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ABSTRACT 
Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic 

methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been 

developed to ensure repeatability of these types of measurements. However, the use of couplants and the 

pressures used to effectively couple transducers to samples can bias measurements and produce results 

that are not wholly related to the properties of the graphite itself. In this work, we have investigated the 

use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These 

methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic 

couplants or mechanical contact with the sample. As a result, information directly related to the elastic 

responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, 

we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and 

shear modulus in a range of nuclear graphites including those that are being considered for use in future 

nuclear reactors. These results have been analyzed to assess the contributions of porosity and 

microcracking to the elastic responses of these graphites. Laser-based methods have also been used to 

assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific 

changes in porosity. These data were used to develop new models for the elastic responses of nuclear 

graphites and these models have been used to infer specific changes in graphite microstructure that occur 

during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in 

oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react 

more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform 

shear-wave birefringence measurements and have shown how these measurements can be used to assess 

elastic anisotropy in nuclear graphites. Using models developed in this program, ultrasonic data were 

interpreted to extract orientation distribution coefficients that could be used to represent anisotropy in 

these materials. This demonstration showed the use of ultrasonic methods to quantify anisotropy and how 

these methods provide more detailed information than do measurements of thermal expansion – a 

technique commonly used for assessing anisotropy in nuclear graphites. Finally, we have employed laser-

based, ultrasonic-correlation techniques in attempts to quantify aspects of graphite microstructure such as 

pore size and distribution. Results of these measurements indicate that additional work must be performed 

to make this ultrasonic approach viable for quantitative microstructural characterization.  
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INTRODUCTION 
According to the Nuclear Energy Research and Development Roadmap, Report to Congress under the 

section “R&D Topics for Life Extension and Performance Improvement,” data and methods are needed to 

assess the integrity of structures and components for safe and sustained nuclear plant operation.  This 

report detailed how long-term materials degradation must be understood and used to predict material 

behavior.  In particular, a milestone for materials research and development in this report was the baseline 

characterization of nuclear-grade graphites [1].  The ability to nondestructively assess the microstructural 

state of nuclear graphites is critical to qualifying these materials for current use as well as for future 

nuclear reactors.  This type of assessment is needed:  

1. to qualify graphite in its as-produced state before value-added processing occurs to make 
components  

2. to assess graphite components before they are assembled into systems for operational use  
3. to evaluate in-service components to assure reactor integrity.  

Under the program covered by this report, ultrasonic nondestructive methods were used for 

characterization of nuclear grade graphites with the specific aim of correlating characteristic 

microstructural changes with ultrasonic properties. The importance of this investigation was that it would 

allow direct identification of different types of microstructural defects within the bulk of graphite bodies 

and allow for monitoring of defect density changes brought about by operations-induced damage. The 

ultimate aim of this investigation was to identify ultrasonic characterization methods that could be used to 

perform structural health monitoring of nuclear graphites in service-specific conditions. 

Polycrystalline nuclear-grade graphites have complicated microstructures that relate directly to the types 

of precursor materials and the production methods used to form graphite.  For example, in various grades 

of nuclear graphite (such as NBG-18 and IG-110) isotropic cokes are used as filler materials since they 

can be used to produce isotropic or nearly isotropic graphites [2].  These types of graphites are preferred 

since the behaviors can be more readily predicted. However, even if the graphite is initially isotropic, 

damage accumulation can cause the material to become anistropic – this damage can be sensed using 

ultrasonic techniques. Propagation of ultrasound in polycrystalline materials can be described using 

stiffness tensors along with orientation distribution functions (related to grain orientations within the 

graphite body). Defect structures present in as-produced materials including spherical and lenticular 

voids/porosity and microcracks [3].  Exposure to operational conditions can induce macroscopic creep 

and crack closure or crack formation/growth owing to swelling of graphite domains.  This swelling, 

perpendicular to graphite planes in individual grains, results from neutron-induced, in-plane voids 

producing self-interstitials between graphite planes.  This swelling can initially result in the closing of 

nearby, aligned microcracks and, as a result, can produce higher mechanical strengths and toughnesses.  
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Further irradiation can result in swelling-induced crack and void growth owing to microstructural 

incompatibilities with a resulting loss of material integrity. The elastic moduli of nuclear graphites are 

typically measured using sonic/ultrasonic/vibrational resonance techniques.  While these latter techniques 

can be used for nondestructive evaluation purposes, ASTM standards for manufactured carbons and 

graphites (ASTM D02.F) are currently in development [3]. 

In published reports, laser ultrasonics has proven to be an effective means to characterize nuclear grade 

graphites and the program of research reported here builds on these previous results.  In early work by 

O’Brien, Telschow and Knibloe, laser-ultrasonic surface acoustic waves were used to measure elastic 

anisotropy in samples from a GraphNOL N3M billet [4].  Additional measurements with contacting, 

polarized shear-wave transducers (2.25 MHz) showed birefringence effects related to the billet pressing 

direction.  Contacting measurements by Harvel and Chang using longitudinal wave transducers showed 

that ultrasonic frequencies between 0.5 and 1 MHz were optimal for making measurements in arc furnace, 

graphite rod electrodes [5].  Unlike these earlier works, the research described here attempts to 

quantitatively correlate various ultrasonics characteristics with graphite microstructure. 

This report follows the general structure of the overall research program – three different laser-based 

ultrasonics methods were developed to perform, microstructural characterization of nuclear grade 

graphites and these can be described as follows:  

1. Effective Medium, Multimode Ultrasonics for Assessment of Microcrack Density and Porosity,  
2. Shear birefringence measurements for determination of microcrack density and orientation 

distribution, 
3. Ultrasonic scattering correlation measurements for defect distribution determination. 

Both experiment and modeling in each of these areas will be detailed in the following sections of this 

report. 
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1. EFFECTIVE MEDIUM, MULTIMODE ULTRASONICS FOR ASSESSMENT OF MICROCRACK 
DENSITY AND POROSITY 
Section A: Laser Ultrasonic Assessment of the Effects of Porosity and Microcracking on the Elastic 
Moduli of Nuclear Graphites 

A.1. Introduction 

Bulk nuclear graphites are multifunctional materials that play critical roles in various reactor 

designs.  They can serve as neutron moderators, reflectors and structural components in reactor cores.  As 

a class of materials, nuclear graphites display a range of complicated microstructures even though they 

have high chemical purity [A1].  These microstructures relate directly to the precursors used to synthesize 

graphite as well as the processing steps used to form these materials into billets for the manufacture of 

reactor components [A2].  While the properties of single crystal graphite are well known [A3], the 

properties of bulk graphites depend heavily, if not predominantly, on microstructure [A4].  

Microstructural elements include crystalline graphite, amorphous carbon, porosity, microcracking as well 

as others and each influences various behaviors depending on its presence in the overall microstructure 

[A2,A5].  The extent to which these microstructural elements appear in any given type of graphite 

depends on the methods used for production.  In the nuclear environment, these components of the 

microstructure affect overall performance, influence the rates at which damage accumulates and, 

ultimately, govern the degradation of material performance [A2,A6-8].  In particular, graphite strength 

and stiffness are among the properties that are important for material performance in nuclear applications. 

When used in the reactor core, graphite is exposed to high temperatures and neutron irradiation as 

well as oxidative species with the precise conditions being dictated by the type of reactor under 

consideration.  Operational temperatures can cause changes in stiffness and strength and creep can occur 

when graphite is subjected to fast neutron irradiation under mechanical loading [A9-11].  Graphite 

oxidation has the effect of increasing material porosity and this can impact material stiffness and strength 

[A6,A12,A13].  Also, neutron irradiation initially increases stiffness and strength, but beyond some dose, 

both decrease [A14].  All of these effects have been studied in various graphites and models have been 

developed to predict how these properties will vary during reactor operation with the goal of identifying 

service lifetimes [A15].  However, even if models are used to predict the material behavior, there is a 

need to perform inspection of critical components to verify material integrity and to update models with 

information regarding the state of the material.  Since material stiffness appears to correlate with strength 

in these materials, some type of measurement of the elastic moduli could prove valuable in assessing the 

state of the material and could be used to infer changes of the microstructure.  

In this work, the moduli in a selection of nuclear graphites have been measured using laser 

ultrasonic methods.  Ultrasonic measurements of longitudinal and shear waves have been made in 

different propagation directions in each of these graphites and were converted to corresponding moduli 
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using determinations of sample density and wavespeed.  With these moduli, Young’s modulus could be 

determined as well.  Trends between modulus and porosity volume fraction were identified and, in 

combination with models describing the stiffness of porous materials, were used to assess the influence of 

microcracking on the modulus in these materials.  Models for the relationship between microcracking and 

modulus have been used to estimate the crack populations necessary to account for the behavior of the 

graphites in this study. 

A.2. Background on Nuclear Graphite Modulus and Related Models 

A.2.1. Nuclear Graphites 

As a structural material, graphite exhibits interesting behaviors under conditions that exist in 

reactor cores.  As has been noted, neutron irradiation can initially produce significant increases in 

graphite stiffness and strength [A14] – these can be advantageous for the structural performance.  The 

microstructural mechanism responsible for these changes is related to primary knock-on atoms (PKAs) 

inserted between (0001) planes in the graphite structure.  Nucleation and growth of interplanar PKA 

regions produces swelling or expansion along the c-axis (or [0001] direction) of graphite crystallites.  

This swelling interacts with other microstructural features such as adjacent pores and microcracks 

(including Mrozowski cracks) and can affect the bulk mechanical properties by altering these features 

[A16].  In particular, induced compressive stresses that close microcracks can lead to increased stiffness 

and strength.  Continued neutron exposure ultimately reduces strength when swelling can no longer be 

accommodated by the graphite microstructure – induced internal stresses reach levels that facilitate 

material failure.  Since reductions in modulus accompany this loss of strength, measurements of modulus 

could provide valuable insight into the structural integrity of graphite. 

In this study, the moduli of 13 different nuclear graphites have been measured to provide baseline 

information on the as-produced state of these materials.  Some of these are currently produced by graphite 

manufacturers for possible use in reactors while others are legacy graphites that were either used in 

previous reactor designs or were developed for adoption in the past.  Nuclear graphites display a range of 

crystallinity, porosity, grain sizes, pore size distributions, grain size distributions and grain orientation 

distributions that relate to the precursor materials and processes used during graphite production.  Details 

regarding production methods and microstructures for some of the graphites used in this study are 

provided by Burchell et al. [A17] and by Karthik et al. [A18].  Generally, graphites are synthesized from 

petroleum- or pitch-based cokes through a sequence of processing steps that include calcination, grinding 

and blending, mixing with binders, forming, baking and impregnation, and graphitization [A2].  

Additional processing to purify the graphite can be performed – this is important for nuclear graphites to 

ensure predictable behavior in the reactor environment.  Even though these processing steps are 
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nominally the same for most graphites, differences in the starting coke, the grinding operations, the 

forming processes as well as the impregnations can yield materials with widely varying microstructures 

that exhibit different densities, grain sizes and anisotropy.  Figure A.1 shows scanning electron 

micrographs of three different graphites studied in this work – IG-110, NBG-18 and HLM.  These images 

illustrate microstructural differences among these materials that might influence various properties 

including their elastic responses.  While these micrographs primarily illustrate micrometer scale porosity, 

other important microstructural differences exist that could be identified by examining these graphites 

using higher resolution microscopy.  Despite these differences, nuclear graphites are highly crystalline.  

This unifying characteristic not only has important implications for the overall mechanical properties of 

these materials but also permits a generalized investigation of structure-property relationships. 

A.2.2. Models for Effects of Microstructure on Modulus 

A.2.2.1. Moduli of Porous Media 

Porosity plays a significant role in determining the stiffness of nuclear graphites, and its presence 

can be quantified using a range of techniques.  For example, open porosity can be measured using 

mercury porosimetry while closed porosity can be inferred from measurements of open porosity and 

evaluation of total porosity (using X-ray or small angle neutron scattering or determinations of sample 

mass and volume).  The elastic responses of materials, including those associated with ultrasonic 

measurement, are generally assumed to depend on total porosity and there are many models in the 

literature that have been used to interpret the variation of elastic modulus with porosity.  In early work on 

a type of isotropic graphite (POCO graphite), Cost et al. measured Young’s modulus and the shear 

modulus as a function of porosity over the approximate range 0.13 to 0.32 for the porosity volume 

fraction [A19].  They considered using a linear fit for their results but instead used an exponential fit to 

model trends.  This approach was chosen owing to the experimental findings at that time, but was not 

justified on a theoretical basis.  Later work by Shibata et al. examined the variation in the longitudinal 

wave velocity in two different isotropic graphites (IG-110 and IG-430) as a function of porosity [A13] 

and found that their results could be interpreted using models put forth by Takatsubo and Yamamoto 

[A20].  These models predict a nearly linear variation of Young’s modulus with porosity volume fraction 

(for low porosities) and include dependence on pore shape.  The work presented here will use models 

proposed by Hashin and Shtrikman for the bounds on the moduli of two phase materials [A21,A22].  If 

the primary phase is assumed to be graphite and the secondary phase is composed of porosity, then 

expressions for the upper bound on Young’s modulus, ′E , and shear modulus, ′G , as a function of 

porosity, ϕ , can be written using their results as follows: 
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′E / E = e(λ,G,ϕ ) 1+ λ G
1 3+ (2 3+ λ G)e(λ,G,ϕ ) g(λ,G,ϕ )

    (A.1) 

and   

′G /G = g(λ,G,ϕ )         (A.2) 

where E  and G  are the Young’s modulus and shear modulus, respectively, for the porosity-free case,  

e(λ,G,ϕ ) = 1− 3ϕ(λ + 2G)[4G +ϕ(3λ + 2G)]−1      (A.3) 

and 

g(λ,G,ϕ ) = 1−15ϕ(λ + 2G)[9λ +14G + 2ϕ(3λ + 8G)]−1    (A.4) 

with λ = G(E − 2G) / (3G − E)  being a Lamé constant related to the porosity-free moduli.  The exact 

expression for ′E / E  in Eq. (A.1) can be approximated by ′E / E ≈ e(λ,G,ϕ )  and differs from the exact 

result only by a few percent for conditions to be considered in this work. Using estimates for the stiffness 

of porosity-free, nuclear graphites, the expressions given in Eqs. (A.1) and (A.2) can be evaluated as a 

function of porosity yielding the results presented in Fig. A.2.  For the porosities considered, Young’s 

modulus and the shear modulus vary in nearly the same manner (the two plots overlap over most of the 

range) and appear to have a dependence on porosity that is almost linear. 

2.2.2. Moduli of Microcracked Media 

Microcracking likely contributes, perhaps equally, to the overall moduli of graphite [A18].  In 

this work, microcracking refers to all crack-like structures with characteristic dimensions much smaller 

than the ultrasonic wavelengths being used for measurements.  Bulk measurements in graphite typically 

employ ultrasonic frequencies below 10 MHz and these would yield ultrasonic wavelengths greater than 

approximately 160 µm (based on a shear modulus of 4.5 GPa and a density of 1.81 g/cm3).  Material 

structures, such as cracks, tend to scatter ultrasound when their dimensions exceed the ultrasonic 

wavelength.  However, structures much smaller than the ultrasonic wavelength do not scatter strongly but 

their presence does affect various material properties (in an effective medium approximation).  For the 

purposes of this work, it is assumed that all micro- and sub-micrometer cracks primarily affect ultrasonic 

propagation by modifying the elastic moduli being measured.  Among these are Mrozowski cracks that 

readily form in graphites during processing as a result of differential thermal stresses and occur between 

parallel graphite layers in crystallites as well as along basal planes at filler/matrix interfaces.  These 

cracks can be seen in high magnification micrographs [A23], but quantification of the characteristics of 

these structures is relatively difficult compared to determination of total porosity.  Even though cracks 

could be considered to be extremely high aspect ratio pores (a limiting form), they do not contribute to 

determinations of total porosity using measurements of sample mass and volume, and their effect on 
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modulus must be taken into account separately.  There are a variety of models in the literature describing 

the influence of microcracks (also called strong discontinuities) on modulus [A24-37].  Even though the 

literature describing acoustic interactions with microcracks and related discontinuities is considerable, no 

experimental studies have been performed to assess the validity of these models.  In the absence of a 

preferred approach to modeling the moduli of microcracked materials, the development presented by 

Zheng will be used [A38]. 

This model can be related to the energy states of materials containing cracks – especially 

microcracks that have dimensions much less than the acoustic/ultrasonic wavelengths of interest since 

these are weak scatterers and do not re-direct the propagating elastic wave.  Microcracks affect stress state 

energies in the material and can be described using established fracture mechanics approaches based on 

the J-integral.   Since microcracks contribute to the total elastic energy state of the material, they affect 

the effective material stiffness.  This type of effective medium approach can be used to quantify the 

expected variation of elastic stiffness with crack density. According to Zheng [A38], the strain energy per 

unit crack surface area as expressed by the J-integral, J , can be written as follows: 

J = (KI
2 (1−ν0 )+ KII

2 (1−ν0 )+ KIII
2 )(1+ν0 ) / E0    (A.5) 

where E0  is the Young’s modulus and ν0  is the Poisson ratio of the uncracked material while KI , KII , 

KIII  are the stress intensity factors corresponding to crack opening under mode I, II and III loading by 

ultrasonic waves.  For oriented, non-interacting, long-narrow-rectangular cracks, wave propagation 

perpendicular to the crack surfaces yields the following results for the microcrack-modified Young’s 

modulus (E3 ) and shear moduli (G2 ,G1 )  [A38]: 

E3 / E0 = (1− 2ν0 + 2ν0
2χ )[(1− 2ν0 + 2(1−ν0 )

2 χ )(1− 2ν0
2χ )]−1    (A.6) 

G2 /G0 = [(1−ν0 )χ +1]−1      and      G1 /G0 = [χ +1]−1     (A.7) 

where E3  is Young’s modulus for material displacement perpendicular to the crack surface, G2 is the 

shear modulus for displacement perpendicular to crack length (long side), G1 is the shear modulus for 

displacement along the crack length and G0  is the modulus of the uncracked material.  The critical 

parameter in these formulae is χ  which Zheng refers to as the effective crack density (crack surface area 

per unit volume multiplied by the crack width).  However, it is more correctly identified as the ratio of the 

internal energy density associated with cracks to the elastic energy density of the intact material – a crack 

energy density coefficient – and can be written as follows:  

χ = πncw
2l       (A.8) 
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where nc  is the number of cracks per unit volume, w  is the width (short side) of the crack face and l  is 

its length (long side).  In all of these expressions, the effective stiffness of the material decreases as crack 

density increases.  This is shown in Fig. A.3 where the elastic moduli E3 / E0  and G1 /G0  (as expressed 

in Eqs. (A.6) and (A.7)) are shown as a function of the crack energy density coefficient. Since the crack 

geometry assumed here does not accurately reflect the microcracking that is likely present in the graphites 

in this work, other crack geometries should be examined and used to model more complicated crack 

distributions, but these types of studies are beyond the scope of this work.  Even so, the model here is 

instructive and should provide an indication of the general influence of microcracking on stiffness in 

nuclear graphites.   

A.2.2.3. Moduli of Porous Media Containing Microcracks 

These models should provide insight into the roles that porosity and microcracks play in 

determining the overall stiffness of graphite.  However, it should be noted that the complicated 

microstructural elements in graphites interact in ways that are not fully captured by these simple models.  

Even so, for the purposes of this work, graphite will be considered to be composed of a secondary phase 

(pores) imbedded in a primary phase (graphite) containing microcracks, and each of these phases will be 

modeled using the ideas developed in the previous sections.  With this description in place, the porosity-

free values for modulus from Eqs. (A.1) and (A.2) (E  and G ) assume the roles of the moduli for the 

microcracked material in Eqs. (A.6) and (A.7) (E3  and G2  and/or G1 ).  In other words, if Young’s 

modulus is considered and Eqs. (A.1) and (A.6) are expressed as ′E = f (ϕ )E  and E3 = h(χ )E0 , then 

′E = f (ϕ )h(χ )E0   – this assumes that the effects of porosity and microcracking are separable. This 

approach implies that the modulus of a porous material with microcracking can be estimated if porosity, 

effective crack density and the modulus of the intact material are known.  Alternatively, this overall 

description can be used to estimate the effective crack density – a quantity that is difficult to measure or 

determine otherwise.  Again, consider Young’s modulus. Equation (A.6) can be re-written to show 

effective crack density as a function of the normalized modulus for the microcracked material – 

χ = H (E3 / E0 )   (where the function H  is the inverse of h  so that χ = H (h(χ )) ). Using the previous 

definition for f (ϕ )  yields χ = H ( ′E / ( f (ϕ )E0 )) .  This means that effective crack densities can be 

estimated once porosity and modulus are known and permits an interesting comparison between crack and 

pore number densities.   

The pore number density, np , can be expressed as np = 3ϕ / (4πR
3 )  where R  is the radius 

corresponding to an average pore volume, vp = 4πR
3 / 3 .  Also, the effective crack density can be used to 
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obtain the crack number density using previous definitions: nc = χ / (πw2l) .  The number of microcracks 

per pore is simply the ratio of these number densities: 

nc
np

= (
χ
ϕ
)
4R3

3w2l
.      (A.9) 

The ultimate value in this overall approach for the current work is that it links ultrasonic measurements of 

modulus to important microstructural features of graphite and shows how alterations related to porosity or 

microcracking brought about by the service environment of the graphite might influence modulus. 

A.2.3. Experimental Determination of Graphite Moduli 

A.2.3.1. Graphite Ultrasonic Samples   

Ultrasonic test samples were prepared from graphite blocks (or billet sections) obtained from Oak 

Ridge National Laboratory as well as from various manufacturers.  Sample dimensions were 

approximately 50 mm x 50 mm x 6 mm (length x width x thickness) with ultrasonic propagation 

occurring through the thickness of each sample.  At least two samples of each graphite type were tested 

and these were taken from different locations in the graphite blocks that were received.  The orientation of 

each sample was perpendicular to others for a particular graphite grade.  Additional samples for various 

grades were included to gather information on the variability of properties when the graphites were from 

different production runs or to assess effects of anisotropy in more detail.  Even so, this overall approach 

to sample selection (in which a single sample of a given orientation was used to represent the behavior of 

the overall material in that direction) likely affects the generality of the results presented in this work.  In 

some cases, the thickness directions could be related back to important directions characteristic of 

forming operations that occurred during graphite manufacture (such as an extrusion direction), but in 

other cases the relationship between sample and billet orientation could not be determined.  Similarly, the 

general location of some billet sections in the original billets were known, but in most cases they were 

not.  Since graphite properties vary with position in billets, this uncertainty and restricted sampling 

necessarily affect the generality and interpretation of results in this work.  To minimize variability related 

to sample surface preparation, surfaces subjected to pulsed laser irradiation were finished using silicon 

carbide grinding paper while those used for ultrasonic detection were polished using 1 µm diamond paste.  

All samples were ultrasonically cleaned in a deionized water bath and were allowed to dry before 

ultrasonic measurements were made. 

A.2.3.2. Ultrasonic Measurements 

There are a variety of ultrasonic methods that can be used to determine modulus and each has 

characteristics that recommend its use.  Depending on the methods used as well as the conditions under 

which measurements are made, modulus values can vary and, consequently, comparison of results must 
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be made with attention to the measurement protocol.  For this study, a standard transmit-and-receive, 

through-thickness measurement geometry was used in which an ultrasonic transmitter was located 

directly opposite the receiver on the graphite sample surface.  In this configuration, transit times for 

ultrasonic waves can be measured and can be used to compute the modulus of the material using the 

following relationship: 

ck = ρ(T / Δtk )
2 = ρvk

2       (A.10) 

where ck  is the modulus being measured ( k = L  for longitudinal waves and k = S  for shear waves), ρ  is 

the sample density, T  is the sample thickness, Δtk  is the transit time for the ultrasound through the 

sample and vk  is the wavespeed.  If the variation of modulus with porosity is needed, then measurements 

of density and wavespeed can be used to compute modulus while the bulk porosity can be obtained from 

density using values for theoretical density.  The relationship between density and porosity, ϕ , is given 

by the following: 

 ϕ = (1− ρ / ρ0 )         (A.11) 

where ρ0  is the density for material with no porosity (theoretically dense material).  Using this 

relationship, Eq. (A.10) can be re-written as follows: 

ck = ρ0 (1−ϕ )vk
2 .     (A.12) 

This expression indicates that two factors contribute to the dependence of modulus on porosity – porosity 

itself as well as the measured variations of wavespeed with porosity. 

A.2.3.3. Laser Ultrasonics 

Conceptually, laser ultrasonic methods should provide the same information as other ultrasonic 

measurement techniques when modulus measurements are made.  However, unlike contacting, 

piezoelectric-based transducers, laser ultrasonic methods do not require the use of liquid/gel couplants 

that can permeate the material and bias measurements.  Also, since these types of couplants are not used, 

laser-based ultrasonic sensors can potentially be used in inspection systems to assess the state of nuclear 

graphites in service environments.  Some preliminary understanding of the use of laser ultrasonic methods 

for ultrasonic assessment of graphites is needed in order to develop these types of systems – the results 

presented in this work demonstrate, in a broad fashion, the use of these methods. 

Laser ultrasonic measurements were completed using the system shown schematically in Fig. 

A.4.  A pulsed, Nd:YAG laser producing 8-10 ns pulses at 1064 nm with energies in excess of 300 mJ 

served as the source for the ultrasonic transmitter.  These pulses were attenuated and focused on the 

sample surface so that material ablation was not observed after initial surface conditioning.  The resulting 

ultrasonic transmitter produced ultrasound characteristic of a thermoelastic source with amplitudes that 



	
   14	
  

permitted detection at various locations on a given sample. Laser ultrasonic sources of this type excite 

multiple ultrasonic modes (longitudinal, shear, surface and lateral waves) each having broad frequency 

content.  Representative waveforms corresponding to the graphites highlighted in Fig. A.1 are shown in 

Fig. A.5 to illustrate the nature of the signals recorded using this type of instrumentation.  Fourier 

transforms of recorded ultrasonic transients show that signals contain significant energy from quasi-static 

frequencies up to ten(s) of megahertz – the upper limit being related primarily to characteristics of the 

material under study.  

All measurements were performed in an epicentral geometry – the transmitter being located 

directly opposite the receiver on different sides of the sample.  The receiver was a Michelson-type, path 

stabilized interferometer (shown schematically in Fig. A.4) with a diode-pumped, frequency-doubled 

Nd:YAG laser (532 nm).  The effective operating bandwidth of this instrument was approximately 20 

kHz to 50 MHz – more than sufficient to capture the ultrasonic transients at the reception location.  When 

used for ultrasonic measurements in graphite, this type of system might appear to have various 

shortcomings.  First, even though graphite is black and is strongly absorptive at the wavelengths used for 

excitation, the ultrasonic transients launched by a thermoelastic source might not be large enough to 

detect owing to the low thermal expansion coefficient for graphite.  Fortunately, all graphites examined in 

this work proved to be quite good ultrasonic transmitters owing to the interaction between the source laser 

beam and the graphite (specific details regarding optical absorption, photothermal energy conversion and 

the character of the resulting ultrasonic source will not be considered here).  Next, since graphite is black 

and absorbs quite well in the visible portion of the spectrum, optical reception using the interferometer 

might appear to be a poor choice.  However, when polished to an optical finish, the front surface 

reflection from graphite can be quite strong and provides more than enough optical return for 

interferometric detection of ultrasound. 

The ultrasonic measurements reported in this work were used to determine the longitudinal and 

shear moduli of various graphite samples (with Young’s modulus being derived using standard relations 

for isotropic materials).  These moduli were computed using measured times-of-flight from laser 

ultrasonic waveforms along with measurements of sample thickness and density.  Density measurements 

were performed using simple measurements of sample dimensions (to compute volume) along with 

sample mass determinations.  It was found that this approach to density measurement yielded more 

consistent results than those obtained using water displacement methods.   The principal uncertainty in 

making modulus measurements using this approach is determination of the times-of-flight for the various 

ultrasonic arrivals since the waveforms are complicated and must be correctly interpreted.  Modeling can 

assist the interpretation process but cannot completely reproduce all aspects of recorded signals.  

Consequently, times-of-flight measurements have been made on ultrasonic arrivals that relate to single 



	
   15	
  

transits through the sample.  When possible, revivals (corresponding to multiple transits through the 

thickness) have also been used to refine measurements since these permit pulse-echo overlap estimates for 

times-of-flight. 

A.3. Ultrasonics Results and Analysis of Modulus Variation with Porosity and Microcracking 

A.3.1. Ultrasonics Results 

Results of laser ultrasonic measurements are summarized in Table A.1 and in Fig. A.6 where the 

longitudinal and shear moduli for all samples are presented as a function of material mass density. The 

designations for the various graphites are commonly used in the literature and details regarding each can 

be found in various reports [A9,A39]. The graphical presentation in Fig. A.6 has been chosen since it 

illustrates a clear trend for graphite stiffness as a function of material density even though the only 

commonalities among the graphites are, presumably, their chemical purity and the general processes used 

during material synthesis.  This is true except for BAN which has processing steps that differ significantly 

from other nuclear graphites resulting in altered properties of this graphite relative to others [A40].  

Linear trend lines fit to the data (excluding values for BAN) are also shown since they approximate the 

overall variations of graphite stiffness with density.  Scatter of the data about the trend lines has several 

sources that can be readily identified.  Variations in density for a given graphite include actual variations 

that occur during production – some samples were taken from non-adjacent regions in billet sections – 

and also reflect measurement uncertainties.  Variations in stiffness result from inhomogeneity in the 

graphite and also include effects related to graphite anisotropy (stiffness in different directions varies).  

The effects of inhomogeneity (microstructural variations) and measurement uncertainty can be estimated 

by comparing modulus values in graphites that are known to be relatively isotropic such as IG-110.  

Using values in Table A.1, the longitudinal and shear modulus measurements for the two samples 

included in this study differ by approximately 5%.  The effects of anisotropy on reported modulus values 

can be estimated by examining results for an anisotropic graphite such as PCEA which is extruded and 

should exhibit transversely isotropic behavior.  Three different samples of PCEA were used in this study 

with samples being fabricated with surface normals for corresponding faces that were orthogonal to one 

another.  With these sample orientations, two of the longitudinal moduli listed in Table 1 should have the 

same value – two values differ by approximately 3% while the third differs from the other two by 

approximately 6-9%.  Interpretation of the shear modulus values obtained for the three PCEA samples is 

more problematic since the measurement results reported were not obtained using linearly polarized shear 

waves – laser ultrasonic shear waves from the sources used in this work were essentially radially 

polarized and this necessarily results in mixed shear modes in the received waveforms for two of the 

PCEA measurements.  Even so, owing to symmetry considerations, two of the shear modulus 

measurements should be equal and the third should differ just as was the case for the longitudinal wave.  
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For PCEA, two of the shear modulus values differ by approximately 7% while the third differs from the 

other two by 13-19%.  These observations indicate that uncertainty related to microstructural variations 

(not related to anisotropy) combined with measurement uncertainty leads to several percent variation in 

the longitudinal modulus and approximately 7% variation in the shear modulus.  Anisotropy accounts for 

an additional 3-6% variation for the longitudinal modulus and 6-12% for the shear modulus.  For the 

purposes of this presentation, this anisotropy will not be considered in detail since the measurements in 

different directions will simply provide additional scatter to the data.  Presumably, the trend lines simply 

provide an indication of the average modulus that might be realized for any given density (or similarly the 

average density for any given modulus) if an exhaustive sampling of microstructures were available for 

characterization.  Since the sampling of microstructures is necessarily incomplete, the functional forms 

for trend lines must be assumed to be correct in order to analyze the data successfully. 

A.3.2. Variation of Modulus with Bulk Porosity 

As the graphite micrographs in Fig. A.1 illustrate, nuclear graphites are porous and it is well 

known that porosity plays a significant role in affecting the moduli of these materials.  For purposes of 

comparing the current results to related work in the literature, the longitudinal and shear moduli have 

been used to compute Young’s modulus and density has been converted to porosity volume fraction 

(using a theoretical density of 2.26 g/cm3).  This allows Young’s modulus and the shear modulus to be 

shown as a function of porosity – results are presented in Fig. A.7.  In Fig. A.7a, the effect of grain type 

(based on ASTM D7219-08) on this relationship is shown by noting which graphites are fine grain (filled 

symbols) and which are medium grain (open symbols).  The results do not show any discernable trend 

that indicates grain type affects material stiffness for a given density.  In Fig. A.7b, the effect of coke 

source (pitch – filled symbols, petroleum – open symbols) is shown.  Generally, graphites processed with 

pitch-derived coke appear to have lower porosities (on average), but coke source does not appear to 

influence modulus for a given density.  Finally, in Fig. A.7c the effect of the forming method is shown.  

For the graphites studied in this work, most were formed by one of the following processes: extrusion 

(filled symbols), isostatic molding (open symbols) or vibromolding (crossed symbols).  While it appears 

that vibromolding produces materials with the lowest porosity, no clear trend between the forming 

method and modulus emerges for graphites of a particular density.  The absence of clear and identifiable 

effects of grain type, coke source or forming method on modulus as a function of density (for this sample 

set) indicates that the primary factor affecting material stiffness is porosity.  In Fig. A.8, all modulus data 

are presented without additional identification and will be analyzed as a single data set representing a 

statistical sampling of graphite modulus as a function of porosity. 

Results are shown with linear and exponential trend lines that are fit to the data.  The functional 

form for the linear fit is suggested by the model developed by Hashin and Shtrikman and is supported by 
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previous studies of particular graphites that have shown modulus values that vary nearly linearly with 

porosity [A13,A19,A41] while the exponential fit is suggested by work presented by Cost et al. [A19].  

Again, the porosity derived here is related to measurements of sample masses and volumes and does not 

include contributions to porosity that might be measured using other techniques such as BET surface area 

measurements that would involve all accessible surfaces – including those associated with open 

microcracks.  Given the richness of graphite microstructure, it is interesting that overall trends exist for 

the data gathered across the range of graphites in this study even though porosity was not intentionally 

varied. In contrast, the results presented by Cost et al. [A19] and by Shibata et al. [A41] were for 

particular graphites in which porosity was intentionally varied to assess related effects on graphite 

stiffness.  By focusing on particular graphite types, these studies yielded stiffness values that included far 

less scatter than is the case for the results presented here. 

It should be noted that the correlation coefficients for the various fits shown in Fig. A.8 are quite 

poor, but this should be expected since the approach taken here is based on a statistical interpretation of 

the data.  The trends are based on models for the relationship between porosity and modulus and the 

random scatter of points about the trend line represents the variations in microstructure (for a given 

porosity) that can give rise to different values for modulus.  The results here suggest that there exist 

general relationships between graphite porosity and moduli that might be used to obtain further insight 

into the structure-property relationships in these materials.  This statement is particularly applicable for a 

given graphite since the underlying microstructure will not display the variability of the sample set 

contained in this work. 

A.3.3. Modulus of “Theoretically Dense” Nuclear Graphite 

Using the models for modulus variation with porosity, the results in Fig. A.8 permit estimates for 

the moduli of theoretically dense nuclear graphite by noting the intercepts with the modulus axis.  This 

general procedure was used by Cost et al. who inferred that a fully dense version of the graphite they 

studied would have a Young’s modulus of 25.5 GPa and a shear modulus of 9.7 GPa.  Employing their 

use of an exponential fit with the measured results here yields values of 24.4 GPa and 10.1 GPa for the 

respective moduli.  Using the linear fit, the moduli would be 18.8 GPa and 7.6 GPa.  These 

experimentally-based estimates provide some indication of the expected moduli for a generalized, 

polycrystalline, theoretically dense graphite that contains microcracks.  As was outlined previously, 

estimates for the effective crack density can be made by using these values along with the models for the 

moduli of materials containing microcracks.  To complete this analysis, Eqs. (A.6) and (A.7) require 

values for the moduli of theoretically dense, uncracked, polycrystalline graphite, but these are unknown 

presumably owing to the inability to produce materials with these characteristics.  Values for these moduli 
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will be taken from models that use well-known values for the single crystal stiffness tensor to compute 

the corresponding moduli of polycrystalline materials with randomly-oriented grains. 

Unfortunately, theoretical estimates for the moduli of polycrystalline graphite are particularly 

difficult to obtain owing to the extremely high elastic anisotropy displayed by single crystal graphite.  The 

difference between the upper bound (based on Voigt averaging) and the lower bound (based on Reuss 

averaging) for Young’s modulus is nearly 500 GPa [A42].  The corresponding difference for the shear 

modulus is approximately 210 GPa [A42].  Clearly, these differences suggest some care must be taken in 

selecting the model that is used to estimate the theoretical stiffness of fully dense, crack-free, 

polycrystalline graphite.  Among the models that could be used – Reuss, Hashin-Shtrikman, Kröner, 

Kiewel-Bunge-Frische, Voigt [A42] – the Reuss and Voigt models rarely yield accurate modulus values 

for materials having microstructural elements that are randomly oriented in three dimensions and this 

suggests that one of the other models should be used.  For subsequent analysis in this work, we will use 

the lower bound estimate based on the generalized approach developed by Hashin and Shtrikman since it 

provides the lowest values that might accurately predict the moduli for materials with complicated, three-

dimensional microstructures [A22].  The lower limit values for Young’s modulus and the shear modulus 

in graphite are 39.9 GPa and 14.9 GPa respectively for this model [A42].  These values represent the 

moduli for uncracked material (E0  and G0   in Eqs. (A.6) and (A.7)) and can be used to estimate effective 

crack densities.  Using the experimentally-based estimate for Young’s modulus in a theoretically dense, 

microcracked material (18.8 to 24.4 GPa) along with the value from the corresponding crack-free material 

(39.9 GPa), Eq. (A.6) can be used to compute an effective crack density of 0.35 ≤ χE ≤ 0.67  where the 

subscript indicates that this estimate is based on Young’s modulus.  The corresponding estimate based on 

the shear modulus (7.6 to 10.1 GPa for microcracked versus 14.9 GPa for uncracked material) yields 

0.48 ≤ χG ≤ 0.95  – the subscript indicates that this estimate relates to the shear modulus.  These estimates 

for the effective crack density provide some indication of the degree of microcracking in the 

microstructure of a generalized, nuclear graphite material. 

A.3.4. Estimation of Microcrack Number Density 

The interpretation of the effective crack density (crack energy density coefficient) is problematic 

since it involves parameters related to the crack size as well as the crack population number density.  

However, it should be noted that the quantity associated with crack geometry (!w2l ) can be computed 

using measurements of microcrack dimensions so that the corresponding population number densities can 

be estimated.  These dimensions appear to be related to the various components of the graphite 

microstructure including the binder phase and filler particles and range from tens of nanometers to several 

micrometers [A43-46] and can be roughly equal to pore diameters in various graphites (such as IG-110). 
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This relationship permits an interesting comparison between pore and crack population densities. If 

microcrack dimensions are l = 10w  with l = πR / 4  then Eq. (A.9) indicates that there are roughly 

275 × (χ /ϕ )  cracks per pore.  If the effective crack density is taken to be in the range 0.48 ≤ χ ≤ 0.67  

(based on the overlap of the ranges obtained previously) and porosity is taken to be ϕ ≈ 0.2  (the average 

for the graphites included in this study), then there should be approximately 660 to 920 microcracks per 

pore. This estimate for microcrack density (for the assumed crack size) represents a lower bound and 

would be higher if the theoretical modulus for graphite were to exceed the lower bound predicted using 

the Hashin-Shtrikman model.  The overall conclusion from this analysis is that there are many more 

cracks per unit volume in graphite than there are pores.  This result is partly supported by SEM 

micrographs presented by Wen et al. [A23,A45] and Zheng et al. [A46] as well as by TEM results given 

by Chi and Kim [A43,A44] that show many cracks per pore.  Clearly, if the estimate for microcrack 

density were 10-2 per pore or 106 per pore, then the overall analysis suggested here would be suspect – it 

is remarkable that a physically meaningful result is obtained with a minimum of information. 

A.4. Discussion 

There are various points developed in this work that deserve additional consideration.  Among 

them is the method used to identify moduli for fully dense graphite.  The choice to use linear and 

exponential fits to the modulus versus porosity plots was based on inspection of various models presented 

in the literature as well as on previous analysis by other researchers who experimentally examined the 

relationship in more detail.  Whether the functional variation was assumed to be linear or exponential, the 

primary result to be extracted from the analysis was the modulus at zero porosity – no physical 

significance was assigned to the derivatives of the curves.  However, the model developed by Hashin and 

Shtrikman, given in Eqs. (A.1) and (A.2), provides a more detailed description that was not used to 

evaluate the data, but could be used in a more robust analysis since the shape of the modulus versus 

porosity curve depends on the modulus at zero porosity – the derivatives of the curve are linked to the 

intercept – and, as a result, two moduli can be extracted as fitting parameters from a single curve of 

modulus versus porosity.  As appealing as this might be, neither the least-squares fit of Eq. (A.1) to data 

for Young’s modulus nor the least-squares fit of Eq. (A.2) to the shear modulus data was acceptable since 

both yielded non-physical results for the Lamé constant λ  – the reason for this is a subject for additional 

investigation. 

Moving from porosity to microcracking, a major assumption in the analysis involved choices for 

the moduli of nonporous and crack-free, polycrystalline graphite (E0  and G0 ).  In the analysis, the lower 

bound moduli suggested by Hashin and Shtrikman were used.  Measurements of graphite modulus as a 

function of neutron dosage or as a function of applied pressure can add support to these choices since both 
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can close microcracks (decreasing their contribution to the overall elastic energy state) and increase the 

measured stiffness of graphite.  While these types of experiments have not been performed on the samples 

used in this study, related work has shown that Young’s modulus increases considerably when irradiated 

with neutrons.  Work by Bradford and Steer on neutron-irradiated Gilsocarbon graphites indicated that 

“structure” related changes to Young’s modulus caused the stiffness of these materials to rise from 15-20 

GPa to a maximum of 35-45 GPa [A.16].  Within the context of this discussion, the increase in modulus 

(~ 20 GPa) might be attributed to the closing of microcracks in the material.  This type of closing has 

been observed by Wen et al. for Mrozowski cracks in nuclear graphites irradiated with electrons [A.23] 

and the increase in modulus measured by Bradford and Steer is very close to the difference between the 

microcrack-free modulus and the zero-porosity modulus assumed for the graphites included in the current 

study (roughly 15-20 GPa).  Work by Ishiyama et al. on IG-110 showed that Young’s modulus increased 

by a factor of approximately 2.5 as a result of neutron irradiation [A.14].  Given an initial value of 10.2 

GPa, the maximum would be approximately 25 GPa yielding a 15 GPa increase that could be attributed to 

closing of microcracks – again, in the range of assumptions made here.  In addition, the work by Bradford 

and Steer as well as that by Ishiyama et al. showed that tensile strength reached maximum values at 

neutron dosages that also produced maximum values for Young’s modulus.  This type of behavior in 

brittle materials is consistent with crack closing/elimination since stress intensity factors and modulus 

both depend directly on crack size [A.47,A.48]. 

In order to estimate the effective crack density for a particular graphite grade (or sample) using 

the procedure outlined in this work, some method for altering porosity would be needed to obtain values 

for the modulus at zero porosity.  Porosity can be increased through oxidation processing, but this affects 

graphite microstructure in more ways than simply increasing pore size and/or number density since filler 

and binder phases oxidize at different rates [A.7].  This preferential processing of the microstructure 

ultimately affects the size and distribution of pores and likely affects the number density of microcracks, 

but this has not been verified.  A more direct route to estimating microcrack populations is to assess 

changes in modulus brought about by crack opening or closure.  This can be accomplished by imposing 

known stresses on the material, measuring changes in modulus and interpreting these changes with 

models that effectively represent microcrack characteristics in that graphite grade.  The most effective 

stress state to accomplish this type of measurement would involve hydrostatic loading since this could be 

used to close all cracks regardless of crack orientation.  Unfortunately, there do not appear to be studies 

that have measured the modulus of graphites under hydrostatic pressure, but studies have been performed 

that report variations in stiffness that have been brought about by uniaxial loading.  Yoda et al. performed 

measurements of modulus on IG-11 using longitudinal ultrasonic waves propagating along the direction 

of loading [A.49].  Whether loading was tensile or compressive, modulus decreased with material strain, 



	
   21	
  

but since strains were large (> 0.1% compressive strain, >0.03% tensile strain) permanent changes to the 

elastic modulus occurred – this is consistent with crack initiation/growth that would increase the crack 

volume fraction.  The measurements made by Yoda et al. during compression are particularly interesting 

since they show reduction in modulus as well as some recovery of modulus (perhaps 5-10%) during 

sample unloading.  While the absolute reductions can be related to increased crack volume fraction, 

recovery indicates that some type of reversible (elastic) change to the microstructure occurred during 

loading/unloading.  Within the context of microcracking, this change can be related to crack closure 

processes that effectively change the crack volume fraction sensed by ultrasound.  More recently, Bodel 

has performed measurements of modulus on nuclear graphites using longitudinal ultrasonic waves 

propagating along as well as transverse to the direction of loading [A.50].  All measurements were made 

using compressive loads (< 70 MPa).  In Gilsocarbon, Bodel found that modulus decreased with 

increasing load and irreversible changes to modulus occurred during initial loading.  Subsequent 

loading/unloading cycles primarily showed reversible changes to modulus with higher compressive loads 

yielding lower modulus values.  These results as well as others presented by Bodel are consistent with the 

influence of microcracks on modulus in graphite materials.  When taken together, the studies by Yoda et 

al. and Bodel along with the results of this work show that microcracking effects on modulus in graphite 

can potentially be isolated from other factors.  While quantitative models have not been developed or 

verified to interpret these types of measurements, directions for future work are indicated by the results 

presented here. 

A.5. Conclusions 

In this work, laser ultrasonic methods have been used to measure the stiffness in a selection of 

nuclear graphites.  Measurements were made to assess wavespeeds for longitudinal and shear waves in 

different propagation directions in the graphite samples and these were converted to effective longitudinal 

and shear moduli using determinations of sample density.  Using these moduli, Young’s modulus was 

computed.  Overall trends for these moduli indicated that they increased with graphite density or, put 

another way, decreased with graphite porosity.  These trends could be interpreted using linear and 

exponential fits to the data and this is consistent with various models in the literature that have been used 

to model variations of modulus with porosity at low porosity volume fractions.  Extrapolations of these 

fits to zero porosity were used to infer the moduli for theoretically dense graphite. These values were far 

below those expected based on various models that have been developed in the literature to predict the 

moduli of fully dense, polycrystalline, isotropic graphite.  This discrepancy could be interpreted as being 

related to microcracking in the graphite microstructure.  Models have been used to estimate the 

microcrack number densities that would be necessary to account for the behavior of the graphites in this 

study and results indicate that hundreds of microcracks per pore would be needed to reduce graphite 
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stiffness from predicted values to those inferred from measurements.  This is reasonable given the 

microstructures observed in various graphites.  Furthermore, results reported in the literature are 

consistent with the influence of microcracking on elastic stiffness and could be interpreted using concepts 

developed here.  Additional experiments are needed to quantify the relationship between modulus and 

microcrack densities and these should be developed using more accurate models that include microcrack 

orientation distributions.  Having these types of structure-property relationships should allow for more 

sophisticated characterization of nuclear graphites using ultrasonics methods. 
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Table A.1: Grade, Density and Elastic Moduli of Nuclear Graphite Samples 

Graphite Density 
(g/cm3) 

Longitudinal 
Modulus 

(GPa) 

Shear  
Modulus 

(GPa) 

Young's  
Modulus 

(GPa) 

Grain 
Type* 

Coke 
Type 

Forming 
Method Source 

HLM 1.76 10.84 3.44 8.72 
HLM 1.74 9.93 2.85 7.40 

medium 
grain Petroleum Extruded SGL Carbon / USA 

H-451 1.73 11.98 3.81 9.66 
H-451 1.72 11.40 3.56 9.06 
H-451 1.67 11.38 4.41 10.44 

medium 
grain Petroleum Extruded SGL Carbon / USA 

IG-110 1.71 8.81 2.71 6.94 
IG-110 1.71 9.28 2.87 7.32 fine grain  Petroleum Isostatically 

Molded Toyo Tanso / Japan 

IG-430 1.83 10.86 4.23 9.99 
IG-430 1.83 12.32 4.68 11.18 fine grain Pitch Isostatically 

Molded Toyo Tanso / Japan 

NBG-10 1.79 13.53 5.93 13.16 
NBG-10 1.79 14.12 5.53 13.03 
NBG-10 1.81 15.05 5.64 13.54 

medium 
grain Pitch Extruded SGL Carbon / France 

NBG-17 1.88 14.18 4.44 11.29 
NBG-17 1.87 15.94 4.63 12.00 

medium 
grain Pitch Vibromolded SGL Carbon, 

Germany / France 
NBG-18 1.88 12.91 4.78 11.53 
NBG-18 1.88 13.00 4.04 10.29 
NBG-18 1.87 13.63 5.15 12.33 
NBG-18 1.84 13.41 4.56 11.34 

medium 
grain Pitch Vibromolded SGL Carbon, 

Germany / France 

NBG-25 1.85 13.36 4.67 11.50 
NBG-25 1.85 13.76 4.87 11.95 fine grain Petroleum Isostatically 

Molded 
SGL Carbon, 

Germany / France 
PCEA 1.75 10.33 3.91 9.34 
PCEA 1.75 9.42 3.41 8.30 
PCEA 1.80 10.03 4.19 9.56 

medium 
grain Petroleum Extruded GrafTech Intl. / USA 

PCIB 1.86 13.62 4.77 11.74 
PCIB 1.88 13.70 4.71 11.66 fine grain Petroleum Isostatically 

Molded GrafTech Intl. / USA 

PGX 1.77 9.92 3.38 8.39 
PGX 1.78 10.10 4.28 9.70 

medium 
grain Petroleum Molded GrafTech Intl. / USA 

S 2020 1.77 13.20 5.06 12.03 
S 2020 1.77 13.23 5.19 12.22 fine grain Petroleum Isostatically 

Molded 
Carbone of America 

/ USA 
BAN 1.96 9.40 4.24 9.23 
BAN 1.96 10.55 3.60 8.93 

medium 
grain 

Petroleum 
Other Extruded GrafTech Intl. / USA 

* Grain type designation based on ASTM D7219-08, "Standard specification for isotropic and near-isotropic nuclear 
graphites", ASTM International, West Conshohocken, PA 19428-2959, USA. 

Note: Multiple entries in the table for the various graphite grades represent measurements made in different specimens 
that were cut from the source sample such that ultrasonic propagation would be in orthogonal directions. In certain cases, 
three entries are provided and these results were used to assess whether or not the material in the source sample was 
transversely isotropic. 
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b. 

 
c. 

 
 
Figure A.1: Scanning electron micrographs of three different graphites used in this study: a. IG-110, b. 
NBG-18, c. HLM.  These images highlight microstructural differences, especially porosity, among 
these materials. 

	
  
10 µm 

	
  
10 µm 

	
  
10 µm 

	
  
100 µm 

	
  
100 µm 

	
  
100 µm 



	
   27	
  

	
  

	
  
	
  

Figure A.2: Computed variation of elastic modulus with porosity volume fraction based on models 
developed by Hashin and Shtrikman.  The moduli are normalized by values obtained at zero porosity. 
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Figure A.3: Computed variation of elastic modulus with the microcrack energy density coefficient 
based on models presented by Zheng.  This coefficient depends on crack number density, n , as well as 
on crack geometry. 
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Figure A.4: Schematic illustration of the laser ultrasonic apparatus used to measure ultrasonic wave 
times-of-flight in nuclear graphite.  The transmitter source was a pulsed Nd:YAG laser and the receiver 
was a path-stabilized, Michelson-type interferometer. 
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Figure A.5: Laser ultrasonic waveforms for three different graphites showing the directly transmitted 
longitudinal and shear wave arrivals.  The trigger noise early in early in each waveform is related to the 
pulsing of the source laser.  a. Waveform obtained for IG-110.  The arrival at approximately 7.5 µs is 
the reflected longitudinal wave (3 transits through the sample thickness).  b.  Waveform for NBG-18.  c.  
Waveform for HLM. 
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Figure A.6: a. Longitudinal stiffness of various nuclear graphites as a function of material density. b. 
Shear stiffness as a function of density.  The solid lines in each plot represent the best fit lines to the 
data (omitting values measured for BAN – see text for discussion). 
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c. 

 
 

 
Figure A.7: Young’s modulus and shear modulus (from Table 1) for nuclear graphite as a function of 
porosity volume fraction highlighting effects of a. grain type, b. coke source and c. forming method.	
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Figure A.8: Young’s modulus and shear modulus for nuclear graphites as a function of porosity volume 
fraction.  The solid lines represent linear and exponential best-fit curves to the respective data sets.  The 
fits have been extended to zero porosity volume fraction to estimate the corresponding moduli for fully 
dense graphite containing microcracks.	
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Section B: Modeling the Effects of Oxidation-induced Porosity on the Elastic Moduli of Nuclear 
Graphites 

B.1. Introduction 

Nuclear graphite is considered to be a key material for core structures in future designs for high 

temperature nuclear reactors. Owing to its unique combination of material properties including high 

thermal conductivity, low anisotropy, high strength, and high purity, nuclear graphite can serve as an 

important structural element in the reactor core while at the same time acting as a neutron moderator and 

reflector. Even though all types of nuclear graphite are composed of the same base materials – graphite 

filler combined with a binder phase – the specific manufacturing processes used to produce these 

materials dictate the microstructural character of the final product. Operating conditions in nuclear 

reactors – including high temperatures, presence of oxidizing species, and high neutron flux – can also 

affect the material microstructure and alter the properties of graphite. In particular, the combination of 

high temperatures along with trace amounts of water in helium coolant for high-temperature, gas-cooled 

reactors can cause material oxidation. This oxidation produces material weight loss by increasing material 

porosity and leads to loss of graphite stiffness and strength. If oxidation leads to uniform development of 

porosity in the bulk of graphite components, then the effect on moduli and strength could be so high as to 

affect the integrity of the reactor. However, if oxidation is limited to the outside layer of graphite 

components, then the mechanical properties would not change deep into the core of those components. In 

this latter case, the reactor integrity might be ensured by suitable design of critical structural components. 

In any case, the health status of structural materials should be monitored using in-core structural health 

monitoring methods and these might include the use of remote-controlled robots equipped with ultrasonic 

sensors. These types of sensors would be used to determine whether or not oxidation-induced porosity 

reached levels that adversely affect material performance. To successfully implement this type of 

monitoring, it is necessary to develop structure-property relationships along with the related sensing 

strategies to assess the structural health of nuclear graphite and identify critical levels of damage [B1]. 

In particular, the relationships between elastic moduli and material density in various graphite grades 

have been studied by many investigators and these relationships could be used to develop sensing 

strategies for assessing the state of graphite components [B2-5]. Early experimental work by Cost et al. 

suggested that the elastic moduli had an exponential dependence on porosity.  By extrapolating this 

experimentally-derived relationship to zero porosity, they were able to estimate the moduli of fully-dense, 

polycrystalline graphite [B6]. Thrower et al. also made use of an exponential dependence of Young’s 

modulus on density to interpret results obtained on graphite oxidized in steam [B7]. An exponential 

function was also used by Sato et al. to fit experimental measurements of Young’s modulus of graphites 

oxidized in air [B8].  Yoda et al. showed that a power-law could be used to describe the variation of 



	
   35	
  

Young’s modulus with density for graphite oxidized in air [B9] and similar power-law relationships were 

used by Ishiyama et al. [B10] and by Eto et al.  [B11] to fit data obtained on fine-grained graphites 

oxidized in air.  Even though these functional forms can be used to describe the relationship between 

modulus and porosity (or density) in nuclear graphites, the physical basis for these has not been 

established.  Shibata et al. have developed a physical model to interpret modulus measurements in 

oxidized graphite to assist in the development of an ultrasonic method to nondestructively evaluate 

porosity levels [B12,B13].  Basing their model on interactions between pores and the ultrasonic field, 

they have successfully used this model to fit experimental results, but it has limits of applicability that 

prevent its use at low porosities.  More robust models describing the relationship between modulus and 

porosity are needed and these should be based on the physical behaviors of polycrystalline graphite.   

While computationally-based models could be developed to investigate this structure-property 

relationship, these models generally require a detailed, multiscale understanding of the material structure 

to capture information that is needed to accurately predict material behavior.  Various researchers have 

studied the microstructures that are present in nuclear graphites [B14-16]. The results of these types of 

studies show that these materials contain an impressive range of microstructural features that arise from 

the combination of filler and binder materials. Beyond these graphite-bearing phases, the processing 

techniques used to produce nuclear graphites result in pores and cracks/microcracks that figure 

prominently in the physical behaviors of these materials.  Even though much is known about the phases 

and defects that are present, it is not clear if the physical behaviors of these are understood sufficiently to 

build a multiscale, computational model that could be used to investigate the modulus-porosity 

relationship.  Beyond understanding graphites in the as-received state, microstructural changes that 

accompany service-related conditions must be understood to effectively develop inspection methods that 

are based on structure-property relationships.  Among these conditions, oxidation processes figure 

prominently since it is known that graphite can experience oxidation during normal reactor operation or 

as a result of air ingress.  To study related chemo-physical processes, Contescu et al. [B17] developed 

standard methods for oxidizing graphites and these have been used to study microstructural changes that 

accompany oxidation in various graphite grades [B18,B19].  Perhaps the most noticeable change is the 

increase in porosity that occurs as a result of oxidation – the effect of this type of porosity on the elastic 

properties of nuclear graphites is the focus of the work presented here. 

In this work, the relationships between the elastic moduli and porosity of oxidized, nuclear graphites are 

explored with particular focus on grades IG-110 and NBG-18.  Samples of each grade underwent 

controlled oxidation to produce different sample densities and laser ultrasonic techniques were used to 

measure the elastic moduli.  To interpret these experimental results, a relatively simple model for the 
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linear elastic response of a polycrystalline graphite material containing pores and microcracks is 

presented.  The critical component of this model establishes a link between microscopic oxidation 

processes and specific changes to the graphite microstructure that selectively affect elastic response. The 

effect of this selective oxidation is to reduce modulus more rapidly with porosity than would occur if all 

elements of the graphite microstructure were oxidized at the same rate.  The results of the measurements 

provided here along with the accompanying modeling approach could be useful in the development of 

sensing methods for structural health monitoring of graphite materials in nuclear reactors.   

B.2. Graphite Materials and Methods 

B.2.1. Nuclear Graphites: IG-110 and NBG-18  

Two different grades of nuclear graphite, IG-110 and NBG-18, were chosen for this study because they 

are the leading candidates for future use in high-temperature, gas-cooled, nuclear reactors. Due to 

differences in manufacturing processes, NBG-18 and IG-110 exhibit very different microstructures and 

related details are summarized in Table B.1. Bulk mass densities were determined from manual 

measurements of sample dimensions and sample masses. Even though slight variations in dimensions can 

introduce error into calculations of density using these measured quantities, this method is generally more 

accurate than water-displacement measurements owing to the open porosity present in both types of 

graphite.  Porosity was computed using measured mass densities along with the theoretical density of 

graphite, 2.26 g/cm3. Other information about these graphite grades was obtained from the respective 

manufacturers. 

Table B.1. Summary of Nuclear Graphites Characteristics 

Graphite Manufacturing 
Process 

Grain size Pore size Density 
(g/cm3) 

NBG-18 Vibramolded Max 1600 um Large (5-30 um) 
and Small (.004-.1 
um) 

1.85 

IG-110 Isostatically 
molded 

Average 20 um Small (.005-1 um) 1.77 

 

The materials were obtained from Oak Ridge National Laboratory and were machined to produce plate-

like samples with dimensions of 50 mm x 50 mm x 5 mm.  Scanning electron microscopy (SEM) images 

of samples prepared from the two graphite grades are shown in Fig. B.1 using three different 

magnifications. At the lowest magnification, differences in the macropore structure are immediately seen 

and it is clear that the maximum pore size in NBG-18 is significantly larger than in IG-110. However, as 

the two graphites are examined on smaller lengthscales, differences between the grades are not as easily 

identified. While maximum pore size can affect the character of ultrasonic signals gathered in these two 
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grades, to a first approximation the pore size distribution does not affect determination of modulus as long 

as the measurement methods are designed appropriately. 

B.2.2. Oxidation and Ultrasonic Sample Preparation 

Controlled oxidation of a total of eight graphite samples was performed at Oak Ridge National 

Laboratory using an existing graphite oxidation test system and followed the procedure recommended by 

ASTM D-7542 [B19] except sample geometry and dimensions were altered to simplify ultrasonic 

examination of oxidized samples. The test system consisted of a 3-zone vertical tube furnace, a furnace 

temperature controller, a gas supply with flow rate controller, and an analytical balance (resolution: 

±0.001 g) [B20].  Using this system, four samples each of IG-110 and NBG-18 were oxidized in air at a 

range of temperatures to produce varying degrees of weight loss. Four samples of each graphite were 

oxidized to approximately 5% and 10% weight loss at two different temperatures – IG-110 samples were 

oxidized at 525 °C and 575 °C while NBG-18 samples were oxidized at 500 °C and 575 °C. After 

oxidation and ultrasonic examination, samples were sectioned to assess the distribution and changes to the 

porosity through the thickness of the various samples. 

SEM micrographs of sections from samples of the two graphite grades oxidized at the highest temperature 

are shown in Fig. B.2. These sections represent the interior of the sample approximately 12 mm from one 

of the lateral edges and 3 mm from the surface. The images show that the macropore structures in interior 

regions of these graphites remain relatively unchanged as a result of the oxidation process. Unfortunately, 

the quality of the images does not permit more detailed observations to be made. Beyond imaging, 

porosimetry measurements were made on different sections to assess variations in the micropore structure 

through the sample thickness. These measurements tended to indicate that porosity levels were uniform 

through the thicknesses of the samples and that higher oxidation temperatures did not produce near-

surface enhancements of porosity when compared to the interior. Even though the transport of oxidative 

species through graphite depends strongly on the graphite grade, the conditions chosen in this work for 

oxidation-induced mass loss produced porosity changes that could be considered to be uniform through 

the sample thicknesses [B21].  Oxidation at temperatures higher than 650-700 °C could have been used 

and would have produced non-uniform oxidation and thinning of the samples [B21], but these conditions 

were not included in this study. 

In preparation for ultrasonic measurements, one face of each sample was polished to a mirror-like finish 

using 1 um diamond paste to allow for ample optical reflection and the opposite face was ground using 

400 grit silicon carbide paper to produce a macroscopically flat surface.  This surface preparation was 

required to complete the ultrasonic measurements on these samples. 
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B.2.3. Ultrasonic Measurement Technique 

Ultrasonic measurements were made using a non-contact, non-destructive laser ultrasonics technique 

[B.22]. Ultrasound was generated using a pulsed, 1064 nm Nd:YAG laser focused to a spot 

approximately 0.5 mm in diameter at the sample surface. The pulse from this laser (approximately 10 ns 

in duration) locally heated the sample surface and generated a broadbanded ultrasonic pulse that would 

 

 

 
Figure B.1. Scanning electron micrographs showing microstructural features in NBG-18 (a-c) and IG-110 
(d-f). At low magnifications (a and d), differences between the large scale porosity in these graphites can be 
seen. At higher magnifications (c and f), the microstructures of these graphites cannot be differentiated so 
easily using this type of imaging.	
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propagate through the sample thickness. Arrival of the ultrasound on the opposing surface was detected 

by a path-stabilized, Michelson-type interferometer oriented directly opposite the source. Both 

longitudinal and shear ultrasonic waves were detected with this technique. No fewer than eight 

waveforms were taken for each sample from varying locations across the sample surface to account for 

slight variations in time-of-flight due to surface porosity. 

B.3. Modeling of the Structure-Property Relationship in Graphite 

There exist various approaches to modeling the variation of elastic moduli with respect to porosity in bulk 

graphites.  The one taken here will view the graphite as a porous, polycrystalline solid composed of 

randomly oriented crystallites containing microcracks parallel to graphitic planes.  This overall view 

approximates actual graphite microstructure that incorporates graphitic grains (filler) into a binder matrix.  

While the binder phase might not be completely graphitized, it is assumed that the primary role of 

residual amorphous content in the graphite is to connect adjoining crystallites and, as a result, it is 

elastically constrained by surrounding material.  This constraint essentially reduces the influence of the 

amorphous carbon on the overall moduli of the graphite.  To begin modeling this system, a description for 

the moduli of an isotropic material containing two separate phases – air and polycrystalline graphite – is 

needed.  Next, the moduli of the polycrystalline graphite are needed and these should be based on the 

single crystal moduli for graphite that have been modified by the presence of microcracks.  In this work, 

analytical models will be used to capture the essential behaviors of the graphite that are likely present 

with the understanding that more refined descriptions might be needed to completely and accurately 

capture the detailed micromechanical workings. 

	
  
Figure B.2. Scanning electron micrographs showing large-scale porosity in (a) IG-110 and (b) NBG-18 oxidized 
at 575 °C. Owing to the friable nature of the material, preparation for imaging was difficult and residual 
polishing marks are present on the surfaces. The inset micrographs are of the unoxidized materials and are 
shown for comparison purposes. The scale bar shown applies to both parts of the each image.	
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B.3.1. Effective Medium Theory for Two Phase Materials 

Effective medium theories have been developed to describe the properties of materials with multiple, 

distinct phases.  The central assumption underlying these theories is that the measurement processes used 

to characterize the material is not influenced by the scale of the phases and, as a result, the measured 

properties correspond to those that would be expected for a homogeneous material that effectively 

represents the overall behaviors of the multiphase material.  The challenge for effective medium theories 

is to predict the properties of this homogeneous material based on the properties and volume fractions of 

the phases present in the actual material.  Among the many theories that could be used, the one developed 

by Hill [B23] and by Budiansky [B24] is particularly useful since it provides closed form expressions for 

the moduli of a two-phase material in the effective medium approximation. 

This particular theory was applied by Hsu and Wu to describe the moduli of a two-phase polymer [B25]. 

They showed how the measured Young’s modulus as a function of volume fraction for one of the phases 

could be accurately represented using the theory of Hill and Budiansky.  In particular, they showed how 

this relatively simple theory captured the essential aspects of percolation that occurred in their polymer 

system.  The results of this theory can be described in a few equations that will be presented here and will 

be used to develop a description for the moduli of bulk graphite.  Following the results presented by Hsu 

and Wu, there are two equations that relate the bulk modulus (K ) and the shear modulus (G ) of the 

effective medium to those of the constituent phases (K1 , K2  and G1 , G2 ) and their respective volume 

fractions ( f1 , f2 ).  These equations are as follows: 

f1(1-K1 / K ) / (3K1 + 4G)+ f2 (1-K2 /  K ) / (3K2 + 4G) = 0   (B.1) 

f1(1-G1 /G) / (αG1 +G)+ f2 (1-G2 /  G) / (αG2 +G) = 0    (B.2) 

with 

α = (8 −10ν ) / (7 − 5ν )        (B.3) 

where ν  is the Poisson Ratio of the effective medium so that 

ν = (3K − 2G) / (6K + 2G) .        (B.4) 

It should also be noted that f2 = 1− f1 . Eliminating the bulk modulus, K , from these equations yields the 

following result: 

3 f1K1 / (3K1 + 4G)+ 3 f2K2 / (3K2 + 4G)+ 5 f1G2 / (G −G2 )+ 5 f2G1 / (G −G1 )+ 2 = 0 . (B.5) 

As expected, this equation is unchanged if the phase designations are exchanged with one another.  

Inspection of the form of the equation shows that it is a quartic in G  and, as a result, it can be solved 
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analytically to obtain the shear modulus.  Even so, from a practical perspective, it is easier to simply use 

computational techniques to arrive at the various roots. 

For the purposes of this work, we will refer to the polycrystalline graphite as being the first medium and 

porosity (air) as the second medium.  Clearly, the shear modulus for air should be essentially zero while 

the bulk modulus should be extremely small compared to that of graphite.  These assumptions for the 

behavior of air are likely true even for closed pores since the strains that occur during modulus 

measurement are small.  Letting G2 = 0  in Eq. (B.5) results in the following cubic equation for G  [B26]:  

αG 3 + βG 2 + γG +δ = 0      (B.6) 

where α = 32 , β = 24(K1 + K2 )+12( f1K1 + f2K2 )+16G1(5 f2 − 2) , 

γ = 27K1K2 +12G1[(5 f2 − 2)(K1 + K2 )− ( f1K1 + f2K2 )]  and δ = 9K1K2G1(5 f2 − 3) .  There are two 

volume fractions that simplify this equation further, f2 = 0.4 and 0.6 .  If the porosity volume fraction is 

near 0.6  and the compressibility of air is high, then the final term in the cubic may be ignored and the 

equation can be approximated as a quadratic with the result that the shear modulus of the composite must 

be zero.  Indeed this result essentially holds for porosity in excess of f2 ≈ 0.5 .  An assumption underlying 

this model is that the properties of the phases making up the effective medium do not change with volume 

fraction.  While this might be true for air, the moduli of the solid phase could vary with porosity and, at 

this point, some sort of model for the elastic moduli of polycrystalline graphite is needed to assess 

whether or not this assumption holds. Even though nuclear graphites are composed of a hierarchical 

microstructure consisting of graphite crystallites (~102 nm) joined in graphite grains (20 to 800  µm) 

within a three-dimensional structure that includes a solid, binder-derived phase along with interspersed 

voids, macrocracks, etc., the effective medium approach dictates that the specific constitution of this 

complicated microstructure can be replaced by an equivalent that captures the essential behaviors of the 

original material. For the purposes of this work, the solid phase (composed of filler particles along with 

graphitized and amorphous binder) will be represented by an idealized polycrystalline assembly of 

randomly-oriented, graphite crystallites. 

B.3.2. Moduli from the Theory for Polycrystalline Materials 

The expected moduli for polycrystalline, fully-dense, bulk graphite should depend directly on the moduli 

for single crystal graphite as well as the arrangement of the crystallites in the solid.  Unfortunately, the 

relationship between the two is not a simple one.  If it is assumed that the polycrystalline aggregate 

behaves isotropically, then the two independent elastic moduli that describe isotropic materials must map 

on to the five single crystal moduli.  This mapping is directly related to processes in the material that 

distribute stresses and strains among the crystallites.  There are many schemes that have been developed 
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to model these processes including those by Voigt and Reuss.  Under the Voigt averaging scheme, 

crystallites are loaded under isostrain conditions while the Reuss scheme assumes isostress loading.  

Neither of these loading configurations is very realistic, but the results of these methods provide upper 

(Voigt) and lower (Reuss) bounds for the isotropic moduli of the material.  Other methods for deriving 

the isotropic moduli can be used (such as the one developed by Hashin and Shtrikman [B27]), but the 

simplicity of the Voigt and Reuss methods provides bounds that can be tied directly and easily to 

micromechanical processes occurring in the polycrystalline solid. 

The isotropic, elastic moduli of interest for the experiments performed in this work are C11  and C44  

(using two-index notation) and these are related to the single crystal elastic constants ( cij ) as follows for 

the Voigt averaging scheme: 

C11
V = (8c11 + 3c33 + 4c13 + 8c44 ) /15      (B.7) 

and 

C44
V = (7c11 − 5c12 + 2c33 − 4c13 +12c44 ) / 30     (B.8) 

where the superscript indicates that these represent the Voigt limit.  The corresponding results obtained 

using the Reuss averaging process are expressed most compactly using the single crystal elastic 

compliances ( sij ).  They are as follows: 

C11
R = (S11 + S12 ) / [(S11 − S12 )(S11 + 2S12 )]       (B.9) 

and 

C44
R = 1/ S44         (B.10) 

where the superscript indicates that these are the Reuss limits for the moduli and 

S11 = (8s11 + 3s33 + 4s13 + 2s44 ) /15      (B.11) 

S12 = (s11 + 5s12 + s33 + 8s13 − s44 ) /15      (B.12) 

S44 = 2(7s11 − 5s12 + 2s33 − 4s13 + 3s44 ) /15     (B.13) 

relate the elastic compliances of the polycrystalline solid to the single crystal values when Reuss 

averaging is used.  For many materials that have relatively low measures of anisotropy for the single 

crystal moduli, the Voigt and Reuss limits bracket the measured moduli closely.  For graphite, the single 

crystal moduli show a high degree of anisotropy and the Voigt and Reuss limits differ considerably.  

Indeed, according to Kiewel et al., C11
V −C11

R ≈ 530 GPa  andC44
V −C44

R ≈ 200 GPa  [B28] – these 

differences exceed the actual measured moduli and provide little guidance regarding the expected values. 
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Hill suggested that a simple arithmetic average of these limits for the shear modulus generally provides 

values that are close to measured results for many materials systems [B23] and this approach has been 

extended by others [B29] to estimate other moduli of polycrystalline aggregates.  While other theoretical 

methods have been used to estimate actual moduli from single crystal values, the Hill average provides a 

relatively good estimate with minimal computational effort.  Unfortunately, the Hill values obtained for 

the moduli of polycrystalline graphite exceed the estimated values for fully dense, isotropic graphite by a 

considerable amount.  Various researchers have attributed this discrepancy to microcracking in the 

graphite microstructure [B30,B31].  Different types of cracks are known to be present in graphite as a 

result of the extreme anisotropy of the graphite crystallite and the processing techniques used to produce 

polycrystalline material – differential thermal expansion/shrinkage that occur during material cooling 

from graphitization temperatures are accommodated by porosity and microcracking in the microstructure.  

In particular, Mrozowski cracks readily form between basal planes owing to the relatively weak, 

interplanar bonding that occurs in these directions in the crystal and these cracks have the effect of 

altering the single crystal moduli. 

B.3.3. Crack-modified Single Crystal Elastic Moduli 

The alteration of elastic moduli of solids by the presence of microcracks has been considered by many 

researchers, but there is no clear consensus on the best way to theoretically represent these changes.  Even 

so, the elastic moduli of hexagonal, single crystal materials containing microcracks perpendicular to the c-

axis have been modeled by Schoenberg and Douma [B32] and these can be expressed as follows using 

two-index notation: 

′c11 = c11 − c13
2 [1− (1+ EN )

−1] / c33     (B.14) 

′c33 = c33(1+ EN )
−1

      (B.15) 

′c44 = c44 (1+ ET )
−1

      (B.16) 

′c66 = c66        (B.17) 

′c13 = c13(1+ EN )
−1

      (B.18) 

′c12 = ′c11 − 2c66        (B.19) 

where the ′cij  indicate the crack-modified values for the moduli while EN  and ET  are non-dimensional 

parameters that relate microcrack characteristics to their effects on elastic modulus. Specifically, these 

parameters can be expressed as EN = c33ZN  and ET = c44ZT  where ZN  and ZT  represent the normal and 

tangential compliances of the microcrack.  It should be noted that if the uncracked material is isotropic, 
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then these expressions generally agree with other results under appropriate conditions [B33].  In this 

work, it will be assumed that these compliances are approximately equal ( ZN ≈ ZT ) since this is 

suggested by Schoenberg and Sayers for various types of materials [B34].  These microcrack-modified, 

single crystal elastic constants will be used in place of the single crystal values to model the elastic 

properties of polycrystalline graphite.  

B.3.4. Averaging Method – Modified Hill Approach 

Using the modified moduli for microcracked, graphite crystallites, Voigt and Reuss limits can be 

computed for the elastic moduli of polycrystalline graphite and these can be used to obtain Hill averages.  

Unfortunately, these averages still provide estimates for the elastic moduli that are too high if acceptable 

values for the microcrack compliances are assumed and this indicates that some kind of modification of 

the Hill averaging technique should be used for polycrystalline graphite microstructures.  Instead of 

assuming a simple arithmetic average, a weighted averaging scheme will be used where the average, 

polycrystalline moduli, Cij , can be expressed as follows: 

Cij = rCij
R + (1− r)Cij

V

      (B.20) 

where 0 ≤ r ≤ 1 .  The weighting parameter, r , provides some measure of the fraction of the 

microstructure that transfers stresses and strains according to the Reuss averaging scheme and essentially 

represents some type of preferred connectivity of the overall microstructure when r ≠ 0.5 .  If r < 0.5 , 

then the higher material stiffnesses will figure more prominently into the average while r > 0.5  would 

indicate that the higher compliances would be more important in determining the overall stiffness of the 

material.  For single crystal graphite as well as microcracked-modified single crystals, higher stiffnesses 

occur in the basal plane while higher compliances occur for directions perpendicular to this plane.  

Consequently, adjacent crystallites that are aligned in such a way to transfer loads along the basal plane 

will cause the material to be relatively stiff and yield r < 0.5  while those that are not aligned in this way 

will cause the material to be more compliant yielding r > 0.5 .  In some ways, the concept behind this 

modeling approach is similar to the one used by Bradford and Steer to interpret changes in properties of 

nuclear graphites that have undergone neutron irradiation.  However, unlike the development outlined 

here, the models they present are focused on macroscopic descriptions and are not based on 

micromechanical processes in graphite [B35]. 

B.3.5. Porosity and Selective Oxidation 

Using results described in the previous sections, an overall model describing the moduli of porous, 

isotropic, polycrystalline graphite can be constructed and can be used to assess the variation of modulus 

that should occur in nuclear graphites when porosity changes.  Measured porosities for contemporary 
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nuclear graphites as well as those for legacy materials generally fall in the range 0.16 <ϕ < 0.27  (where 

in terms of previous notation ϕ = f2 ) and the overall model developed here can be used to describe the 

variation of the measured moduli of these materials as function of porosity.  However, when porosity in a 

particular graphite grade is intentionally changed by reacting graphite with oxygen at elevated 

temperatures, measured moduli decrease far more rapidly with porosity than would be indicated by the 

model.  This discrepancy is likely related to selective oxidation of the graphite microstructure. 

In the model describing modulus versus porosity, an implicit assumption is that the constituent phases and 

their properties are not affected by the volume fractions of the phases themselves.  This assumption 

implies that the moduli of the polycrystalline graphite phase in nuclear graphites do not vary as porosity is 

changed.  This might be true for as-manufactured graphites that are produced using similar processing 

techniques.  However, gas phase oxidation of graphite is known to occur more readily at the edges of 

basal planes such that increases in porosity occur as a result of selective oxidation of crystallites along 

these edges [B36-38].  While oxidation does occur at the basal plane surfaces, the rate is relatively low 

compared to other sites on the crystallite surface.  The implication is that connections between crystallites 

involving basal plane edges are altered more rapidly than those associated with plane surfaces with the 

result that the microstructure and the associated micromechanics of the polycrystalline phase vary as 

porosity increases.   

To incorporate this effect into the model for the elastic moduli, the impact of the oxidation process on the 

connectivity of graphite crystallites needs to be considered.  Material removal from basal plane edges 

essentially reduces the ability of the material to transfer loads in a manner that is assumed for the Voigt 

limit.  To reflect this, a porosity-dependent value for the averaging parameter, r , will be used.  In the 

absence of a formal description of this relationship, the ansatz r = r0 + bϕ  will be used to interpret 

experimental data where r0  is the value of the averaging parameter for unoxidized material and b  

represents the sensitivity of the parameter to porosity.  If the condition r0 + bϕ > 1  holds, then it will be 

assumed that r = 1  indicating that the microstructural elements contributing to the Voigt limit have been 

eliminated by oxidation.  All the remaining microstructure behaves according to the Reuss description 

and any changes in porosity will simply remove material without significant changes to the microscopic 

elastic behavior of the graphite that remains – the elastic response of the graphite phase (as it is measured 

using ultrasonic methods) becomes independent of porosity. 

B.4. Experimental and Modeling Results 

B.4.1. Ultrasonic Measurements 

Longitudinal and shear moduli can be determined from values of sample density and ultrasonic velocity 
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using the following relations: 

C11 = ρvL
2         and  C44 = ρvS

2                     (B.21) 

where C11 = K + 4G / 3  is longitudinal modulus, C44 = G  is the shear modulus, ρ  is the mass density, 

vL  is the longitudinal wavespeed and vS  is the shear wavespeed.  To compute wavespeeds, transit times 

for the longitudinal and shear waves are needed and these can be taken from the laser ultrasonic 

waveforms (an example for oxidized IG-110 is shown in Fig. B.3). Even though details regarding the 

interpretation of waveforms in graphite materials are the subject of current studies, in many cases the 

times associated with specific features can be taken to be the transit times for the longitudinal and shear 

waves respectively (see Fig. B.3). A more accurate measurement using a pulse-echo overlap method 

could be used, but signal-to-noise issues for waveforms taken in heavily oxidized materials prevent its 

use.  

In Fig. B.3, representative waveforms obtained in different samples are shown for IG-110 and these 

generally illustrate the variations in signatures for wavefront arrivals that occur in nuclear graphites. 

	
  

	
  
Figure B.3. Laser ultrasonic waveforms obtained in different samples of IG-110 oxidized at 
either 525 °C or 575 °C. The weight losses obtained for each sample are shown. In the upper 
left graph, the arrival of longitudinal wave (L) occurs at 2.05 us and arrival of shear wave (S) 
occurs at 3.1 us. The reflected longitudinal wave (3L) is also indicated. Noise from the pulsed 
excitation laser dominates the signal from 0.0 to 1.5 us in all waveforms. 
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Owing to the complicated nature of laser ultrasonic waveforms, especially those for more highly oxidized 

samples, it is sometimes difficult to precisely identify wave arrivals and determine associated transit 

times. To reduce measurement variability associated with this uncertainty, high-order polynomial 

functions were fit to the data in regions associated with the wave arrivals and transit times were based on 

these fits.  Combining these times with sample thickness measurements along with separate 

measurements of sample density, values for the longitudinal and shear moduli could be computed and are 

summarized in Table B.2.  

Table B.2. Oxidized Graphite Density, Porosity and Moduli 

Graphite 

Sample 

Designation 

Oxidation 

Temperature 

(°C) 

Oxidative 

Weight 

Loss 

Sample 

Thickness 

(cm) 

Mass 

Density 

(g/cm3) 

Porosity C11  

(GPa) 

C44

(GPa) 

IG-110        

As-received - 0.00 0.604 1.77 0.217 10.0 4.07 

HT1  575 9.41 0.556 1.653 0.269 5.12 1.95 

HT2 525 10.7 0.380 1.623 0.282 3.80 1.51 

HT3 525 4.51 0.425 1.726 0.236 7.43 3.17 

HT4 575 5.12 0.444 1.732 0.234 8.56 3.58 

NBG-18         

As-received - 0.00 0.615 1.88 0.168 14.1 5.67 

HT1 575 10.92 0.595 1.757 0.223 8.00 2.56 

HT2 500 9.99 0.618 1.784 0.211 10.0 3.90 

HT3 500 4.30 0.560 1.843 0.185 12.8 4.98 

HT4 575 4.30 0.584 1.840 0.186 12.0 4.53 

 

B.4.2. Modulus and Porosity 

The relationship of the measured moduli to porosity can be examined by graphing the results given in 

Table B.2, but for purposes of comparison, the longitudinal and shear moduli will be used to derive 

Young’s modulus, E , for all the graphite samples using the following relationship: 

E = C44 (3C11 − 4C44 ) / (C11 −C44 ) .    (B.22) 

The results are shown in Fig. B.4 where Young’s modulus and the shear modulus for all samples (IG-110 

and NBG-18) are shown as a function of porosity.   The solid lines represent fits to the data using the 

microcrack-modified, single-crystal elastic moduli (all in GPa) ′c11 = 1053.79 , ′c33 = 1.07 , ′c44 = 0.857 , 

′c12 = 173.79 , ′c13 = 0.447  (using the single crystal elastic moduli c11 = 1060 , c33 = 36.5 , c44 = 4.00 ,  
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c12 = 180 , c13 = 15.0  with ZN = ZT = 0.5 ) and the averaging parameter 

r = 1− 0.068(1− 3ϕ ) = 0.932 + 0.204ϕ .  It should be noted that the computed results for both moduli 

depend on the same values for: 

1. the microcrack-modified, single-crystal, elastic moduli, 
2. the initial contribution of Reuss and Voigt limits to the polycrystalline moduli, 
3. the relative contributions of these limits as a function of oxidation-induced, porosity 

evolution. 

Essentially, the model only requires specification of three parameters once the single crystal elastic 

moduli are provided ( ZN = ZT , r0  and b ) and with these the fits for both sets of modulus measurements 

are obtained.  No distinction between the results for IG-110 and NBG-18 were made in establishing the 

modeled fits since the data appeared to follow a single trend. This approach is perhaps supported by the 

nature of oxidation in these materials since the majority of material loss occurs as a result of 

micro/nanoscale processes throughout the graphite microstructure and the two graphite grades might not 

differ significantly at this level. Even with this coarse approach to data interpretation, the correlation 

coefficient for the fit to Young’s modulus data is R = 0.9716  and for the shear modulus it is 0.9551.  The 

discontinuity in the first derivative of the modeled results at ϕ = 1 / 3  is related to exhaustion of Voigt-

related contributions to the modulus.  At higher porosities, the microstructure behaves according to the 

	
  
Figure B.4. Elastic moduli – Young’s and shear – for nuclear graphites IG-110 (open 
symbols) and NBG-18 (filled symbols) as a function of porosity.  Variations in porosity for a 
given grade were produced by oxidation.  Solid curves are fits to the data based on the model 
outlined in this work. 
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Reuss model and the moduli have a linear variation with porosity.  Both moduli essentially go to zero 

when ϕ = 0.5 . 

B.5. Discussion 

This work raises numerous points for discussion, but only a few will be briefly mentioned here.  First, the 

physics-based modeling outlined here provides direct connections between the established literature for 

the elastic properties of multiphase, polycrystalline materials and the related ultrasonic behavior of 

nuclear graphites.  In particular, modeling has shown that the behavior of porous graphite materials 

depend heavily on the methods that are used to introduce porosity (or changes in porosity) into the overall 

microstructure.  Standard models for the moduli of isotropic, two-phase materials typically assume that 

volume fraction does not affect phase modulus. However, this is likely not the case for oxidation-induced, 

porosity changes in polycrystalline graphite since preferential oxidation of specific microstructural 

elements primarily in the binder will result in related modulus changes.  These changes will likely differ 

from those associated with other processes that could be used to change porosity.  In this work, methods 

to account for the selective effects of oxidation processes on graphite modulus have been proposed and 

successfully used to interpret measurements.  

Next, the measurements presented here were obtained using laser ultrasonic methods and it would be 

useful to understand how these ultrasonic results compare with those in the existing literature that were 

obtained using other methods [B39].  Since only optical access to the sample is required to perform laser 

ultrasonic measurements, materials with highly compliant microstructures can be characterized without 

changing the essential behavior of the material.  Other ultrasonic techniques using contacting transducers 

can load the material and produce changes that affect the modulus.  For oxidation processes in graphite, 

small changes in the microstructure can produce relatively large changes in modulus owing to the extreme 

anisotropy of graphite crystallites.  For example, if two adjacent crystallites transfer stress in the basal 

plane, then oxidation at the boundary between the two can dramatically reduce the local modulus.  

However, if the material is loaded in a manner that brings the boundaries of these crystallites into contact, 

then the modulus will increase.  Methods to measure the elastic modulus of oxidized graphites will only 

yield comparable results if the loading conditions used during the measurement process are the same.  

Unfortunately, most results in the literature have been obtained using contacting transducers or other 

techniques that load the sample.  However, Eto et al. [B11] performed ultrasonic measurements on 

samples of oxidized IG-11 that were bonded to a buffer rod.  Ultrasonic measurements were performed 

through the rod in a pulse-echo configuration in a manner that left the sample in a nearly unloaded 

condition.   Their measurements of Young’s modulus (corrected) are shown in Fig. B.5 along with the 
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results from Fig. B.4 (no longer differentiated by grade) – the agreement of these experimental results is 

quite good despite the differing graphite grades and measurement methods. 

Moreover, a comparison can be made between the model used by Eto et al. to fit their data and the model 

developed in this work.  Eto et al. used a power law function to fit their Young’s modulus data and this 

variation can be partially justified on a theoretical basis.  Researchers interested in the percolation of 

elastic networks have shown that the bulk and shear moduli should display power law dependence near 

the percolation threshold [B40,B41].  However, this dependence simply represents a functional fit to 

numerically-generated values for modulus derived from simulations of network solids.  This means that 

the basis for the power law is one step removed from the assumed physical constitution of the network.  

Regardless, the model developed in this work can be fit to the data presented by Eto et al. and a 

comparison can be made to a power law fit.  Figure B.6 shows the related graphs.  The results show that 

the overall behaviors of the functional fits to the data are similar and that in the range of the data the 

correlation coefficients are nearly identical – 0.9978 for the power law and 0.9958 for the physical model 

developed in this work.  Additional observations could be made regarding experimental measurements 

and the behaviors of the various models, but these would necessarily be limited by the quality of available 

results and by the current understanding of the effects of oxidation processes on nuclear graphite 

microstructure. 

	
  
Figure B.5. Young’s modulus measurements in oxidized IG-11 (from Eto et al. – filled 
circles), IG-110 and NBG-18 (open circles).  The solid curve is the model fit from Fig. B.4. 
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B.6. Conclusion 

In this work, the elastic moduli of oxidized nuclear graphites have been studied using a combination of 

physics-based models along with experimental measurements using ultrasonic methods.   Assuming that 

nuclear graphites behave as porous, polycrystalline solids, an effective medium model for the elastic 

response of these materials was developed that included the effects of microcracks on the elastic behavior 

of graphite crystallites.  Owing to the physical basis for this model, the effects of oxidation could be taken 

into account. Beyond simply increasing porosity, oxidation preferentially changes specific portions of the 

microstructure and these changes could be incorporated into the model to successfully interpret 

experimental determinations of elastic modulus.  Laser ultrasonic methods were used to measure the 

longitudinal and shear moduli as a function of porosity.  These methods only require optical access and 

do not impose any significant mechanical loading on the material surface so that highly compliant 

structures that develop as a result of oxidation are not altered during the ultrasonic measurement process.  

The effect of this loading can be quite important for oxidized graphite and can influence modulus 

measurements – especially in more porous materials. The effect of the measurement on the state of the 

	
  
Figure B.6. Young’s modulus as a function of porosity in IG-11.  Data values (filled circles) 
represent data published by Eto et al. [B11].  Solid curves represent functional fits to the data – 
power law (top) and the physical model presented in this work (bottom). 
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material has significant implications for developing sensing strategies for structural health monitoring and 

needs to be considered when assessing measurement results. 
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2. SHEAR BIREFRINGENCE MEASUREMENTS FOR DETERMINATION OF MICROCRACK DENSITY 
AND ORIENTATION DISTRIBUTION 
Section C: Line Source Representations for Shear Wave Birefringence Measurements in  
Transversely Isotropic Materials using Laser Ultrasonics 

C.1. Introduction 

Elastic waves derived from line sources have received the attention of researchers dating back to Lamb 

whose classic work on step loading of an elastic half-space has inspired innumerable, succeeding 

investigations including the results presented here [C1-3].  In this work, we develop models for ultrasonic 

waves produced using laser line sources in transversely anisotropic materials with the aim of developing 

specific shear wave polarizations that can be used to make birefringence measurements and characterize 

aspects of the material anisotropy.  These models will use idealized line source representations for the 

laser source to simplify the overall treatment and to highlight the effects of elastic anisotropy on wave 

propagation.  Taking this approach allows for a concise presentation of analytical solutions and isolates 

specific characteristics of these solutions.  It also captures the essential physical processes permitting easy 

computation for comparison to experimental measurements.  These comparisons are not presented in this 

work, but various characteristics of wave propagation that have not been explored previously will be 

noted – these potentially point to new directions for materials characterization using elastic waves. 

An important characteristic of materials that directly impacts elastic wave propagation is texture – the 

partial alignment of elastically anisotropic grains/crystallites.  For a population of randomly-oriented 

grains that interact with ultrasound over sufficient propagation distances, materials can behave 

isotropically.  However, if the grains do not have complete orientational randomization in the sampled 

volume, then the material will be elastically anisotropic and wavespeeds will vary with direction and 

polarization [C4-6].  Beyond grain orientation effects, partial alignment of defect structures such as 

microcracks can also induce elastic anisotropy [C7-10].  Ultrasound has been used to assess this 

anisotropy and, with appropriate models, can be used to infer some characteristics of the underlying 

microstructure such as the orientation distribution coefficients.  In particular, shear wave birefringence 

measurements can be used to isolate specific aspects of the anisotropy that can be useful for process 

monitoring and control [C11-13] and various methods have been implemented to make these types of 

measurements [C14,C15], but none has taken advantage of laser line sources to produce polarized shear 

waves. 

Laser line sources for elastic wave generation as well as the wavefields associated with these sources have 

been studied extensively.  Early work simulated the behavior of thermoelastic sources using shear stress 

dipoles and focused on the directivity patterns associated with longitudinal and shear waves in isotropic 

materials [C16].  Subsequent reports refined this general description by including details related to the 
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underlying physics such as optical absorption, photothermal conversion and thermoelastic response [C17-

22]. Various approaches have been used to model characteristics of the resulting elastic wavefield and 

these have been verified experimentally [C17].  One major finding is that the wave directivities and 

polarizations for these types of sources are complicated – even when the material is isotropic.  Unlike 

other methods that have been used to perform ultrasonic shear birefringence measurements, the potential 

for using laser line sources for these types of measurements is largely unexplored. A good starting point 

for assessing this potential is to model shear wave birefringence in anisotropic materials excited using a 

laser source. 

For isotropic materials, modeling of elastic waves generated by line sources has been the subject of many 

investigations.  Indeed, Lamb’s original problem is generally shown in textbooks on wave motion in 

elastic solids since it considers isotropic materials – the expressions for displacements in the wavefield 

are compact and readily interpreted [C1,C3,C23].  The extension to anisotropic materials and point 

sources requires effort but yields rich results that go well beyond those to be exploited here [C24-31].  

Fortunately, line source excitation of transversely anisotropic half-spaces has also been considered in 

some detail and the essential mathematical techniques required to derive solutions is generally no more 

involved than those used for isotropic materials [C32-34].  However, compact analytical solutions exist 

only for specific cases, but these can be obtained using careful algebraic manipulations.  While direct 

numerical solution of the governing equations and boundary conditions can be performed [C35,C36], 

simple insights into the overall behavior of the system can be lost – analytical results permit general 

conclusions to be made that might be difficult to identify otherwise.  The subsequent sections will 

develop models for the epicentral displacements resulting from laser line excitation of transversely 

isotropic half-spaces of different orientations.  The development will largely follow approaches presented 

previously by Payton [C37], Hurley [C38] and others [C39] with minor changes to notation to improve 

clarity. Three specific cases will be considered: Case I – Line source in the plane of symmetry, 

displacements along the symmetry axis; Case II – Line source perpendicular to the symmetry axis, 

displacements perpendicular to the symmetry axis; Case III – Line source parallel to the symmetry axis, 

displacements perpendicular to the symmetry axis.  The geometry for each is shown in Fig. C.1.  While 

only Cases II and III are needed to illustrate shear wave birefringence, Case I shows the methods used for 

solution and complements the other results.  In all cases, final solutions for epicentral displacements will 

be given for materials having convex normal surfaces (Class I materials) such as occurs for various single 

crystals with hexagonal symmetry [C37] as well as for certain weakly-textured, polycrystalline materials 

displaying transverse isotropy.   
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C.2. Theory and Models 

In the following developments, epicentral displacements from suitably-oriented, unit strength, shear stress 

dipoles will be derived.  These stresses relate directly to the corresponding surface tractions that are 

appropriate for each case.  The relationship of shear stress dipoles to laser line sources has been 

established previously and these are relatively simple for adiabatic conditions that ignore thermal 

diffusion [C19,C38,C39]. Under these conditions, appropriate normalization factors can be applied to the 

results presented here to compute displacements.     

C.2.1 Epicentral Displacements Along Symmetry Axis – Case I 

Suppose we have a transversely isotropic material in the form of a half-space where the surface is 

perpendicular to the x3-axis.  A shear stress is applied at the surface along the x1-axis such that: 

σ 32 x3=0
= ′δ (x2 )H (t)       (C.1) 

where σ ij  is the elastic stress tensor, δ (xi )  is the Dirac delta (the prime indicates differentiation with 

respect to x2) and H (t)  is the Heaviside step function where t  represents time.  No normal tractions act 

at the boundary and this implies that the normal stress vanishes: 

σ 33 x3=0
= 0 .         (C.2) 

These conditions mimic those for a laser line source in the thermoelastic (non-ablative) regime.  The 

equation of motion for the medium can be written as: 

σ ji, j + fi = ρui,tt       (C.3) 

where fi  represents the component of the body force along the xi  axis, ρ  is the material density and ui  

is the material displacement along the xi  axis and indices after commas indicate differentiation – spatial 

coordinates are referenced using corresponding subscripts.  The following constitutive relationship will be 

used: 

σ ij = cijklε kl        (C.4) 

where cijkl  are the components of the elastic stiffness tensor and ε kl  is the infinitesimal strain tensor.  

This can be written in terms of the material displacement as follows: 

ε ij = (ui, j + uj ,i ) / 2 .      (C.5) 

Using these relationships along with the equation of motion yields the following wave equation 

describing material displacements in the medium: 

cijkluk ,lj + fi = ρui,tt       (C.6) 
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where the symmetry of the stress tensor has been utilized.  For transversely isotropic materials, the 

stiffness tensor exhibits a number of symmetries that can be used to reduce the number of independent, 

non-vanishing components to the following: c11 = c22 ≠ c33 , c12 ≠ c13 = c23 , c44 = c55  and 

c66 = (c11 − c12 ) / 2  where contracted notation has been used for the subscripting (11→1 , 22→ 2 , 

33→ 3 , 23→ 4 , 13→ 5  and 12→ 6 ).  Making the substitutions [C37]: 

ui = (ρ / c44 )
1/2vi  and  t = (ρ / c44 )

1/2τ    (C.7) 

in Eq. (C.6) yields the following: 

(cijkl / c44 )vk ,lj + fi (ρc44 )
−1/2 = vi,ττ     (C.8) 

where the stiffness tensor components have been normalized by one of the shear stiffnesses and the body 

force is normalized by the corresponding elastic impedance.  For the purposes of this presentation, it will 

be assumed that the laser source can be represented using boundary stresses alone and subsurface sources 

are negligible ( fi = 0 ).  Considerations of the symmetry of the imposed boundary stresses indicate that 

v1 = 0  and vi,1 = 0  – only displacements and derivatives associated with the x2  and x3  need to be 

considered.  Using α = c33 / c44 , β = c11 / c44  and κ = 1+ c23 / c44 , Eq. (C.8) yields the following: 

βv2,22 + v2,33 +κ v3,23 = v2,ττ        (C.9) 

and 

αv3,33 + v3,22 +κ v2,32 = v3,ττ .      (C.10) 

These equations need to be solved simultaneously and this will be accomplished using the Fourier-

Laplace transform pair defined as follows: 

vi = vi exp(−ik2x2 − sτ )
−∞

∞

∫
0

∞

∫ dx2dτ     (C.11) 

and 

vi = −i(2π )−2 vi exp(ik2x2 + sτ )
−∞

∞

∫
C
∫ dx2ds .   (C.12) 

Transforming Eqs. (C.9) and (C.10) and assuming v2 = Aexp(k3x3)  along with v3 = Bexp(k3x3)  yields 

two algebraic equations that must be solved simultaneously.  The following characteristic equation 

results: 

αk3
4 − k3

2 ((1+α )s2 + χk2
2 )+ (βk2

4 + (1+ β )k2
2s2 + s4 ) = 0 	
   	
   (C.13) 
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where χ = 1+αβ −κ 2 .  The form for this equation suggests that we can parameterize the propagation 

constants as follows: k2 = sγ 2  and k3 = sγ 3  [C37].  The resulting equation is a quadratic for γ 3
2  (bi-

quadratic for γ 3 ) and the resulting four roots are summarized as follows: 

γ 31 = (2α )
−1/2{[(1+α )+ χγ 2

2 ]+ϕ1/2}1/2    (C.14a) 

γ 32 = −γ 31        (C.14b) 

γ 33 = (2α )
−1/2{[(1+α )+ χγ 2

2 ]−ϕ1/2}1/2    (C.14c) 

γ 34 = −γ 33        (C.14d) 

where ϕ = [(1+α )+ χγ 2
2 ]2 − 4α[βγ 2

4 + (1+ β )γ 2
2 +1] .  Propagating solutions require that these roots 

be real and consideration of solution boundedness as x3 →∞  requires that only explicitly negative roots 

be retained in the full solution.  The assumed forms for v2  and v3  are as follows: 

v2 = a1 exp(−sγ 31x3)+ a2 exp(−sγ 33x3)     (C.15) 

v3 = b1 exp(−sγ 31x3)+ b2 exp(−sγ 33x3) .   (C.16) 

The four coefficients are determined using the transformed versions of Eqs. (C.8), (C.9), (C.2) and (C.1).  

In this work, we are only interested in displacements along the x3  axis (since these can be readily 

measured) and will only present results for the coefficients b1 and b2 .  Clearly, direct computation of 

displacements can be carried out at this point, but there are advantages that can be gained by additional 

analytical manipulations of the various equations since relatively simple expressions for the 

displacements can be obtained ultimately.  The extensive algebra involved is unwieldy and requires keen 

attention to groupings of terms, but in the end the following results are obtained: 

b1 = (c44ρ)
−1/2 (κγ 2

2 / s)[(1+ γ 2
2 )(1−κ )−αγ 33

2 ]γ 31 ÷ D   (C.17) 

and 

b2 = −(c44ρ)
−1/2 (κγ 2

2 / s)[(1+ γ 2
2 )(1−κ )−αγ 31

2 ]γ 33 ÷ D   (C.18) 

where 

D =κ (γ 31 −γ 33 ){(1+ γ 2
2 )[2(1−κ )γ 2

2 − (χγ 2
2 +α )]−αγ 31γ 33} . (C.19) 

Equations (C.16)-(C.19) provide the complete solution for the desired displacements in the doubly 

transformed domain.  Fortunately, the process for performing the required inversions is well known.  

Even so, the various steps will be shown here for completeness.   

First, the inverse Fourier transform with respect to the variable k2 = sγ 2  will be performed: 



	
   60	
  

 
v3 = (2π )

−1 v3−∞

∞

∫ exp(isγ 2x2 )sdγ 2 = (π )
−1 Re v30

∞

∫ exp(isγ 2x2 )sdγ 2   (C.20) 

where  v3  represents the Laplace transform of v3  and the final equality in Eq. (20) results from v3   being 

even in γ 2 . 

Since only epicentral displacements are needed, x2 = 0  and the transform simplifies considerably since 

the integrand in Eq. (C.20) depends on γ 2
2  – this suggests a change in the integration variable.  Letting 

Γ2 = γ 2
2  yields the following: 

 
v3 = (2π )

−1 Re v30

∞

∫ sΓ2
−1/2dΓ2  .    (C.21) 

While this change might not appear to have achieved any significant advantage, it actually simplifies the 

remaining inverse transform operation – integration with respect to τ  along C  – allowing the ultimate 

solution to be obtained essentially by inspection.  We will consider the terms containing b1  and b2  

separately and begin with the b1  term.  For this term in the transform, let the variable τ1 = γ 31x3  stand in 

for τ  in the inverse Laplace transform operation in Eq. (C.12).  With this parameterization, Γ2  can be 

interpreted to be a function of τ1  such that dΓ2 =
1
x3

∂Γ2

∂γ 31
dτ1 .  A similar parameterization for the term 

containing b2  can be carried out (τ 3 = γ 33x3 ) so that combining Eq. (C.21) with (C.20) (including 

(C.16)-(C.19)) yields the following: 

v3 = −i(2π )2 { Re H (τ1 − x3)b1
0

∞

∫
C
∫ sΓ2

−1/2 ∂Γ2

∂τ1

exp(−sτ1)exp(sτ )dτ1ds

                             + Re H (τ 3 −α
−1/2x3)b2

0

∞

∫
C
∫ sΓ2

−1/2 ∂Γ2

∂τ 3

exp(−sτ 3)exp(sτ )dτ 3ds} .
 (C.22) 

Equation (C.22) appears to be a forward Laplace transform immediately followed by the inverse Laplace 

transform operation. The result of these operations can be written directly as follows: 

v3 = (2π )
−1 Re[H (τ1 − x3)b1sΓ2

−1/2 ∂Γ2

∂τ1
+ H (τ 3 −α

−1/2x3)b2sΓ2
−1/2 ∂Γ2

∂τ 3
] . (C.23) 

Next, we need to express Γ2  in terms of γ 3  and also put the derivatives in Eq. (C.23) into recognizable 

forms.  To achieve the first of these tasks, Eq. (C.13) can be written as a quadratic in Γ2  and can be 

solved to yield the dependence of Γ2  on γ 3  as follows: 

 
Γ2 = (2β )

−1{χγ 3
2 − (1+ β ) [(χγ 3

2 − (1+ β ))2 − 4β(αγ 3
4 − (1+α )γ 3

2 +1)]1/2} γ 31→−
γ 33→+

. (C.24) 
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The derivative can be obtained most directly by differentiating the quadratric equation for Γ2  and this 

yields the result: 

∂Γ2

∂γ 3
= 2χγ 3Γ2 + 2(1+α )γ 3 − 4αγ 3

3

2βΓ2 + (1+ β )− χγ 3
2 .    (C.25) 

where the appropriate sign in Eq. (C.24) is chosen based on the term in Eq. (C.23) being evaluated.  For 

completeness, this derivative is written for these terms using previous definitions as follows: 

 
∂Γ2

∂τ1
= 1
x3

∂Γ2

∂γ 31
= 1
x3

∂Γ2

∂γ 3 γ 3=γ 31  

and  
∂Γ2

∂τ 3
= 1
x3

∂Γ2

∂γ 33
= 1
x3

∂Γ2

∂γ 3 γ 3=γ 33

.  (C.26) 

With all terms expressed explicitly, it only remains to compute displacement values as a function of 

reduced time.  For the first term in Eq. (C.23), we let τ = τ1 = γ 31x3  and this is used to compute γ 31 .  

This value for γ 3 is used in Eq. (C.24) to compute Γ2  (choosing the correct sign) as well as the derivative 

in Eq. (C.26).  This value for Γ2  is used in (C.14c) to compute γ 33 .  Finally, these values for γ 31 ,  γ 33  

and Γ2  are used with Eqs. (C.17) and (C.19) to evaluate the coefficient b1 .  The second term is evaluated 

in a similar fashion but the parameterization begins with τ = τ 3 = γ 33x3 .  This completes the evaluation 

of displacements along the x3  axis in a half space arising from a shear dipole line source with step time 

dependence acting on a surface perpendicular to the axis of symmetry in a transversely isotropic material.  

These displacements are independent of the orientation of the line on this surface since it is a plane of 

isotropy.  The strength of the laser line source dipole can be obtained by multiplying the unit source used 

here by q0[β22 − (c23 / c33)β33] /C  where q0  is the line fluence [J/m], βij  are the components of the 

thermal stress tensor and C  is the heat capacity [Jm-3K-1] [C38,C39]. 

 

C.2.2 Epicentral Displacements Perpendicular to Symmetry Axis: Line Source Perpendicular to 

Symmetry Axis – Case II 

For this case, the surface of the half-space is perpendicular to the x2-axis and a shear stress is applied on 

the surface along the x1-axis such that: 

σ 23 x2=0
= ′δ (x3)H (t)      (C.27) 

and it is assumed that there are no contributions from the normal stress to the surface tractions such that: 

σ 22 x2=0
= 0 .      (C.28) 

Owing to the symmetries of these stresses, once again, only displacements and derivatives associated with 

the x2  and x3  directions need to be considered.  The equations of motion, given in Eqs. (C.9) and (C.10), 
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are unchanged and the overall solution process follows the previous development.  Indeed, since we are 

interested in epicentral displacements ( x1 = 0 ), it can be used in its entirety if the indices are exchanged (

 2 3 ) and the definitions of the normalized moduli are updated (α = c22 / c44 , β = c33 / c44 ). 

 

C.2.3 Epicentral Displacements Perpendicular to Symmetry Axis: Line Source Parallel to Symmetry Axis 

– Case III 

For this case, the surface of the half-space is perpendicular to the x2-axis and a shear stress is applied on 

the surface containing the x3-axis such that: 

σ 21 x2=0
= ′δ (x1)H (t)      (C.29) 

and it is assumed that there are no contributions from the normal stress to the surface tractions such that: 

σ 22 x2=0
= 0 .      (C.30) 

Owing to the symmetries of these stresses, only displacements and derivatives associated with the x1  and 

x2  directions need to be considered.  Since we are interested in epicentral displacements ( x3 = 0 ), it 

appears that the previous development can be used in its entirety with a change of indices ( 3→1 ).  

However, with this change the reduced time and displacements would need to be redefined along with the 

normalized moduli (the shear wave travels at a different speed from the previous cases).  Since the 

previous solutions were expressed in terms of these quantities, the treatment here will maintain the 

definitions for reduced time and displacement.  With the following normalized modulus definitions: 

α = c11 / c44 = c22 / c44 , η = c66 / c44  and κ =η + c12 / c44 , the equations of motion are expressed as 

follows: 

αv1.11 +ηv1,22 +κ v2,12 = v1,ττ       (C.31) 

and 

αv2,22 +ηv2,11 +κ v1,21 = v2,ττ .      (C.32) 

Recalling that c66 = (c11 − c12 ) / 2 , the normalized moduli are related (κ =α −η ) and only two 

independent moduli remain.  This indicates the material behaves isotropically for the conditions imposed 

here since the elastic response of isotropic materials can be described using two moduli.  The solution to 

this problem is well known and can be written directly.  Even so, we will choose to follow the solution 

process outlined previously, and compare the result to ones already known.  Using notation developed 

previously, the following expression for the epicentral displacement is obtained: 

v2 = (2π )
−1 Re[H (τ1 −η

−1/2x2 )b1sΓ1
−1/2 ∂Γ1

∂τ 2
+ H (τ 3 −α

−1/2x2 )b2sΓ1
−1/2 ∂Γ1

∂τ 3
]  (C.33) 
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where τ1 = γ 21x2 , τ 3 = γ 23x2  and 

γ 21 = (2αη)
−1/2{[(α +η)+ χγ 1

2 ]+ϕ1/2}1/2 = (γ 1
2 +η−1)1/2    (C.34a) 

γ 23 = (2αη)
−1/2{[(α +η)+ χγ 1

2 ]−ϕ1/2}1/2 = (γ 1
2 +α −1)1/2    (C.34b) 

with χ =α 2 +η2 −κ 2 = 2αη  and ϕ = [(α +η)+ χγ 1
2 ]2 − 4αη(αγ 1

2 +1)(ηγ 1
2 +1) =η −α .  The 

coefficients, b1 and b2 , for this case are: 

b1 = −(c44ρ)
−1/2 (κγ 1

2 / (ηs))[(η −κ )(1+ηγ 1
2 )−αηγ 23

2 ]γ 21 ÷ D

= (c44ρ)
−1/2 (κ 2γ 1

2γ 21 )(1+ 2ηγ 1
2 ) / (ηs)÷ D   (C.35) 

and 

b2 = (c44ρ)
−1/2 (κγ 1

2 / (ηs))[(η −κ )(1+ηγ 1
2 )−αηγ 21

2 ]γ 23 ÷ D

= −(c44ρ)
−1/2 (2κ 2γ 1

2γ 21
2γ 23 / s)÷ D

  (C.36) 

with 

D =κ (γ 21 −γ 23 ){(1+ηγ 1
2 )[(2(κ −η)+ χ /η)γ 1

2 +α /η)]+αγ 21γ 23}

=κ 2ηγ 21[(2γ 1
2 +1/η)2 − 4γ 1

2γ 21γ 23 ]
  (C.37) 

where the second expression for D  is readily recognized as being related to the Rayleigh denominator 

[C23].  As expected, the coefficients b1  and b2  agree with previous developments for isotropic materials 

[C17,C19].  Using this form for the transformed solution, the inversions can be carried out. First, Γ1 = γ 1
2  

must be expressed in terms of γ 2  and the derivatives in Eq. (C.31) must be written in a recognizable 

form.  Following the steps presented for the first case yields: 

 
Γ1 = (2αη)

−1{χγ 2
2 − (α +η) [(χγ 2

2 − (α +η))2 − 4αη(αγ 2
2 −1)(ηγ 2

2 −1)]1/2} γ 21→−
γ 23→+

, (C.38) 

where the appropriate sign in Eq. (C.38) is chosen based on the term in Eq. (C.33) being evaluated.  For 

this case, the results for Γ1  are simple – both Eq. (C.38) and (C.34) give Γ1 = γ 21
2 −η−1  or 

Γ1 = γ 23
2 −α −1 .  The corresponding derivative 

∂Γ1
∂γ 2

= 2χγ 2Γ1 + 2(α +η)γ 2 − 4αηγ 2
3

2αηΓ1 + (α +η)− χγ 2
2 = 2γ 2     (C.39) 

simplifies considerably as well.  For completeness, this derivative is written for various terms using 

previous definitions as follows: 

 
∂Γ1
∂τ1

= 1
x2

∂Γ1
∂γ 21

= 1
x2

∂Γ1
∂γ 2 γ 2=γ 21

=
2γ 21
x2     

 
∂Γ1
∂τ 3

= 1
x2

∂Γ1
∂γ 23

= 1
x2

∂Γ1
∂γ 2 γ 2=γ 23

=
2γ 23
x2

. (C.40) 
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To compute displacements, we let τ = τ1 = γ 21x2  (this defines a value for γ 21 ).  This value is used to 

compute Γ1  as well as the derivative in Eq. (C.40).  The result for Γ1  along with Eq. (C.34b) yield γ 23 .  

Finally, these values for γ 21 ,  γ 23  and Γ1  are used with Eqs. (C.35) and (C.37) to evaluate the coefficient 

b1 .  The second term is evaluated in a similar fashion but the parameterization begins with 

τ = τ 3 = γ 23x2 .  This completes the evaluation of displacements along the x2  axis in a half space arising 

from a line source parallel to the axis of symmetry with step time dependence acting on a surface 

containing the axis of symmetry.  The strength of the laser line source dipole for this case can be obtained 

by multiplying the unit source by q0α Lc11
−1(c11 + 2c12 )(c11 − c12 ) /C  where α L  is the linear thermal 

expansion coefficient – other  terms were defined previously [C38,C39].  This result agrees with previous 

developments for laser line source excitation of isotropic half-spaces [C19]. 

C.3. Results – Evaluation of Displacements 

The reduced displacements expressed in Eqs. (C.23) and (C.31) will be evaluated for the epicentral range 

xi = 1  as a function of the reduced time, τ , since this simplifies interpretation of the results.  Also, only 

anisotropy that conforms to the requirements of Class I systems will be considered [C40] – namely, those 

for which α > β  and α +1< χ < χ0 (α ,β )  where χ0  is a positive root of the cubic equation: 

0 = χ 3 + lχ 2 + hχ + n       (C.41) 

with 

l = 1+αβ + 2(1−α )(1− β ) ,     (C.42) 

h = −(α + β )[(1−α )+ (1− β )+ 2αβ ] ,    (C.43) 

n = −[(α + β )2 (1+αβ )+16αβ(1−α )(1− β )] .   (C.44) 

While other systems adhering to the requirements of Classes II-V could be considered [C37], the solution 

processes required for these systems demand additional attention to the computation of inverse 

transforms.  Related details can be found in work by Payton [C37] and Hurley [C38].  In addition, the 

solutions generated here for transversely isotropic materials might also apply (with restrictions) to 

materials displaying certain tetragonal ( 422,  4mm, 42m, 4/mmm ) and cubic symmetries when 

appropriate definitions for directions and modulus components are made.  Since the focus of the current 

presentation is on transversely isotropic materials, displacements will be computed for titanium which, in 

single crystal form, adheres to the Class I requirements and has the following normalized moduli: 

α = c33 / c44 = 3.88 , β = c11 / c44 = 3.47 , c23 / c44 = 1.48  and c12 / c44 = 1.97   ( c44 = 46.7 GPa ) 

[C37,C40]. Using these values, epicentral displacements were computed using the previous development 
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for the three cases and are shown in Fig. C.2.  For Case I, the orientation of the line source has no effect 

on the arrival times of the either the shear or longitudinal waves since the plane of isotropy is 

perpendicular to the propagation direction and shear waves are polarized in this plane.  For Cases II and 

III the longitudinal waves propagate at the same speed since the direction of propagation is the same, but 

the respective shear waves arrive at different times – these are the cases that display shear wave 

birefringence.  Beyond the relative wavespeeds for the different modes in Cases II and III, the general 

shapes of the waveforms between the wave arrivals differ significantly.  These shapes are dictated by the 

form of the solution related to the longitudinal wave – the wavespeed depends on β  while the overall 

shape depends on various factors that include c23  in Case II and c12  in Case III.  This result is significant 

since it illustrates that the shape of waveforms can be used to infer principal components of the modulus 

tensor that do not affect wavespeed when propagation along principal directions is considered. 

 

Even though titanium illustrates the necessary results related to shear birefringence, a second material is 

considered in which the anisotropy is not nearly as strong.  While this material is hypothetical, it is meant 

to represent materials that might otherwise be isotropic (such as polycrystalline materials with random 

grain orientation) but have an induced anisotropy that results from some type of forming operation (such 

as preferred grain orientation that occurs in metallic materials during drawing/extrusion) or externally 

applied, uniaxial stress (that causes changes to the stiffnesses according to the third order elastic 

constants) [C41].  For this case, the following values for the various moduli have been assumed: 

α = c33 / c44 = 4.00 , β = c11 / c44 = 3.60 , c23 / c44 = 1.79  and c12 / c44 = 1.80  – these values yield 

c66 / c44 = 0.90 .  This material is also Class I and adheres to the same restrictions on moduli as titanium.  

Results for the epicentral displacements are shown in Fig. C.3.  The overall trends for wavespeed are the 

same as for titanium – differences exist between Cases I and II/III for the longitudinal wavespeeds; Cases 

II and III display shear birefringence.  Even so, since the assumed values for c23  and c12  are much closer 

in this material, the waveform shapes for Cases I-III are relatively similar when compared to those 

obtained for titanium.   

C.4. Discussion 

The models developed here can be used for the interpretation of laser ultrasonic, line source 

measurements in transversely isotropic materials – specifically those that satisfy Class I restrictions.  To 

facilitate these types of measurements, some knowledge of the symmetry axis direction can be used to 

guide choices regarding propagation direction and polarization orientation.  Absent orientation 

information, symmetry axis direction can be determined by screening for shear wave birefringence – so 

long as the sample geometry allows for measurements along and perpendicular to the symmetry axis.  For 
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propagation perpendicular to the symmetry axis, the results presented here indicate that only two 

measurements are required to accurately characterize birefringence.  However, in practice, multiple line 

orientations might be necessary to accurately identify maximum and minimum shear wavespeeds 

especially if the direction of the symmetry axis is not clearly defined.  This uncertainty in axis direction 

can arise in systems where applied stresses induce anisotropy in materials that might otherwise behave 

isotropically.  For these types of measurements, the laser line source will generally launch shear waves 

that propagate at wavespeeds characteristic of the normal modes of the system and the quantity of energy 

deposited into each mode will depend on the orientation of the line relative to the symmetry axis.  While 

the case of the arbitrarily-oriented line source has not been modeled here, it can be assumed that the 

measured waveforms would yield shear wavespeeds intermediate between the extrema presented by 

Cases II and III.  These intermediate values might not accurately reflect the actual constitution of the 

material and could simply represent an artifact of the measurement process. 

Unlike the idealized conditions represented in the models developed here, actual measurements can be 

complicated by factors that reflect the characteristics of the material.  For example, in Cases II and III, the 

longitudinal wave time-of-arrival should be independent of line orientation and this is likely the case even 

if the laser line is not uniformly intense across the sample surface.  However, if there are variations in the 

photothermal/thermoelastic conversion processes related to sample inhomogeneity as the line orientation 

is varied, then the arrival time for the longitudinal wave will change – this same inhomogeneity will affect 

shear wave times-of-arrival and could interfere with accurate identification of birefringence associated 

with elastic anisotropy.  Also, microstructural variations that result in elastic inhomogeneity could 

produce variations in wave arrivals that might impact shear birefringence measurements.  However, if the 

times-of-arrival for the longitudinal wave do not vary with line orientation, then this could be a good 

indication that any variation in shear wave arrival times is a result of anisotropy and not inhomogeneity. 

For ultrasonic characterization methods, wavespeeds have been historically used to characterize elastic 

anisotropy since they relate directly to the stiffnesses of the material.  Shear wave birefringence, as 

determined by wavespeed differences between orthogonally polarized modes, is one effect that can occur 

and this has been the focus of the presentation here.  However, material anisotropy yields effects beyond 

those typically associated with birefringence.  In particular, the character of displacements after the 

longitudinal arrival depends on components of the tensor that do not influence wavespeeds in bulk media 

for propagation along high symmetry directions.  These displacements occur when finite sources act and 

are related to off-diagonal components of the stiffness tensor – c2233  and c1122  for the cases considered in 

this work.  These components factor into the Poisson effect and can be measured using various 

techniques.  For isotropic materials, they can be determined using measurements of longitudinal and shear 
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wavespeeds.  For transversely anisotropic materials, additional measurements are required.  Longitudinal 

wavespeed in a long, thin rod depends on the anisotropic Young’s modulus – this along with bulk 

wavespeeds can be used to determine the values of off-diagonal tensor components. The results presented 

here offer the possibility of determining values for three tensor components from a single waveform 

obtained using a single experiment.  This has not been investigated previously, but offers paths for 

investigation that could resolve long-standing issues related to point- and line-source Green’s function 

interpretation of elastic wave measurements.  Ultimately, simple and robust methods for determining off-

diagonal components of the stiffness tensor might be used to infer characteristics of materials 

microstructure that are not captured when isotropic material behavior is assumed. 

C.5. Conclusions 

Models for ultrasonic waves produced using laser line sources in transversely anisotropic materials have 

been presented that show how shear wave birefringence measurements using laser sources can be used to 

characterize aspects of material anisotropy.  By assuming adiabatic heating as well as uniform line 

intensity and homogeneous photothermal conversion processes, these models provide a simple 

description that highlights the effects of elastic anisotropy on wave propagation.  The analytical solutions 

in this work allow for easy computation for comparison to experimental measurements and also permit 

specific characteristics of waveforms to be related to various stiffness components.  For propagation in 

high symmetry directions, diagonal components of the elastic stiffness tensor dictate the wavespeeds of 

longitudinal and shear waves.  While these arrivals are notable and are the focus of most ultrasonics 

measurements, the results in this study show how off-diagonal components can affect the overall shape of 

laser ultrasonic waveforms between wavefronts – the possibility exists to extract three stiffness tensor 

components from a single waveform.  Since most materials with crystalline microstructural elements 

display some level of elastic anisotropy, laser line source measurements of the kind outlined here could 

provide insight into the constitution of the microstructure with a limited number of measurements. 
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Figure C.1:  Geometries for laser line source excitation of a transversely isotropic half-space.  The three 
cases here illustrate the relationship of the surface- and source-orientation relative to the symmetry axis 
and also show the epicentral locations where displacements are evaluated. 
 

 

 

 
Figure C.2: Epicentral waveforms for laser-line excitation of single-crystal titanium half-spaces 
corresponding to the three geometries illustrated in Fig. C.1.  Waveforms are shown offset for clarity. 
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Figure C.3: Epicentral waveforms for laser-line excitation of transversely-isotropic half-spaces 
corresponding to the three geometries illustrated in Fig. C.1.  The moduli for this material represent those 
that might result from preferred grain or microcrack orientations that yield transverse isotropy.  
Waveforms are shown offset for clarity. 
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Section D: Subsurface, Thermoelastic Line Source Excitation of a Transversely Isotropic Half-

Space 

D.1. Introduction 

Subsurface line sources of elastic waves have been studied in fields from quantitative seismology [D1] to 

medical imaging [D2] in order to understand the character of the wavefields produced by these sources 

and to use the various wavefield components to characterize the nature (geometry and elastic properties) 

of the system being studied.  In some cases, the line source of interest is primarily mechanical [D3-5] 

while in others it has a thermoelastic nature being derived from a source of thermal energy that couples to 

elastic deformations in the system.  The thermoelastic line source is the focus of this work.  This type of 

source could be derived from a range of physical and/or chemical processes (e.g. endothermic/exothermic 

chemical reactions, phase transformations, photothermal processes) that could take place along a line.  

One of the most frequently studied is the laser line source in which light is focused to a line-like geometry 

in/on a material and acts as a thermoelastic source in regions where optical absorption occurs [D6-12].  

Under conditions that produce subsurface absorption or that transport thermal energy away from 

absorption sites, subsurface sources will result and the associated elastic wavefield will depend on their 

distribution [D13,D14].  If these sources form a linear array below the surface, then a single line source 

representation could be sufficient for modeling purposes.  More complicated distributions can be modeled 

using a suitable superposition of individual line sources. 

Most studies that consider subsurface line sources assume isotropic properties for the host material [D15].  

This type of description can be useful for many materials, but most materials systems display some level 

of anisotropy owing to underlying crystallinity or as result of preferred orientational arrangement of 

constituent components and defects in the overall material structure.  In many cases, when anisotropy is 

present, materials can be expected to display transverse isotropy.  Materials systems that are transversely 

isotropic with respect to their thermal and elastic properties include those with hexagonal symmetry 

[D16] as well as those that undergo particular processing that results in higher transverse symmetry.  This 

anisotropy might be small and might not be taken into account when characterization is performed, but 

this does not mean it should be ignored especially since it might ultimately impact materials performance.  

There is clearly a need to develop models for interpretation of data gathered in transversely isotropic 

materials systems [D17-19]. The purpose of the work presented here is to provide descriptions of material 

displacements in the wavefield surrounding a subsurface, thermoelastic line source in a transversely 

isotropic half space.  These descriptions provide insight into the overall character of these sources in 

anisotropic materials and can also be used to model more generalized source distributions that might 

occur in a range of physical systems.  Explicit expressions for displacements along the symmetry axis for 
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a receiver in an epicentral location are derived and are computed to illustrate various general aspects of 

the wavefield.  In particular, the characteristics of wavefronts associated with various modes are 

considered along with the nature of direct shear wave emission by this type of source.  This type of 

emission does not occur in isotropic systems.  Finally, the relationship between solutions obtained in this 

work to those associated with the application of boundary tractions/stresses is derived – this shows how 

the surface-borne thermoelastic line source can be represented as a surface, shear stress dipole [D19,D20]. 

D.2. Modeling the Thermoelastic Line Source 

The presentation largely follows work previously presented by Payton on line source excitation of 

transversely isotropic systems [D16, D21-25] but the source specification in the current work differs 

significantly.  Also, Payton considers a range of systems in which wavefield characteristics are quite 

complicated, but the focus of this presentation is only on systems that satisfy the requirements for Class I 

materials [D16,D26,D27].  Aspects of the current work also relate closely to previous studies by Hurley 

[D18,D20], but this treatment focuses principally on subsurface sources and the epicentral displacements 

produced by these types of sources and includes explicit, closed-form expressions for these displacements 

that have not been shown previously. 

D.2.1 Specification of the Source 

We start this development with the equation of motion for a general, anisotropic, thermoelastic solid: 

cijklul ,kj + fi − βijT, j = ρui,tt       (D.1) 

where cijkl  is the elastic stiffness tensor, ul  is the material displacement in the l  direction, fi  is the body 

force acting in the i  direction, ρ  is the material density, βij  is the thermal stress coefficient tensor and 

T  is the temperature rise above the background, ambient level.  Subscripting notation has been used 

where the indices range from 1 to 3 and represent spatial directions/variables while the index t  represents 

time.  The summation convention has been used and subscripts after commas indicate differentiation with 

respect to the corresponding variable.  Equation (D.1) is re-written as follows so that normalized 

stiffnesses can be used to describe the elastic response of the material [D16]: 

cijklvl ,kj / c2323 + ( fi − βijT, j ) / z2323 = vi,ττ      (D.2)  

where vi = ui (c2323 / ρ)
1/2 , z2323 = (ρc2323)

1/2  and τ = (c2323 / ρ)
1/2 t .  This normalization simplifies 

notation to be used in this development and introduces the reduced displacement, vi , the reduced time, τ  

as well as the acoustic impedance, z2323 . 
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In the subsequent development, all body forces will be assumed to be zero, fi = 0 , and all solutions will 

assume the thermal stress approximation – namely, coupling of elastic disturbances to thermal transport 

will be ignored.  In addition, thermal diffusion will be suppressed by assuming that the thermal 

conductivity in the medium is zero.  Under these conditions, a subsurface, line, heating source aligned 

along the x1  axis with impulse time dependence (schematically shown in Fig. D.1), can be described 

through the temperature field term in Eq. (D.1) as follows [D19]: 

βijT, j = (cijklα kl )(θδ (x2 )δ (x3)H (t)), j       (D.3) 

where α kl  is the linear thermal expansion coefficient tensor (βij = cijklα kl ) and θ  is heat source power per 

unit length divided by the heat capacity of the material.  Evaluating the derivatives in Eq. (D.3) yields the 

following two “thermoelastic forces” that can be used with Eq. (D.2): 

ϕ2 = β22T,2 = θ(c2222α 22 + c2233α 33)δ (x2 ),2δ (x3)H (t) = φ2δ (x2 ),2δ (x3)H (t)   (D.4) 

ϕ3 = β33T,3 = θ(c3322α 22 + c3333α 33)δ (x2 )δ (x3),3H (t) = φ3δ (x2 )δ (x3),3H (t)    (D.5) 

where φ2 = θ(c2222α 22 + c2233α 33)  and φ3 = θ(c3322α 22 + c3333α 33) .   

 

D.2.2 Solution Method and Analytical Results  

Having specified the essential content of the physical problem, we can proceed to perform the necessary 

mathematical manipulations to obtain the material displacements that result from this type of source.  

Noting symmetries associated with the source, Eq. (D.2) yields the following: 

(βv2,22 + v2,33 − v2,ττ )+κ v3,23 =ϕ2 / z2323     (D.6) 

κ v2,23 + (αv3,33 + v3,22 − v3,ττ )+ =ϕ3 / z2323      (D.7) 

where α = c3333 / c2323 , β = c1111 / c2323 , and κ = 1+ c2233 / c2323 .  These equations need to be solved 

subject to the appropriate boundary conditions.  In this work, we are interested in analytical, closed form 

solutions and the process to obtain these will employ transform techniques since these will convert 

differential equations to algebraic expressions that can be manipulated readily.  The following definitions 

for the various forward transforms will be used in the subsequent development: 

 

vi = vi exp(−ik2x2 − ik3x3 − sτ )dx2 dx3 dτ
−∞

∞

∫
−∞

∞

∫
0

∞

∫

= vi exp(−ik2x2 − ik3x3)dx2 dx3
−∞

∞

∫
−∞

∞

∫ = vi exp(−ik3x3)dx3
−∞

∞

∫
   (D.8) 

which are paired with the corresponding inverse transforms: 
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vi = −i(2π )−3 vi exp(ik2x2 + ik3x3 + sτ )dk2 dk3 ds
−∞

∞

∫
−∞

∞

∫
C
∫

= −i(2π )−2 vi exp(ik2x2 + sτ )dk2 ds
−∞

∞

∫
C
∫ = −i(2π )−1 vi exp(sτ )ds

C
∫

.  (D.9) 

Applying the forward transform operations to Eqs. (D.6) and (D.7) yields the following: 

v2 (βk2
2 + k3

2 + s2 )+ v3(κ k2k3) = −(φ2 / z2323)(ik2 / s)    (D.10) 

and 

v2 (κ k2k3)+ v3(k2
2 +αk3

2 + s2 ) = −(φ3 / z2323)(ik3 / s) .   (D.11) 

These equations are readily solved simultaneously to yield the displacement transforms: 

v2 = [(k2
2 +αk3

2 + s2 )Φ2 − (κ k2k3)Φ3]÷ D     (D.12) 

and 

v3 = [(βk2
2 + k3

2 + s2 )Φ3 − (κ k2k3)Φ2 ]÷ D     (D.13) 

 

where Φ2 = −(φ2 / z2323)(ik2 / s) , Φ3 = −(φ3 / z2323)(ik3 / s)  and  

D =αk3
4 + k3

2[(α +1)s2 + k2
2 (1+αβ −κ 2 )]+ (k2

2 + s2 )(βk2
2 + s2 ) .  (D.15) 

All that remains is to impose boundary conditions and complete the various inverse transform operations.  

To begin, we will consider inversion with respect to the transform pair (x3,k3)  since this will allow 

assessment of the boundary conditions.  Let k3n
*  be the nth  of the 4 roots to the bi-quadratic equation 

when D = 0 .  These roots are expressed as follows: 

k31
* = −k32

* = (2α )−1/2{−[(α +1)s2 + χk2
2 ]−ζ 1/2}1/2     (D.16) 

k33
* = −k34

* = (2α )−1/2{−[(α +1)s2 + χk2
2 ]+ζ 1/2}1/2     (D.17) 

where the second subscript indexes each root,  χ = 1+αβ −κ 2  and 

ζ = [(α +1)s2 + χk2
2 ]2 − 4α (k2

2 + s2 )(βk2
2 + s2 ) .  At this point, let k3n = ik3n

* .  This change essentially 

demands k31 > 0  and k33 > 0  for Class I materials (see  Ref. [D16] pp. 133-134 for related discussion) 

and will prove convenient later in the development. With this definition, the denominator, D , may be re-

expressed to yield the following: 

D−1 =α −1[(k3
2 + k31

2 )−1 − (k3
2 + k33

2 )−1](k33
2 − k31

2 )−1 .   (D.18) 
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Since (k3
2 + k3n

2 )−1 = (2ik3)
−1[(k3n − ik3)

−1 − (k3n + ik3)
−1] , the transforms in Eqs. (D.12) and (D.13) have 

simple poles at k3 = ±ik3n .  Inversion of v3  with respect to (x3,k3)  can be performed to get 

 v3 = v31 + v33  where  v31  is the portion of the doubly-transformed solution for v3  associated with the k31  

root and similarly for  v33 .  These parts of  v3  can be written as follows: 

 v31 = −(2α )1/2 (k33
2 − k31

2 )−1(sz44 )
−1[(βk2

2 + s2 − k31
2 )Φ3 −κ k2

2Φ2 ][e
k31x3H (−x3)− e

−k31x3H (x3)]  (D.19) 

and 

 v33 = (2α )
1/2 (k33

2 − k31
2 )−1(sz44 )

−1[(βk2
2 + s2 − k33

2 )Φ3 −κ k2
2Φ2 ][e

k33x3H (−x3)− e
−k33x3H (x3)]  (D.20) 

where H (x3)  is the Heaviside step function acting along the x3  axis.  Inverting these expressions with 

respect to the transform pairs (x2,k2 )  and (s,τ )  yields the displacements in the x3  direction that result 

from a thermoelastic line source in an infinite space.  Corresponding solutions for displacements in the 

x2  direction could be written as well, but since the current focus is on displacements in the x3  direction, 

only the results in Eqs. (D.19) and (D.20) are needed to complete this development. 

 

To obtain a corresponding solution for a half-space with a free surface located at x3 = −d , the following 

boundary conditions based on the disappearance of surface tractions must be satisfied: 

σ 33 x3=−d
= 0  , σ 23 x3=−d

= 0       (D.21) 

where 

σ 33 = c3333u 3,3

g + c3322u 2,2

g  , σ 23 = c2323(u 2,3

g + u
3,2

g ) .   (D.22) 

Here, ui
g  refers to the general solution of the governing differential equation which is composed of 

homogeneous and inhomogeneous (or particular) solutions – ui
g = ui

h + ui  or 

 v3
g = ( v31

h + v33
h )+ ( v31 + v33)  for reduced displacements in the transform domain.  The inhomogeneous 

solution corresponds to infinite space and has already been written so it can be used in the boundary 

conditions when they are expressed in a reduced form in the doubly transformed space: 

 
0 = [α v3,3

g + ik2 (κ −1)v2
g ]

x3=−d
  and   

 
0 = [ v2,3

g + ik2 v3
g ]

x3=−d
   (D.23) 

where  vi
g = vi

h + vi .  Based on the form obtained for the inhomogeneous solution, the following 

homogeneous solutions are assumed: 

 v2
h = A1e

−k31x3 + A3e
−k33x3   and   v3

h = B1e
−k31x3 + B3e

−k33x3     (D.24) 
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where An  and Bn  are undetermined coefficients that are needed to satisfy the given boundary conditions.  

The additional requirements on the undetermined coefficients come from Eq. (D.7) when the right hand 

side is taken to be zero (yielding the homogeneous form of the equation): 

An / Bn = Rn = (αk3n
2 − k2

2 − s2 )(iκ k2k3n )
−1 .    (D.25) 

This expression requires that solutions associated with k31  and k33  be linearly independent.   It follows 

that if  v3
h = v31

h + v33
h  then  v2

h = R1v31
h + R3 v33

h  – equivalent expressions hold for  v3  and  v2 .  Also, it 

should be noted that if the sign of the propagation constant, k3n , changes then the sign of Rn  also 

changes.  With this additional information in place,  vi
g = vi

h + vi  can be used with the boundary 

conditions and values for B1  and B3  can be obtained.  The algebra involved is tedious but yields the 

following results: 

 
B1 = [(ad + bc) v31 x3=0− + 2bd v33 x3=0

− e−(k31+k33 )d ](ad − bc)−1    (D.26) 

 
B3 = −[2ac v31 x3=0− e

−(k31+k33 )d + (ad + bc) v33 x3=0
− e−2k33d ](ad − bc)−1   (D.27) 

with a = k33[αk31
2 + (κ −1)(k2

2 + s2 )] , b = k31[αk33
2 + (κ −1)(k2

2 + s2 )] , c = [αk31
2 + (κ −1)k2

2 − s2 ]  and 

d = [αk33
2 + (κ −1)k2

2 − s2 ] . 

 

The complete solution,  v3
g , can be written as follows for regions of the half-space where x3 > 0 : 

 

 

v3
g = {[−(ad − bc) v31 x3=0− + (ad + bc)e−2k31d v31 x3=0− + 2bde−(k31+k33 )d v33 x3=0− ]e−k31x3

  + [−(ad − bc) v33 x3=0− − (ad + bc)e−2k33d v33 x3=0− − 2ace−(k31+k33 )d v31 x3=0− ]e−k33x3 }(ad − bc)−1 .

 (D.29) 

In this expression, terms of the form 
 
v3i x3=0−  should be evaluated using Eqns. (D.19) and (D.20) for 

negative values of x3  in the limit as x3 → 0 .  While various algebraic simplifications to this result can be 

made, this form for the solution will be used since it facilitates interpretations that will be made in 

subsequent sections.  There are essentially six components of the solution given in Eq. (D.29) such that it 

can be expressed as  
v3
g = v3S

g + v3SS
g + v3LS

g + v3L
g + v3LL

g + v3SL
g .   These components will be considered 

individually in the following to highlight the physical meaning behind each.  Before doing so, it will be 

noted that significant simplification of the solution can be achieved by considering the factors (ad + bc)  

and (ad − bc)  which appear in various terms.  These quantities can be written as follows: 

ad + bc =κ (k33 + k31){(k2
2 + s2 )[(2(κ −1)+ χ )k2

2 +αs2 ]−αk31k33s
2}   (D.30) 
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and 

ad − bc =κ (k33 − k31){(k2
2 + s2 )[(2(κ −1)+ χ )k2

2 +αs2 ]+αk31k33s
2} .  (D.31) 

The term (ad − bc)  corresponds to the usual Rayleigh denominator that appears in related treatments for 

isotropic materials [D15].   

 

The overall solution consists of six arrivals at the point of observation a distance of x3 + d  from the 

boundary – three associated with shear displacements and three associated with longitudinal 

displacements.  If the receiver is epicentrally located at x2 = 0 , the six arrivals can be described as 

follows:  

1. Direct Shear Wave.  This portion of the wavefield travels a distance x3  from the source to the 

receiver and is represented by 
 
v3S
g = − v31 x3=0− e

−k31x3 . 

2. Reflected Shear-to-Shear Wave.  This shear wave travels a distance of x3 + 2d  and includes 

reflection of a shear wave at the boundary. This arrival corresponds to 

 
v3SS
g = (ad + bc)e−k31(x3+2d ) v31 x3=0− (ad − bc)

−1 .  

3. Longitudinal-to-Shear Conversion.  This arrival is a shear wave that results from longitudinal 

wave conversion at the boundary (travels a distance d  as a longitudinal wave and a distance 

x3 + d  as a shear wave). This arrival is represented by 

 
v3LS
g = 2bde−k33d−k31(x3+d ) v33 x3=0

− (ad − bc)−1 . 

4. Direct Longitudinal Wave.  This portion of the wavefield corresponds to the longitudinal wave 

that travels a distance x3  directly between the source and the receiver and is given by 

 
v3L
g = − v33 x3=0

− e−k33x3 . 

5. Reflected Longitudinal-to-Longitudinal Wave.  This is a longitudinal wave that travels a 

distance of x3 + 2d  and results from longitudinal wave reflection at the boundary.  This arrival 

corresponds to 
 
v3LL
g = −(ad + bc)e−k33 (x3+2d ) v33 x3=0

− (ad − bc)−1 . 

6. Shear-to-Longitudinal Conversion.  This is a longitudinal wave that results from shear wave 

conversion at the boundary (travels a distance d  as a shear wave and a distance x3 + d  as a 

longitudinal wave).  This arrival corresponds to 
 
v3SL
g = −2ace−k31d−(k33+d )x3 v31 x3=0− (ad − bc)

−1 . 
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The solution given in Eq. (D.29) is in a doubly transformed space and inversions with respect to k2  and 

s  need to be completed.  The inverse transform with respect to k2  is as follows: 

 
v3
g = (2π )−1 v3

g

−∞

∞

∫ exp(ik2x2 )dk2 = (π )
−1 Re v3

g

0

∞

∫ exp(ik2x2 )dk2   (D.32) 

where  
v g3  represents the Laplace transform of v3

g  and the final equality in Eq. (D.32) results from  v
g
3  

being even with respect to k2 .  The remainder of this treatment will be on epicentral displacements where

x2 = 0  since these are measured in various experiments.  Also, the transforms simplify considerably 

when x2 = 0  and yield analytical expressions for the displacements.  Since  v3
g  in Eq. (D.32) depends on 

k2
2  – this suggests a change in the integration variable.  Letting Κ2 = k2

2  yields the following: 

 
v3
g = (2π )−1 Re v3

g

0

∞

∫ Κ2
−1/2dΚ2  .    (D.33) 

While this change might not appear to have achieved any significant advantage, it allows the remaining 

inverse Laplace transform operation to be performed essentially by inspection.   

 

For these final steps, we will consider the terms corresponding to each of the six arrivals in Eq. (D.29) 

separately as follows: 

1. Direct Shear Wave.   This wave corresponds to the term containing the exponential e−k31x3  and will be 

referred to as v3S
g . For this term, let the variable ′τ = k31x3 / s  serve as the reduced time in a forward 

Laplace transform operation (see Eq. (D.9)).  With this parameterization, Κ2  can be interpreted to be a 

function of ′τ  such that dΚ 2 =
∂Κ 2

∂ ′τ
d ′τ =

s
x3

∂Κ 2

∂k31
d ′τ .  Combining Eq. (D.9) with (D.33) and (D.29) 

yields the following: 

 
v3S
g = −i(2π )−2 Re H ( ′τ − x3)(−Κ2

−1/2 ∂Κ2

∂ ′τ
v31 x3=0− ) k31=s ′τ /x3

0

∞

∫
C
∫ exp(−s ′τ )exp(sτ )d ′τ ds  (D.34) 

where 

Κ2 = (2β )
−1{χk3

2 − (1+ β )s2 − [(χk3
2 − (1+ β )s2 )2 − 4β(αk3

2 − s2 )(k3
2 − s2 )]1/2}

k3=k31
  (D.35) 

and 

k33 = k31
−1[(Κ2 + s

2 )(βΚ2 + s
2 ) /α ]1/2 .      (D.36) 

It should be noted that in arriving at Eq. (D.34), the change in the variable of integration from K2  to ′τ  

requires a change in the limits such that the lower limit K2 = 0  yields ′τ = x3 .  Introducing the 
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Heaviside step function into the integrand allows the lower limit to be changed to zero.  Also, the 

expression for K2  given in Eq. (D.35) can be obtained by solving the quadratic equation provided by Eq. 

(D.15) when D = 0 .  Even though the derivative in the integrand can be obtained by differentiating Eq. 

(D.35) directly, an easier approach is to differentiate the quadratric equation for Κ2  (again, from Eq. 

(D.15) when D = 0 ) and allowing the derivative to be expressed in terms of both k3  and K2 .  This 

yields the result: 

∂Κ2

∂k3
= 2χk3Κ2 + 2(α +1)s2k3 − 4αk3

3

2βΚ2 + (β +1)s2 − χk3
2 .    (D.37) 

Equation (D.34) appears to be a forward Laplace transform immediately followed by the inverse 

transform operation. The result for the displacement can be written immediately as follows: 

 
v3S
g = (2π )−1H ( ′τ − x3)Re(−Κ2

−1/2 ∂Κ2

∂ ′τ
v31 x3=0− ) k31=s ′τ /x3

.  (D.38) 

The displacement, v3S
g , can be expressed as a function of ′τ  by noting that k31 = s ′τ / x3 .  Since k3 = k31  

in Eqs. (D.35)-(D.37),  K2 , 
∂K2

∂k3
, k33  as well as 

 
v31 x3=0−  can be written directly and substituted into Eq. 

(D.38) to obtain v3S
g .   The resulting equation is quite lengthy and it is not clear that expressing it would 

provide additional insight into the nature of the solution.  It will not be shown here. 

2. Reflected Shear-to-Shear Wave.  This wave corresponds to the term containing the exponential 

e−k31(x3+2d )  and will be referred to as v3SS
g .  For this term, let the variable ′τ = k31(x3 + 2d) / s  act as the 

reduced time in a forward Laplace transform operation.  With this parameterization, Κ2  is a function of 

′τ  such that dΚ2 =
∂Κ2

∂ ′τ
d ′τ = s

(x3 + 2d)
∂Κ2

∂k31
d ′τ .  Combining Eq. (D.9) with (D.33) and (D.29) yields 

the following: 

 
v3SS
g = −i(2π )−2 Re H ( ′τ − (x3 + 2d))(

ad + bc
ad − bc

Κ2
−1/2 ∂Κ2

∂ ′τ
v31 x3=0− ) k31=s ′τ /(x3+2d )

0

∞

∫
C
∫ exp(−s ′τ )exp(sτ )d ′τ ds

 (D.39) 

where Κ2 , 
∂Κ2

∂k3  
as well as k33  have the same form as for the direct shear wave.  As before, Eq. (D.39) 

appears to be a forward Laplace transform immediately followed by the inverse transform operation. The 

result can be written directly as follows: 
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v3SS
g = (2π )−1H ( ′τ − (x3 + 2d))Re(

ad + bc
ad − bc

Κ2
−1/2 ∂Κ2

∂ ′τ
v31 x3=0− )

k31=s ′τ /(x3+2d )
. (D.40) 

 

3. Longitudinal-to-Shear Conversion.  This wave corresponds to the term containing the exponential 

e−k33d−k31(x3+d )  and will be referred to as v3LS
g . For this term, the variable ′τ = [k31(x3 + d)+ k33d] / s  acts 

as the reduced time.  With this parameterization, Κ2  can once again be interpreted to be a function of ′τ , 

but the relationship is more complicated.  Combining Eq. (D.9) with (D.33) and (D.29) yields the 

following: 

 
v3LS
g = −i(2π )−2 Re H ( ′τ − [(x3 + d)+ x3d /α

1/2 ])(2bdΚ 2
−1/2 ∂Κ 2

∂ ′τ
v33 x3=0

− ) ′τ =[ k31 (x3+d )+k33d ]/s
0

∞

∫
C
∫ exp(−s ′τ )exp(sτ )d ′τ ds.

(D.41) 

In this case, evaluation of the derivative dΚ2 =
∂Κ2

∂ ′τ
d ′τ  cannot be accomplished in the same way as was 

done in the previous two cases.  Here we note that ′τ  is a function of Κ2  such that 

∂Κ2

∂ ′τ
= ( ∂ ′τ

∂Κ2

)−1 = s((x3 + d)
∂k31
∂Κ2

+ d ∂k33
∂Κ2

)−1 .    (D.42) 

The process for evaluating the various terms can be carried out by assuming values for Κ2 , computing 

values for k31  and k33  with Eqs. (D.16) and (D.17) (along with subsequent definitions), and using these 

values to determine ′τ  as well as the derivative terms 
∂k3i
∂Κ2

= (∂Κ2

∂k3
)−1

k3=k3i

.  Having computed the 

values for these terms, the displacement is given by 

 
v3LS
g = (2π )−1H ( ′τ − [(x3 + d)+ x3d /α

1/2 ])Re( 2bd
ad − bc

Κ2
−1/2 ∂Κ2

∂ ′τ
v33 x3=0

− )
′τ =[k31(x3+d )+k33d ]/s

. (D.43) 

 

4. Direct Longitudinal Wave.  This arrival corresponds to the term containing e−k33x3  and will be referred 

to as v3L
g . A similar parameterization as was used for the direct shear term can be employed – the 

exponential suggesting the choice ′τ = k33x3 / s  such that dΚ2 =
∂Κ2

∂ ′τ
d ′τ = s

x3
∂Κ2

∂k33
d ′τ .  Combining 

Eq. (D.9) with (D.33) and (D.29) yields the following: 

 
v3L
g = −i(2π )−2 Re H ( ′τ − x3)(−Κ2

−1/2 ∂Κ2

∂ ′τ
v33 x3=0

− ) k33=s ′τ /x3
0

∞

∫
C
∫ exp(−s ′τ )exp(sτ )d ′τ ds  (D.44) 
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where 

Κ2 = (2β )
−1{χk3

2 − (1+ β )s2 + [(χk3
2 − (1+ β )s2 )2 − 4β(αk3

2 − s2 )(k3
2 − s2 )]1/2}

k3=k33
.  (D.45) 

The derivative 
∂Κ2

∂k3
 as well as k31  can be obtained using Eqs. (D.37) and (D.36) with k3 = k33 .  Again, 

the result for this displacement can be written directly as follows: 

 
v3L
g = (2π )−1H ( ′τ − x3 /α

1/2 )Re(−Κ2
−1/2 ∂Κ2

∂ ′τ
v33 x3=0

− ) k33=s ′τ /x3
.  (D.46) 

 

5. Reflected Longitudinal-to-Longitudinal Wave.  This wave corresponds to the term containing the 

exponential e−k33 (x3+2d )  and will be referred to as v3LL
g .  For this term, let the variable ′τ = k33(x3 + 2d) / s  

take on the role of reduced time in the Laplace transform operation in Eq. (D.8).  The solution process 

follows the one outlined for other waves and yields the result:   

 

 
v3LL
g = (2π )−1H ( ′τ − (x3 + 2d) /α

1/2 )Re(− ad + bc
ad − bc

Κ2
−1/2 ∂Κ2

∂ ′τ
v33 x3=0

− )
k33=s ′τ /(x3+2d )

 (D.47) 

where Κ2  and its derivative are the same as were used for the direct longitudinal wave. 

 

6. Shear-to-Longitudinal Conversion.  This wave corresponds to the term containing the exponential 

e−k31d−k33 (x3+d )  and will be referred to as v3SL
g . For this term, let ′τ = [k31d + k33(x3 + d)] / s .  The rest of 

the development essentially follows that outlined for the longitudinal-to-shear conversion.  Combining 

Eq. (D.9) with (D.33) and (D.29) yields the following: 

 
v3SL
g = −i(2π )−2 Re H ( ′τ − [d + (x3 + d) /α

1/2 ])(−2acΚ2
−1/2 ∂Κ2

∂ ′τ
v31 x3=0− ) ′τ =[k33d+k31(x3+d )]/s

0

∞

∫
C
∫ exp(−s ′τ )exp(sτ )d ′τ ds

(D.48) 

such that the displacment is given by: 

 
v3SL
g = (2π )−1H ( ′τ − [d + (x3 + d) /α

1/2 ])Re(−2acΚ2
−1/2 ∂Κ2

∂ ′τ
v31 x3=0− ) ′τ =[k33d+k31(x3+d )]/s

. (D.49) 

 

The overall solution is simply the sum of the individual terms: v3
g = v3S

g + v3SS
g + v3LS

g + v3L
g + v3LL

g + v3SL
g .  

Even though this expression for the displacements is complete and only requires evaluation of closed-

form terms, it is quite cumbersome and very little, if any, simplification can be accomplished unless 
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special circumstances prevail.  While various authors have explored elements of related solutions, few (if 

any) have considered all the terms individually especially those related to mode conversion at the 

boundary [D15,D16]. 

D.3. Computed Results – Graphical Presentation 

The overall character of the solution can be illustrated by computing displacement as a function of time 

for assumed conditions. Consider titanium for which c1111 = 162 , c2233 = 69 , c3333 = 181  and c2323 = 46.7  

(all in units of GPa); α 22 =  9.23 ×  10−6  and α 33 =  9.57 ×  10−6  (both in units of 1 / °C ).  Suppose the 

point of observation is fixed such that the direct shear wave arrives at a time equal to t = τ (ρ / c2323 )
1/2  

with τ = 1  (the prime notation has been removed).  Note that the units for τ  correspond to length and are 

determined by the choice of units for time and the wavespeed, (c2323 / ρ)
1/2 .  Under these conditions, 

observation occurs at the location x3 = τ = 1 .  In addition, it will be assumed that the source is located at 

a distance d = x3 / 20  from the surface.  For this geometry and material, the displacements at the point of 

observation as a function of reduced time will take the form shown in Fig. D.2a.  In these results, the 

displacements have been divided by θ  (the heat source power per unit length divided by the heat 

capacity) and multiplied by (c2323 / ρ)
1/2  (according to the original normalization carried out in Eq. (D.2)) 

and should be interpreted in terms of the related units.  The most prominent features of the waveform are 

the first arrival (the direct longitudinal wave) at τ ≈ 0.5  and the longitudinal-to-longitudinal reflection – 

the negative-going peak after the first arrival.  Since the waveform is composed of 6 different arrivals, it 

is useful to display each of these separately as is shown in Fig. D.2b.  Here the first and second arrivals (L 

and LL respectively) are shown along with the mode-converted shear-to-longitudinal wave (SL), the 

direct shear wave (S) followed by the longitudinal-to-shear conversion (LS).  The final arrival is the 

reflected shear wave (SS).  Among the arrivals after the first two, the most significant is the longitudinal-

to-shear conversion – all others lack distinct onsets or have low amplitudes making them difficult to 

identify in the total displacement waveform.  It should be noted that when computing the various 

contributions to the total displacement, arrivals that do not undergo mode conversion can be manipulated 

quite easily since reduced time is a direct input parameter.  However, for mode-converted arrivals, 

reduced time is a derived quantity and, as a result, adding these terms to the others requires some care. 

Additional results are shown in Fig. D.3 where a series of displacement waveforms illustrates the effect of 

changing the depth of the source below the surface in titanium.  For this series, the source-to-receiver 

distance is fixed so that the shear wave arrives at the reduced time τ = 1  (corresponding to x3 = 1) while 

the source-to-surface distance (d ) takes on fractional values of x3  – namely, 0.000, 0.005, 0.025, 0.050 
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and 0.075.  This geometry fixes the arrival times for the direct longitudinal wave (at τ =α −1/2 ≈ 0.5 ) and 

the direct shear wave (τ = 1.0 ) – all other modes have arrival times that vary as the boundary is moved 

relative to the source with the most prominent being the longitudinal reflection.  When the source is 

located far away from the surface, the reflected longitudinal wave is delayed relative to the direct wave by 

Δτ = 2dα −1/2  and this difference decreases as the source approaches the surface.  When the source is at 

the surface (d = 0.000 ), the wavefronts for the direct and reflected longitudinal waves cancel one 

another and the character of the overall waveform is changed significantly.  The only distinct feature 

associated with shear displacements is the longitudinal-to-shear conversion.  For the surface source, the 

arrival time for this component is τ = 1.0 , but as the source moves away from the boundary, the arrival is 

delayed by Δτ = d(α −1/2 +1)   – unlike for the reflected longitudinal wave, this shift is difficult to 

identify in the waveform owing to the nature of the shear wavefronts. 

D.4. Results for Special Conditions 

D.4.1 Wavefront Arrivals 

The wavefront arrivals provide insight into the overall character of the waveforms produced by this type 

of source.  Since the directly transmitted shear and longitudinal waves factor into all components of the 

wavefield, attention will be focused on these.  For times approaching the arrival of the direct longitudinal 

wave, the following result is obtained for the displacement: 

v3L
g

τ→(x3/α
1/2 )+

= (2π )−1H (τ − x3 /α
1/2 )[φ3 / z44 ][2α

3/2 (α −1) / (α +κ 2 −1)]1/2 (τ − x3 /α
1/2 )−1/2 x3

−1/2 . 

(D.50) 

The temporal dependence of the wavefront is a reciprocal, square root singularity – this is typical for line 

sources and indicates that the computed waveforms shown in this work are approximations to the actual 

result.  In addition, the amplitude varies as the reciprocal, square root of the distance between the source 

and the point of observation – again, this is the usual result for line sources and is related to conservation 

of energy. When the reduced time approaches the arrival time for the direct shear wave, the following 

result is obtained for the epicentral displacement due to the shear wave: 

v3S
g

τ→x3
+ = (2π )

−1H (τ − x3)[κ (φ2 −κφ3 / (α −1)) / z44 ][2α / (β +κ 2 −αβ )]3/2[2(α −1)]1/2 (τ − x3)
1/2 x3

−3/2 .

 (D.51) 

In this case, the amplitude varies with the square root of time and does not exhibit any singularity – this 

prevents this portion of the wavefield from contributing significantly to the overall epicentral 

displacement.  In addition, the wavefront displacement amplitude decreases more rapidly than x3
−1/2  and 

does not contribute to overall energy transport to large distances ( x3 >>1 ).  These results indicate that 
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the directly transmitted longitudinal wave as well as displacements directly associated with this wave will 

dominate the overall character of epicentral displacements. 

D.4.2
 
Shear Wave Emission 

Direct emission of shear waves by the source is related to the material anisotropy and accounts for three 

of the terms in the full solution.  Both elastic and thermal expansion anisotropy contribute to the existence 

of these portions of the wavefield for the geometry considered in this work.  Shear waves are not directly 

generated in isotropic materials but do arise as a result of mode conversion at the boundary.  This can be 

shown by considering the form of the source term as well as the solution for shear displacements in the 

unbounded medium (corresponding to v31  or  v31 ).  The thermoelastic source has components including 

terms introduced after Eqs. (D.4) and (D.5): 

φ2 = θ(c2222α 22 + c2233α 33)  and  φ3 = θ(c3322α 22 + c3333α 33) .   (D.52) 

For isotropic materials, all components of the thermal expansion tensor are equal (α 22 =α 33 ) and the 

stiffness tensor reduces to two independent components from the five for transversely isotropic materials.  

First, c2222 = c3333  (or α = β ) so that φ2 = φ3  – this simplifies the form of the source and the thermally-

generated stresses are isotropic under these conditions.  Secondly, the symmetry simplifies stiffness-

related terms used to express  v31  including c2323 = c1212  and c2233 = c2222 − 2c1212  so that κ =α −1  and 

χ = 2α .  With these equalities in place, according to Eq. (D.19),   v31 = 0  – no transverse displacements 

are emitted by the source. This immediately eliminates three of the six components of the wavefield and 

the remaining terms are wholly related to longitudinal wave emission by the source. 

D.4.3 Surface Expansion Line Source 

One interesting limit is the case when d→ 0  which yields the displacement field for a surface source.  

Returning to the transform of the general solution given in Eq. (D.29) and letting d = 0  results in the 

following: 

 
v3
g
d=0

= −(αsz44 )
−1κ k2

2[φ3(1−κ )+φ2α ][be
−k31x3 − ae−k33x3 ](ad − bc)−1 .  (D.53) 

Having obtained this solution for the displacements in the x3  direction from a thermoelastic, surface line 

source, an alternative specification can be created by assessing the equivalent boundary stresses that give 

rise to these same displacements.  Using Eq. (D.53) along with the associated displacements in the x2  

direction (
 
v2
g
d=0

= R1v31
g

d=0
+ R3 v33

g
d=0  

– see Eq. (D.25)), the stresses can be written for the doubly 

transformed domain as follows: 

 
σ 33 d=0 = z44 [α v3,3

g + ik2 (κ −1)v2
g ]

d=0
     (D.54) 
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σ 23 d=0 = [ v2,3

g + ik2 v3
g ]

d=0
     (D.55) 

and evaluated at x3 = 0  to yield: 

 
σ 33 d=0

x3=0
= z44 (κ k31k33)

−1[−a v31
g

d=0
x3=0

− b v33
g

d=0
x3=0
]= 0    (D.56) 

and 

 
σ 23 d=0

x3=0
= z44 (−iκ k2 )

−1[cv31
g

d=0
x3=0

+ d v33
g

d=0
x3=0
]= ik2s

−1[φ3(1−κ ) /α +φ2 ] .  (D.57) 

These expressions can be inverted with respect to the remaining transform variables to arrive at the 

following equivalent boundary conditions: 

σ 33 d=0
x3=0

= 0   and  σ 23 d=0
x3=0

= [φ3(1−κ ) /α +φ2 ]δ (x2 ),2H (t) .  (D.58) 

This result was derived previously by Hurley using the method of images [D.20].  By explicitly deriving 

solutions for the buried thermoelastic source using a general approach, the surface source is simply a 

special case that can be modeled more directly using equivalent boundary conditions. 

D.4.4 Distribution of Subsurface Sources 

Another interesting source specification that contrasts to the single source on the half-space surface is a 

distribution of subsurface sources that are all contained in the plane defined by the line direction and the 

surface normal – see Fig. D.4 for a schematic of the source configuration.  This type of distributed source 

might occur in a variety of physical situations including those produced by subsurface photothermal 

conversion.  If a total of N  discrete sources are arrayed according to a distribution where the source 

amplitude as a function of the depth below the surface for the k th  source is f (dk ) , then the total 

displacement, v3Total
g (x3) , resulting from the superposition of these can be expressed as follows:  

v3Total
g (x3) = f (dk )

k=0

N

∑ v3
g (x3 − dk ) .     (D.59) 

If these sources are arrayed in a regular fashion such that they are spaced at equal intervals below the 

surface (beginning at the surface), then dk = kΔd = k(dk+1 − dk )  and the total displacement can be 

computed according to Eq. (D.59).  However, if f (dk )  represents a continuous distribution function that 

is sampled at various locations, then the total displacement might be represented as follows: 

v3Total
g (x3) = [ f (dk )

k=0

N

∑ v3
g (x3 − dk )Δd][ f (dk )

k=0

N

∑ Δd]−1    (D.60) 

where the denominator simply normalizes the computed displacement.  The other factors do not change 

the result but are important if the distribution is exhaustively sampled – namely, as Δd→ 0  the 

following result emerges: 
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v3Total
g (x3) = [ f (y)v3

g (x3 − y)dy
0

∞

∫ ][ f (y)dy
0

∞

∫ ]−1     (D.61) 

where the dummy variable, y , has been used to represent the source depth, d .  Equation (D.61) is simply 

a convolution of the source distribution function with the displacement for the single line source 

normalized by the integrated source strength.  Note that the original solution for the single line source 

located a distance d  from the surface is recovered from Eq. (D.61) if the distribution is a Dirac delta 

function where f (y) = δ (y − d) . 

D.5. Discussion 

The intent of this work has been to derive the elastic displacements that occur in a transversely isotropic 

half-space resulting from the action of a subsurface, thermoelastic line source perpendicular to the 

symmetry axis and parallel to the surface.  Analytical, closed form solutions for these displacements have 

been derived for receiver locations directly below the line source – namely, those that are epicentrally 

located – and computed waveforms have been shown for titanium.  While the various results presented in 

this work are instructive, their value is primarily in the application to specific problems that might arise in 

physical systems that display transverse isotropy but do not directly adhere to restrictions that have been 

placed on the results shown in this work.  Some additional comments regarding the application of results 

in this work are required.  First, the assumption that the receiver is buried in a half-space below the source 

is not typically encountered.  Receivers are generally located on surfaces.  To generate a source-receiver 

geometry similar to the one assumed in this work, the receiver would likely reside on the back surface of 

a plate structure and boundary conditions on this second surface would need to be included in the 

development [D28-30].  The displacements under these conditions can be developed from the results 

presented here by simply multiplying the various arrivals by the appropriate reflection coefficients – these 

are directly related to those already presented for reflection of the directly-emitted waves at the free 

surface.  This treatment is consistent with ray descriptions of propagation in plates.  Based on related 

treatments in isotropic materials, minor changes to the overall waveform shape are expected for reception 

on the back surface of a plate when compared to the buried receiver [D18]. 

The next issue relates to the computation of wavefields associated with distributed sources.  While the 

line source permits the development of simple solutions, many physical circumstances give rise to 

distributed sources and methods for computation of the resulting displacements should be considered.  

The convolution integral given in Eq. (D.61) provides a formal solution for one type of distributed source, 

but it is unknown whether or not there exist continuous source distributions giving rise to simple solutions 

that do not require numerical evaluation.  Numerical integration is likely required to obtain the 

displacements from most sources, and the question naturally arises regarding the best computational 
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approach to use.  The convolution in Eq. (D.61) is one – this requires numerical evaluation of a single 

integral.  However, the convolution could be carried out in the transform domain (before inversions were 

completed) and this could result in numerical evaluation of two, nested integrals.  Indeed, under these 

conditions, a wider range of circumstances could be modeled since the temporal as well as the lateral 

spatial characteristics of the source might be incorporated into these integrals [D9].  However, care must 

be taken during the associated numerical integrations – it might be more computationally efficient to 

simply solve the governing differential equations numerically as has been done by others previously 

[D29].  While this approach does not take advantage of some elegant mathematics [D31], it does utilize 

the capabilities of contemporary computational techniques and could reveal behaviors that are not readily 

identified when analytical techniques are employed.  Essentially, a wide range of circumstances involving 

changes to the source geometry and temporal profile might be modeled quite rapidly once solution 

algorithms are in place. 

Finally, restrictions regarding the overall solution as it relates to the essential system geometry should be 

considered.  The case developed in this work has the free surface as well as the source perpendicular to 

the symmetry axis.  However, since the source is linear, dependence of displacements on one of the three 

spatial coordinates is suppressed – x1  for the case here.  The source geometry renders the overall problem 

one of two spatial dimensions and this also occurs when the line is oriented along principal axes in other 

directions.  Solutions for these other source orientations can be derived directly from the results 

developed in this work.  If the surface as well as the source are parallel to the symmetry axis, then the 

overall system behaves isotropically – appropriate changes to subscripts as well as substitutions for the 

various moduli can be made to generate the corresponding solution.  The final expression for epicentral 

displacements is more compact than the one presented here since three terms directly associated with 

shear wave emission disappear and remaining terms simplify considerably.  The final source geometry of 

interest occurs when the surface is parallel to the symmetry axis and the source is perpendicular to it.  

Under these conditions, the solution procedure shown here can be used in its entirety with a simple 

exchange of subscripts ( 2 3 ) along with a re-definition of the normalized moduli.  Under these 

conditions, the longitudinal wavespeed changes while the shear wave travels at the same speed as for the 

case considered in the original development. 

D.6. Conclusions 

Mathematical expressions for the material displacements resulting from a subsurface, thermoelastic line 

source in a transversely isotropic half space have been presented.  These expressions showed that six 

discrete wave arrivals can be expected in the wavefield.  In particular, closed-form, analytical solutions 

for displacements associated with the six arrivals were derived for a receiver located directly below the 
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source (in an epicentral location).  Computed displacements in titanium showed large amplitude arrivals 

corresponding to longitudinal waves (directly transmitted and reflected from the surface) along with a 

smaller amplitude arrival associated with a shear wave produced by longitudinal wave conversion at the 

boundary.  The directly transmitted longitudinal wavefront has a reciprocal, square root dependence on 

time as well as a reciprocal, square root dependence on the source-to-receiver distance – the temporal 

singularity at the longitudinal wavefront accounts for the large amplitudes in computed results.   Shear 

waves have relatively small amplitudes for epicentral reception.  In particular, the directly transmitted 

shear wave was shown to have a square root dependence on time yielding no singularity at the wavefront.  

The origin of this shear wave is directly related to the anisotropy of the system – it does not exist in 

isotropic systems.  Computed results for titanium tend to indicate that the epicentral wavefront 

singularities for the direct and reflected longitudinal waves cancel one another in the limit as the source 

approaches the boundary leaving only higher order terms.  This conclusion is supported by results for 

surface stresses that occur in the limit as the line moves to the boundary.  In this limit, the source assumes 

the form of a surface, shear stress dipole with no contributions from the normal stress.  Expressions have 

been developed for distributed sources that can be composed using superposition of subsurface line 

sources and it has also been shown that under appropriate conditions these expressions take on the form 

of a convolution between the source distribution function and the single line source solution developed in 

this work.  
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Figure D.1: Schematic illustration of the line source configuration modeled in this work.  The source is 
perpendicular to the symmetry axis and parallel to the surface in a transversely isotropic material. 
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Figure D.2: (a) Epicentral displacements for a source located a distance d = 0.05  below the surface and 
a receiver located at x3 = 1 .  The elastic constants and thermal expansion coefficient for titanium have 
been used. (b) The six components of the waveform shown in (a) where L is the direct longitudinal wave, 
LL is the reflected longitudinal wave, SL is the mode-converted shear-to-longitudinal wave, S is the 
direct shear wave, LS is the mode-converted longitudinal-to-shear wave and SS is the reflected shear 
wave. 
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Figure D.3: Epicentral displacements in titanium for a receiver located at x3 = 1  and a source located at 
the subsurface locations indicated next to each waveform.  The direct and reflected longitudinal waves 
dominate the character of these waveforms when the source is subsurface (d ≠ 0 ). 
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Figure D.4: Schematic illustration of source distributions that can be modeled using results presented in 
this work.  Shading of sources indicates relative strengths.  For collections of individual line sources as is 
shown for Cases 1-3, simple addition of waveforms can be used.  In the limit of a continuous distribution 
as is shown in Case 4, convolution is required. 
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Section E: Theory and application of laser ultrasonic shear wave birefringence measurements to 
the determination of microstructure orientation in transversely isotropic, polycrystalline graphite 
materials 

E.1. Introduction 

Common materials used in a variety of engineering applications can be described as being polycrystalline.  

Namely, the material is composed of connected regions that share a common crystal structure and 

composition but differ in the crystallographic orientation relative to one another.  Each of these regions 

can be referred to as a grain or crystallite. In many polycrystalline materials, crystallite orientations are 

nearly random and the material can behave isotropically if a statistically significant number of grains are 

involved in the physical process being investigated.   Descriptions of materials behavior that include basic 

physical properties can be quite simple for isotropic materials and, for a large number of engineering 

materials, these types of descriptions are sufficient for most purposes.  However, if the orientations of 

crystalline regions in the material are not random and there is some type of preferred orientation for the 

overall population then the material is said to have texture and will behave anisotropically.  This is the 

case for various nuclear grade graphites produced using processing methods that result in preferred 

crystallite orientation.  The anisotropy in these materials can have profound effects on their performance 

in nuclear reactors where they can serve as critical structural components [E1].  Consequently, significant 

effort has been invested in the measurement of anisotropy in nuclear graphites, but the results of these 

measurements have generally not been related quantitatively to the underlying texture of the material even 

though methods for doing so have been demonstrated previously [E2].  By contrast, the relationships 

between texture and material anisotropy in geological materials and metal alloys have been studied 

extensively [E3-7] since the trajectory of seismic waves as well as the behavior of rolled sheet during 

plastic forming both depend heavily on this anisotropy [E8,E9].  The most widely used methods for 

determination of texture in polycrystalline materials involve the use of x-ray diffraction (XRD).  These 

methods generally provide information about the overall crystallographic orientation of material near the 

surface by interrogating many crystallites in this region and providing some average response related to 

the overall population [E10,E11].  Electron, backscatter diffraction (EBSD) is another method that has 

been used [E12].  Owing to the high spatial resolutions that can be achieved using electron microscopy 

techniques, orientation maps for individual crystallites at the material surface can be created using EBSD.  

Statistical analysis of these maps can be performed and results related to those obtained using XRD 

methods.  Neutron diffraction has also been used and can provide information not available using either 

XRD or EBSD techniques since neutrons penetrate through the bulk of a sample and can provide 

volumetric texture information [E3,E5].  
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The material that is the focus of the work presented here is nuclear graphite – a chemically pure form of 

polycrystalline graphite that has properties favorable for use in nuclear reactors.  In polycrystalline 

graphite, anisotropy can arise not only from the texture – as occurs in other polycrystalline materials such 

as ceramics and metals – but also from the preferred orientation of microstructural defects.  Alignment of 

non-spherical pores as well as microcracks can influence properties that depend directly on the geometries 

and population densities for these defects.  While the measurement of crystallite orientation can be 

accomplished using diffraction-based techniques, the orientation of defect structures can be more difficult 

to determine directly especially if whole populations must be characterized.  Since these structures can 

strongly influence the physical properties of the overall material [E13], measurement of the anisotropy of 

bulk properties can provide insight into the preferred orientation of defect structures in the material. 

The use of physical properties measurements to characterize anisotropy and infer texture has been used 

extensively.  In particular, the elastic moduli of polycrystalline materials can be readily assessed using 

ultrasonic methods and these can be directly related to the underlying materials microstructure 

[E4,E6,E7,E12,E14-17].  If the material anisotropy is dominated by orientation of crystalline regions, 

then some useful comparisons can be made between diffraction-based measurements and those obtained 

using ultrasonic techniques [E5,E12].   In some sense, these comparisons are tests of structure-property 

relationships since diffraction techniques provide information directly related to preferred orientation 

while ultrasonics essentially provides modulus-related information.  Results of studies that have 

considered both generally indicate that there is agreement between diffraction and properties results so 

long as the differences between the measurement techniques are taken into account [E18].   

For the work reported here, ultrasonic methods have been used to characterize a transversely-isotropic, 

polycrystalline graphite and measurements have been interpreted within an overall framework that allows 

for comparison to other physical property measurements.  Ultrasound is sensitive to both texture as well 

as to the presence and orientation of defect structures and, as a result, ultrasonic measurements indicate 

the combined effects of these on the material moduli.  In particular, the technique of shear wave 

birefringence using laser ultrasonic methods has been used since it minimizes the effects of material 

inhomogeneity on measured results while effectively capturing and isolating material anisotropy.  These 

ultrasonic measurements provide information that can be interpreted using simple models describing the 

elastic moduli of polycrystalline materials.  In this work, we show how standard physical property 

descriptions representing the behaviors of single crystal materials (with and without defects) can be 

combined with a representation of texture (based on the orientation distribution function) to permit 

development of simple descriptions for the average properties associated with textured, polycrystalline 

graphite. 
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E.2. Physical Properties of Textured Polycrystalline Materials  

E.2.1 General Background 

Texture in polycrystalline materials generally arises from the techniques that are used during material 

processing.  Rolling, extrusion as well as molding operations can cause slight re-orientation and increased 

alignment of crystalline regions driven by stresses experienced by the material during the forming process 

[E10].  Since single crystal materials are anisotropic, any texture associated with polycrystalline materials 

will have physical properties that reflect not only the texture but depend directly on the properties of 

underlying crystal structure of the constituent crystallites.  This implies that polycrystalline materials 

displaying texture do not behave isotropically and, as a result, more involved descriptions than are used 

for isotropic materials are required to adequately characterize their behaviors. These descriptions must 

involve the physical properties of the single crystal material and must also include methods for 

accounting for the overall behavior of the polycrystalline ensemble.  In this work, we will focus on the 

elastic responses and the thermal expansion characteristics, but the overall method used here has been 

generalized to other material behaviors that can be described using physical property methods.  In the 

following sections, notation conventions vary and have been chosen to effectively convey the major ideas 

being described.   In some cases, notation directly reflects the underlying computation being performed 

while at other times the notation represents the essential ideas being developed.  A uniform notation could 

have been used for all sections, but would be at the expense of overall clarity.  The compromise used here 

facilitates the presentation while providing essential details that support the overall results of the work.   

E.2.2. Physical Properties of Single Crystals and Polycrystalline Materials 

The elastic and thermal expansion behaviors of single crystal materials are well-defined using physical 

property descriptions.  Generally, these behaviors are coupled (differences between the isothermal and 

adiabatic elastic moduli depend on the thermal expansion) and can also occur simultaneously (stress-

induced deformations can combine with those produced by changes in temperature).  It will be assumed 

that all behaviors are linear with respect to field variables – stress varies linearly with strain for elastic 

behavior and strain varies linearly with temperature changes for thermal expansion.  This assumption 

greatly simplifies descriptions of the corresponding physical properties and these can be found in various 

reference texts [E19,E20]. 

Unlike single crystal materials, the bulk material properties of a polycrystalline material depend not only 

on the single crystal properties but also on the relative orientations of individual crystallites that compose 

the material.  Stated differently, the properties of the polycrystalline must somehow reflect the crystalline 

properties of the constituent material as well as the symmetries of the polycrystalline ensemble.  The 

simplest approach to deriving properties of the aggregate is to compute a directionally-weighted average 
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that incorporates the fractional volume occupied by crystallites of a given orientation along with the value 

of the property in a particular direction referred to a coordinate system [E10].  While this description is 

conceptually straightforward, another equivalent method for deriving the properties of the polycrystalline 

material is to employ the orientation distribution function, f (g) .  This scalar function describes the 

fraction of material in the representative volume of a given orientation, g .  The orientation can be 

provided by an ordered set, (ψ ,θ ,φ) , corresponding to the symmetric Euler angles.  Using g = (ψ ,θ ,φ) , 

the orientation distribution function can be expressed as a series expansion using the generalized spherical 

harmonic functions as follows: 

f (ψ ,θ ,φ) = WlmnZlmn (cosθ )e
imψ

n=− l

l

∑
m=− l

l

∑
l=0

′L0

∑ einφ     (E.1) 

where Wlmn  are the orientation distribution coefficients and Zlmn  are the Jacobi Polynomials.  Similarly, 

the components of the tensor, t ,can be expressed in the sample frame of reference such that
 

t(ψ ,θ ,φ) = tlmnZlmn (cosθ )e
imψ

n=− l

l

∑
m=− l

l

∑
l=0

′′L0

∑ einφ     (E.2) 

where tlmn  represent the tensor coefficients for the various components in the sample frame of reference.  

Using the expressions given in Eqs. (E.1) and (E.2) along with the following representation for the 

average value for of the tensor property, t :  

t = t(g) f (g)∫ dg .      (E.3) 

and noting the orthonormal properties of the generalized spherical harmonics yields the following: 

t = 4π 2 tlmnWlmn
n=− l

l

∑
m=− l

l

∑
l=0

L0

∑      (E.4) 

where L0  takes on the lower value of either ′L0  or ′′L0  [E10].  This result indicates that the property in 

the sample frame of reference depends only on the orientation distribution coefficients and the 

coefficients for the tensor corresponding to the single crystal property.  Generally, the higher the point 

group symmetry of the crystal system for the constituent crystallites or the higher the symmetry of the 

distribution function or the lower the rank of the tensor property, the lower the number of orientation 

distribution coefficients that are needed to describe the average property in the polycrystalline material.  

For the purposes of this work in which we will consider transversely isotropic materials composed of 

graphite crystallites having hexagonal point group symmetry, only two orientation distribution 
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coefficients are required to describe the average elastic modulus tensor while thermal expansion can be 

described using a single orientation distribution coefficient.
 

E.2.3. Models for Elastic Response and Thermal Expansion in Polycrystalline Systems 

E.2.3.1. Elastic Response 

For textured polycrystalline materials, the constitutive relation for linear elastic response can be expressed 

as follows: 

σ ij = cijklε kl        (E.5) 

where σ ij  is the elastic stress tensor, ε kl  is the infinitessimal strain tensor and cijkl  is the effective, linear 

elastic, stiffness tensor.  Self-consistent methods are needed to accurately estimate the effective moduli 

[E8], but these methods will not be pursued here.  Upper and lower bounds can be obtained by assuming 

uniform stress or strain conditions which yield the Reuss and Voigt limits for the polycrystalline moduli, 

respectively.  These limits can be computed readily and yield compact forms that can be written directly.  

Early publications by Morris [E22,E23] as well as by Sayers [E24,E25] are useful in constructing these 

expressions.  Following work by Li and Thompson [E26], the components of the elastic modulus tensor 

that relate to the shear birefringence measurements in this work can be expressed as follows: 

c I
11 = c11

I 0 + 4π 2[4(101/2 / 210)A1
IW200 + 3(2

1/2 /105)BIW400 ]    (E.6) 

c I
44 = c44

I 0 + 4π 2[(101/2 / 210)A3
IW200 − 4(2

1/2 /105)BIW400 ]    (E.7) 

c I
66 = c44

I 0 + 4π 2[−(101/2 /105)A3
IW200 + (2

1/2 /105)BIW400 ]    (E.8) 

where I = R or V  depending on whether the Reuss or Voigt values are needed.  In these expressions, 

Voigt two-index notation has been used instead of tensor notation since this decreases the length of 

various expressions.  Also, expressions for A1
I , A3

I  and BI  are provided in Appendix A.  According to 

Eqs. (E.6)-(E.8), the polycrystalline moduli depend only on the single crystal elastic constants and the 

orientation distribution coefficients W200  and W400 . 

E.2.3.2. Thermal Expansion 

Strains, ε ij , associated with a temperature rise, θ , in a textured, polycrystalline material can be 

expressed as follows: 

ε ij =α ij
Iθ       (E.9) 
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where α ij
I  represents the thermal expansion coefficient tensor for the material and I = R or V  depending 

on whether Reuss or Voigt averaging methods are used.  Again, estimates for components of the effective 

thermal expansion tensor should be obtained using methods that have been described elsewhere, but the 

upper and lower bounds based on the Reuss and Voigt averaging schemes can be expressed quite simply 

using algebraic expressions.   

Following work by Dunn and Ledbetter [E27], the thermal expansion coefficients for a transversely 

isotropic, polycrystalline material using the Reuss averaging process yields: 

α1
R = (2α1 +α 3) / 3− [4(2 / 5)

1/2π 2 (α 3 −α1) / 3]W200    (E.10) 
and  

α 3
R = (2α1 +α 3) / 3+ [8(2 / 5)

1/2π 2 (α 3 −α1) / 3]W200    (E.11) 

which are the principal components of the thermal expansion tensor.  Note that these expressions are 

fairly simple and indicate that thermal expansion in the polycrystalline system depends solely on the 

single crystal thermal expansion coefficients and the orientation distribution coefficient W200 . 

Once again, following work by Dunn and Ledbetter [E27], the corresponding results for the thermal 

expansion coefficients using the Voigt averaging method yields: 

α1
V = (2α1 +α 3) / 3+ 2(α1 −α 3)γ / 3−ηW200     (E.12) 

and 

α 3
V = (2α1 +α 3) / 3+ 2(α1 −α 3)γ / 3−κW200     (E.13) 

where expressions for γ , η  and κ  are provided in Appendix B. Even though these results for the 

thermal expansion coefficients contain many more terms than those obtained for Reuss averaging, the 

polycrystalline thermal expansion coefficients still depend solely on the orientation distribution 

coefficient W200  and on the single crystal values for the thermal expansion coefficient and, in this case, 

the elastic moduli.  

E.2.3.3. Modified Hill Approximation 

As has been mentioned, the Voigt and Reuss averages for both the elastic moduli and the thermal 

expansion coefficients represent bounds that might or might not accurately reflect the actual values 

obtained in polycrystalline materials.  For many materials systems, a first estimate beyond these bounds 

that might be considered is the Hill approximation – the simple average of the Voigt and Reuss values.   

While the Hill approximation might reasonably hold under many circumstances, it is not clear why this 

estimate should be preferred to others especially in polycrystalline graphites since the Voigt and Reuss 
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limits differ significantly from one another.  For the purposes of this work, a modified Hill approximation 

will be used where a weighted average of the Voigt and Reuss limits will be used instead of a simple 

average.  For the elastic moduli we will use 

cij = rcij
R + (1− r)cij

V

      (E.14) 

and for the thermal expansion coefficients 

α i = rα i
R + (1− r)α i

V       (E.15) 

where, in both of these expressions, r  is the fractional contribution of the Reuss estimate to the overall 

property and 0 ≤ r ≤1 . 

E.2.3.4. Determination of Orientation Distribution Coefficients 

First, consider the elastic properties of the material.  In this work, we will present shear birefringence 

measurements that provide values for c11 , c44  and c66 .  The essential unknowns in the corresponding 

models for these moduli are r  and the orientation distribution coefficients W200  and W400 .  Equations 

(E.6)-(E.8) and (E.14) can be solved for either W200  or W400  – related quadratic equations and the 

solution process used in this work are given in Appendix C. Even though the solution for either 

orientation distribution coefficient can be expressed in a finite, closed form, it is lengthy and will not be 

given here.  The important result is that our measurements provide sufficient information to uniquely 

solve for the underlying descriptors of the system.  Similarly, when thermal expansion is considered, if 

values for the two components of the corresponding tensor are measured, then r  and W200  can be 

determined using the models presented here.  A quadratic equation for W200  results (also given in 

Appendix C), but its solution is too lengthy to be shown here. 

E.3. Elastic and Thermal Expansion Properties of Single Crystal Graphite Containing Microcracks 

During processing of bulk, nuclear graphite materials, microcracks and oriented pores are introduced into 

the microstructure of the material.  These defects are known to affect various behaviors in graphite 

including the elastic response of the material [E28,E29], and related effects need to be considered for 

interpretation of experimental results obtained in this work.  There are various approaches to modeling the 

effects of microcracks on the elastic properties of polycrystalline materials [E30-33] especially those 

containing high crack densities [E34] that could account for the effects of microcracks on the elastic 

moduli of polycrystalline graphite.  However, we will choose to modify the single crystal elastic constants 

to incorporate the effects of microcracks since it is known that these types of defects readily form along 

planes perpendicular to the axis of symmetry (c-axis) in graphite.  This particular approach approximates 

conditions that hold in nuclear graphite. 
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E.3.1. Single Crystal Elastic Constants – Effect of Oriented Microcracks 

Fortunately, the elastic moduli for hexagonal, single crystal materials containing microcracks 

perpendicular to the c-axis have been modeled by Schoenberg and Douma [E35].  The results they 

obtained are presented here as follows:   

′c33 = c33(1+ EN )
−1 , ′c11 = c11 − c13

2 [1− (1+ EN )
−1] / c33 , ′c44 = c44 (1+ ET )

−1 ,  

′c66 = c66 , ′c13 = c13(1+ EN )
−1

, ′c12 = ′c11 − 2c66     (E.16) 

where the prime indicates the stiffness tensor component has been modified by the presence of 

microcracks, EN = c33ZN  and ET = c44ZT .  Here ZN  and ZT  represent the normal and tangential 

compliances of an average crack.  If the uncracked material is isotropic, these expressions are in general 

agreement with Zheng under certain conditions [E36].  For the purposes of this work, it will be assumed 

that ZN ≈ ZT  since Schoenberg and Sayers indicate that this is true for various types of materials [E37].  

For analysis of experimental results, these microcrack-modified, single crystal elastic constants will be 

used with all previous models for the elastic properties of textured, polycrystalline materials.   

3.2. Thermal Expansion – Effect of Oriented Microcracks 

Owing to differences between Voigt and Reuss averaging, the effect of microcracks on thermal expansion 

in polycrystalline materials can manifest itself directly through the thermal expansion coefficients or 

indirectly through the elastic moduli.  According to Eqs. (E.12) and (E.13), the Voigt values for 

components of the thermal expansion tensor depend directly on the single crystal values for elastic moduli 

owing to elastic constraint effects.  Since these are modified by microcracks, it is clear that the thermal 

expansion of the polycrystalline material will be affected by microcracking even if the single crystal 

thermal expansion coefficients are not.  For the purposes of this work, it will be assumed that the single 

crystal values for components of the thermal expansion are not directly affected by pores or microcracks 

since the influence of these microstructural elements on thermal expansion occurs primarily when elastic 

constraint occurs in polycrystalline systems.  This overall approach to interpreting the influence of 

microstructure on thermal expansion is consistent with work on thermal expansion in a range of materials 

systems [E38-42] and agrees with early work on nuclear graphites by Sutton and Howard [E43] and by 

Jenkins [E44].  

E.4. Experimental: Materials and Methods 

Using laser ultrasonic line source techniques, shear birefringence measurements were made on NBG-25 – 

a leading candidate as a structural material produced by SGL Carbon for core support in the next 

generation nuclear reactors [E45].  Reports indicate that NBG-25 is an isostatically-molded, superfine-



	
   105	
  

grained (<50 µm) graphite produced using petroleum-derived coke [E45,E46].  Preliminary ultrasonic 

evaluation of this material indicated that it was transversely isotropic.  Two ultrasonic samples of NBG-

25 having dimensions approximately 50 mm by 50 mm by 6 mm were cut from a larger sample block.  

These two samples will be referred to as NBG-25-1 and NBG-25-2.  The orientations of these samples 

were chosen so that the directions of ultrasound propagation (along the 6 mm thickness direction) would 

be perpendicular to one another in the frame of reference of the original block.  One square surface of 

each sample was prepared using silicon carbide grinding paper; the other square surface was polished to a 

mirror-like finish using 1 µm diamond paste so that the optical reflectivity was sufficient for ultrasound 

detection using optical interferometry. Using simple measurements of sample dimensions and mass, the 

bulk density of the NBG-25 was measured to be 1.85 g/cm3.  It should be noted that the measured volume 

includes both open and closed pores and this is appropriate for determination of modulus since ultrasound 

does not distinguish between the two. 

Aspects of the graphite microstructure are shown in Fig. E.1 where micrographs of the polished sample 

surface are shown.  The image in Fig. E.1a was acquired using polarized light microscopy and highlights 

polarization rotation that occurs as a result of light reflection from the sample surface.  Crystalline regions 

of the microstructure that are not aligned with the surface normal will rotate the polarization and produce 

intensity variations in the acquired image.  This type of imaging can quickly provide a qualitative sense of 

the orientation of crystalline regions in the graphite.  A scanning electron microscope (SEM) micrograph 

of NBG-25 is shown in Fig. E.1b. Image analysis of the polished graphite surface can reveal detail about 

graphite structure including size, shape, and distribution of pores. Unlike pores, cracks and microcracks 

are difficult to identify in the SEM images.  However, Mrozowski microcracks and other microstructural 

crack-like features have been observed in nuclear graphites previously using TEM methods [E47-50] and 

these studies have shown that microcracks generally occur between graphitic planes along the crystal c-

  
 
Figure E.1. Micrographs of NBG-25 used in this study. (a) Photomicrograph obtained using polarized light 
microscopy highlighting regions of varying crystallographic orientation.  Black regions are pores. (b) SEM 
micrograph highlighting pore structure in the graphite. 

(a) (b) 
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axis. 

A schematic of the laser ultrasonic system used to measure shear wave birefringence in these samples is 

shown in Fig. E.2.  The output of a Q-switched Nd:YAG laser (pulse duration approximately 10 ns) was 

formed into a line using beam-shaping optics and the pulse energy was adjusted to minimize material 

removal by ablation. Under these conditions, the laser line source served as a thermoelastic, ultrasonic 

transmitter that emitted both shear waves as well as longitudinal waves.  A Michelson-type, path-

stabilized interferometer, located directly opposite the line source in the epicentral position, was used as a 

receiver. Its effective operating bandwidth was approximately 20 kHz to 50 MHz.  Owing to the line-like 

character of the source, it produced shear waves with specific polarization perpendicular to the line 

direction for components of the displacement field transmitted through the sample thickness. Only shear 

modes with displacement perpendicular to the laser line are produced since displacements along the line 

direction are suppressed owing to the symmetry of the source [E51]. Figure E.3 shows a schematic 

drawing of the measurement configuration where the shear wave propagation direction was fixed while 

the shear polarization was varied by rotating the orientation of the line source. Time-of-flight 

measurements were made as a function of the line orientation to assess wavespeed variations as a function 

of wave polarization. Any wavespeed variations related to polarization direction can be linked primarily 

to material anisotropy since shear waves propagate through a fixed volume of material between the source 

and the receiver.  This volume is essentially defined by the receiver spot size on the sample surface (less 

than 100 µm for the work here) as well as the width of the line source (approximately 100 µm).  Even 

though ultrasound arrives at the receiver location from all positions along the line (and encompasses a 

relatively large volume of material), only wavefront arrivals at the receiver are recorded and these 

correspond to portions of the ultrasonic field that travel the shortest distances between the line source and 

the receiver.  The lateral resolution provided by the dimensions of the receiver and source permit 

	
  
Figure E.2. Schematic of the laser ultrasonic system used to measure shear wave birefringence in 
graphite.  The orientation of the laser line source was changed by mounting the cylindrical lens in a 
rotational stage.  
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interrogation of the material on length scales 

below those typically obtained using 

traditional ultrasonic techniques.  By 

scanning the source and receiver relative to 

the sample, variations related to 

inhomogeneity can be mapped.  However, 

the influence of inhomogeneity on shear 

wave birefringence measurements is 

considerably lower than effects attributable 

to elastic anisotropy since the volume of 

material interrogated during the ultrasonic 

measurements is, for the most 

part, unchanged when signals are 

recorded for various line 

orientations.  In this work, 

measurements were made with 

line orientations of 0° and 90° 

relative to one sample edge.  The 

different line source and sample 

orientations for the two samples 

are shown in Fig. E.4. 

E.5. Results and Discussion 

Representative laser ultrasonic waveforms are shown in Fig. E.5. In general, the ultrasonic signals from 

NBG-25-1 have better signal-to-noise characteristics than those from NBG-25-2.  Nonetheless, the 

ultrasonic arrivals for the directly transmitted longitudinal and shear waves are easily identified, and the 

four different waveforms clearly show the effects of polarization and propagation direction on ultrasonic 

wavespeeds.  These waveforms can be compared to results of modeling studies focused on laser line 

sources in transversely isotropic systems to assist in the interpretation of arrival times as a function of 

propagation direction and polarization [E52]. 

In order to assign the recorded waveforms in Fig. E.5 to the corresponding measurement geometries 

depicted in Fig. E.4, a few observations regarding expected behaviors in relation to measured results are 

needed. First, for a transversely isotropic material in which the axis of symmetry is parallel to the 

direction of ultrasonic propagation, the line source orientation and the corresponding wave polarizations 

	
  
Figure E.4. Illustrations showing relative orientations of the laser line 
source and the ultrasonic receiver used for assessment of shear 
birefringence. 	
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Figure E.3. Schematic of the measurement geometry used to 
gather ultrasonic waveforms highlighting the shear wave 
polarization relative to the line source direction.  
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do not affect the ultrasonic 

wavespeeds.  If Cases I and II 

correspond to this condition, then 

the orientation of the line source 

will not affect the measurement. 

Results obtained in sample NBG-

25-1 appear to approximate this 

condition.  In contrast, if Cases III 

and IV correspond to propagation 

perpendicular to the axis of 

symmetry then the line source 

orientation will affect the shear 

wavespeeds leading to shear wave 

birefringence [E52].  This 

condition appears to be true for 

the sample NBG-25-2 since the 

times-of-flight for the shear wave 

arrivals in this sample differ 

(indicated by ΔtShear  in Fig. E.5).   

These results indicate that NBG-25 could possess symmetries characteristic of a transversely isotropic 

material.  Even so, the limited measurements provided here do not necessarily capture the overall 

extremes of the elastic anisotropy in this material, and this raises the possibility that the sample reference 

frames are not necessarily aligned with the material frame of reference.  This could be important in a 

complete assessment of material anisotropy in this system. For the purposes of this work, it will be 

assumed that results on NBG-25-2 correspond to propagation perpendicular to an axis of symmetry. This 

is important for analysis of ultrasonic signals and also permits comparison to thermal expansion results 

presented in the literature for NBG-25. 

The models presented for the elastic moduli of transversely isotropic, polycrystalline materials with 

preferred grain orientation indicate that the components of the elastic stiffness tensor for the bulk material 

can be expressed using effective isotropic moduli along with perturbations that include the orientation 

distribution coefficients, W200  and W400  [E26].  These effective isotropic moduli consist of suitable 

averages of the single crystal modulus values from the stiffness tensor.  Based on these models, the 

ultrasonic waveforms gathered in the orientations represented by Cases III and IV can be used to compute 

 

 
Figure E.5. Laser ultrasonic results obtained on two samples of NBG-
25 corresponding to the Cases shown in Fig. 4.  The sample designated 
as NBG-25-2 displays shear wave birefringence which is indicated by 
the difference in shear wave arrival times.  Waveforms are shown offset 
for clarity.	
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moduli (following procedures outlined in Appendix D) that relate to W200  and W400 .  Similarly, it was 

shown that the thermal expansion coefficients for polycrystalline materials with preferred grain 

orientation displaying transverse isotropy can be described using effective isotropic coefficients that are 

suitably modified by terms that depend on the orientation distribution coefficient W200 [E27].  

Measurements of thermal expansion along and perpendicular to the axis of symmetry are sufficient to 

infer W200  given that the components of the single crystal thermal expansion coefficient tensor as well as 

the elastic compliances are known.  Even though thermal expansion measurements were not performed on 

the samples used in this study, results from the literature for NBG-25 can be used.   

For a transversely isotropic material, the elastic moduli that can be extracted from the laser ultrasonic 

measurements indicated for Cases III and IV correspond to c11 , c44  and c66  [E52] which were 12.5, 4.84 

and 5.13 GPa respectively for the NBG-25 used in this work.  Interpreting these results within the 

framework of a textured, polycrystalline material using microcrack-modified values for the components 

of the single crystal stiffness tensor along with a modified Hill averaging approach yields values of 

W200 = 0.00196  and W400 = −0.000757  for the orientation distribution coefficients.  These results were 

obtained using the following microcrack-modified stiffnesses (all in GPa):

′c11 = 1053.79,  ′c33 = 1.07,  ′c44 = 0.857, ′c12 = 173.79 and ′c13 = 0.447  (corresponding to a microcrack 

compliance of ZN ≈ ZT = Z = 0.5 ).  These should be compared to the following accepted values for 

microcrack-free, single crystal graphite (again in GPa) 

c11 = 1060,  c33 = 36.5,  c44 = 4, c12 = 180 and c13 = 15 .  Essentially, elastic constants that depend 

heavily on microcracks oriented along graphitic planes are significantly modified while others are not 

altered to any great degree.  In addition, a value of r = 0.984  was produced for the modified Hill 

averaging scheme indicating that the measured modulus values were close to those associated with the 

Reuss bound – the lower limit – and this quantitative result is consistent with observations made 

previously in various graphites [E53,E54]. 

Published measurements of the thermal expansion in NBG-25 provide the following values for the 

components of the thermal expansion coefficient tensor: α1 = 3.5 ×10−6  o C−1  and α 3 = 4.2 ×10−6  o C−1  

[E55-57].  To interpret these values with the framework for a textured, polycrystalline material, the same 

microcrack-modified values for the single crystal elastic constants (and the corresponding compliances) 

were used along with the thermal expansion coefficients for single crystal graphite (

α1 = −1.2 ×10−6  o C−1  and α 3 = 14 ×10−6  o C−1 ) [E58-63].  Again, the modified Hill averaging 

approach was used to model the polycrystalline material yielding the orientation distribution coefficient 

W200 = 0.0019  along with r = 0.973 .  Since the orientation distribution coefficients are purely 
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geometrical descriptors of polycrystalline materials, they are independent of the measurement process 

used to infer them and it should be expected that a value for W200  based on measurements of elastic 

anisotropy should agree with one derived from thermal expansion measurements.  Similarly, since the 

distribution of stresses and strains that occurs among adjoining grains in a material should depend 

primarily on the relative orientations and stiffnesses of the grains and should not differentiate between 

mechanically-induced or thermally-induced deformations, it should be expected that the fractional 

contribution of the Reuss and Voigt values to the modified Hill average for the two properties should be 

the same.    

Even so, the agreement of the results for W200  and r  obtained using ultrasound measurements with those 

determined using thermal expansion results is remarkable and might appear to be fortuitous.  However, 

the ~ 3% difference between the values for W200  and the ~ 1% difference for the values for r  are tied to 

direct connections between the elastic moduli and thermal expansion that occur in polycrystalline, 

anisotropic materials since both depend on the single crystal stiffness components [E27,E63] – the 

microcrack-modified values in this case.  Examination of the expression for these given in Eq. (E.16) 

shows that the moduli depend on the normal and tangential compliances of an average microcrack (ZN  

and ZT  respectively) where, in this work, these compliances have been assumed to be equal.  Essentially, 

the microcrack compliance becomes an additional parameter that can be varied.  While Shoenberg and 

Douma [E35] refer to ZN  and ZT  as being microcrack compliances, both can be directly related to 

microcrack densities [E36], and, as a result, the role of this additional parameter becomes clear – it 

reflects the defect content of the graphite.  This suggests that changes to ZN ≈ ZT = Z  could directly 

relate to changes in the defect content (microcrack density) in the material. 

It is possible to use diffraction-based measurements to directly measure orientation distribution 

coefficients [E10,E43].  Based on the models developed here, these measurements could be combined 

with either the elastic or the thermal expansion measurements to derive values for the remaining 

parameters – including the microcrack density.  Doing so presents interesting opportunities for in-service 

monitoring of graphite integrity.  Initial evaluation of the orientation distribution coefficients combined 

with physical property measurements could be used to establish a baseline for defect content.  Changes to 

the properties would accompany subsequent service-induced changes to defect content and these might be 

interpreted, within the framework developed in this work, as changes to the microcrack density.  Even 

though any physical property that depends on the presence of microcracks could be used for this type of 

monitoring, there are advantages to using those that relate more completely to the overall structure of the 

material.  In this work, the focus has been on elastic responses and thermal expansion.  Since the elastic 
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behavior depends on two orientation distribution coefficients (W200  and W400 ) instead of only one (W200  

as is the case for thermal expansion), measurements of the elastic properties more completely capture the 

structure-related symmetries of the material than does thermal expansion.  Indeed, the general 

development for the properties of textured materials considered in this work (transversely isotropic, 

polycrystalline materials composed of grains from the hexagonal crystal system) indicates that any 

property represented by a second rank tensor (such as thermal expansion) depends only on one orientation 

distribution coefficient.  Other properties such as electrical conductivity, thermal conductivity and 

dielectric permittivity might be used for characterization or monitoring purposes, but they only partially 

reflect the underlying structure because they are represented by second rank tensors (for linear systems).  

While most property measurements incompletely reflect the totality of material structure, those that are 

represented by higher rank tensors have the potential to capture more structure-related information and 

this could be important for characterization purposes.   

E.6. Conclusions 

In this work, an ultrasonic technique for characterization of anisotropy in polycrystalline graphites was 

demonstrated.   

• Laser-based ultrasonics techniques were used to perform shear wave birefringence measurements.  

These measurements can be used to ultrasonically characterize polycrystalline materials displaying 

texture and can provide information about the related symmetries of these materials through the 

elastic moduli.   

• Elastic moduli measured using laser ultrasonic methods were interpreted within a framework 

describing the behaviors of textured anisotropic materials to describe the overall symmetry of a 

polycrystalline graphite – NBG-25. 

• The framework developed to interpret property measurements in polycrystalline ensembles was based 

on a modified Hill averaging scheme in which both the Reuss and Voigt limits contribute to the 

overall property average.  To successfully apply this averaging scheme to polycrystalline graphite, the 

effect of microcracking on the elastic response needed to be considered and this was taken into 

account using microcrack-modified values for the single crystal elastic constants. By incorporating 

the microcrack-modified values for the single crystal elastic constants into the modified Hill average, 

laser ultrasonic shear wave birefringence measurements could be used to derive values for the 

orientation distribution coefficients W200  and W400 .   

• Thermal expansion measurements on NBG-25 reported in the literature were interpreted using the 

approach outlined in this work to arrive at a value for W200  that agreed well with the corresponding 

value obtained using ultrasonics measurements.   
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• Anisotropy in nuclear graphites can be quantified using elasticity and/or thermal expansion 

measurements, but the elastic response can provide more information about the anisotropy material 

since it can provide additional texture information through the orientation distribution coefficient 

W400  which cannot be measured using thermal expansion measurements. This additional information 

about the preferred orientation of graphite microstructure could be useful in forming a more complete 

understanding of graphite behavior in service environments. 

Future work will focus on applying the approach described in this proposal to other polycrystalline 

graphites to establish quantitative relationships between processing conditions and anisotropy in as-

received materials and to investigate variations in anisotropy produced by service-related conditions. 
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Appendix A: Additional Terms for Polycrystalline Elastic Response 

These are expressions to be used in models based on those developed by Li and Thompson [E26] for the 

elastic moduli of polycrystalline materials composed of grains with hexagonal crystal symmetry.  For the 

Voigt model, 

c11
0V = (8c11 + 3c33 + 4c13 + 8c44 ) /15      (E.A.1) 

c44
0V = (7c11 − 5c12 + 2c33 − 4c13 +12c44 ) / 30     (E.A.2) 

c12
0V = (c11 + 5c12 + c33 + 8c13 − 4c44 ) /15     (E.A.3) 

A1
V

= (4c11 − 3c33 − c13 − 2c44 )       (E.A.4) 

A3
V

= (−5c11 + 7c12 + 2c33 − 4c13 + 6c44 )     (E.A.5) 

B
V

= (c11 + c33 − 2c13 − 4c44 ) .      (E.A.6) 

For the Reuss model, 

c11
0R = (s11

0 + s12
0 ) / [(s11

0 − s12
0 )(s11

0 + 2s12
0 )]     (E.A.7) 

c12
0R = −s12

0 / [(s11
0 − s12

0 )(s11
0 + 2s12

0 )]      (E.A.8) 

c44
0R = 1/ s44

0
        (E.A.9) 

where 

s11
0 = (8s11 + 3s33 + 4s13 + 2s44 ) /15      (E.A.10) 

s44
0 = 2(7s11 − 5s12 + 2s33 − 4s13 + 3s44 ) /15     (E.A.11) 

s12
0 = (s11 + 5s12 + s33 + 8s13 − s44 ) /15 .     (E.A.12) 

Also, 

A1
R

= −4(c44
0R )2a1 −14c12

0Rc44
0Ra0       (E.A.13) 

A3
R

= −4(c44
0R )2a3        (E.A.14) 
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B
R

= −4(c44
0R )2a4        (E.A.15) 

where 

a0 = (s11 + s12 − s33 − s13)       (E.A.16) 

a1 = (4s11 − 3s33 − s13 − s44 / 2)       (E.A.17) 

a3 = (−5s11 + 7s12 + 2s33 − 4s13 + 3s44 / 2)     (E.A.18) 

a4 = s11 + s33 − 2s13 − s44 .      (E.A.19) 

The single crystal compliances are related to the elastic moduli as follows: 

s11 = (c33 / c0
2 + (c11 − c12 )

−1) / 2       (E.A.20) 

s33 = (c11 + c12 ) / c0
2
       (E.A.21) 

s12 = (c33 / c0
2 − (c11 − c12 )

−1) / 2      (E.A.22) 

s13 = −c13 / c0
2

        (E.A.23) 

s44 = 1/ c44         (E.A.24) 

where c0
2 = c33(c11 + c12 )− 2c13

2 . 

Appendix B: Additional Terms for Polycrystalline Thermal Expansion  

The expressions provided here are used with models developed from those presented by Dunn and 

Ledbetter [E27] for the thermal expansion of polycrystalline materials composed of grains with hexagonal 

crystal symmetry. 

γ = (s11 + s12 − s13 − s33) / (s11 + s12 − 4s13 + 2s33)     (E.B.1) 

η = [(2 / 5)
1/2π 2 (α 3 −α1)
21

][(S11
0 + 2S12

0 )[2A1(−7S11
0 + S12

0 )+ A2 (S11
0 −13S12

0 )]
s11 + s12 − s13 − s33

]
 (E.B.2)

 

κ = [2(2 / 5)
1/2π 2 (α 3 −α1)
21

][(S11
0 + 2S12

0 )[2A1(4S11
0 − 7S12

0 )− A2 (7S11
0 − S12

0 )]
s11 + s12 − s13 − s33

]
 (E.B.3) 

where
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S11
0 = 12s44[s33(s11 + s12 )− 2s13

2 ][s13
2 (2s11 − 2s12 + s44 )− s33(s11

2 − s12
2 )]

×[12s13(s11 − s12 )− 4(s11
2 − s12

2 )− s33(9s11 − 5s12 )] /D1   (E.B.4)
 

S12
0 = −12s44[s33(s11 + s12 )− 2s13

2 ][s13
2 (2s11 − 2s12 + s44 )− s33(s11

2 − s12
2 )]

×[8s13(s11 − s12 )− (s11
2 − s12

2 )− s33(s11 − 5s12 )] /D1   (E.B.5) 

with
 

D1 = 2s13(6s13 − s44 )(2s11 − 2s12 + s44 )− 2(s11
2 − s12

2 )(6s33 + s44 )
+s44 (2s13s44 + 7s11s33 − 5s12s33)   (E.B.6) 

and
 

A1 = {2s12 (s12s33 − 2s13
2 )− s11

2 (2s33 + 3s44 )+ s44 (3s12 − 4s13)(s12 + s13)
+s11[4s13

2 + s44 (s13 + 4s33)]} /D2   (E.B.7)
 

A2 = {4s12 (s12s33 − 2s13
2 )+ s11

2 (s44 − 4s33)+ s44[s12 (7s33 − s12 )+ s13(5s12 − 8s13)]
+s11[8s13

2 + s44 (s33 − 5s13)]} /D2 (E.B.9) 

with
 

D2 = s44 (s11 − s12 )[s33(s11 + s12 )− 2s13
2 ] .     (E.B.10) 

Appendix C: Equations for Orientation Distribution Coefficients 

First, the quadratic equations produced for the orientation distribution coefficient, W400 , using 

expressions for the material elastic moduli are developed here.  Equations (E.6)-(E.8) can be expressed in 

the following form: 

c I
ii = cii

0I + [Uii
IW200 +Vii

IW400 ]      (E.C.1) 

where no summation is implied by the repeated subscript. According to Eq. (E.14), these expressions for 

the average moduli can be used to construct expressions that represent measured values for c11 , c44  and 

c66 .  Anyone of these can be used to solve for r  and the remaining two can be used to form expressions 

for the orientation distribution coefficient, W400 , in terms of W200 .  The following equations were used to 

develop the results presented in this work: 
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0 =W400
2 (V11

RV66
V −V66

RV11
V )+

  W400[(c11 − c11
0V −U11

VW200 )V66
R − (c11 − c11

0R −U11
RW200 )V66

V −

                   (c66 − c66
0V −U66

VW200 )V11
R + (c66 − c66

0R −U66
RW200 )V11

V ]+

   [c11(c66
0R − c66

0V + (U66
R −U66

V )W200 )− c66 (c11
0R − c11

0V + (U11
R −U11
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 (E.C.2) 

0 =W400
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V W200 )V66
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RW200 )V44

V ]+
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V )W200 )− c66 (c44
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                   (c44
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0R +U66
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. (E.C.3) 

Even though W200  could be eliminated from these equations, the solution process followed here treated it 

as a parameter that was fixed when a specific value for W200  yielded values for W400  from the solutions 

for Eqs. (E.C.2) and (E.C.3) agreed. 

Next, the quadratic equation for W200  developed from thermal expansion results will be presented.  

Equations (E.10)-(E.13) can be expressed in the following form: 

α I
i =α

0I + Xi
IW200 .      (E.C.4) 

According to Eq. (E.15), these expressions for the average thermal expansion coefficient can be used to 

construct expressions that represent measured values for α1  and α 3 .  Either of these can be used to solve 

for r  and the remaining equation can be used to form an expression for the orientation distribution 

coefficient W200 .  The following result was used in this work: 

0 =W200
2 (X1

RX3
V − X3

RX1
V )+

      W200[(α1(X3
R − X3

V )−α 3(X1
R − X1

V )−α 0V (X3
R − X1

R )+α 0R (X3
V − X1

V )]+

           (α 0R −α 0V )(α1 −α 3)

.  (E.C.5) 

 

Appendix D: Relationship of Ultrasonic Measurements to Elastic Moduli 

Using standard transmit-and-receive, through-thickness measurement geometries in which an ultrasonic 

transmitter is located directly opposite a receiver on a sample surface, the ultrasonic wavespeed for a 

particular wave polarization and propagation direction, vij , can be computed using measurements of the 

corresponding wave transit time (or time-of-flight), Δtij , and the sample thickness, T .  With an 
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additional measurement of the sample density, ρ , the modulus of the material can be determined as 

follows:  

cij = ρ(T / Δtij )
2 = ρvij

2      (E.D.1) 

where cij  is the modulus being measured.  This expression provides the connection between the models 

for elastic modulus developed in previous sections to the ultrasonic measurements that were performed to 

assess shear wave birefringence. 
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3. ULTRASONIC SCATTERING CORRELATION MEASUREMENTS FOR DEFECT DISTRIBUTION 
DETERMINATION 
Section F: Laser Ultrasonic Correlation Measurements 
F.1. Overview 

Ultrasonic correlation is a powerful technique that can be used to isolate specific structural (and 

microstructural) defects in materials. At the beginning of this program, we envisioned making ultrasonic 

correlation measurements in nuclear graphites to isolate specific information about microstructural 

features in these materials (primarily porosity or voids). Soon after completing standard ultrasonic 

measurements using laser-based methods, it became clear that the waveforms recorded using these 

standard methods contained quite a bit of information related to the graphite microstructure and that 

correlation methods might not be needed. Even so, we rapidly built-up the required measurement system 

and proceeded to make correlation measurements in several different graphite grades that displayed a 

variety of ultrasonic behaviors linked to their microstructures. While correlation results seemed to provide 

some limited information regarding filler particle size or pore spacing in two grades, these results did not 

provide the type of information that can be derived from ultrasonic data. Typically, ultrasonic correlation 

is used to extract microstructure-related information from a noise-dominated background – the 

information of interest cannot be separated from the background in a single measurement and multiple 

measurements are needed. Correlations among the multiple measurements are used to isolate 

microstructure-related signals and these are interpreted using concepts from ultrasonic scattering to yield 

the information of interest. 

However, since laser-ultrasonic data were dominated by microstructural-related signals, the usefulness of 

correlation was rather limited. The underlying problem was that the ultrasonic frequencies that were being 

used were far too low to successfully apply correlation techniques to nuclear graphites. Having completed 

correlation measurements at low frequencies, the decision was made to make correlation measurements in 

nuclear graphites at frequencies higher than 1 GHz in an attempt to isolate microscopic elements of 

graphite microstructure that were lost in the lower frequency measurements. We have made laser-

ultrasonic measurements at these frequencies previously, but the system required to make these 

measurements needed to be re-built using existing equipment. By the time we were able to test various 

laser systems required to make the measurements, we found them to be in disrepair and we needed to 

have them serviced – this delayed progress on this program component. At the end of the project, we have 

all components in place to make the high-frequency, laser-ultrasonic correlation measurements, but have 

not been able to make measurements. These types of measurements could provide fundamental 

information about the elastic responses of nuclear graphites and create an entirely new understanding of 

the elastic behaviors of these materials. 
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F.2. Methods and Results 

Results reported here demonstrate the use of cross-correlation based methods to develop information 

about nuclear graphite microstructure (i.e. location and regularity of pores, grain boundaries, cracks). 

Measurements included those made using a through transmission setup to take ultrasonic data from two 

separate spots on a sample to perform cross-correlation. To isolate scattering information, the 

autocorrelation data from a single location was subtracted from the cross-correlation and the resulting 

waveform was analyzed for periodicity. Even though this periodicity (assumed to relate to some average 

scatterer spacing) appeared to have some relation with microstructural features such as grain size and pore 

spacing, the results were not entirely convincing.  

To better isolate the scattering information, a same-side detection setup was used. Once again, data sets 

were taken from two spots on the same sample, separated by a distance greater than the largest 

microstructural feature. However, only data between the surface wave arrival and direct longitudinal 

wave arrival were used for the subsequent analysis since signals in this interval were assumed to result 

from scattering off nearby microstructural features. The selected data from the two sample spots were 

cross-correlated and analyzed for periodicity (see Fig. F.1). Taking this periodicity to be related to the 

time between scattering events and combining it with the longitudinal sound velocity through bulk 

graphite, estimations for the mean scatterer spacing were determined. For graphites with large (~1.6 mm) 

and medium (~0.8 mm) grain sizes, these methods produced values for mean scatterer spacing that are on 

the order of grain size. However, for fine-grained (~15 um) graphites, this method produced a value 

approximates 25 times larger than the mean grain size, perhaps because the abundance of small scatterers 

cause destructive interference and only scatterers of a certain size were detected. Results are shown in 

Table F.1. 
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Figure F.1: NBG-10 laser ultrasonic waveforms (top) showing full waveforms along with sections used 
for cross-correlation and results of cross-correlation (bottom). 
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Table F.1: Summary of Ultrasonic Correlation Measurements in NBG-10, NBG-17 and 2020 

 

 

 

Graphite Fabrication 
Process 

Longitudinal 
wavespeed 

(m/s) 

Shear 
wavespeed 

(m/s) 

Grain size 
(mm) 

Periodicity 
of Cross 

Correlation 
(ns) 

Mean scatterer 
spacing using v = 
2495 m/s (mm) 

NBG-10 Extruded 2749 1820 Max 1.6  291.5 0.728 

NBG-17 Vibramolded 2917 1572 Max 0.8  260.1 0.649 

2020 Isostatically 

pressed 

2731 1710 Mean 0.015  147.9 0.369 
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CONCLUSIONS 

Even though we do not have a quantitative understanding of the elastic responses of various 

microstructural components of nuclear graphite, results from this project have provided new insight into 

the elastic behavior of these materials especially with respect to the different values for elastic modulus 

that are found when different measurement methods are used. This topic was the subject of the final 

research presentation made on the work in this program and is critical to understanding elastic property 

measurements that might be made in reactor components for the purposes of structural health monitoring. 

It is widely known that elastic modulus measurements using compression tests differ from those made 

using vibrational resonance measurements and these can differ from ultrasonic results – all these methods 

can be used to measure Young’s modulus yet all can yield different values. To understand the reasons 

behind these discrepancies, a detailed understanding of the elastic responses of different microstructural 

elements (filler particles, microcracks of different types, binder) must be known. While results from this 

project have shown how microstructural responses could influence bulk modulus measurements, a 

quantitative understanding is still at large. Instead of invoking various ansatz regarding the operational 

characteristics of microstructural elements, we need a detailed understanding of their behaviors when they 

are subjected to various stress states. Through this program, we have extended the state-of-the-art 

understanding of the elastic response of nuclear graphite and have identified critical needs moving 

forward – especially as they relate to making ultrasonic sensors that can be used to assess the structural 

integrity of graphite in reactor cores. 
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