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ABSTRACT

Autonomous sensor networks are increasingly being used for detec-
tion, classification and tracking applications. Therefore, we need
algorithms which optimally combine the data collected at different
sensors to produce a global decision without any centralized supervi-
sion. Three of the biggest challenges for collaborative autonomous
detection are, 1) conventional detection statistics are difficult to
implement as they are often nonlinear functions of the observed
data, 2) algorithmic overhead increases as the network grows larger,
and 3) autonomous sensor networks are very susceptible to ad-
versarial attacks such as data falsification (Byzantine) attacks. In
this paper, we propose a new simple-to-implement locally optimum
detection algorithm, and present a decentralized implementation
using alternating direction method of multipliers (ADMM). We im-
plement our proposed algorithms for the problem of autonomous
sensor networks detecting an unknown radioactive source buried in
background noise. Results show that algorithm performance ap-
proaches the centralized clairvoyant detection algorithm in the low
SNR regime, and exhibits excellent convergence rate and scaling
behavior (w.r.t. number of nodes). We also derive a low-overhead,
robust ADMM algorithm for Byzantine-resilient detection, and
demonstrate its robustness to data falsification attacks.

Index Terms— locally optimum detection, data falsification,
Byzantines, autonomous networks, ADMM

1. INTRODUCTION

Autonomous vehicles provide sensing platforms which are small,
low cost, and maneuverable. Because of size, weight and power
restrictions, the sensors onboard are of limited performance. Signal
processing and data fusion techniques are thus needed to approach
the performance of a capable sensor with a large number of adap-
tively re-configurable low cost sensors. This work provides a com-
putationally tractable scheme for autonomous detection, applied to
the problem of detecting a radioactive source. Detection of radiation
from nuclear materials has become an important task due to the in-
crease in nuclear power plants or increasing threats from potential
terrorist activities. We propose a system comprising of a network of
autonomous sensor collaboratively collecting observations to detect
the presence of a radioactive source.

Detection of radioactive sources using sensor networks has re-
ceived some attention in the literature. In [1], the authors examine
the gain in signal-to-noise ratio obtained by a simple combination
of data from networked sensors compared to a single sensor. The
costs and benefits of using a network of radiation detectors for ra-
dioactive source detection are analyzed and evaluated in [2]. In [3],
the authors derived a test for the fusion of correlated decisions and
obtained optimal sensor thresholds for two sensor case. In [4], the
authors considered the problem of detecting a time-inhomogeneous
Poisson process buried in the recorded background radiation using

sensor networks. However, all these works assume existence of a
centralized fusion center (FC) to fuse the data from multiple sensors
and to make a global decision.

In many scenarios, a centralized FC may not be available. In
large networks, it is a potential vulnerability, and/or can become an
information bottleneck that may cause degradation of system perfor-
mance, and may even lead to system failure. Also, due to the dis-
tributed nature of future communication networks and various prac-
tical constraints (e.g., absence of the FC, transmit power or hardware
constraints and dynamic characteristic of wireless communications),
it may be desirable to achieve collaborative decision making by em-
ploying peer-to-peer local information exchange to reach a global
decision.

Recently, collaborative autonomous detection based on peer-to-
peer algorithms has been explored in [5-10]. In autonomous detec-
tion approaches, each node communicates only with its neighbors
and updates its local state information about the phenomenon (i.e.
a summary statistic) by a local fusion rule that employs a weighted
combination of its own value and those received from its neighbors.
Nodes continue with this process until the whole network converges
to a steady-state value which is the global test statistic. However, all
these approaches assume a clairvoyant detection where all the pa-
rameters of the detection system and signal model are completely
known. Note that, for our application of interest (i.e., nuclear radia-
tion detection) the location of the radiation sources is rarely known.
Centralized approaches manage this challenge by employing com-
posite hypothesis testing frameworks such as the generalized like-
lihood ration test (GLRT). The GLRT, the detection procedure re-
places unknown parameters in the detection algorithm with their
maximum likelihood estimates, which need multiple sensing inter-
vals for a reasonably accurate parameter estimate. This overhead
and delay is not desirable in nuclear radiation detection problems
especially under weak signal models. Secondly, due to the non-
linearity introduced by the estimation step in GLRT, a decentralized
implementation of GLRT is non-trivial. Also, a maximizer in the
estimation step is not known before hand as it depends on the en-
tire sensed data collected across all the nodes at all times. Hence,
as far as communication complexity in the GLRT implementation
is concerned, the maximization step incurs the major overhead. In
fact, a direct implementation of the GLRT requires access to the en-
tire raw data at all times at the FC. Finally, the implementation of
non-linear detectors on low cost UAVs is difficult in practice. Thus,
a decentralized solution with a simple implementation for the radi-
ation detection problem with unknown source location is of utmost
interest.

Autonomous detection schemes are quite vulnerable to different
types of attacks. One typical attack on such networks is a Byzantine
attack. While Byzantine attacks (originally proposed in [11]) may,
in general, refer to many types of malicious behavior, our focus in
this paper is on data-falsification attacks [12—18]. Thus far, research
on detection in the presence of Byzantine attacks has predominantly



focused on addressing these attacks under the centralized model in
which information is available at the FC [14, 15, 18, 19]. Several
attempts have been made to address the security threats in conven-
tional consensus-based detection schemes in recent research [20—
26]. There exist several methods for decentralized consensus opti-
mization, including distributed subgradient descent algorithms [27],
dual averaging methods [28], and the alternating direction method
of multipliers (ADMM) [29]. Among these, the ADMM has drawn
significant attention, as it is well suited for distributed convex op-
timization and demonstrates fast convergence in many applications.
However, the performance analysis of ADMM in the presence of
data falsifying Byzantine attacks has thus far not been addressed in
the literature.

To overcome the mentioned challenges, in this paper we propose
a simple to implement locally optimum detection algorithm to detect
radioactive source signal buried in noise. We also devise a robust
variant of ADMM algorithm to implement this detection scheme in
autonomous networks in the presence of Byzantine attacks. To the
best of our knowledge, there have been no existing results on the
Byzantine-resilient locally optimum detection in collaborative au-
tonomous sensor networks. The main contributions of the paper are:

e A derivation of a locally optimum test with a simple imple-
mentation for the detection of low SNR radioactive sources
in background noise.

e A decentralized implementation of the derived test using al-
ternating direction method of multipliers (ADMM) which is
robust to Byzantine attacks.

e A study of the robustness of the proposed detection algorithm
to Byzantine attacks and a comparison with conventional ap-
proaches.

2. SYSTEM MODEL

In this section, we present the signal and network models used in
this work. For ease of exposition, and for comparison purposes, we
first introduce the clairvoyant setting, in which the source location
and intensity are known. In our setting, however, the source location
is unknown, which is addressed in detail in subsequent sections.

2.1. Signal Model

Consider two hypotheses Hy (radioactive source is absent) and H;
(radioactive source is present). Also, consider a network of N au-
tonomous nodes which must determine which of the two hypotheses
is true. The observations received by the node ¢ fori = 1,--- /N
under both hypotheses are as follows.

Hy : zi=b;+w;
Hi : zi=ci+b+w (1)

where b;, ¢; and w; are the background radiation count, source radi-
ation count and measurement noise respectively, at node ¢ located at
{X;, Yi}l. The background radiation count is assumed to be Pois-
son distributed with known rate parameter \,. The source radiation
count at node % is assumed to be Poisson distributed with rate pa-
rameter \.;. We assume an isotropic behavior of radiation in the

INote that, the proposed scheme can easily be extended for a three-
dimensional setting
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Fig. 1. An sensor network with 10 nodes.

presence of the source; the rate A.; is a function of the source inten-
sity /s and distance of the ith sensor from the source, given by

Is

Al = X X+ (Y, — VL)

(@3]

where { X, Y5 } represent the source coordinates. The measurement
noise w; is Gaussian distributed with a known variance an. The
background radiation count b; and measurement noise w; are as-
sumed to be independent. We also assume that the observations at
any node are conditionally independent and identically distributed
given the hypothesis.

2.2. Network Model

We model the network topology as an undirected graph G = (V, E),
where V = {U1 RN} N} represents the set of nodes in the network.
Let |V| = N, where |V| denotes the cardinality of the set. The
set of communication links in the network correspond to the set of
edges E. In other words, {v;,v;} € E if and only if there is a
communication link between v; and v; so that v; and v; can directly
communicate with each other. A representative network topology
with 10 nodes in shown in Fig. 1. The adjacency matrix A of the
graph is defined as

1
A5 = 0

The neighborhood of a node ¢ is defined as
Ni = {Uj eV: {vivyj} € E},VZ € {1527 aN}

if {’Ui,Uj} [SHIR
otherwise.

The degree d; of a node v; is the number of edges in £ which include
v; as an endpoint, i.e., d; = Z;V:l aij.

The degree matrix D is defined as a diagonal matrix with
diag(di, - - - ,dn) and the Laplacian matrix L is defined as

d;

In other words, L = D — A.

if j =1,
otherwise.

2.3. Collaborative Autonomous Detection: Clairvoyant Case

For ease of exposition, we first consider the clairvoyant case, i.e.,
the values of source intensity I and source coordinates {zs,ys}
are assumed to be known. The collaborative autonomous detection
scheme usually contains three phases: 1) sensing, 2) collaboration,



and 3) decision making. In the sensing phase, each node acquires
the summary statistic about the phenomenon of interest. Next, in the
collaboration phase, each node communicates with its neighbors to
update/improve their state values (summary statistic) and continues
with this process until the whole network converges to a steady state
which is the global test statistic. Finally, in the decision making
phase, nodes make their own decisions about the presence of the
phenomenon using this global test statistic. Next, we describe each
of these phases in more detail.

2.3.1. Sensing Phase

In the sensing phase, each node 7 senses the phenomenon and forms
a log likelihood ratio given by

log (f 1(21) )
fo(z:)
where fi(z:) is the conditional probability density function (PDF)
of observation z; at node ¢ under the hypothesis Hy. Itis well known
that the distribution of the signal model introduced in Section 2.1 can

be approximated by the Gaussian distribution [3]. Thus, under Ho,
we have

fo(zi) = Ny, Ao + 02).
Similarly, under the H hypothesis,

fi(z:) =N

where \.; is a function of the nodes’ position relative to the source.

(Nei + Aby Aei + Ao 4 02),

2.3.2. Collaboration Phase

Given individual log likelihood ratios at each node, the optimal test
for the scenario considered above is a likelihood ratio test (LRT)

given by:
N
filz:))
1 <fo(zz~)) = ®

Ho

In the collaboration phase, the goal of each node is to collab-
orate with its neighbors to form the global test statistic (LRT). By
taking log on both sides of (3), consensus based approaches can be
employed to achieve an equivalent test which is the average of log
likelihood ratios of all the nodes in the network. It can be shown
that for sufficiently large information exchange iterations, the whole
network converges to a steady state which is the global test statis-
tic [30].

2.3.3. Decision Making Phase

After the collaboration phase is complete, each node reaches a steady
state value =™, which represents the global test statistic. Next, each
node makes its own decision about the hypothesis using a predefined
threshold:

log A

Zl (fo Zz)) z%;

where A is chosen such that the probability of false alarm is con-
strained below a pre-specified level §.

2.4. Detection with Unknown Source Location: GLRT

In many practical scenarios, including the focus of this work, the
location of the radioactive source is not known and the LRT cannot
be implemented. In such scenarios, one of the most popular tests
is the Generalized Likelihood Ratio Testing (GLRT). The GLRT has
an estimation procedure built into it, where the underlying parameter
estimates are used as a plug-in estimate for the test statistic. More
specifically, the GLRT test statistic is as follows:

f 7y cz) Hy
maleog( 1ijZ) ) 5

0

log . @)

As discussed in Section 1, the maximization step in the GLRT
introduces delay, overhead and non-linearity, thus, is not amenable
for an autonomous setting. Furthermore, the signal of interest in our
application is very weak (buried in background clutter) and intro-
duces additional challenges. In the next section, we show that in the
low signal to noise ratio (SNR) regime, there exist a locally optimum
detection scheme which alleviates the above mentioned difficulties.

3. COLLABORATIVE AUTONOMOUS LOCALLY
OPTIMUM DETECTION (CA-LOD)

For ease of exposition, we first derive the new locally optimum de-
tection scheme for a centralized scenario. Then, we present an ap-
proach to implement the proposed detection scheme in an decentral-
ized setting.

3.1. Locally Optimum Centralized Detection

Theorem 1 The locally optimal test statistic is given by

N

_ H,
Z i Ab) JrZQ/\ +02 I-%o v ®)

1=1

where ~y is chosen such that the probability of false alarm is con-
strained below a pre-specified level 6.

Proof The LRT for known A.; is given by

fl Zza cz) Hy
Zlo ( Jo(2i) ) 5

0

log A 6)

& Zlog f1(zi; Aes) —

Hy
Zlog fo(z:) 2 logA (1)
=1 H

]

However, since we are considering a weak signal scenario, \.; tends
to zero, and hence linearizing the LRT around A.; = O results in,

N

d Hy
> _(ei —0)—log fi(zis Aci)la=o 2 logA
— ci Hg
L d
< )\cizd)\ (—7log(2ﬂ'()\a+)\b+aw))
im1 et
. (Zz' — Aei — )\b)2 il
—2()\c¢+/\b+02))|)\”:0 ;0 log A
N
Hy N
L > 2 -
& Z Ab) +22)\b+02 z ()\b+crw)log)\+2.

i=1



The resulting test statistic is independent of the unknown param-
eter \.;, and is the uniformly most powerful (UMP) test for weak
signals.

3.2. Collaborative Autonomous Detection Using ADMM

The LOD test statistic derived in the previous section is of the form
below:

1 & Hi
i . > -
N ; f(2:) Ifﬂ N
oy 2
where f(z;) = (z: — Xp) + %. The LOD statistic is sep-

arable and the function f(.) is strongly convex. Next, we show that
the LOD statistic can be implemented in a distributed manner using
ADMM. To apply ADMM, we first formulate a convex optimization
problem

N ~ )2
x* = arg min Z w (8)
Rt

i.e., the data average is the solution to a least-squares minimization
problem. Next, we reformulate (8) in the ADMM amenable form as
below

N P )2
minimize (. (y,,} Z W ©)
i=1
Ti = Yij, Tj = Yij, V(i,5) € A

subject to (10)

where x; is the local copy of the common optimization variable &
at node ¢ and y;; is an auxiliary variable imposing the consensus
constraint on neighboring nodes ¢ and j. In the matrix form, let us

denote F'(x) = %||x — f(z)||3, then, the optimization problem is
minimizexy F(x)+ G(y)
subject to Ax+By=0 (11)
where G(y) = 0. Here B = [—Ij4; -1 4] and A = [A;; Aj]

with Ay, € R2E*N If (4,5) € A and y;; is the gth entry of y, then
the (g, 7)th entry of A and the (g, j)th entry of A, are 1; otherwise
the corresponding entries are 0. The augmented Lagrangian of (11)
is given by

Ly(x,y,A) = F(x) + (A, Ax + By) + glle + Byl|f3,

where A = [f1; B2] with f1, 2 € R?*Z is the Lagrange multiplier
and p is a positive algorithm parameter. The updates for the ADMM
are

x-update : VF(x*1) + A"\* + pAT (AX*"! + By*) =0
y-update : BT A" 4+ pB” (Ax**!' + By* ™) =0

A-update : AFT1 — \F — p(AX*TT 4+ ByFt) =0 (12)
where VF(x*T1) = x*T1 — f(z) is the gradient of F(.) at x"**,
The global convergence of ADMM was established in [29]. Since
our objective function F'(x) is strongly convex in x, we obtain z=*
equal to the global test statistic as given in (5) as the unique primal
solution.

State Values
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Fig. 2. Convergence of state values of a network with 10 nodes using
ADMM based CA-LOD scheme.

The updates in (12) can be further simplified to [31],

1
k+1 k k k
T; = T 5 x1 pMmi+p E x; — oy + f(z s

att =af +p [ Nl = Yl (13)

JEN;

at node ¢ where V; denotes the set of neighbors of node 4. Note that,
the updates in (13) only depend on the data from the neighbors of
the node ¢ and can be implemented in a fully autonomous manner.
This implies that with these updates, each node can learn the global
LOD test statistic only using local information exchanges.

3.3. Illustrative Examples

Next, to gain insight into the solution, we present illustrative exam-
ples that corroborate our results. We consider a 10 node network
employing the ADMM updates as given in (13) to determine the
presence (or absence) of a radioactive source. We assume a mean
background radiation with count A\, = 0.5 and measurement noise
with 62 = 0.5. Source and nodes locations and adjacency ma-
trix were generated randomly in a region of interest of dimension
3.0 x 3.0 units. The ADMM parameter p was set to 1.0. We further
assume that the prior probability of hypothesis is Pp = P1 = 0.5
and detection performance is empirically found by performing 1000
Monte-Carlo runs.

3.3.1. Convergence Analysis

To better understand the convergence properties of the proposed ap-
proach, we next present an instance of ADMM based CA-LOD in
Fig. 2. We assume that each node starts with its local LOD statistic
and collaborate with its neighbors to improve its performance. We
plot the updated state values (LOD statistic) at each node as a func-
tion of information exchange iterations. Fig. 2 shows the state values
of each node as a function of the number of iterations. It is observed
that the state values converges to the global test statistic within 20
iterations using only local interactions.
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Fig. 3. Performance comparison of CA-LOD with clairvoyant LRT.

3.3.2. Detection Performance Analysis

Next, we analyze the detection performance of the proposed scheme.
In Fig. 3, we plot steady state receiver operating characteristic (ROC)
curves for the proposed CA-LOD approach for different source in-
tensities ;. We compare the performance of the proposed approach
with clairvoyant LRT based approach which has the knowledge of
the true source location. It can be seen that for both I, = 0.1 and
Is = 0.5, the proposed CA-LOD approach performs almost as good
as the clairvoyant LRT based approach.

4. COLLABORATIVE AUTONOMOUS DETECTION IN
THE PRESENCE OF BYZANTINE ATTACKS

In this section, we analyze the performance of the proposed detec-
tion scheme in the presence of Byzantine attacks. First, we define an
attack model for Byzantines. Note that, the objective of the Byzan-
tines is to degrade the detection performance of the network by in-
jecting false data. We assume an independent malicious Byzantine
attack model where each Byzantine decides to attack independently
relying on its own observation.

4.1. Byzantine Attack Model: Modus Operandi

Note that, the ADMM updates at node ¢ at iteration k is a function of
its neighbors’ parameters {:117;C }ien;. When there are no adversaries
in the network, as seen in the last section, the global statistic can be
calculated in an autonomous manner via local interactions. How-
ever, instead of broadcasting the true parameters {z¥}, some nodes
(referred to as Byzantines) deviate from the prescribed strategies.
More specifically, we assume that the Byzantine node j falsifies its
data at ADMM iteration £ as follows:
b = a4y

where 67 ~ N(pz, 07) and (pa, o2) characterize the strength of
the attack.

4.1.1. Performance Analysis of CA-LOD with Byzantines

In this section, we study the susceptibility of CA-LOD in the pres-
ence of Byzantine attacks. We assume a mean background radiation
with count A, = 0.5 and measurement noise with o2, = 0.5. We fur-
ther assume that the nodes are observing the phenomena over 1000
time (or detection) intervals. Furthermore, the ADMM parameter

State Values
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Fig. 4. Convergence of vanilla ADMM based CA-LOD in the pres-
ence of Byzantines. Blue curve represents Byzantine’s state values.
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Fig. 5. Susceptibility of CA-LOD to Byzantine attack in terms of
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p was set to 1.0. We assume that there is only 1 Byzantine in the
network which is chosen randomly.

In Fig. 4, we plot the convergence of the ADMM algorithm with
updates as given in (13). We assume the Byzantine’s parameters to
be p1, = 1.5 and o2 = 0.1. It can be seen that the Byzantine attack
can severely degrade the convergence performance. More specifi-
cally, it can be seen from Fig. 4 that a single Byzantine can make the
rest of the network converge to a state value which is significantly
different from the global LOD statistic.

Next, in Fig. 5, we plot the steady state ROC for different values
of attack strength 1, keeping o2 fixed to 0.1. Observe that, as the at-
tack strength increases, the detection performance degrades severely
and an adversary can make the steady state statistic (or data) non-
informative. In other words, the optimal detection scheme at each
node performs no better than a coin flip detector.

Hence, we can see that Byzantines can severely degrade the de-
tection performance of the CA-LOD. Next, we consider the problem
from a network designer’s perspective and propose a robust ADMM
algorithm to counter Byzantine attacks.

4.2. Robust Collaborative Autonomous Detection using Byzantine-
Resilient ADMM

In this section, we propose a Byzantine-resilient ADMM algorithm
(R-ADMM) for collaborative autonomous detection. Our approach
draws inspiration from robust statistic for anomaly detection to make
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ADMM resilient to Byzantine attacks. More specifically, proposed
robust ADMM updates to tolerate at most p Byzantines are given by

o = I (p|M|x§ + plp({af }jen,) — af + f(zi)) ;

©1+2p|N
ol = a4 p (N — To({al  hienr))

where the sum over neighbors’ data in (13) has been replaced by
a robust fusion function I', ({2} }jen;,) which operates as follows:
Operation of T,,(.): First, sort the elements in S = {x¥};cn, in
a non-decreasing order (breaking ties arbitrarily), and replace the
smallest p values and the largest p values with mean of remaining
(INV:i| — 2p) values.® Next, return the sum of the elements in the new
set.

In other words, it discards the top and bottom p values as poten-
tial outliers.

4.3. Illustrative Examples

In this section, we analyze the performance of the proposed Byzantine-

resilient autonomous detection scheme in the presence of Byzantine
attacks. We consider a randomly generated 10 node network em-
ploying updates as given in (14) to determine the presence (or
absence) of a radioactive source. We assume a mean background ra-
diation with count A, = 0.5 and measurement noise with o2, = 0.5.
Furthermore, ADMM parameter p was set to 1.0. We assume that
there is only 1 Byzantine in the network which is chosen randomly.
We assume p = 1.

4.3.1. Robustness Analysis

In Fig. 6, we plot the convergence of the proposed R-ADMM al-
gorithm with updates as given in (14). We assume the Byzantine’s
parameters to be i, = 1.5 and 62 = 0.1. It can be seen that, as op-
posed to Fig. 4, the state values of the honest nodes converge close
to the global LOD statistic despite the presence of Byzantine attack.

Next, in Fig. 7, we compare the steady state ROC for CA-LOD
of vanilla ADMM based approach with the R-ADMM based ap-
proach. We assume attack parameters to be p, = 2.5 and o2 = 0.1.

2We assume that |N;| > 2p, Vi.

(14)
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Fig. 7. Detection performance of CA-LOD in the presence of Byzan-
tine attacks.
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Fig. 8. Scaling behavior of the proposed algorithm for bounded
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It can be seen that the R-ADMM based Byzantine-resilient CA-
LOD approach performs significantly better compare to the vanilla
ADMM based approach, which breaks down in the the presence of
the Byzantine attack.

4.3.2. Scaling Analysis

In Fig. 8, we plot the convergence behavior of R-ADMM based
CA-LOD as network grows larger. We consider a practical sce-
nario where we fix the number of nodes (or neighbors) each node
can talk to to be 10. This makes the complexity of the sorting step
in R-ADMM to be a constant. We plot relative convergence rates
defined as T /N where T™ is the number of iterations needed to
reach within 95% of the global LOD statistic. Note that, the conver-
gence rate T increases as number of nodes N increases in the net-
work, however, the relative convergence rate decreases. This implies
that the proposed approach retains the excellent scaling properties of
ADMM and is amenable for large scale networks.

4.3.3. Overhead Comparison

In Fig. 9, we compare the overhead caused by the R-ADMM based
CA-LOD scheme. We consider the case where there is no Byzan-
tine in the network and compare the performance of ADMM based
CA-LOD and R-ADMM based CA-LOD in terms of relative conver-
gence rate. It can be seen that the overhead caused by the R-ADMM
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Fig. 9. Overhead comparison in the absence of Byzantine attacks.

based CA-LOD scheme is very small. In practice, this overhead is
dominated by the sorting step in R-ADMM algorithm and is a con-
stant for a bounded neighborhood.

5. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of nuclear radiation detection
using collaborative autonomous sensors. We proposed a locally op-
timum detection scheme and implemented it in a fully autonomous
setup using ADMM. Furthermore, we devised a robust version of
the ADMM algorithm for Byzantine-resilient detection and demon-
strated its robustness to data falsification attacks. There are still
many interesting questions that remain to be explored in the future
work such as analysis and extension of the problem with more real-
istic signal model and collaborative Byzantine attacks. Theoretical
convergence properties of the robust ADMM algorithm can also be
investigated.
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