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Summary

Many geophysicists concur that an orthorhombic elastic medium, characterized by three
mutually orthogonal symmetry planes, constitutes a realistic representation of seismic
anisotropy in shallow crustal rocks. This symmetry condition typically arises via a dense
system of vertically-aligned microfractures superimposed on a finely-layered horizontal

geology:
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FiG. 1. An orthorhombic model caused by parallel vertical
cracks embedded in a medium composed of thin horizontal
layers. Orthorhombic media have three mutually orthogonal
planes of mirror symmetry.

FIG. 1. Schematic diagram of long vertical fractures aligned in
the 2,3-plane embedded in a TI medium with a vertical sym-
metry axis.

From Tsvankin, 1997, Geophysics. From Schoenberg and Helbig, 1997, Geophysics.

However, various geological deformation processes will rotate the symmetry planes away
from alignment with the global XYZ coordinate planes:

Present algorithmic

aligned with global XYZ
coordinate axes.
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Symmetry planes rotated relative
to coordinate planes: —
geophysically / geologically realistic,

but algorithmically too hard! /

Rotated principal axes
lead to significant
algorithmic complications!
Subject of future R&D.

Mathematically, the elastic stress-strain constitutive relations for an orthorhombic body
contain nine independent moduli. In turn, these moduli can be determined by observing (or
prescribing) nine independent P-wave and S-wave phase speeds along different directions
(Brown, 1989):

6 P-Wave Speeds / Directions: 6 S-Wave Speeds / Directions:

Rows:

Wavefront Timeslice Plots for Different Seismic Energy Source Types

Columns: mediatypes (ISO =isotropic, Tl = transverse isotopic, ORTO = orthorhombic)
wavefield variables (Vx, VW, Vz = particle velocities, P = pressure, Wx, Wy, Wz = particle rotation rates)

Source wavelet: Gaussian pulse, derived via double integration of a 50 Hz peak frequency Ricker wavelet
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Standard Tl and VF+TIl Models

(after Schoenberg and Helbig, 1997)

Our initial test modeling utilizes the
v e e veespeess “standard model” of a VF+TI (vertical
0 fractures + transverse isotropic) elastic
. model of Schoenberg and Helbig (1997),
e o miiﬂfi‘:{:?EE’Sff‘;iiz, plus its Tl and isotropic counterparts.
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The anisotropic elastic velocity-stress system, a set of 9 coupled, first-order, linear,
inhomogeneous PDEs forms the mathematical basis for our explicit time-domain finite-
difference (FD) numerical algorithm. All partial derivatives are discretized with centered
and staggered FD operators that are 2"%-order in time and 4t-order in space:

A . Spatial Staggered-Grid Storage Scheme
(o]
Governing PDE System: For 3D Velocity-Stress FD Algorithms

Anlsotroplc Elastic Velomty-Stress SyStem Good for isotropic media , bad for anisotropic media,

OK for orthorhombic media parallel to coordinate frame.
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Nine, coupled, first-order, linear, non-homogeneous partial differential equations.
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Conclusions

Explicit time-domain finite-difference numerical algorithm demonstrates known anisotropic seismic phenomena of:

1) Complex wavefront shapes,

3) Split (fast and slow) shear waves,

2) Pressure / rotation propagating with both P/ S speeds,

Future algorithmic work includes implementation of:

1) Orthorhombic stress-free surface,

4) Shear waves from isotropic explosion.

2) Rotated modulus tensor principle axes.
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P- and SV-wavefronts cleanly exit edges and corners of computational grid without generating any visible reflected or diffracted energy!

Acknowledgements

References

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The present work is
conducted under the auspices of the Source Physics Experiment (SPE) funded by the Office of Defence Nuclear Nonproliferation Research and
Development (DNN R&D) of the NNSA.

Brown, R.J., 1989, Relationships between the velocities and the elastic constants of an anisotropic solid possessing orthorhombic symmetry: CREWES

consortium report.
Schoenberg, M., and Helbig, K., 1997, Orthorhombic media: modeling of elastic wave behavior in a vertically fractured earth: Geophysics, 62, 1954-1974.
Tsvankin, 1., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics, 62, 1292-1309.




