Aggregation and Growth Dynamics. *Physical Review E* **2011**, *83*, 061405.

599 36. Takasaki, M.; Kimura, Y.; Yamazaki, T.; Oaki, Y.; Imai, H., 1D Oriented Attachment of
600 Calcite Nanocrystals: Formation of Single-Crysalline Rods Through Collision. *RSC Advances*
601 **2016**, *6*, 61346-61350.

602 37. Jiang, Y.; Zhu, G.; Dong, G.; Lin, F.; Zhang, H.; Yuan, J.; Zhang, Z.; Jin, C., Probing the
603 oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell
604 transmission electron microscopy. *Micron* **2017**, *97*, 22-28.

605 38. Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H.,
606 Electron-Water Interactions and Implications for Liquid Cell Electron Microscopy. *The Journal*
607 *of Physical Chemistry C* **2014**, *118*, (38), 22373-22382.

608 39. Moon, J.; Ivanov, I.; Joshi, P.; Armstrong, B.; Wang, W.; Jung, H.; Rondinone, A.;
609 Jellison, J., G; Meyer III, H.; Jang, G.; Meisner, R.; Duty, C.; Phelps, T., Scalable production of
610 microbially-mediated ZnS nanoparticles and application to functional thin films. *Acta*
611 *Biomaterialia* **2014**, *10*, (10), 4474-4483.

612 40. Moon, J.; Phelps, T.; Fitzgerald, C.; Lind, R.; Elkins, J.; Jang, G.; Joshi, P.; Kidder, M.;
613 Armstrong, B.; Watkins, T.; Ivanov, I.; Graham, D., Manufacturing demonstration of microbially
614 mediated zinc sulfide nanoparticles in pilot-plant scale reactors. *Applied Microbiology and*
615 *Biotechnology* **2016**, *100*, (18), 7921-7931.

616 41. Chatterjee, N.; Bhattacharjee, B., Hazardous effect of ZnS Nanoparticles on the Feeding
617 Behavior, Growth and Maturation Process of the Asian Striped Catfish, *Mystus Vittatus* (Bloch,
618 1794). *International Aquatic Research* **2014**, *6*, 113-125.

619 42. Becker, W.; Bard, A., Photoluminescence and Photoinduced Oxygen Adsorption of
620 Colloidal Zinc Sulfide Dispersion. *Journal of Physical Chemistry* **1983**, *87*, 4888-4893.

621 43. Roh, Y.; Liu, S.; Li, G.; Huang, H.; Phelps, T.; Zhou, J., Isolation and characterization of
622 metal-reducing *Thermoanaerobacter* strains from deep subsurface environments of the Piceance
623 Basin, Colorado. *Applied and Environmental Microbiology* **2002**, *68*, 6013-6020.

624 44. Jang, G.; Jacobs, C.; Ivanov, I.; Joshi, P.; Meyer III, H.; Kidder, M.; Armstrong, B.;
625 Datskos, P.; Graham, D.; Moon, J., In situ capping for size control of monochalcogenide (ZnS,

626 CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria. *Nanotechnology*
627 **2015**, *26*, (32), 325602.

628 45. Rasband, W. S. *ImageJ*, U.S. National Institutes of Health: Bethesda, MD, USA, 2007.

629 46. Hotje, U.; Rose, C.; Binnewies, M., Lattice constants and molar volume in the system
630 ZnS, ZnSe, CdS, CdSe. *Solid State Sciences* **2003**, *5*, (9), 1259-1262.

631 47. Skinner, B. J., Unit-cell Edges of Natural and Synthetic Sphalerites. *The American
632 Meneralogist* **1961**, *46*, 1399-1411.

633 48. Loginov, Y. Y.; Kovalev, I. V.; Zelenkov, P. V., The structural defects formation in ZnS
634 under electron irradiation with energy 400 KeV. *IOP Conference Series: Materials Science and
635 Engineering* **2016**, *122*, 012023.

636 49. Thangaraj, N.; Wessels, B. W., Electron beam enhanced oxidation processes in II-VI
637 compound semiconductors observed by high-resolution electron microscopy. *Journal of
638 Applied Physics* **1990**, *67*, (3), 1535-1541.

639 50. Spano, E.; Hamad, S.; Catlow, C. R. A., Computational Evidence of Bubble ZnS
640 Clusters. *Journal of Physical Chemistry B* **2003**, *107*, 10337-10340.

641 51. Tolbert, S.; Alivisatos, A. P., Comparison of quantum confinement effects on the
642 electronic absorption spectra of direct and indirect gap semiconductor nanocrystals. *Physical
643 Review Letter* **1994**, *73*, 3266.

644 52. Tolbert, S.; Alivisatos, A. P., Se EXAFS study of the elevated wurtzite to rock salt
645 structural phase transition in CdSe nanocrystals. In *NATO ASI Proceedings on Nanophase
646 Materials: Synthesis-Properties-Applications*, Hadjipanayis, G.; Siegel, R., Eds. Kluwer
647 Academic Publishers: Dordrecht, 1994; pp 471-482.

648 53. Huang, F.; Banfield, J. F., Size-Dependent Phase Transformation Kinetics in
649 Nanocrystalline ZnS. *Journal of the American Chemical Society* **2005**, *127*, (12), 4523-4529.

650 54. Yang, J.; Deivaraj, T. C.; Too, H.-P.; Lee, J. Y., Acetate Stabilization of Metal
651 Nanoparticles and Its Role in the Preparation of Metal Nanoparticles in Ethylene Glycol.
652 *Langmuir* **2004**, *20*, (10), 4241-4245.

653 55. Clarke, P. H., Hydrogen Sulfide Production by Bacteria. *Journal of General
654 Microbiology* **1953**, *8*, 397-407.

655 56. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry. In Wiley-VCH
656 Publishers: 2003.

657 57. Shahid, R.; Toprak, M. S.; Soliman, H. M. A.; Muhammed, M., Low temperature
658 synthesis of cubic phase zinc sulfide quantum dots. *Central European Journal of Chemistry*
659 **2012**, *10*, (1), 54-58.

660 58. Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P., Cation Exchange: A Versatile Tool
661 for Nanomaterials Synthesis. *The Journal of Physical Chemistry C* **2013**, *117*, (39), 19759-
662 19770.

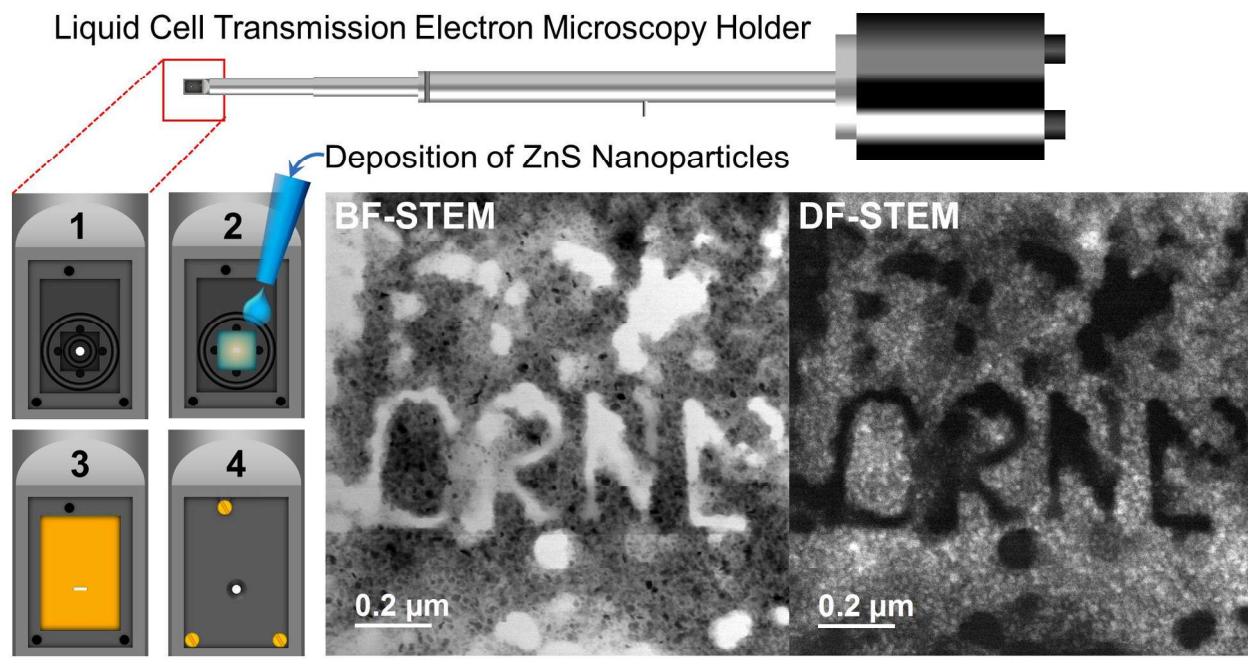
663 59. Crundwell, F. K., The mechanism of dissolution of minerals in acidic and alkaline
664 solutions: Part III. Application to oxide, hydroxide and sulfide minerals. *Hydrometallurgy* **2014**,
665 *149*, 71-81.

666 60. Zhang, H.; Huang, F.; Gilbert, B.; Banfield, J. F., Molecular Dynamics Simulations,
667 Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide
668 Nanoparticles. *The Journal of Physical Chemistry B* **2003**, *107*, (47), 13051-13060.

669 61. Zhang, H.; Chen, B.; Banfield, J. F., Particle Size and pH Effects on Nanoparticle
670 Dissolution. *The Journal of Physical Chemistry C* **2010**, *114*, (35), 14876-14884.

671

672 **List of Figures:**


673	Fig. 1. TEM images of the four ZnS samples. a) abio-ZnS1, produced abiotically with zinc chloride and	
674	sodium sulfide; b) abio-ZnS2, produced abiotically with zinc acetate and biologically produced H ₂ S gas; c)	
675	bio-ZnS1, produced biologically with <i>Thermoanaerobacter</i> sp. X513; d) bio-ZnS2, produced biologically	
676	with <i>Thermoanaerobacter</i> sp. X513 with added Ag.	12
677	Fig. 2. HRTEM images of the ZnS nanoparticles with corresponding fast-Fourier transforms of the	
678	HRTEM images and corresponding background-subtracted radial distance profiles. Sphalerite (S) and	
679	zincite (ZnO) peaks are assigned. a) abio-ZnS1, b) abio-ZnS2, c) bio-ZnS1, d) bio-ZnS2. HRTEM image of	
680	the bio-ZnS1 sample viewed down the {110} zone axis, showing multiple twins along the {111} faces and	
681	nanoparticle surface faces (e).	14
682	Fig. 3. Nonlinear least squares fit of individual ZnS nanoparticles dissolution for the bio-ZnS1 and abio-	
683	ZnS1 samples.	19
684	Fig. 4. Time-dependent still frames of the bio-ZnS1 nanoparticle dissolution, showing the preferred	
685	dissolution of specific faces in the liquid cell. Anisotropic dissolution is observed in the last stages for both	
686	the round faceted (red circles) and the rodlike (green triangles) particles.	21
687		
688		

689 **List of Tables:**

690	Table 1. Selected area electron diffraction results for the ZnS samples along with literature values for sphalerite ⁴⁷	13
691		
692	Table 2. Nonlinear least squares fit values for the dissolution of different bio-ZnS1 and abio-ZnS1 samples	19
693	Table 3. Parameters used for total area dissolution for bio-ZnS1 sample.....	24
694		

695 **TABLE OF CONTENT ART**

696

697