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Abstract—The power and procurement cost of bandwidth in
system-wide networks has forced a steady drop in the byte/flop
ratio. This trend of computation becoming faster relative to
the network is expected to hold. In this paper, we explore
how cost-oriented task placement enables reducing the cost
of system-wide networks by enabling high performance even
on tapered topologies where more bandwidth is provisioned
at lower levels. We describe APHiD, an efficient hierarchical
placement algorithm that uses new techniques to improve
the quality of heuristic solutions and reduces the demand on
high-level, expensive bandwidth in hierarchical topologies. We
apply APHiD to a tapered fat-tree, demonstrating that APHiD
maintains application scalability even for severely tapered
network configurations. Using simulation, we show the for
tapered networks APHiD improves performance by more than
50% over random placement and even 15% in some cases over
costlier, state-of-the-art placement algorithms.

I. INTRODUCTION

Communication has been identified as one of the top
ten exascale research challenges in terms of power, perfor-
mance and procurement cost [1], [2]. To remain under a
proposed 20MW power cap for the system, both the network
procurement and pJ/bit of data movement costs must be
controlled [3], [4]. The decreasing memory per core in high
performance computing (HPC) also produces more off-chip
traffic, further stressing the network. This is already evident
in the Blue Gene/Q which provides 3× fewer bytes per
flop than the Blue Gene/L, and Cray’s XT5 which provides
38× fewer bytes per flop than the XT3 [5]. Simply over-
provisioning the network is not sustainable moving forward
in terms of power as well as procurement cost [2].

Tapered hierarchical networks have been proposed to
decrease procurement and power cost [6]. In particular,
higher levels in system-wide networks often require ex-
pensive optical cables. Rather than requiring full all-to-
all bandwidth, many applications have significant locality
in their communication pattern. In tapered networks, more
bandwidth is provisioned at lower levels, both saving cost
and potentially improving performance if cost savings on
top-level switches and cables are converted into extra band-
width at lower levels.

To ensure high performance on tapered topologies, task

placement can maximize the tapering of application traffic,
reducing the load on top-level links [7]–[9]. Task place-
ment refers to relocating tasks (MPI ranks) to different
compute nodes to reduce average communication distance
and congestion. Calculating an optimal task placement is an
NP-complete problem. Practically, task placement must rely
on heuristics [8]–[11]. Past work confirms the performance
and cost benefits of locality- and network-aware placements
on a mesh [12], [13], torus [13], [14], fat tree [14], and
dragonfly [15]. In the case of a mesh, the worst-to-best ratio
of application performance can reach 4× [14].

To provide a practical, scalable placement heuristic for
tapered topologies, we propose APHiD - Algorithm for
Placing processes Hierarchically on D-ary trees. APHiD
takes as input an application traffic matrix and creates
the placement for arbitrary hierarchical topologies by em-
bedding them in a d-ary tree. Fat tree topologies map
most naturally to the algorithm, but other topologies like
dragonfly [16] or stacked HyperX [17] are also hierarchi-
cal and have natural tree embeddings. APHiD is based
on hierarchical algorithms proven to produce placements
optimal for communication locality [18]. Instead of optimal
graph partitioning at every step (an NP-complete prob-
lem), APHiD approximates those methods through heuristic
graph partitioning algorithms. Relative to other state-of-the-
art methods, APHiD reduces computational complexity by
O(Ek−1) where E is the size of the communication graph
and k is the tree radix. APHiD can also be implemented
using parallel libraries like ParMETIS for scalability.

Overall, APHiD aims to provide more “leaf” bandwidth
on leaf switches in the topology near the compute nodes
where applications need it. Our work provides two major
contributions. First, we introduce APHiD and how it can be
practically applied to a set of HPC applications, producing
placements competitive with or better than state-of-the-art
but with lower computational cost. Second, we describe an
implementation of a 3-level fat-tree topology with tunable
tapering. Through simulation, we demonstrate how place-
ment algorithms and tapered topologies can be combined
to implement scalable HPC networks with greatly reduced
power and procurement costs.
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Figure 1. Graph partitioning is the problem of dividing vertices into groups
(in this example two) so that the sum of the weights W1+W2+W3+... of
the inter-partition edges is the minimum across all grouping combinations.

II. APHID: HIERARCHICAL GRAPH PARTITIONING AND
MAPPING TO TOPOLOGIES

A. Task Placement Algorithm

We formulate our problem as a graph G = (V,E) where
vertices (V) represent computation tasks and directed edges
(E) represent communication [18]. Each edge is weighted
to represent the number of bytes sent. Using this notation,
our optimization target of reducing traffic in higher levels
of a hierarchical network becomes a graph partitioning
problem [8], [18] where the goal is to group nodes such
that the total weight of the edges crossing group boundaries
is minimized [8], [18], as shown in Figure 1. To map to
a fixed network topology, the algorithm is constrained to
find partitions of specific sizes. For balanced networks this
means partitions of equal sizes. There are two challenges to
this simplistic view [8], [18]. First, calculating a provably
optimal graph partition is an NP-complete problem. Second,
a simple graph partition does not readily map to a multi-level
hierarchical topology such as a fat tree [19].

We therefore formulate APHiD as a hierarchical algo-
rithm [8], [18], [20]. The input to APHiD is a communi-
cation graph (equivalent to a traffic matrix), and the output
is an association of task identifiers to network endpoints
(task placement). The first version of APHiD begins at the
lowest level and uses graph partitioning to form groups each
containing D nodes, where D is the degree of the topology
at the lowest level. Then it advances to the second level
of the topology, but treats groups formed in the previous
step as single nodes. Therefore, group A may contain tasks
1, 2, 6, and 10, but that group will still be treated as a
single node in the second level. A second communication
graph is generated that then disregards traffic within groups.
Except for group size, the degree D also implicitly defines
how many levels of hierarchy the algorithm will execute as
the integer ceiling of logD(Nodes). After APHiD reaches
the top level of the topology, it proceeds backwards and
unfolds the selections it created at every level with lower-
level node identifiers to produce a final linear mapping of
task identifiers, shown in Figure 3. This is the bottom–
up approach of APHiD, because it begins from the lowest
topology level. An illustration of the bottom–up APHiD is
provided in Figure 2.

2,12 1,10 7,8 4,11

Task IDs are grouped at the lowest level using graph bisection.
Groups are sized according to the degree (D) at each level. 

(this example uses D=2 for all levels)

A1,A5 A2,A4

3,6 5,9

A3,A6

Each group of the previous level is treated as a new node by 
merging nodes in the communication graph and updating vertices

B1,B3 B2

This continues until the next step would produce only one group.
In this example, the third step would produce one group.

Therefore, the algorithm proceeds backwards and replaces
group IDs with their definitions

Top-level groups B1, B2 and B3 are replaced by their definitions 
(their contents) in order

A1,A5,A3,A6,A2,A4

Similarly for second-level groups A1, …, A6.
This produces a linear mapping of task identifiers.

3,6,4,11,1,10,5,9,2,12,7,8

A1 A2 A3 A4 A5 A6

B1 B2 B3

 D: topology
     degree

Figure 2. The bottom–up version of APHiD. Each level forms Tasks/D
groups of size D. D = 2 in all levels in this example.

1, 2, 3, 4, 5, 6, 7, …, N

Default thread ID mapping

4, 1, 9, N, 3, 6, 8, …, 2

Locality-aware ID mapping

Figure 3. APHiD produces a linear mapping of task IDs. In APHiD’s
locality-aware mapping, highly-communicating tasks are mapped adjacent
to each other. In this example, task 4 is placed on network endpoint 1, task
1 on endpoint 2, etc.

The above approach has been proven to produce optimal
placements, contingent to each graph partition problem pro-
ducing optimal partitions [18]. Unfortunately, producing an
optimal partition is an NP-complete problem. Therefore, we
rely on heuristic algorithms such as the recursive bisection
graph [21] and K-way partitioning [22] algorithms. We find
that the recursive bisection algorithm [21] performs better
than the K-way partitioning algorithm [22] for partitioning
our applications’ traffic graphs to four groups or more. In
other sets of graphs, K-way has been shown to outperform
recursive bisection [23].

If we were to apply the bottom–up APHiD in applications
with 10,000 tasks and D = 4, the first partitioning step
would produce poor results because the algorithm would
have to create 2,500 groups of four tasks in a single step.
With so many groups, the first optimization step overwhelms
the heuristic algorithm. We therefore employ a top–down
version of APHiD for the purpose of keeping the graph
partitioning problem tractable at each step. The first step is to
form just D1 groups at the top level and proceed downwards,
where Dn is the degree (branching) of the topology at the
nth level. In contrast to the bottom–up version, the top–down



Task IDs are divided at the top level using graph bisection into as
many groups as the topology's degree (D) at the top level.

This example uses D=2 for all levels.
Therefore, task IDs are divided into two groups

The algorithm proceeds from top to bottom.
Groups are further subdivided into two at each lower level (D=2)

Dividing a group of three tasks into groups of two leaves groups
with only one task. Such groups are merged at the lowest level 
into groups of two. For example, “2” and “12” would end up in 
individual groups but are instead merged into the same group

Finally, we merge all groups to produce
the resulting linear mapping

3,6,2,12,1,10,7,8,4,11,5,9

1,3,4,6,10,11 2,5,7,8,9,12

2,3,6 1,10,12 4,7,8 5,9,11

3,6 2,12 1,10 7,8 4,11 5,9

 D: topology
     degree

Figure 4. The top–down version of APHiD starts from the top level
and divides tasks into D groups in each level (D = 2 in this example).
Each group contains Tasks/D tasks, in contrast to Tasks/D groups of
D tasks for the bottom–up version. It then proceeds to lower levels in a
similar fashion, to produce the final linear mapping.

version uses D to define the number of groups instead of
the group size. Thus, groups now contain Tasks/D tasks
each. In the next step, each of those D1 groups is further
partitioned into D2 subgroups for D1 ∗D2 groups in total.
This proceeds until the lowest level of the topology. This
algorithm is illustrated in Figure 4. The bottom–up algorithm
keeps group sizes constant, while the top-down keeps the
number of groups constant.

Comparing Figure 2 and Figure 4, notice that the final
linear mapping identifies pairs of tasks in the same manner
(e.g., 3 and 6 are adjacent to each other in both versions).
However, some pairs are in different locations, such as
(2,12). This is because in the top–down APHiD, the first
step of dividing tasks into D large groups at the top level of
the network is more coarse-grained. Therefore, the top-level
step could have easily placed group (2,12) in the other top-
level group, but it made little difference for the partitioning
quality at the top level. Later steps of the algorithm do not
have the freedom to change choices made in earlier stages. In
contrast, the bottom–up APHiD first pairs 2 and 12 together,
and then is better able to group that pair with another
pair it communicates with heavily. However, as previously
discussed, the first step in the bottom–up version is stressful
to the heuristic graph partitioning algorithm. Therefore this
step is more likely to result in suboptimal partitions. The
top–down APHiD always forms D groups at each level,
avoiding this problem.

B. Pruning

APHiD also improves the quality of heuristic placements
by pruning low-weight edges in the communication graph. In
an initial step, APHiD detects the maximum amount of bytes
exchanged between any two tasks (the maximum weight in

the communication graph). APHiD then disregards edges
lower than a certain percentage of maximum. This step
helps the greedy decisions of heuristic graph partitioning
algorithms by reducing the exploration space. Pruning may
not always be favorable if short messages play a critical role
in performance, though for our bandwidth tapering study
APHiD shows good improvements for most applications.
Future extensions to APHiD could also incorporate the
number of messages (rather than just byte totals) in the edge
weights. In Section V-D, we show how pruning improves the
quality of placements and show that a 5% pruning factor is
a good tradeoff choice.

C. Mapping to Different Topologies

APHiD applies to any hierarchical topology, including a
fat tree [19] that we use in our experiments. APHiD should
be configured to match the number of levels and degree
of each level of the topology. Other popular topologies
such as dragonfly can be modelled as a two-level topology
(extending our model to more levels of a dragonfly is
straightforward), where the number of nodes per group is
the degree at the lowest level and the number of groups the
degree for the top level. In the fat tree, the linear mapping
of task identifiers (e.g., MPI ranks) produced by APHiD
dictates what leaf each rank is placed at. APHiD applies
to other popular topologies as well, such as the flattened
butterfly where each dimension can be treated as a level of
a hierarchical topology [24].

APHiD can consider applications individually or perform
global placement of multiple applications. In the former
case, depending on the allocation returned by the job sched-
uler, APHiD may have to map to a potentially irregular
topology (such as an unbalanced tree) since some compute
resources may be reserved for other applications [5]. Since
APHiD in the end computes a linear mapping of task
identifiers, we can map this list to any topology, including
irregular ones, with an extra mapping step.

D. Usability

APHiD can be used as an a priori tool by obtaining the
communication graph using static analysis [25] or by pro-
viding the programmer a framework for specifying it [26],
[27]. Some MPI implementations provide an API to specify
the communication graph [28] as well as placement of MPI
ranks through text files [20], [29]. APHiD can also be
used for placement decisions already made by application
runtimes, such as Boxlib [30]. Alternatively, the system can
record an application’s traffic such that when the same appli-
cation launches again, we can use an improved placement.

We can also apply APHiD during application execution
in individual phases (e.g., between barriers) and rely on task
migration [7], [31]. However, this decision has to weigh the
expected cost of migrating tasks against the rate of change of
the traffic pattern. Even dynamic applications that do change



communication patterns typically change traffic slowly [32],
which does not warrant frequent placement steps. For now,
though, we focus our current analysis methodology on initial
placement of tasks.

E. Collective Operations

By default, collective operations are included in the
communication graph by breaking down each collective
operation to point-to-point messages [33], [34]. Some MPI
implementations optimize their collective operations based
on a default placement or without regard to placement [35].
However, underlying collective algorithms in an MPI imple-
mentation may be made more efficient for a given placement
and topology (as is allowed by the MPI standard [33], [36]).
Here APHiD takes the collective implementations as fixed
and tries to optimize task placement for them. A more
intelligent strategy may be for the collective implementation
to adapt to a fixed task placement.

For some applications, the dominant collective is an
MPI Allreduce of a single double-precision scalar, which
carries latency costs but effectively no bandwidth cost. For
MiniDFT, many subcommunicator MPI Alltoallv collectives
as part of an FFT contribute significantly to overall traffic.
For GTC, many charge reductions via MPI Allreduce with
large buffers (>8KB) also contribute significantly.

III. TAPERED FAT-TREE TOPOLOGY

We apply placement algorithms in the context of a 3-level
tapered fat-tree topology. Our proposed tapered 3-level tree
is shown in Figure 5. In general, the 3-level fat tree consists
of three switch types:

• Leaf: The first row of switches connected directly to
the compute nodes.

• Aggregation: The second row of switches aggregating
traffic from leaf switches to form disjoint subtrees.

• Core: The final row of switches connecting the disjoint
subtrees formed by the aggregation switches.

For current HPC systems, a common interconnect uses 48-
port Aries routers [37]. For exascale systems, a 64-port
router is still feasible and cost-effective as an 8x8 tiled
architecture. We assume 64-port routers in the current work,
but the general methodology could also be applied to higher
or lower radix routers.

The tapering in the tree refers to the bisection bandwidth
between two levels of the tree. In an untapered tree, all levels
have equal bisection bandwidths resulting in full all-to-all
bandwidth. For a 64-port router, this means allocating 32
ports to “up” traffic and 32 ports to “down” traffic. The leaf
and aggregation levels have an equal number of switches in
the untapered version.

In our tapered configuration, the number of switches de-
creases on higher levels. Additionally, each switch dedicates
more links to downward traffic than upward traffic. Each
fat-tree level therefore decreases in bisection bandwidth.

Untapered Tapered 0.5-Core 0.25-Core
Subtrees 8 16 16 16
Leaf 256(32) 352(22) 352(22) 352(22)
Agg 256(32) 160(10) 160(10) 160(10)
Core 128 50 25 13
Nodes 4096(16) 4224(12) 4224(12) 4224(12)

Table I
TOTAL NO. SWITCHES/NODES IN FAT-TREE CONFIGURATIONS HAVING

4K NODES. PARENTHESES SHOW NUMBER OF SWITCHES PER SUBTREE
AND NUMBER OF NODES PER LEAF SWITCH.

Untapered Tapered 0.5-Core 0.25-Core
Node-Leaf 8192(32) 14784(42) 14784(42) 14784(42)
Leaf-Agg 8192(32) 7744(20) 7744(20) 7744(20)
Agg-Core 8192(32) 3200(20) 1600(10) 800(5)

Table II
TOTAL NO. LINKS IN FAT-TREE CONFIGURATIONS HAVING 4K NODES.

PARENTHESES SHOW LINKS PER SWITCH. LINKS ARE PER-PORT BASIS,
MULTIPLE LINKS MIGHT CONNECT THE SAME SWITCHES.

The total number of switches and links for different tree
configurations are shown in Tables I and II. In the current
work, we explore three different tapering configurations.

• Baseline: The total bandwidth on each level decreases
by roughly a factor of two. Almost double the injec-
tion bandwidth is allocated per switch relative to the
untapered configuration.

• 2x taper: Same as the baseline tapered case, but the
number of aggregation-core links is cut by 1/2.

• 4x taper: Same as the baseline tapered case, but the
number of aggregation-core links is cut by 1/4.

Our topology assumes netlink blocks grouping nodes to-
gether (Figure 5). Rather than allocating individual switch
ports to nodes, we share available injection bandwidth across
the netlink blocks as done in the Cray XC systems.

IV. METHODOLOGY

A. Applications

We use MPI application traces that were collected to
evaluate future exascale architectures from [38]. Most ap-
plications studied here are reduced versions of the parent
application that mimic the main computational and commu-
nication patterns.

• Lulesh [39]: An explicit hydrodynamics code exhibiting
primarily nearest neighbor communication

• MiniDFT: A minimal density functional theory code
extracted from the Quantum Espresso package stressing
all-to-all communication on MPI subcommunicators
during an FFT.

• GTC [40]: A gyrokinetic toroidal code exhibiting heavy
neighbor communication of particles and subcommuni-
cator all-reduces.

• Nekbone [41]: A subset of Nek5000 that performs
primarily conjugate gradient linear solves as part of the
spectral element method.
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Figure 5. Tapered fat-tree topology showing connectivity of a single subtree (outlined). Leaf, aggregation, and core switches are shown. Node concentration
per switch is 12, but they are grouped into netlink blocks to increase effective injection bandwidth. Links shown only give connectivity and may consist
of several distinct links/ports in actual implementation.

• MiniPIC: A particle-in-cell code from Sandia National
Labs that combines heavy neighbor particle communi-
cation with a basic linear field solve.

• Multigrd: Extracted from BoxLib [30], implements a
V-cycle multigrid solver

We expect these applications to provide opportunities for im-
proved placements over both random and linear placement.
Note that no application creates global all-to-all communi-
cation, for which improved placement has limited potential.
Communication maps for more applications are available
in [38]. The number of ranks ranges from 1K to over
10K. Placement is performed for each application separately.
APHiD and Treematch are each implemented in MATLAB.
We use the top–down version of APHiD for all experiments
because that produces higher quality placements.

B. Simulation

We choose simulations instead of real-platform experi-
ments because a real system would provide us with frag-
mented placements that differ for each run, depending on
other workloads on the system; this would introduce signifi-
cant noise to our results. In addition, controlling application
task placement in a real system can be impractical or
impossible, depending on the system software. In addition,
simulation allows exploring performance results on specu-
lative exascale configurations.

We run simulations based on MPI traces collected using
the DUMPI tool and replayed using macroscale network
models from the Structural Simulation Toolkit (SST). [42],
[43]. We report results for a fat tree sized to fit the ap-
plication [19]. All simulations are performed on the three
different tapered fat-tree configurations proposed in Section
III. We assign one MPI rank per endpoint (compute node).
Traffic uses deterministic routing with round-robin packet
scattering for load-balancing. SST/macro uses a coarse-
grained packet-level network model. Routing is performed
on individual packets. Rather than model individual flits,
however, flit-level contention is modeled using flow band-
width approximations. The simulator uses a detailed queue-
ing model with token control-flow for each packet. Details
are available in the SST/macro manuals [44].

The DUMPI traces contain timestamps for each MPI call
made. The time between successive MPI calls measures the
time spent computing in the application. When replaying
traces, the communication delays within each MPI call are
simulated. Time delays between MPI calls can be scaled
to simulate compute acceleration in future systems relative
to the platform traces were collected on. Most traces were
collected on the Cray XC30 Edison system at NERSC.
Traces were collected in an MPI-only fashion, with roughly
100MB to 1GB program data per core. Projecting to pre-
exascale or exascale, we examine time scalings up to 100x
or 1000x those from Edison. We assume network bandwidths
of 50GB/s per link (port) are feasible. This is effective
payload bandwidth, which corresponds approximately to
50% payload efficiency for a 1Tb/s link.

C. Placement Algorithm

In our experiments, we discard edges in the traffic graph
with weight less than 5% of the maximum (Section V-D).
We use recursive bisection, found in the METIS library for
graph partitioning [45], [46]. We configure the algorithm
to grow an initial bisection in a greedy manner, perform
randomized heavy-edge matching, and perform one-sided
node-based refinement.

Results are compared against the default (linear) place-
ment where MPI rank i is placed at node i, as well as the
version of Treematch found in appendix D of [8]. Treematch
is applicable to the networks and optimization goals (cost)
we consider and is a highly-regarded well-performing al-
gorithm. To evaluate locality already exploited by default
linear placement, we also define a random task placement as
median cost value out of 1000 random placements. Default
and random placements approximate default system place-
ments in some production systems today, whereas Treematch
represents the state of the art.

V. EVALUATION

A. Bandwidth and Cost Reduction

Figure 6 show bandwidth usage for a binary (2-ary) fat
tree sized to fit each application. Although binary trees are
not implemented in practice, it illustrates traffic tapering
and the quality of each placement. A binary tree mapping
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Figure 6. Bytes passing through each level of a 2-radix fat tree sized to accommodate the application.

can also be easily converted to match other hierarchical
topologies. For instance, a dragonfly with groups of size
eight will simply merge the first three levels of the binary
tree.

For Lulesh and MiniDFT, APHiD shows comparable cost
to Treematch, but for other applications APHiD shows a
range of improvements. APHiD tends to increase the amount
of traffic in lower levels of the network in order to reduce
traffic at the higher levels. The default linear placement
is considerably better than random placements, showing
the locality already inherent in linear placements - partly
because programmers expect this placement and shape their
communication pattern. However, some applications such as
MiniPIC and to some degree GTC and Nekbone are excep-
tions, partly because of long communication distances. Both
APHiD and Treematch improve on the default placement but
for MiniDFT and Multigrid the default placement already
produces high locality.

The optimization of task placement directly by the pro-
grammer at the application level is typically easier when one
communication pattern dominates. Lulesh, Nekbone, and
GTC are examples where a main pattern exists but some
additional traffic is not fully considered by the application
level tuning strategy. The traffic depends either on input
data or even collective algorithms. In contrast, APHiD can
consider all the traffic generated by the application. The
involvement of multiple patterns, complexity of the pattern,
or not having a single dominant pattern suggests better
placement strategies like APHiD should be used.

B. Cost Model

For the fat-tree topologies in Section III, we can consider
both procurement cost and power. We focus specifically on
the network link (cable) costs between switches since ta-
pered configurations primarily reduce the number of optical
cables between aggregation and core switches. We use rough
estimates of $100 for short-range electrical cables and $600
for medium-range optical cables based on current Mellanox

Cost ($) Power (kW)
Untapered 5.73M 123
Baseline Tapered 2.69M 71
0.5x Core-Tapered 1.73M 55
0.25x Core-Tapered 1.25M 47

Table III
CABLING COST (DOLLARS) AND POWER (MW) FOR INTER-SWITCH
LINKS IN FAT-TREE CONFIGURATIONS DESCRIBED IN SECTION III

Infiniband prices. For current systems [2], copper links at
intra-rack distances consume approximately 3× less energy
per bit compared to optical links (10-12 pJ/bit compared
to 30-60 pJ/bit) [47]. We attempt rough exascale estimates
based on previously reported extrapolations [4], [47]. For
short-range electrical cables, we assume roughly 5pJ/bit at
1Tb/s for electrical and 10pJ/bit at 1Tb/s for optical cables
(link + transceiver). Results are summarized in Table III.

C. APHiD Execution Cost

Given that the complexity of the recursive bisection
algorithm we use is O(E log k) for E edges and k parti-
tions [22], [48], for a hierarchical topology with N levels,
a degree of k at each level, and E edges in the traffic
graph, the overall complexity of APHiD is no greater than
O(E log k logN). This is for both bottom–up and top–down
versions. In contrast, Treematch has a complexity of O(Ek)
for each execution of “GroupProcesses”, thus O(Ek logN)
overall [8].

To illustrate the effects of higher complexity, Table IV
shows the execution time required to compute the APHiD
and Treematch placements, using the speed-optimized ver-
sion of Treematch [8]. Execution time does not include I/O
time to load the traffic matrix and record results. As shown,
top–down APHiD is 59% faster on average compared to
Treematch. Also, execution time is insignificant for smaller-
scale applications, but ranges to tens of minutes for large
applications. Execution time is a function of the number
of groups at each step of APHiD. This results in top–down
APHiD being faster, because bottom–up APHiD has to form



Table IV
APHID EXECUTION TIME (MINUTES), USING MATLAB ON A SINGLE

INTEL ’HASWELL’ 2.3-GHZ CORE. TOP–DOWN APHID IS ON AVERAGE
59% FASTER THAN TREEMATCH.

Application Top–down APHiD Treematch
Multigrid 10648 12.81 40.96
MiniDFT 1920 0.36 0.62
GTC 13384 12.81 34.17
Lulesh 4096 12.93 20.3
Nekbone 1024 0.18 0.15
PIC 1024 0.18 0.15

13824
4 = 3456 groups in the first step in the case of algebraic

multigrid solver (AMG) 13824.
These numbers would differ for an implementation using a

native programming language such as C++, but we use them
as a relative comparison to illustate the increased complexity.
Native language implementations have been observed to
produce approximately a 500× speedup over MATLAB [49].
Since APHiD relies on METIS partitioning algorithms, it
can also be easily accelerated using ParMETIS. Therefore,
APHiD should be realistic to apply at runtime.

D. Traffic Graph Pruning

To motivate our choice of a 5% pruning factor, Figure 7
shows how pruning affects the number of bytes in the
top level of the binary fat tree used in Section V-A. A
pruning factor of 5% refers to disregarding any edges in the
application’s communication graph that have a lower weight
than 5% of the maximum weight in the graph. Lulesh is
indifferent for a pruning factor up to 50% and is thus not
shown.
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Figure 7. Reduction (%) in the number of bytes at the top level of the fat
tree based on the pruning factor, compared to 0% pruning.

To begin with, we note the substantial benefit (up to
83% for GTC and 76% for MiniDFT) pruning can have.
We notice that all applications perform best for 5% or 10%
pruning. We choose 5% because it provides the largest ben-
efit on average, and because it avoids penalizing Nekbone.
Nekbone is an example where pruning more aggressively
than 5% disregards useful edges in the communication graph
for placement. The same is true for GTC and PIC for more
than 10% pruning. Multigrid shows the reverse behavior, but

the improvement beyond 10% pruning is only 10%. Even
though we choose a single pruning factor for all applications,
these results motivate choosing different factors for different
applications.

Given that the complexity of APHiD is no greater than
O(E log k logN) where E is the number of edges, pruning
essentially lowers the complexity of APHiD by reducing
the number of edges in the graph. In our MATLAB imple-
mentation of APHiD running on a single Intel ’Haswell’
2.3-GHz core, pruning reduces the algorithm’s execution
time by 2% to 20%. Therefore, pruning not only lowers the
complexity, but also increases the quality of the resulting
graph partitions.

E. Simulation Results

We examine the performance of the placement algorithms
on the three different tapered fat-tree topologies from Sec-
tion III. For each application, we assume a fixed network
configuration and speed. To assess the effect of tapering
and placements, we accelerate the compute nodes from 1x
to 1000x. If speedup relative to baseline is not proportional
to the compute node speedup, it indicates the network is
“under-provisioned” for the combination of placement and
compute capability. Figure 8 shows both raw speedups and
parallel efficiencies, e, computed as

e =
T (n)

nT (1)
(1)

where n is the compute node acceleration, T (1) is the
baseline time with n = 1 and T (n) is the time with n-fold
compute acceleration. An efficiency of 1.0 (100%) indicates
the network is sufficiently provisioned for the compute.

Lulesh maintains performance even for a 4x-tapered core
and 100x speedup. For 1000x, parallel efficiency dips sig-
nificantly. However, APHiD enables 75% efficiency even in
this configuration, far better than than Treematch at 60%
and the linear placement at 50%. The 2x core taper shows
nearly equivalent performance to the baseline configuration.
Some performance degradation is seen for 4x core taper
relative to 2x at 1000x compute acceleration. Thus whether
a 4x tapering configuration is feasible will depend critically
on the compute/communication speed ratio. MiniPIC shows
similar results to Lulesh, with the 2x core tapering showing
scalable performance and APHiD improving performance
slightly over Treematch and significantly over linear and
random placement. For GTC, Treematch slightly outper-
forms APHiD. In general, GTC is even more strongly
communication-bound than Lulesh or MiniPIC. Thus, even
for the baseline topology, 100x speedups already show a dip
in parallel efficiency. Interestingly, though, the 2x-tapered
topology with placement nearly matches the baseline case
showing the importance of placement on tapered networks.
Like Nekbone (see below), GTC likely has other communi-
cation factors than top-level bandwidth limiting scalability.



(A) Lulesh

(B) Multigrid

(C) MiniPIC

(D) Nekbone

(E) GTC

Figure 8. Simulation results show speedups as individual compute node speeds are increased for a fixed network configuration. Parallel efficiencies
demonstrate whether the network is over- or under-provisioned for the compute. Results are shown for (A) Lulesh 10,648 ranks, (B) Multigrid 10,648
ranks, (C) MiniPIC 1,024 ranks, (D) Nekbone 1,024 ranks and (E) GTC 16,384 ranks. As shown, APHiD allows most applications to perform at above
90% of idealized speedup even as nodes are accelerated past 100x current baseline.

Multigrid shows different results. In these cases, linear
placement already performs very well leaving little room
for improvement from optimized placement. Again, the
baseline and 2x tapered fat-tree configurations maintain good
performance while the 4x tapered configuration starts to

show notable performance dips, demonstrating the limits of
tapering that can be achieved before performance suffers.

Nekbone results are not scalable on any of the fat tree
configurations nor with any of the placements. A basic
sensitivity analysis (not shown) indicates that at exascale



bandwidths (50GB/s), the limiting factor is actually hop
latency and credit latency in the network rather than any
bandwidth limitation. The Nekbone case will require further
study beyond the scope of the current work. However, it
illustrates an important case where considerations other than
bandwidth will be critical to performance.

VI. RELATED WORK

Even though past work typically focuses on performance
instead of cost, a placement strategy’s objective functions
can optimize for load balancing [7], communication cost [8],
[9], [50] real-time processing [9], or a combination [51]. Past
work has examined placement algorithms that are aware of
the underlying hardware architecture, such as heterogeneity
and the memory structure [51], computing capacity of each
resource [52], proximity of resources [53], or the network
topology [15], [54]. Other work predicts network congestion
and performance in advance of execution [55]. Routing
algorithm aware hierarchical task mapping (RAHTM) [20]
and TreeMatch [8] have similar goals with our work, but
take a different approach. Treematch uses a similar bottom–
up hierarchical structure, but uses greedy metrics to find
optimal grouping at each step. In particular, the speed-
optimized version we compared against divides edges of the
communication graph into eight bins in increasing weight
order, and then sorts each bin. It then iterates through the
edges starting from the largest weights and places that edge’s
nodes in the same group. On the other hand, RAHTM has
only been applied to n-ary cubes.

Other studies have considered either tapered fat trees
directly [6] or examined cabling configurations and system
performance in hierachical (dragonfly) networks [56], [57].
Rather than placing tasks, other studies have examined
how bandwidth steering via optical switches can improve
performance in hierarchical networks [32], [58].

VII. CONCLUSIONS

In the path to exascale, the power consumption and
procurement cost of bandwidth in system-wide networks
will be a primary constraint. Considering that the trend
of computation scaling faster than network bandwidth is
expected to hold, this threatens to make network commu-
nication a primary performance and cost bottleneck in the
future. Bandwidth over-provisioning will not be feasible.
In this paper, we exploit cost-oriented task placement to
reduce bandwidth at the higher (and most expensive) levels
of hierarchical topologies. To this end, we describe APHiD,
a hierarchical task placement algorithm that uses graph
partitioning to group highly communicating tasks together.
To make APHiD practical, we advance the state of the art
by investigating how to increase the quality of the heuristic
solvers at each step of APHiD, such as by disregarding low-
weight edges of the communication graph (pruning) and
choosing between top–down and bottom–up executions.

Our ultimate goal is to demonstrate the effect of placement
algorithms in improving performance on heavily-tapered
networks, in this case a tapered 3-level fat tree. APHiD steers
traffic towards “leaf” switches, reducing cost in higher-levels
of the tree. For most applications, placement algorithms (and
APHiD in particular) help maintain scalable performance
on tapered networks even as compute nodes are accelerated
to 1000x today’s systems. For some applications, APHiD
improves performance by more than 50% relative to random
placement, 38% relative to linear placement, and even by
15% relative to state-of-the-art Treematch for Lulesh. Over-
all, applications still perform well even with severe tapering
of the fat-tree core, suggesting cost savings can be achieved
without significant performance loss. However, intelligent
placement is critical to shifting the scaling curve so that
performance remains proportional to compute node speed.
APHiD allows most applications to perform at above 90%
of idealized speedup even as nodes are accelerated past 100x
current baseline.
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