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5:23 Abstract
24 We review the theory of mixed-valent metals and make comparison
25 with experiments. A single-impurity description of the mixed-valent state
26 is discussed alongside the description of the nearly-integer valent or Kondo
27 limit. The degeneracy N of the f-shell plays an important role in the de-
28 scription of the low-temperature Fermi-liquid state. In particular, for
29 large N, there is a rapid cross-over between the mixed-valent and the
30 Kondo limit when the number of f electrons is changed. We discuss
31 the limitations on the application of the single-impurity description to
32 concentrated compounds such as those caused by the saturation of the

Kondo effect and those due to the presence of magnetic interactions be-
33 tween the impurities. This discussion is followed by a description of a
34 periodic lattice of mixed-valent ions, including the role of the degeneracy
35 N. The article concludes with a comparison of theory and experiment.
36 Topics covered include the single-impurity Anderson Model, Luttinger’s
37 theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the
38 single-impurity Kondo Model, Kondo Screening, the Wilson Ratio, Local
39 Fermi-Liquids, Fermi-liquid sum rules, the Noziéres exhaustion princi-
40 ple, Doniach’s Diagram, the Anderson Lattice Model, the Slave-Boson
41 Method, etc.
42
ji 1 Introduction
45 Mixed valence or intermediate valence is a concept introduced to describe
46 the characteristic features of the electronic states of atoms in a solid with
47 partially filled, almost localized configurations that are nearly degener-
48 ate. Mixed-valent compounds include those which are inhomogeneous,
49 i.e. where atoms with differing static valence reside on inequivalent sites
50 of the crystal, and those for which the valence is homogeneous, with the
51 same non-integral value on each site. The latter, which are often referred
52 to as intermediate-valence compounds, are the topic of this paper. This
53 review, which is intended to be pedagogical, addresses a subject that has
54 developed over fifty years, and focuses on the basic concepts of mixed
55
56
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valence.

Mixed-valence frequently occurs in compounds containing elements at
the beginning, middle and end of the lanthanide series. In the lanthanide
materials, the 4f-orbitals are partially filled, spatially located inside the
outer atomic (5d6s) shell and, therefore, are less sensitive to the effects of
external perturbations and experience fairly strong intra-atomic Coulomb
interactions. The properties of most compounds containing lanthanide el-
ements can be described in terms of almost localized (4f)™ orbitals with a
valence band which is derived from the (5d6s)™ shell. A discussion of the
normal rare-earth compounds can be found in the book by Cogblin [1].
The anomalous rare earths are those in which two or more configurations
are nearly degenerate, so the effect of perturbations due to the crystalline
environment produces a state which is a linear superposition of the con-
figurations [2]. For example, the electronic state on an atom | ¢ > can
be crudely thought of as being composed of the linear superposition of
electrically neutral atomic states

| >= a| @f)" (5d6s)™ > +b| (4f)" (5d6s)™ ' > (1)

where a and b are complex numbers, n and m are integers. The state is
normalized to unity if

lal” + b =1. (2)

The number representing the average valence v of this state is expressed
as

[
3
3 |
[—
_ o
+

N

®3)

When a and b are both non-zero, the system has a mixed or non-integer
valence, whereas if only one number from the pair a and b is non-zero,
the system is integer valent. The stability of open and closed shells leads
to mixed-valence being found in materials containing Ce and Yb. For Ce
mixed-valent compounds, the relevant configurations are

| Yee > = a| (4f)" (5d6s)" > + b (4f)" (5d6s)" > (4)

for which the valence is intermediate between 4 and 3. Likewise, for Yb
mixed-valence compounds, one has

| Yys > = al| (4f)" (5d6s)* > +b | (4f)" (5d6s)* > (5)

so the valence may be intermediate between 2 and 3. The Ce and Yb
compounds are frequently thought of as being f electron - hole symmetric
partners, connected by the transformation ny — (14 — ng). The half-
filled 4f shell (4f) is stabilized by the Hund’s rule exchange and can lead
to the formation of Sm and Eu mixed-valent materials. The rare-earth
heavy-fermion materials are all, to some extent, mixed-valent. Although
the heavy-fermion systems with the highest effective masses are close to

Page 2 of 45
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the integer valent limit, the not-so-heavy systems (such as CePds) are
more mixed-valent. Since the description of mixed-valence involves par-
tially filled (4f)™ shells which are almost localized, they should be subject
to Hund’s rule correlations and, therefore, may posses a degeneracy asso-
ciated with the magnetic 4f configurations.

2 A Localized Paradigm

The anomalous nature of the mixed-valent lanthanide compounds is clearly
seen through inspection of their magnetic properties. The integer-valent
lanthanide metals usually posses 4f magnetic moments that are primarily
governed by the atomic Hund’s rule correlations and crystalline electric
field splittings. Generally, the strength of the local interactions are consid-
ered to follow the hierarchy composed of the direct Coulomb interactions
U and the Coulomb exchange interactions J between pairs of 4f electrons
on the same ion, the spin-orbit interaction, followed by the splittings pro-
duced by the crystalline electric field. The local 4f magnetic moments
are coupled by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
involving the electrons in the conduction band [3, 4, 5]. In the RKKY
mechanism, a 4f magnetic moment produces a polarization in the conduc-
tion band electrons which then propagates to a neighboring 4f magnetic
moment and interacts with it. Since this indirect interaction between the
4f moments primarily involves producing a polarization of the conduction
electron states near the Fermi-level, the RKKY interaction is oscillatory
with a period governed by the 2kr momentum transfer cutoff imposed by
the Fermi-surface. The RKKY interaction causes the localized moments of
the integer-valent rare earths to order magnetically, thereby lifting much
of the degeneracy associated with the array of local 4f moments. By
contrast, the mixed-valent compounds are frequently found to be param-
agnetic. Since, for both Ce and Yb compounds, one 4f configuration has
a magnetic moment and the other is non-magnetic, it is natural to ask
“What are the magnetic properties associated with a localized (magnet-
ically degenerate) state that couples to a non-magnetic (non-degenerate)
state?” A model that describes this situation was formulated by P.W.
Anderson [6].

3 Single-Impurity Models

A simple model that describes a mixed-valent state is given by the single-
impurity Anderson Model [6]. The model consists of an f level localized on
the impurity site, which hybridizes with a conduction band. The Hamil-
tonian can be written as the sum

o = ﬁf + I‘Afd + ﬁfd (6)

where I:If governs the f electrons, H, describes the conduction band and
Hyy describes the hybridization process. The localized f orbital is de-
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scribed by a Hamiltonian I:If

Ay = 3 Bpaflfo + 5 S fhu fi o (7)

a#B

where fl, f., respectively, create and destroy an electron on the impurity
site on the f-orbital labeled by a, Ef o is the binding-energy and U is the
screened Coulomb interaction between pairs of f electrons on the impurity
site. The factor of one-half in the Coulomb interaction term is introduced
so that the interaction energy U between each pair of electrons is only
counted once in the double summation. The index « represents the com-
bined spin and orbit quantum numbers which run over N values. The
effect of the spin-orbit coupling is assumed to lift the fourteen-fold degen-
eracy of the ionic 4f states, reducing it to an effective degeneracy N given
by either six for Ce or eight for Yb. Generally, for most mixed-valent met-
als, the crystalline electric field is neglected since the splittings it produces
are smaller than the widths introduced by the mixing of 4f configurations.
However, for systems with large crystalline field splittings the value of N
can be replaced by the degeneracy of the lowest crystal field level. We
assume that the system is invariant under special unitary transformations
SU(N) of the basis states labeled by a. The Pauli-principle excludes an
interaction between a pair of electrons in the same single-particle state
a = (. A generalization of the form of the spin-rotationally invariant
Coulomb interaction to the case of degenerate orbitals can be found in
reference [7]. The direct and exchange Coulomb interactions ought to
depend on the spin and orbital indices. The conduction electrons are
described by Hy given by

Hy = Z ea(k) d;a di,a (8)

k,a

where dzya, dg,«, respectively, create and destroy an electron in the Bloch
state labeled by wavevector k and quantum number o with the single-
particle Bloch energy eq(k). The f states are coupled to the conduction
states by the hybridization term I:Ifd, given by

Hpa = \/% > <V(k) [l dia + V(k) d, fa ) (9)
s ko

where N is the number of sites in the host crystal. The index « is as-
sumed to be conserved since the model is invariant under SU(N). The
first term describes a process whereby a conduction electron makes a tran-
sition from the Bloch state labeled by the Bloch wave vector k£ and index
a to the state of the localized f orbital labeled by the index «. The second
term represents the time-reversed process. The quantity V' (k) is known
as the hybridization matrix element.

3.1 The non-interacting (U = 0) limit.

In the absence of the Coulomb interaction U, the model describes the
Friedel virtual-bound state and the model is exactly soluble. The f density

Page 4 of 45
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of states is given by

pr(w) = —% ng( ! GOIE ) (10)

. 1
wtn — Ef,a ~ N. ZE w+in—eq (k)

in the limit 7 — 0. The real part of the quantity

_ 1 | V() [?
Sw) = N, ; w + in —eq(k) (11)

can be thought of as a frequency dependent shift of the f level binding
energy which is produced by the hybridization, and the imaginary part
reduces to

Sm Sw) = - 3= > IVE P 8w — elk)) (12)
Sk

which is half the Fermi-Golden decay rate for an electron placed in the
f-orbital due to the hybridization process whereby the electron leaks into
the conduction band. Thus, if one ignores the frequency-dependence and
sets

Sw) =~ AEy — im A (13)
the f density of states has an approximate Lorentzian form. The conduc-
tion band density of states is also modified by the hybridization with the
impurity level and is evaluated as

- 1 N 0 S(w)
pa(w) = Z 0w — ea(k)) + p ;\sm (aw w+i17Ef,aS(“-’)>

k,a

(14)
where the second term vanishes if the f density of states is approximated
by a Lorentzian. The total density of states is given by

prw)+paw) = Y 8w - elk))

k,a

1 0 )
- g Sma—w ln(w—&—m—Ef’a—S(w)) .
(15)

Since the term involving the derivative has a single pole with unit residue,
the total number of states is unaffected by the hybridization in accordance
with Levinson’s theorem [9)].

The Friedel sum rule [10] relates the phase shift of the conduction
electrons dq(€) with quantum number « to the change in the density of

states Ap(e) via
o) 1 004 (€)
Ap(e) = — g Eya (16)
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Therefore, the change in the number of electrons caused by the introduc-
tion of the impurity is given by

Timp = Z (6‘1(“) _75&(_00)) . (17)

o

If the impurity carries an excess charge of AZ relative to the host metal,
then local electrical neutrality requires that

AZ = nimp . (18)

For the approximation in which S(w) is assumed to be independent of w,
Ap(w) is entirely of f character and one has the relation

AZ = nr (19)

with the total number of f electrons nr.

The single-impurity Anderson model has been studied extensively, in-
cluding exact solution by numerical renormalization group [11] and by
Bethe Ansatz [12, 13, 14]. A comprehensive review can be found in a
book by Hewson [15]. Here, we shall restrict our attention to only the
most transparent descriptions of physical properties.

3.2 A Mean-Field Description

Anderson examined the condition under which local moments should
form by using a mean-field description, in which the interaction term
was linearized in the deviation Any o of the f electron number operator
fifa = fI fo from its ground expectation value fij o = < | fl fo | >.
The deviation operators are defined by

Anfo = fifa — Nja - (20)
The mean-field Hamiltonian is found by replacing the Coulomb interaction

S U
Hime = < Z Nf,a Nf,B
atB

U _ _ _
= 35 Z <Anf,a Angp + Anga Npp + Mfa Anps + Tfa nm)

a#
with
M F U — — — —
Hie = 5 Z (Anf,a nip + Mo Angp + Nja ”fﬁ)
a#B
U L _ _
= 3 > (W,a Nfp + Nfa Ufp = Nfa nm) (22)
a8

in which one has neglected terms of second-order in the deviation opera-
tors. The last term is simply a real number which prevents over-counting

(21)

Page 6 of 45



Page 7 of 45

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

AUTHOR SUBMITTED MANUSCRIPT - ROPP-100535.R1

the contribution of the interaction to the total energy. The mean-field
approximation simply results in the modification of the non-interacting
model by the replacement

Bro = Bra + U Y Tpp (23)
BFa
which simply shifts the position of the a-th f orbital due to its interaction

with the average number of electrons in the other f orbitals.

In the Lorentzian approximation, the number 7y, is evaluated as

1 1 (Ef70<+U Zﬁ;ﬁa ngp — M)

n = — cot
frax T A

(24)

which is consistent with the Friedel sum rule. Therefore, it is found that,
in general, the self-consistency equations form a set of N coupled tran-
scendental equations.

For the case where the f level is degenerate, one has a solution corre-
sponding to the state being fully degenerate, in which 7, = =& for all o
where nr is the total number of electrons in the f level. If one introduces
the parameter 6 = 2”%, the self-consistency equation can be written as

0 Ey — U(N-1)
t— = 0 25
' ( A ) * ( 27 A (25)
which always has a solution with positive 6. This solution corresponds
to a state with unbroken symmetry. There are other solutions in which

the symmetry is broken. The boundaries of the regions of (Efou) and
% phase space where the symmetric solutions first become unstable are

determined parametrically by the equations

1
27r<1—c050> =

Qlﬂ_((Nl)Gsin9> = <"_UEf> (26)

The first equation shows that the tendency for symmetry breaking is great-
est when the f orbitals are nearly half-filled and it sets the minimum value
of % = m required to produce symmetry breaking. It should be noted
that as N increases, the minimum value of U required to produce a bro-
ken symmetry increases rapidly for a nearly empty or nearly filled f shell,
since

g

U. T

A sinz(%) ’ (27)
Hence, the critical value U, for local moment formation with nr ~ 1 scales
as N2. Although other terms of the Coulomb interactions between the f
electrons (such as Hund’s rule exchange and the pair hopping terms) may
alter this criterion [8], since we are primarily concerned with occupancies
of either around unity for Ce or around (N — 1) for Yb, their effects on
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Figure 1: The Ey — p, A phase diagram, for various values of the degeneracy
The broken symmetry phases are enclosed by the abscissa and the lines.
Note that the phase diagram is symmetric under the f electron-hole exchange,

N.
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the broken symmetry state may be considered negligible. The case with
N = 2 was considered by Anderson and corresponds to the spin-only de-
generate model, in which case the broken symmetry state is magnetic.
The magnetic moments are non-integral but, like the magnetic moments
on isolated ions, are localized and should be invariant under rotations. For
larger values of N, linear stability analysis shows that there are (N — 1)
possible linearly independent symmetry breaking modes.

TA

nr — N — ny.

The phase diagram for N = 4, including some possible broken symme-
try phases, is shown in the left panel of fig.(2). For large U, phase I cor-
responds to having a low energy singlet and a higher energy set of triplet
states, whereas phase 11 corresponds to two sets of doublet states. Phase I*
corresponds to the electron hole analogue of phase 1. Typical one-electron
density of states for phases I and II are shown in fig.(3). Symmetry break-
ing is accompanied by a quite sizeable change in the occupation of the {
level Anp from the value in the symmetric state. For example, the right
panel of fig.(2) shows the Hartree-Fock energy E(nr,m) as a function of
the symmetry breaking parameter m, where ny is minimized at m = 0
and np is minimized simultaneously with m, for which Anp = 0.2.

The resulting violation of electrical neutrality in the vicinity of the
impurity [10] indicates that the model should be generalized to include a
screening of the local charge by the conduction electrons [16]. The effect
of screening is not expected to play an important role in concentrated
compounds, since the change in f occupation is expected to result in a
change in the chemical potential which will produce a change in the num-
ber of conduction electrons.

Page 8 of 45
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A

Figure 2: (Left Panel) The Fy — pu, A phase diagram, for N = 4. The broken
symmetry phases for large U are composed of regions I, in which there is a low-
energy singlet and a higher energy set of triplet states, region II where there
are two sets of two doublet states, and I* which is the electron-hole analogue of
region I. (Right Panel) The Hartree-Fock energy E(nr,m) as a function of m
for the case in which nrp is minimized at m = 0 and the case where nr and m
are simultaneously minimized. The values % and % used put the system close
to the boundary between the paramagnetic phase and phase I, as denoted by

the blue symbols in the left panel.

€

Figure 3: Typical one-electron spectral densities for the N = 4 broken-symmetry
phases, I and IT in which the four f-levels either split into a singlet and triplet
(I) or two doublets (IT).

In the rare earth series, the spin-orbit splitting is large, with a mag-
nitude of about 0.25 eV for Ce and 1.5 eV for Yb. Therefore, it seems
reasonable to specify the value of N as the degeneracy of the spin-orbit
multiplet closest to the Fermi-energy. For Ce systems, one may estimate
the value of A from photoemission data which shows that the width of the
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incoherent peak at - 2 eV as being about 2 eV. Theory suggests that the
width of the incoherent photoemission peak is given by N A, since there
are N channels for filling the empty 4f level and there are N channels
each of which has a decay rate of A. For Ce, where the lowest spin orbit
multiplet corresponds to j = g, the appropriate degeneracy is N = 6, so
A~ % eV. The value of U for Ce is usually estimated from the joint pho-
toemission/BIS spectrum as the energy difference between the incoherent
peak (- 2eV) and the 4f' — 4f% peak ( + 4 eV) [see fig.(3)] which yields
U = 6 eV. Using the values of A inferred from experiment, one estimates
that U. ~ 4 eV for ny = 1, but the critical value increases to 6.5 eV for
a case of mixed-valence with ny ~ 0.8. Comparison of the measured U
with the critical value U, leads to the conclusion that integer valent Ce
systems should posses local magnetic moments but highly mixed-valent
systems should not. Since the spin-orbit splitting between the j = g and
the j = % levels is reversed in the last half of the lanthanide series, Yb
4f'3 has a ground state configuration with j = %7 so the 4f levels have a
degeneracy of N = 8. A typical value of A for Yb systems is estimated to
be 0.15 eV. The value of U is approximately 6 eV as it is almost constant
across the entire lanthanide series [17]. This implies that for Yb, the f
occupancies which correspond to the non-magnetic state should be larger
than ny ~ 13.72.

The Hartree-Fock approximation is a reasonable approximation for
small values of U and is exact in the atomic limit defined by V = 0. It
does provide a description of the high-energy spectral features but fails to
describe a narrow low-energy peak close to the Fermi-energy associated
with the Kondo effect.

However, the major problem with the above mean-field description is
that it predicts phase transitions in which symmetry is broken. This is
an artifact of the approximation; the properties of a finite system cou-
pled to a Fermi-sea with an infinite number of degrees of freedom must
change smoothly as the parameters are varied. Specifically, the fluctua-
tions Any, . are not negligible compared with the expectation values mf o
found in the mean-field approximation, due to the quantities being mi-
croscopic not macroscopic like the order-parameters that describe phase
transitions in the thermodynamic limit. Hence, inclusion of fluctuations
must restore the broken symmetry.

3.3 The Large Degeneracy Limit

The absence of magnetic states for mixed-valent systems with ny < 1is
supported by a variational calculation which assumes that the Coulomb
interaction U tends to infinity, so that the occupation number of the f level
is restricted to be less than unity. The variational ansatz appropriate for
the U — oo limit was originally introduced by Varma and Yafet [18]
for the case where N = 2 but, following Anderson’s remark [19] that the
degeneracy N is responsible for stabilizing the non-magnetic state, has
been generalized to the case of large N [20]. The ansatz for the non-

10
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magnetic (singlet) state | Up > is expressed as

|\I/0>—<A+Zkaldk,a)|‘I’0> (28)

ko

where | ®o > represents the filled Fermi-sea of conduction electrons k <
kr, and A and By are variational parameters. The first term represents
a state consisting of a filled Fermi-sea and an unoccupied f-level. The
second term represents a linear superposition of states in which an electron
has been taken from the filled Fermi-sea and placed in the f-level. It
should be noted that both terms are non-magnetic, the second term is
non-magnetic since it represents a state in which the electron with spin «
is accompanied by a compensating polarization of the conduction electron
spin density. On applying the variational method for the energy subject to
the constraint that the state is normalized to unity, one finds two coupled
equations

1 *
A(E - E) — m;wm@wﬁ = 0
Be(E — Fo — By + ea(k)) — ——V(E)A = 0 (29

VN,

where Fjy is the energy of the filled Fermi-sea and f(k) is the Fermi-Dirac
distribution function for the conduction band states. On defining the
Kondo binding-energy kg Tk as

E =FE + Ef — up — kpTxk, (30)

one finds that the holes in the conduction band have an amplitude given

by
1 V()
Be = TR, <ed<k> ~h - ks TK> 4 )

The Kondo binding-energy is then determined from

N | V() |” f(k)
po— Byt ke T = ; ke Tk + p — ea(k) )

where, unlike in the expression for S(w) for the non-interacting model, the
summation over k is cut off by the Fermi-function and, therefore, gives
rise to a logarithmic dependence on Tk. On assuming a constant density
of d states pq(u) per host site, one finds that the binding-energy is given
by the solution of

W 4+ u + kp Tk
ks Tk

p — Ef + kpTx ~ N |V [*pa(u) In (33)

where W is a cut-off energy of the order of the band width. This leads to
the approximate expression for the Kondo temperature

~ Ey —n
ks Tk =~ W exp|:NPd(M)V|2] (34)

11
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which for ¢ — Ef > % shows that the non-magnetic state has an

exponentially small binding-energy when referenced to the energy of the
nominally magnetic state.

A compensating polarization cloud that surrounds the local f moment
originates from conduction states within an energy interval kg Tx below
the Fermi-energy, although it extends up to the conduction band edge.
Its energy distribution P(e), per channel, is given by

Ple) ~ ( A ) ( ks T . (35)

NA 4+ wkp Tk ]{ZBTK—FM*E)Q

The spatial form of the polarization cloud is given by

PO = s X B e (k- K) x| @

Ns a3
kK o

where k and k' are both below the Fermi-surface, and exhibits Friedel
oscillations with wave vector near 2 kr shown in ﬁg.(4), where kr 1s
the Fermi-momentum. However, the characteristic length £ at which the

ANAA

T

Figure 4: The schematic spatial variation of the polarization density, for N =4
and kp € ~ 10.

interference due to Kondo correlations become apparent [21] is given by

2w
kg Tk

The length £ is of the order of many hundreds of lattice spacings. In
principle, the real-space structure of the Kondo screening cloud could
be probed by nuclear magnetic resonance/Knight shift measurements on
magnetic impurities dissolved into bulk metals. The total number of {
electrons in the variational state is given by

kr & =

(37)

Nzk ‘BE‘Q
nr =
A2+ N Y, | B |?
~ N A (38)

NA + wkp Tk

12
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where we have assumed that (W 4+ ) > kp Tk. The total number of f
electrons differs from unity by an exponentially small term which is pro-
portional to the Kondo temperature. Equivalently, the relation between
the Kondo temperature and the f occupation number can be expressed as

(1-nr)NA

nr ™

kg Tk = (39)
This suggests that, in the infinite U limit, the Kondo temperature can
be viewed as being due to the renormalization of the rate A for a con-
duction electron from hopping onto the f level. The average value of the
hopping rate is expected to be reduced by a factor of (1 — nr ) since
the Coulomb interaction will prohibit an electron to hop into a level that
is already occupied.

The analysis of the nonmagnetic and magnetic states can be system-
atically extended to more complex variational functions in which the sub-
sequent correction terms decrease in inverse powers of the degeneracy, if
one scales A so that N A is considered as constant. While it is true that
for cerium compounds N~ = é so the N1 corrections can be considered
as small, since the ratio X2 is 1, the finite U corrections appear to be

U 3
more important [22].

3.4 The Schrieffer-Wolff Transformation

The single-impurity Anderson model is equivalent to the single-impurity
s-d or Kondo model, in the limit where the set of f levels are only occupied
by one electron. The equivalence was first shown by Schrieffer and Wolff
[23] for the case N = 2 and was generalized to finite N by Cogblin and
Schrieffer [24]. The equivalence can be shown by writing the Hamiltonian
for the single-impurity Anderson model as

H = Hy + Hypa (40)
and then performing a canonical transformation

H':exp|:—fl:|ﬁexp{+/1] (41)

where A is an Aanti—Hermitean operator which is considered to be of the
same or(jer as Hyq and still has to be deter}nined. The transformed Hamil-
tonian H’, when expanded in powers of A, has the form
ﬁ/ = F[o—l—[ﬁo,/i]—l—ﬁfd
1 . . . . .
+o [[Ho, Al A + [Hpa, Al + ... (42)

The operator A is then chosen such that the terms in H’ which are first-
order in the hybridization matrix element V vanish

[ﬁo,A]+ﬁfd:0. (43)

13
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This leads to the transformed Hamiltonian being given by
. . 1 . .
H,:HQ+§[Hfd7A]+.“ (44)
which is accurate up to second-order in the hybridization matrix elements.

The anti-Hermitean operator A can be written as

A=y [@ Fdos — O dl, fo (45)

ko

where (:)&(x is given by
Opa = > Pl bie (46)

where P} are operators which project on to the subspace where the set
of (N — 1) 4f states with quantum numbers 8 # a are occupied by n
electrons. The complex numbers 0} , are found as

.V
ok Ef,a+Un—€d(E) ’

(47)

Since the f levels are assumed to have a total occupancy of unity in the
initial and final states, only the terms with n = 0 and n = 1 are needed.
In the transformed basis, the interaction ﬁ{m between the f electrons and
the conduction electrons as calculated to second-order in the hybridization
can be reduced to

~ 1 V*(E) V(E/) U . )
Mo = - L dl L dy
t 2N: ;g (Ef —ea(k)) (Ef +U — ed(@)fﬁ fa dy o di s

(48)
which is the Cogblin-Schrieffer interaction. This interaction represents
an exchange between the f electrons and the conduction electrons at the
location of the impurity site. The interaction proceeds via virtual valence
fluctuations involving both the non-occupied and doubly-occupied f states
and has the strength

Vi(k) V(E) U

Jew = (Bf — ca(k)) (Ef + U — ea(k))

(49)

which is negative. In the limit U — oo, the interaction strength reduces
to
Ve

Ey — n
which also appears in the exponent of eqn.(34) that defined an approxi-
mate expression for the Kondo temperature. The Cogblin-Schrieffer in-
teraction reduces to the Kondo interaction for the case N = 2, apart from
a potential scattering term at the impurity site.

Jg ~ (50)

14
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The elimination of (4f)™ configurations with n # 1 is reasonable when
the 4f density of states is spilit into two peaks with characteristic energies
far removed from the Fermi-energy. In this case, the virtual admixture of
the higher-energy configurations into (4f)" can be neglected if the condi-
tion

A nr N —nrp

— + <1 51

us w— Ef Ey+U—p (51)
is satisfied [7]. It should be noted that the Schrieffer-Wolff transforma-
tion does generate additional interactions that cannot be neglected in the
mixed-valent limit. This is especially true for lattice models [25].

For N = 2 the model can be mapped onto a spin one-half model by
introducing the f spin-flip operators, S*

St o= flr
A (52)
and defining the z-component of the spin S via

§ = ;(fiﬁ—f*f>. (53)

Likewise, one can introduce the spin density operators for the conduction
electrons

g
i = g -
ey = . dis (54)

etc. Using this notation and on enforcing the constraint

e+t =1, (55)
one finds the interaction
A 1 1
Hiy = — . Z i S O — N, Z Tk k! d;,g g, - (56)
kK’ kKo

The first term represents an interaction between the f spin and the spin of
the conduction electrons at the impurity site. The second term represents
potential scattering.

The finite U form of Jx has a simple explanation based on second-
order perturbation theory. If the localized f level is occupied by an electron
with spin up, its energy is lowered by an amount

(57)
due to virtual hopping into the conduction band. However, the down-spin

conduction electrons decrease their energy by an amount

v

AB, ~ — 11
YU - Ef - U

(58)

15
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due to virtual hopping into the f level leading it to be doubly-occupied
which, therefore, involves the energy difference £y + U — p. The sum of
these energies is just Jx which represents an antiferromagnetic exchange
interaction between the f electrons and the conduction electrons.

3.5 The Kondo Model

The s-d model [26] or Kondo model describes a localized spin with degen-
eracy (25 +1), which interacts with a single band of conduction electrons.
The interaction can be written as

A 1
H'L{nt = - N. Z Jik S c Ok k! - (59)

kK

The main difference between the Kondo and Cogblin-Schrieffer interac-
tions is that in the Kondo model the localized spin can only change by
amounts + 1, 0 or - 1, whereas in the Cogblin-Schrieffer Model the change
is unrestricted. The s-d model was used by Kondo [27] to describe the
resistivity minimum of metals containing magnetic impurities. His third-
order perturbation approximation showed that the scattering rate for the
conduction electrons diverged logarithmically at low temperatures. Fur-
thermore, Abrikosov [28] showed that, on summing the leading logarithmic
terms, the series diverges at Tk for negative Jx when

ks Tk
w

1 = 2 Jk pa(p) In (60)

which defines the Kondo temperature for N = 2. For positive Jg, the
logarithmic terms suppress the interaction leading to the spin being free
at zero temperature. A perturbative renormalization calculation by An-
derson [29] also shows that at low T the antiferromagnetic model scales to
strong coupling where the Kondo temperature is a scale invariant. Like-
wise for ferromagnetic coupling, the scaling trajectory leads to a ferromag-
netic fixed point at which the spin-flip scattering vanishes. Extending
Anderson’s analysis to the Cogblin-Schrieffer model, one finds that the
system scales to strong antiferromagnetic coupling pa(u) |Jess| = =+ at
the energy scale

1

N
1
kp Tk = W6<NJK|pd(u)> eXp[ -

Nl palmy| OV

where e = 2.71828 is Napier’s number.

When nr is not too different from unity, models for mixed-valent im-
purities may be approximately described by Kondo models. In particular,
like the Kondo model, all physical quantities may be expressed in terms
of one single scale parameter, such as H]X @f. However, when nr deviates
significantly from unity, single parameter scaling may break down and
physical properties may depend on N A and p — Ey separately.

16
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3.6 The Local Fermi-Liquid

Wilson’s numerical renormalization group calculations for the Kondo model
[30] show that, at sufficiently high temperatures, the interaction Jx can be
treated as a perturbation. However, for negative Jx, as the temperature
is lowered, the system undergoes a smooth cross-over to a state where Jx
can be regarded as being infinitely strong. The strong coupling nature of
the T' = 0 state had been previously inferred by Anderson [29] who used a
perturbational renormalization technique. In this low temperature state,
the antiferromagnetic nature of the Kondo coupling can be thought of as
binding a compensating conduction electron cloud to the localized spin,
resulting in a rigid singlet state [31]. Noziéres [32] has pointed out that in
this low temperature state, the other conduction electrons will experience
a weak interaction mediated by virtual fluctuations of the singlet state.
Furthermore, he pointed out that the non-bound conduction electrons can
be described as a local Fermi-liquid.

At low temperature, the system settles into a Fermi-liquid state. The
Fermi-liquid properties can be derived by considering the f electron self-
energy Xf(€). The inclusion of the Coulomb interactions results in the
replacement

e — Ef +iA - ¢ — Ef — X(e) + iA (62)

in expressions involving the single-particle Green’s function, such as the
4f density of states

pr(€) = D prale)

1. N
- W\Sm[e—Ef—Z(e)—FiA}' (63)

For low-energy excitations, one can expand in powers of ¢ — u leading to
the approximation

N
Z (e—p) = Ep + p—X(p) +1iA

=

Sm { } (64)

prle) ~ —

where Z is the wave function renormalization

7 (1_ 20 ) (65)

Oe
Sm X(u) = 0. (66)

and where we have used

The last equation follows since [33]

Sm Be) x (e — p)? (67)

17
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close to the Fermi-energy, which is a consequence of the limited phase
space for producing particle-hole pairs. Hence, for € in the vicinity of the
Fermi-energy, the one-electron density of states can be expressed as

N 1
prle) =~ = 2 am| — | (68)
where
5o Er+ X)) —p
E; = 7
~ A
A = =
= (69)

are the renormalized f level energy and the renormalized hybridization
lifetime. The Coulomb interactions result in the electronic excitations
consisting of coherent quasiparticles which are in a one-to-one correspon-
dence with the electrons of a non-interacting model, but which have a
spectral weight of only Z~! with Z > 1. The remaining spectral weight is
transferred to higher energies such as the spectral features seen in fig.(3).
However, following arguments originally due to Luttinger [33, 34], it has
been proven [35, 36, 37] that the Friedel sum rule applies to the quasipar-
ticle portion of the spectrum of the Anderson model. The total number
of f electrons is given by

nro_ 1 tan™" | = A (70)
N o Ef —p

which reduces to the expression for the non-interacting model, as the wave
function renormalization cancels out. This remarkable result leads to the
f electronic density of states at the Fermi-level having the form

prl) = U ()

which is identical to the expression for the non-interacting model. Thus,
the value of the density of states at the Fermi-energy is unchanged by the
interactions. Furthermore, the fact that ps(u) is independent of U and
the assumption that Z > 1 guarantees that the density of states will
have a peak in the vicinity of the Fermi-energy.

In the Kondo limit ny — 1, the wave function renormalization can
be inferred from exact Bethe Ansatz calculations [38, 39, 40, 41], and is
found to be

s A WN N -1

7 = 72
kg Tk <N2 sinzl’\;) (72)

where wy is the Wilson number [39] which is given by

1+C— 32
wn:?@Ligggﬂ (73)
27 (14 4)

where C' is Euler’s constant. For A > kpTk, one sees that the wave func-
tion renormalization is much larger than unity. Once Z has been found,

18
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1
2
3
4
5
6
7
8 the value of E; can be found in terms of A from eqn.(70). This leads
9 directly to the form of the low-energy portion of the electronic density
10 of states. The low-energy density of states describes the Kondo peak or
11 Abrikosov-Suhl resonance
12 kpTr N%sin? T
13 © N Tron(N=D)
14 prie) = 7 2 7 -
15 (El_,L kBTKNQSin]\rfcos]\r,) + (kBTKNQSiDQKT
16 Twy (N—1) Twy(N—1)
(74)

i; The Kondo peak ( shown in fig.(5) ) has an integrated intensity o %
19 and sits at an energy proportional to the Kondo temperature above the
20 Fermi-surface. The width of the Kondo peak is also proportional to the

Kondo temperature, but is significantly smaller than the excitation energy
g;‘ due to an N-dependent factor.
23
24
25
26
27 -
28 <] -
29 S
30 =
31
32
33
34
35
36 ©
37
38 Figure 5: The energy dependence of the Abrikosov-Suhl resonance in the 4f
ig density of states pf(w) where w = e — i, for various values of the degeneracy N.
41 In the Kondo limit, the wave function renormalization can be obtained
42 by using Wilson’s definitive relation between the Kondo temperature and
43 the impurity’s magnetic susceptibility [30] together with the relationship
j’é between the impurity’s magnetic susceptibility and the coefficient of the

linear T term in the impurity’s electronic specific heat v. The wave func-
46 tion renormalization can be then be found from +, since v is enhanced
a7 over the non-interacting value by a factor of Z when the self-energy is in-
48 dependent of k. The various thermodynamic quantities that are required
49 for this identification can be obtained from the Bethe Ansatz solution of
50 the Cogblin-Schrieffer model.
51
52 For the integer valent limit or Cogblin-Schrieffer model, the zero tem-
53 perature limit of the impurity’s magnetic susceptibility [40] can be ex-
54
55
56
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pressed as

2 JG+1) wy
3kp Tk

The coefficient of the linear T term in the impurity’s electronic specific

heat term can be expressed as

x = (guB) (75)

WN (N=-1)
3 kg Tk N

These two expressions, like all physical quantities in the Kondo limit, only

v = 7k} (76)

depend on one single scaling parameter given by <ki}§"> On defining
the Wilson ratio R for the impurity as

k% (X>
R= ———7F7———- (%], 7
JG+1) (gus )* \v ()
one finds that for the Cogblin-Schrieffer model [38, 40, 41], or equivalently

for the Kondo limit of the degenerate Anderson model [42, 43, 44], R is
calculated as N

R = 7( N=1D) (78)
which differs from the value of unity expected from non-interacting elec-
trons. The increased value of the ratio is due to a contribution to the
susceptibility originating from the interactions between the quasiparticles
in the different channels a. The numerical value R = 2 was first obtained
for the S = % Kondo model by Wilson [30] from numerical renormalization
group calculations. The ratio of 2 was subsequently re-derived analyti-
cally by Nozieres [32] by applying concepts from Fermi-liquid theory. By
combining the above relations, one obtains eqn.(72).

For mixed-valent systems the Wilson ratio differs from the simple ratio
ﬁ due to the presence of charge fluctuations. This can easily be proved
by considering the magnetic susceptibility x, the f charge susceptibility
Xc and the coefficient of the linear term in the specific heat . Starting

from the expression for the magnetic susceptibility in the form

Onf,a
x=guBZa(gg)7 (79)

using the equation®

_ 1 1 A
Nfa = — tan _ 80
re = o (Efwa(m—u) 50

(like eqn.(70)) and on defining the chemical potential for electrons with
quantum number « in a field via po = g+ agupH, one finds

= G Y ool (4 - B ) s

a,a’

1The equality of Mfq for all a is a consequence of the unbroken SU(N) symmetry, or
equivalently, the singlet character of the ground state.
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Due to the SU(N) symmetry, not only are all the self energies equal but
all the off-diagonal o # o’ derivatives of the self energy (7(7)) are also
equal. Due to the symmetric distribution of the a around zero, only the
diagonal terms o/ = o and the off-diagonal terms with o/ = —a remain
after the summation over o’. Therefore, the susceptibility reduces to

X = (QMB)Q Z a2 (1 82a(u) + aza(ﬂ) ) Pf,a(l/d) . (82)

Olba Oph—a

«@

Likewise, using the equality of all the (IV — 1) off-diagonal derivatives, one
finds an expression for the charge susceptibility

_ (9
Xe = EN
9%a (1)
Oli—q

—1)

Il
7 N
=
|
Q
Q| M
= |e
"lE

> pra(m) . (83)

The off-diagonal derivatives cancel in the combination

3x _ _0%a(p)
(N-1) SR CE) +Xxe =N Za: (1 Bt )Pf,a(u)~ (84)

We note that the coefficient of the linear 7' term in the specific heat is
given by
1 0%a(w)
Ow

and that the self-energy rides on its own chemical potential 2,

0%a 050
(&) - () &

Therefore, one finds the equality

) pr.olm) (85)

3 x 3
(N—1) ——=——= + xc = N : (87)

(gps)? (5 +1) T2k
In the Kondo limit, the charge fluctuations are suppressed so xe = 0 and
so one trivially recovers the Wilson ratio of =] N i
Bethe Ansatz calculations have been performed for the mixed-valent,
degenerate, single-impurity Anderson model [42, 43, 44], in the limit U —
oo. It was found that the magnetic susceptibility was composed of two
contributions: one from the valence induced spin-fluctuations with energy

2The equality

by frequencies w + ws.

aza
e

is one chain of hnes that runs throughout the self energy which can be labeled by « and

Since all other lines labeled by the quantum number a form closed

loops, their contributions to % cancel. Hence, since the propagators that contribute to the
«

derivative with respect to po only depend on the quantity w + pq, the equality follows.

21

= 9Za fo]lows from the observation that, since « is conserved, there
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scale A and the second from the Kondo fluctuations with an energy scale
kB Tx. In the mixed-valent regime, the results [45] are expressed in terms
of the two energy scales A and the renormalized f-level energy E} given
by [46]
* A w

Ef—Ef"‘(N—l);an. (88)
Thus scaling requires two independent parameters. This can be seen from
the leading exponential term in the expansion of the exact expression for
the magnetic susceptibility [42]

exp{ + S }
™ (gus)® j(G+1) va
3N A 1+ 1)

X R (89)

Bt
which depends on both N A and ( ]\’,‘ :) separately, as does the new scal-

ing parameter T which describes the dependence on a magnetic field [43].

The crossover from the Kondo limit to the mixed-valent case is smooth,
but sharpens for large N [42]. This can be seen by comparing the ex-
pression for the large N logarithm of the susceptibility with the large N
expression for the number of f electrons nr,

e 14 L (NA) 1 (NA) (11> [Hn‘m
N \m(E; —p) N \m(E; —p) N m(E} — 1)
(90)

Combining the results, one obtains the expression [47]

7 (gus)® j(j + 1) 1
~ —§N A exp { N —n) } . (91)

Thus, in the large N limit, x appears to have an essential singularity as
nr — 1, instead of the simple pole

~ (W;)NJX’Jr 1) (1 anT> (92)

found with % expansion methods (see fig.(6)).

One may also find an expression for the quasiparticle peak in the
density of states for the mixed-valent case, for large N. This proceeds
by noting that, if the charge susceptibility is to be positive, then the
off-diagonal derivative %LW must tend to zero when N — oco. In this
case, “

2 ..
gps)” jJ+1
el JUXD 5 ) (93)
which can be compared with the standard definition of the form of the
mixed-valent magnetic susceptibility

X =

(gps)* j(G +1) nr
= 4
X 3k T (94)
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20 Figure 6: The dependence of xy~! on ny for N = 8, (red line) leading N !
21 expansion, (blue line) Bethe-Ansatz. (After Schlottmann [14])

24 where the factor nr is included so that it is explicitly seen that x — 0
25 when nr — 0. Hence, one may identify the wavefunction renormalization
26 through

nr
27 Z pr(n) = kg Ta (95)
1

28 In the large N limit, the Friedel sum rule shows that A must scale as +
29 when compared to y — E¢. Thus,

31 e LA (96)
32 N " 7 e =By

33 while

N A

"7 i By

37 R (97)
38 Z By

39 Therefore, Zpys(u) = ‘U’i’%f‘ . On using eqn.(95), one finds that the quasi-
particle peak is centered at an energy

42 u— Ef| = kg Ta (98)

35 pr) =

43 with respect to the Fermi-energy. Then, the Friedel sum rule determines
44 the width of the quasi-particle peak, A, to be

46 A=nr (HWT) kp Ta (99)

48 Hence, close to the Fermi-energy, the large N one-electron density of states
49 can be expressed as

50 N (nTTr]]iIBTA)

51 _ N
s pf(E) T 7 (E*M*kB TA)2 + (%)2
53 _ nrksTa (rertela)

54 B A (E*M*kB TA)2 + (nTTr]]iIBTA)Q

(100)
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since the quasiparticle renormalization factor is given by

7 - _N&_ (101)
’rlTﬂ'kBTA

Thus, like in the Kondo limit, the T' = 0 one-electron density of states
for a mixed-valent system consists of two prominent peaks far removed
from the Fermi-energy and also has a small intensity quasiparticle peak of
weight % with width % that is located at an energy kp7'a measured
from the Fermi-energy. In the Fermi-liquid regime, it can be shown that
an increase in temperature results in a 7?2 increase in Z and a shift in
|w — Ef| away from the Fermi-energy, all of which produces a “melting”
of the quasiparticle peak.

4 Concentrated Compounds

Experimental results on concentrated mixed-valence and heavy-fermion
compounds can frequently be described by the Anderson single-impurity
model (See Section 6). However, generalization of the single-impurity the-
ory to concentrated compounds runs into a number of major difficulties,
such as saturation of the Kondo effect and the effect of interactions which
may lead to magnetic ordering. These aspects are discussed below.

4.1 Nozieres Exhaustion

The spatial extent £ of the screening cloud of conduction electrons sur-
rounding a Kondo impurity is given by

w
ke Tk

kr & = (102)
The length scale is much greater than the lattice spacing. This is expected
to put limitations on the application of the single-impurity models to con-
centrated compounds.

In particular, one expects that the Kondo impurities will start to in-
teract when the compensating clouds start to interfere. This condition
would suggest that interaction effects should first occur when the number
of impurities Njmp satisfies

Ns a® ~ Nimp € (103)

where N is the number of lattice sites. Equivalently, this can be expressed
as

w

where Ncon is the total number of conduction electrons. This condition
suggests that interaction effects should set in for extremely small impu-
rity concentrations. There is, however, no experimental evidence for such

3
ke T,
Nimp ~ 6772 Neon ( = K) (104)
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1
2
3
4
5
6
7
8 interference effects in mixed-valent or heavy-fermion alloys or compounds.
9
10 A second limitation that has been suggested is the exhaustion principle
11 [21]. The electrons that form the “compensating screening cloud” have
12 energies of kg Tx below the Fermi-energy. Hence, the maximum number
13 of conduction electrons available to screen the impurity local moments,
Ncyyr is estimated
14 eff
B Ik
16 Nesy = Ns pa(p) kp T ~ Ns <W> . (105)
17
18 Hence, this argument leads to the hypothesis that, when Ny > Negy,
19 the number of conduction electrons is insufficient to screen the local mo-
20 ments. In particular, there would never be enough conduction electrons to
21 screen a lattice of local magnetic moments, if one is to retain the picture
f the single-impurity Kondo effect.
22 o g purity
23
24 Nozieres has refined this picture by switching to a semi-classical time-
o5 domain argument and by making a key assumption [48], namely that the
only relevant energy scale is set by the Kondo temperature, as in the
26 single-ion Kondo effect. In particular, the number of conduction elec-
217 trons Neyy that are available for screening local moments is assumed
28 to be identical with the number found in the single-ion Kondo effect
29 (Neys = Ns p(p) ks Tx). These moment screening conduction elec-
30 trons are itinerant and consecutively visit the magnetic sites producing
31 precessions of the local moments that eventually result in an isotropic
32 distribution of magnetic moments. The time scale 7 at which a moment
33 screening conduction electron, present at a magnetic site, produces a pre-
34 cession of the local moment by 27 about an axis is assumed to be given
35 by
h
36 T = —— . (106)
ke Tk
37
38 The precession redistributes the moment’s direction over a circular ring
39 on the surface of the unit sphere. However, it requires visits by at least
40 N electrons in order to redistribute the moment’s direction over a solid
a1 angle of 47.2 The coherence time Teoh, defined as the time-scale for the
42 randomization of the direction of every moment, is then given by
43 Nimp h
Teoh = (N —1) (107)
44 Nesy ) kB Tk
45
hich leads to a coherence temperature 7 iven b
46 w. p coh & Yy
47 h 1 N,
kg Teoh = —— ~ o [ ks T )* . 108
jg B Lcoh Tooh (N — 1) (szp) p(,LL) ( B 1K ) ( )
50 The distribution of moments is expected to have become isotropic and the
51 system is expected to become non-magnetic below the coherence temper-
52 ature. Nozieres’s coherence scale can be much smaller than the single-ion
53 3The (N — 1) different precessions or visits by (N — 1) electrons, should be sufficient to
54 destroy all the time-dependent phase relations between the components of the spinor.
55
56
25
57
58
59
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Kondo temperature for large impurity concentrations.

The above argument leads to the conclusion that there exists more
than one relevant energy scale for concentrated compounds, which in turn
implies that they are governed by physics other than that contained in
the single-impurity Kondo model. This undermines Nozieres’s assumption
that there is just one relevant energy scale [49]. Further guidance is given
by mean-field calculations for the Kondo or Anderson Lattice Models of
the type discussed in section (5.1), for which Ns = N;mp. These calcula-
tions indicate the existence of two related energy scales V and [V|?p(i).
The last scale represents both the single-impurity Kondo temperature
which marks the temperature of the onset of moment loss

ke Tic = |V 2 p(u) (109)

and the T' = 0 lowering of the ground state energy due to the coherent
hybridization of the bands. Nozieres’s argument can be modified by as-
suming that only electrons within V of the Fermi-energy participate in
the screening of moments and that the energy scale for precession is also
given by V. These substitutions result in a coherence scale that is given
by

kp Tk
(N—-1)~
This coherence scale is a factor of N~! times smaller than the Kondo
scale, in agreement with a scale inferred from mean-field calculations for
the Anderson Lattice Model [50]. This argument could imply that all that
is needed to destroy coherent hybridization (i.e. produce V (k) = 0) at
the Kondo temperature Tk is that the contributions to V from each site
have randomized overall phases and does not require the randomization
of each individual component of the spinors.

kg Teon = (110)

4.2 Doniach’s Diagram

Heavy-fermions metals are frequently found in the vicinity of quantum
critical points, and can be phenomenologically described by the Doniach’s
diagram [51]. Doniach’s diagram is a statement about the relative energy
scales of a lattice of magnetic ions which interact with the conduction
electrons via a Cogblin-Schrieffer exchange interaction Jx . For an isolated
impurity, the Kondo temperature is given by

1
kBTKNWeXp[—NW'pd], (111)

For temperatures below the Kondo temperature, an isolated local mo-
ment will be compensated by the magnetization of a screening cloud of
conduction electrons leading to a singlet state. The Kondo effect competes
with magnetic ordering promoted by an RKKY-like interaction which is
second-order in the Kondo interaction. The RKKY-like interaction be-
tween two local moments has a magnitude of pg J& [52]. A spontaneous
magnetic fluctuation dm at one site, will generate an effective local field
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of order pg J2 §m at a second site. The response at the second site has
a magnitude of x pg J&% 0m, where x is an appropriately reduced mag-
netic susceptibility, so x ~ wf}K. If the response at the second site
is amplified, it can be expecteée that the system will become unstable.
Otherwise, if the response at the second site is diminished, the system
may be expected to be stable. Consideration of the ratio of the two en-
ergy scales suggests that, for the smallest values of pq |Jx|, a magnetic
phase will be stable. However, for N > 1, a non-magnetic state will
result at larger pg |Jx|. A quantum critical point will separate the two
phases. Since heavy-fermion systems are phenomenologically character-
ized by exceptionally small Kondo temperatures 1 > pq Tk, one infers
that heavy-fermion materials are to be found near quantum critical points.
On the other hand, mixed-valent materials should be found on the non-

magnetic side, well-away from the critical point.

! '
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Figure 7: The Doniach phase diagram in which the dimensionless RKKY inter-
action (pgJ K)2 and the dimensionless Kondo temperature pg kgTk is plotted
as a function of the magnitude of the Kondo exchange interaction pg4|Jx|, for
various values of the degeneracy N. The value of N = 3 is shown for clarity,

but should be considered as unphysical.

Mean-field calculations on a lattice of Kondo impurities, interacting
via antiferromagnetic intersite exchange interactions [53] lend support to
the above arguments. The Kondo temperature Tk for the lattice is sig-
nificantly different from that of an isolated impurity, and is strongly de-
pendent on the concentration of conduction electrons. Furthermore, the
Kondo phase terminates abruptly for low numbers of conduction electrons

and strong intersite interactions.
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5 The Anderson Lattice Model

Mixed-valent compounds which have an f ion in each unit cell can be
modeled by the Anderson Lattice Model. In this model, there is a 4f ion
at every lattice site which hybridizes with the conduction bands. The
Hamiltonian can be expressed as

E[ = Ifff =+ ﬁd + I:Ifd (112)

where H; governs the lattice of f ions, Hy describes the conduction band
and Hyq describes the hybridization process. The localized f orbital is
described by a Hamiltonian Hy

) U
Hf = Z Ef,a f;’a fa + 5 Z f:,a fi,a fig f’i,ﬁ (113)
1,0 i, 0B

where fza and f; «, respectively, create and destroy an electron in the
f-orbital on the lattice site labeled by ¢ and o, Ey,« is the binding-energy
and U is the screened Coulomb interaction between pairs of f electrons on
the same lattice site. The Pauli-principle excludes an interaction between
a pair of electrons in the same single-particle state a = 8 on the i-th f
ion. As before, we shall consider the SU(N) model where the index «a
represents the combined spin and orbit quantum numbers which run over
N values. The conduction electron Hamiltonian is denoted by Hy and is
given by

Ha = > ecalk) df , dia (114)

ko

where d;a and dg,«, respectively, create and destroy an electron in the
Bloch state labeled by wavevector £ and quantum number o with the
single-particle Bloch energy eq(k). The f states are coupled to the con-
duction states by the hybridization term H td, given by

Hya =) (V(k) fodio + V(k) df, fk,a) (115)

k,a

where f,: ., and fk o, respectively create and destroy electrons in the f state
labeled Ey the Bloch wavevector k and a. Unlike the impurity model, crys-
tal momentum is conserved in the hybridization process. For the SU(N)
model, « is conserved by the hybridization process.

The model can be solved in the limit where U — 0. In this limit,
the electronic structure consists of two sets of N-fold degenerate bands of
mixed f and d characters with dispersion relations given by

1
Box(k) = 5 (Ef,a +eak) £/ (Bpa —ea(k)? + 4| V(k) ]2 )
(116)
The f weight of the hybridized states is given by

2 1 (Ef.o —ea(k))
|4l [* = 3 <1 T By s VO > - (1D
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Figure 8: (a) A sketch of the electronic dispersion relations Ey (k) for the non-
interacting Anderson Lattice Model. (b) The f spectral weights |Ay (k)|* as a
function of k. (¢) The total density of states p(w) divided by N versus w.
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The dispersion relation, the f spectral weight and density of states are
sketched in fig.(8). From the dispersion relation, one sees that the two
bands have a direct gap of 2 |V| but also have an indirect gap given by
4 |V [2/W, the hybridization gap. It is the coherent elastic scattering that
is responsible for the gap in the spectrum. The { weight is distributed
around Ef, but the indirect gap divides the f states into two parts. The
Fermi-energy p must necessarily be outside the indirect gap if the model
is to describe a metallic system, even when the Coulomb interaction is
present [34]. Otherwise, when the chemical potential is in the gap, the
system is semiconducting and may describe Kondo Insulating materials
[54].

A DdSADDdD
SQwoo~NOoOUa~wWNEO

The Anderson Lattice Model has been treated in the Dynamical Mean-
Field Approximation (DMFA) [55, 56]. The DMFA maps the lattice model
onto an effective single-impurity Anderson model where the effective con-
duction band density of states represents the effect of the environment

g1 o1 U1 o1 01 01
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which includes the presence of the other f ions. The energy-dependence
of the effective conduction band density of states has to be solved for
self-consistency. The single-impurity problem then has to be solved ei-
ther by Numerical Renormalization Group, Quantum Monte-Carlo [57]
calculations or large N approximations [58]. The mapping onto a single-
impurity model is motivated by the limit of infinite number of dimensions
of the lattice d — oo, in which correlations between two lattice sites is
washed out[55]. Therefore, the approximation should be reasonable when-
ever the electronic correlations are predominantly local.

5.1 The Slave-Boson Method

The U — oo limit of the Anderson Lattice Model has been investigated by
using the slave boson method [59]. The slave boson method was initially
developed to treat the degenerate single-impurity Anderson model [60, 61]
and, unlike other large N approaches to single-impurity model such as the
Non-Crossing Approximation (NCA) [58], can be systematically applied
to lattice problems.

The slave boson method is based on the observation that, as U — oo, it
becomes energetically prohibitive to have multiply occupied f states on any
ion and one must project out all the multiply occupied states whether they
are physical or virtual. In the method [60, 61], the f electron operators
( f;r’ . and fi o) are replaced by the product of f quasiparticle operators

( fja and f; ) with the slave boson operators (b] and b;), according to
the prescription

fj,a - fj—,a bl
fia = b fia. (118)

The f quasi-particle operators are fermion operators which satisfy anti-
commutation relations, only if one enforces the constraint

> Fla fia +b b =1 (119)

at each site ¢. Since the eigenvalues of the boson number operators are
limited to the set of positive integers supplemented by zero, this constraint
eliminates multiply occupied f states at site ¢ and results in

1 >nr >0 . (120)

This constraint can be enforced by using Lagrange’s method of undeter-
mined multipliers \;. Lagrange’s method produces an effective Hamilto-
nian similar to the original Anderson lattice Hamiltonian in which the
Coulomb term has been projected out, but in which

Ef flofio = (Ef+X) fl fia

V fledia = VFl, diabi. (121)
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The effective Hamiltonian also contains the non-interacting boson Hamil-
tonian
Hy =" i blb; (122)

The mean-field approximation, which is exact for the single-impurity
model when N — oo, assumes that the boson field enters into a conden-
sate at low temperatures. In this case, the condensate can be considered
as an eigenstate of the operators b;r and b; and so the boson operators can
be replaced by the complex numbers b* and b.

On applying the mean-field slave boson method to the lattice [59] and
only imposing the constraint on average, one finds that the hybridization
matrix elements are renormalized according to

V - V=Vb (123)
where b is a complex number, which satisfies the constraint
[b> = (1 — nr). (124)

In the above equation we have made use of Luttinger’s theorem which
ensures that the number of f electrons, nr, is equal to the number of
quasiparticles. The magnitude of b is found by minimizing the effective
Hamiltonian with respect to b. The minimization results in the equation

* 1 r3
A+ o Y V) < o die >=0 (125)

S
ko

which has to be solved self-consistently together with the constraint. For
the lattice model, the chemical potential p has also to be adjusted to keep
the total number of electrons constant. The non-trivial solution, for which
b # 0, yields a renormalization of the energy of the f level

E; - E; = Ef + ). (126)

The renormalization of Ef and V have the effect of minimizing the
Coulomb interaction. The inclusion of A in E‘f raises the f quasiparti-
cle energy above the Fermi-energy and, therefore, reduces the interaction
energy. The renormalization of V' reduces the rate at which conduction
electrons can hop into an f state (o< | V' |?) by a factor of | b |2 = (1 —n7)
which reflects the average effect of the Coulomb blocking hopping which
would produce multiply occupied f orbitals. This renormalization is sim-
ilar to the renormalization of A found for the U — oo limit of the single-
impurity model as expressed in eqn.(39).

5.2 The Coherent Fermi-Liquid

The self-consistent equations only have the trivial solution b = 0 for tem-
peratures above a characteristic temperature determined from

Ef—uzNA/W d€<2f(€)_1) (127)

27 J_w € — [
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since the chemical potential is pinned to the energy Ef of the partially
occupied f quasiparticle level when b — 0. This temperature is identified
as the Kondo temperature Tk for the lattice below which the conduction
electrons start to screen the localized magnetic moments

keTk ~ W exp [TF(EfA’u)} (128)

and np(T') starts decreasing from unity. This expression has been derived
by assuming a flat conduction band. Using more realistic forms of the
conduction band density of states shows that Tk decreases and finally
vanishes as the conduction electron density decreases [50]. For tempera-
tures below Tk, the solution with finite b becomes stable and the system
starts condensing into a Fermi-liquid state. In the mean-field approxima-
tion, the cross-over from the high-temperature state to a low-temperature
Fermi-liquid state resembles a mean-field phase transition in which | b |? is
the order parameter. Fluctuations of the order parameter are expected to
smooth out the cross-over. This is expected [62] since, if the phase of the
complex number b is known precisely (as in the mean-field state), then the
condensate must be a coherent state which involves a linear superposition
of states with different numbers of bosons. In this case, due to the large
fluctuations in the boson number, the constraint cannot be satisfied at
every lattice site and b is certainly not a static field. However, the phase
or gauge fluctuations do not affect physical properties. Anyway, since the
fluctuations are of higher-order in N~!, the situation is similar to that
of the single-impurity model where the cross-over from integer valent to
mixed valence is smooth but becomes abrupt when calculated to leading
order in N1,

Below Tk, b is a function of temperature and continues evolving but
saturates at a temperature T,o, at which the Fermi-liquid is fully-formed
[50}. The coherence temperature T, is related to Tk by a factor which
depends on the density of conduction electrons. In this sense, the depen-
dence of Tk and T,,n on the number of conduction electrons lends support
to the arguments of Noziéres [21].

Once V, Ef and p have been found, the effective Hamiltonian can
be diagonalized in exactly the same way as the non-interacting model.
However, the indirect gap between the quasiparticle dispersion relations
is reduced to 2 % (1 =n7(T)) and the direct gap has a magnitude of
2|V | v/1—=np(T). The first renormalization shows up in the enhance-
ment of the quasiparticle mass which is manifest in numerous experimental
quantities [62], such as in the amplitude of the de Haas - van Alphen os-
cillations, the coefficient of the linear T term in the specific heat ~, the
magnetic susceptibility x, a reduction of the width of the low-temperature
quasiparticle Drude peak in the optical conductivity and a quadratic en-
hancement of the coefficient A of the T2 term in the electrical resistivity.
The second renormalization shows up in terms of a mid-infrared peak in
the optical conductivity due to a direct (¢ &~ 0) inter-quasiparticle-band
transition. However, at T' = 0, all the Fermi-liquid properties can be ex-
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pressed in terms of the coherence temperature scale, Teop.

Millis and Lee [62] addressed Noziéres’s question [21] as to whether
the Kondo screening occurs in the lattice and obtained the analogue of
the magnetic screening function P(r) for the itinerant particles. Like in
eqn.(35) for the single-impurity, the correlation can be expressed as

1 ¥ . ’
P(r) = N. & kkzk BkBk'eXp[l(k—k)»T} (129)
kk'<kp

However, since the f quasiparticles are itinerant which elastic scatter co-
herently, the functions By are given by

By - V& (130)
V(E; —ea(k))? +4 |V (k)2

Unlike the corresponding function for the single-impurity model which is
maximized at the Fermi-surface k = kr, By is maximized at the direct

gap where e4(k) = E 7 and which defines the small Fermi-surface (which
would be realized if V' = 0). Millis and Lee determined the correlation
length for the lattice & to be given by

b € = % (131)

which, although much shorter that the correlation length for the single-
impurity model ( since kp & ~ ﬁ ~ (%)2)7 is still greater than the
lattice spacing. They also determine the number of electrons screening
each itinerant magnetic moment and found that it was given by % They
argued that this shows the physics of the lattice is different from that of
a single-impurity and that it is the itinerant character of the f electrons

which results in the paramagnetism.

Doniach [52] has investigated whether the effects of interparticle in-
teractions can produce magnetic instabilities. He found that magnetic in-
teractions are produced by high-energy processes which are proportional
to the fourth power of the hybridization matrix element V. Although
calculated for the lattice, this magnetic interaction has a resemblance to
the RKKY interaction between magnetic impurities for which Jrx KY ~
=t
On scaling V2 with a factor of N, the RKKY-like interaction become of
order N2, By treating these interactions in the Random Phase Approx-
imation, Doniach reproduced essentially the same criterion for magnetic
instability that he had found previously [51], Jrxkky ~ kg Tk. Evans
[63] has extended this analysis by including small interaction processes
(of the order of Z~!) that occur between the quasiparticles of the low-
temperature Fermi-liquid state. Unlike Doniach’s mechanism, which pro-
duces instabilities at temperatures T where Ty > Tk, the low-energy
processes may tip the balance and produce magnetic instabilities at tem-
peratures below the coherence temperature T op.

J% pa(p) since the Schrieffer-Wolff transformation leads to Jg ~
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6 Comparison with Experiment

The magnetic susceptibility x(7"), the 4f occupation number ny (as mea-
sured by L3 x-ray absorption), and the Q-averaged dynamic susceptibility
X" (E) (as measured by neutron scattering) of the intermediate valence
(IV) compound CePd3 are shown in fig.(9). The ground state occupation
number ny ~ 0.75 (implying a Ce valence z = 4 — ny = 3.25) and the
characteristic energy of the spin fluctuations (kgTx ~ Emaz = 55 meV)
are typical of IV compounds. [67] The linear coefficient of specific heat
v =29 mJ/mol—K2 is also typical, indicating that these materials have
moderately heavy Fermi liquid ground states.
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Figure 9: (a) The magnetic susceptibility; (b) the 4f occupation number as
measured by L3 x-ray absorption; and (c¢) the low temperature polycrystalline-
average neutron spectrum of CePd3 compared to the predictions of the Anderson
impurity model (solid lines) as calculated in the non-crossing approximation.
The parameters for the bandwidth W, the f-level position E, the hybridization
constant V', and the spin orbit splitting Ay, are given in panel (b). (From
Fanelli et al. [64])

These properties of Ce and Yb intermediate valence (IV) compounds
can be fit simultaneously by the predictions of the Anderson impurity
model (AIM). The solid lines in fig.(9) make this apparent for CePds.
The low temperature specific heat coefficient (30 mJ/mol-K?) deduced
from this calculation is basically equal to the experimental value. [64]
The low temperature upturn in the susceptibility is an intrinsic coherence
effect, as discussed further below. Similar fits are observed in YbAls [66]
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and YbAgCuy [65].

The Kondo temperature Tk in these compounds is large (~ 500 K)
compared to typical rare earth crystal field energies, so that in the calcu-
lations the latter can be ignored and the Ce (Yb) atoms can be treated as
j =2 (j=1I)ions. Given the large Tk, these materials also are far from
magnetic instabilities, so that the effects associated with a quantum crit-
ical point for a magnetic/nonmagnetic transition (viz., strong critical an-
tiferromagnetic correlations) can be ignored. Under these circumstances,
the physics is basically that of f electrons hybridizing with conduction
electrons in the presence of strong Coulomb correlations - which in the
impurity limit is the physics of the AIM. For the fits shown in fig.(9),
the AIM was solved using the non-crossing approximation (NCA). [58]
The results are moderately insensitive to the background bandwidth W,
and the spin-orbit splitting A, is fixed at the experimentally determined
value so the fits depend essentially only on two parameters, the energy Ey
of the 4f level and the hybridization parameter V. Given this latter fact,
it is perhaps surprising that the impurity theory fits the data so well over
such a large range of temperature and energy, particularly since the Ce
(Yb) atoms are not impurities but sit on periodic cubic lattices in these
compounds.

The measurements for which the AIM works well - x(T'), ng(T), v(T')
and x”(E) - are primarily sensitive to the local 4f fluctuations. For mea-
surements that depend strongly on the lattice periodicity, this is not the
case. While the high temperature resistivity of CePds exhibits the nega-
tive j—; expected for Kondo impurity behavior, at lower temperature the
resistivity decreases with temperature, approaching (apart from extrinsic
effects) p = 0 at T = 0 and exhibiting the T2 behavior of a Fermi liquid (
fig.(10) ). This is the most obvious manifestation of the coherent behav-
ior of the 4f lattice; similar low-T" behavior is observed in all metallic IV

compounds.

The appropriate model for localized f-electrons hybridizing with a sin-
gle band of conduction electrons in the presence of strong Coulomb cor-
relations is the Anderson lattice. As shown in section (5.2), in this model
a hybridization gap sets in at low temperature and the bands have the
same form as the non-interacting bands of fig.(8a) but with renormalized
parameters V and F t. The optical conductivity, which probes @ = 0 ex-
citations, then exhibits a peak in the mid infrared (the “mid-IR peak”) on
the scale of V. Okamura and collaborators [69] have shown that the mid-
IR peak is endemic to Ce and Yb IV compounds, and the energy of the
peak scales in an appropriate manner with the Kondo energy, as expected
for the Anderson lattice. When the Fermi level lies in the region of high
density of states (DOS) the system is a Fermi liquid with an enhanced ef-
fective mass. The optical conductivity then develops a Drude peak which
is very narrow because the relaxation time is also renormalized. [70] As
the temperature is raised, the f electrons decouple from the conduction
electrons as the hybridization becomes increasingly less effective. At high
temperature the conductivity no longer exhibits the mid-IR peak, but
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Figure 10: (a) The resistivity of CePds as a function of temperature exhibits
negative j—g at high temperature, as expected for Kondo scattering, and T2
behavior at low temperature (inset) as expected for a Fermi liquid. (From Fanelli
[76]) (b) The Hall mobility of CePds exhibits a dramatic change of behavior in

the coherent Fermi liquid state below 50 K. (Adapted from Cattaneo et al. [68])

rather has a broad Drude response due to scattering of the conduction
electrons from an incoherent set of f impurities. These two limits can be
seen in the optical conductivity of CePds (fig.(11)). Similar behavior is
seen in other IV compounds such as YbAls. [71]

The optical conductivity of IV compounds gives a clear experimental
example of the crossover from high temperature incoherent behavior to
the coherent behavior of renormalized hybridized bands. Although the
crossover occurs on a broad temperature scale (essentially that of the
Kondo temperature), on a lower temperature scale T, the renormal-
ization is essentially complete. As discussed in section (5.2), this is the
temperature at which the order parameter saturates in slave boson theo-
ries. [50] Below the coherence temperature T,on the growth of the mid-IR
peak is complete, de Haas - van Alphen signals appropriate to the hy-
bridized bands can be observed, and the resistivity shows the T2 behavior
expected of a Fermi liquid. The best-studied case is that of YbAls. Below
50 K, the mid-IR peak is completely established, the resistivity exhibits
T? behavior, and the Hall coefficient exhibits a dramatic anomaly [66],
similar to that seen in the Hall mobility of CePds (fig.10), indicating an
alteration of the Fermi surface. The de Haas - van Alphen signals at low
temperature are those appropriate for a hybridized f band, with effective
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29 Webb et al. [70]) The broad Drude behavior at high temperature transforms to
30 the sum of a narrow Drude peak and a mid infrared peak on the scale V' at low
31 temperature.
32
33
34 masses in the range m* ~ 10 — 25m.. [72] The d.c. susceptibility also
35 shows a small anomalous increase below this temperature. The similar
36 increase seen in CePds below 50 K (fig.(9a)) has been attributed [64] to
37 the onset of a 5d contribution to the susceptibility reflecting coherent hy-
38 bridization between the 4f and the 5d electrons in this compound.
zg Capturing the details of the hybridized ground state over the full Bril-
41 louin zone of actual IV materials requires going beyond the Anderson
42 lattice model to correlated band theory, such as density functional theory
43 where the correlations are treated in the dynamic mean field approxima-
a4 tion [56] (DFT+DMFA). A recent calculation [73] for CePds is shown
in fig.(12). Clearly the most direct experiment to test this calculation
45 . .
would be angle-resolved photoemission on a single crystal. To our knowl-
46 edge, however, such experiments have not been performed to date on the
a7 metallic rare earth IV compounds. On the other hand, the particle-hole
48 excitations arising in the hybridized band structure can be measured by
49 Q-resolved inelastic neutron scattering in single crystals. Since the inten-
50 sity of the particle-hole excitation varies with the joint density of initial
51 and final states, it will be strongest for excitations between flat regions
52 of the bands of occupied and unoccupied states. In fig.(13), we show
53 results for CePds which show that on the Kondo scale (55 meV) the
54 scattering is strongest for (1/2,1/2,0) momentum transfer and weakest
55
gs 37
58
59
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Figure 12: The correlated bandstructure of CePds at low temperature as calcu-
lated using density functional theory and the dynamic mean field approximation.
(Adapted from Sakai [73])

for (1/2,1/2,1/2). Below 40 meV the situation reverses: the scattering at
(1/2,1/2,1/2) becomes larger than that at (1/2,1/2,0). (Similar variations
of the Kondo scale scattering with Q have been observed in YbAls. [74])
While the energy scale of the excitations in the calculation appear to be
somewhat smaller than that of the experiment, fig.(12) shows that the
I'/M transition with momentum transfer (1/2,1/2,0) should be strong at
40 meV, which is the Kondo scale in the calculation, while the I'/R tran-
sition with momentum transfer (1/2,1/2,1/2) lies at an energy 90 meV
which is larger than the energy window of fig.(13). The R/I" transition at
20 meV suggests that the (1/2,1/2,1/2) scattering should become larger
than the (1/2,1/2,0) transitions below 40 meV, as we observe. Clearly
a full calculation of the Q-dependent dynamic susceptibility is needed.
However, this comparison between the neutron scattering and the corre-
lated band theory is very encouraging in suggesting that the latter can
quantitatively capture the behavior of real IV materials.

An important issue is why the Anderson impurity model works so well
to describe much of the behavior of IV compounds. There are several
reasons for this. The first, as mentioned above, is that the properties for
which the AIM works well - the susceptibility, specific heat, Q-averaged
neutron spectrum, and 4f occupation number - are primarily sensitive to
local 4f fluctuations. The second is that the neutron scattering indicates
that the variations with momentum transfer ), while significant, are not
enormous - the differences between the spectra seen in fig.(13) are only
of order 20%. To the extent that these differences can be ignored, the
spectra would be @-independent, as for impurity scattering. This weak
dependence on @ clearly is a product of the fact that the hybridized f
bands are flat over appreciable regions of the Brillouin zone. Another im-
portant contribution to the quasi-Q-independence is the strong inelastic
scattering expected in correlated systems. The states of the renormalized
band theory are only sharp in energy or momentum at low temperatures
and for energies close to the Fermi level. As the temperature and/or the
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Figure 13: Inelastic neutron scattering spectra of a single crystal of CePds

29 as measured on the ARCS spectrometer at the Oak Ridge Spallation Neutron
30 Source. The spectrum for momentum transfer (1/2,1/2,0) is more intense than
g; that at (1/2,1/2,1/2) on the Kondo scale (AE ~ 55 meV) but weaker at energy
33 transfer below 40 meV. (From Lawrence et al. [77])

34

35 distance of the energy from the Fermi level increases, the spectral func-

36 tions rapidly become quite broad. The effect of this broadening has been

37 shown to create a crossover to incoherent (@Q-independent) behavior on a

38 moderate temperature scale. [75] For example, we find that the neutron

39 spectra of CePds are already Q-independent at room temperature. [64]

40 In any case, it is the weak Q-dependence which explains the applicability

41 of the AIM to periodic IV compounds over a broad range of energy and

42 temperature.

43

2‘51 7 Summary

46 We have presented features of descriptions of intermediate or mixed-valent

47 systems. Some of the descriptions that have been proposed were based on

48 single-impurity models that, in the limit of almost integer f occupations,

49 reduce to Kondo models. These impurity models have been extensively

50 studied and many exact results have been derived, either through numeri-

51 cal renormalization group calculations, Bethe-Ansatz calculations or with

52 Fermi-liquid theory. The degeneracy of the f orbital plays an important

53 role in these descriptions. For large N, the smooth cross-over between

54 mixed valence and the Kondo limit becomes rapid. We have also de-

55

56

57 39

58

59
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scribed the features of a periodic array of mixed-valent atoms. Unlike the
impurity models, exact results are scarce for lattice models. Nevertheless,
like the impurity models, the degeneracy plays an important role in their
description and, for large degeneracy, the cross-over between the high-
temperature behavior (similar to that found in impurity models) to the
low-temperature Fermi-liquid phase appears to be quite abrupt. Many
of the experimental results on concentrated compounds can be described
in terms of single-impurity models, despite theoretical arguments which
question the applicability of single-impurity physics. Nevertheless, there
are other features that are interpretable in terms of features of the lattice
models.

Theories of lattice models of mixed-valent metals provide considerable
opportunities for further developments. There is no exact theory and each
of the various approximations that have provided so much insight into the
mixed-valent lattice have their own limitations. Hartree-Fock [6], Ran-
dom Phase Approximations [78] and the self-consistent and conserving
[79] Fluctuation Exchange Approximation [80, 81, 82, 83, 84] (FEA) are
only expected to be reasonable for sufficiently small values of the Coulomb
interaction U. This condition is not met in the anomalous rare-earth com-
pounds. Although valid at large U, mean-field slave boson theories run
into difficulties in satisfying the constraints that exclude unphysical states.
The Dynamical Mean-Field Approximation [55, 56] (DMFA) approxi-
mately maps lattice problems onto an effective single-impurity problem,
which can then be iteratively solved with existing techniques. A result of
the approximate mapping is that the spatial or momentum-dependence of
the self-energy is washed out. This is perhaps not a great problem when
discussing local properties, especially if the system is dominated by local
correlations. However, it has been found [85] that non-local corrections
due to the RKKY interaction can yield significant deviations from the elec-
tronic spectrum calculated in DMFA. DMFA methods [86, 87] take steps
to address the deficiency of DMFA in treating spatial correlations, but
so far have only been implemented with clusters containing a few nearest
neighbor atoms. This hampers the application to situations such as in the
vicinity of a quantum critical point, where long-ranged correlations are ex-
pected to develop. The combined use of the Local Density Approximation
(LDA) to Density Functional Theory (DFT) with DMFA is a very posi-
tive and essential step towards the description of real materials. However,
LDA+DMFA also raises new questions. Density Functional Theory is a
theory which describes the ground state energy and the ground state den-
sity [88], if one has an appropriate non-local functional. The Kohn-Sham
equation [89] used in DFT describes an effective single-particle problem,
and the eigenvalues and eigenfunctions that are generated are artifacts
which have no real physical meaning. The Kohn-Sham eigenfunctions
only provide a method for generating an non-physical Slater determinant
from which the ground state density can be obtained. If the Slater de-
terminant were to be assigned a real physical meaning, then DFT would
be reducible to a Hartree-Fock approximation and, therefore, would not
be exact. Since the Coulomb correlations should have already been in-
cluded in the Density Functional ground state, the inclusion of additional
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Coulomb interactions, such as U and J, in LDA+DMFA raises the ques-
tion as to whether the effect of the correlations have been double-counted.

Many direct numerical investigations of finite-size correlated systems
using exact diagonalization or quantum Monte Carlo methods have been
performed. Exact diagonalization, has been severely limited by the ex-
ponential increase of computational effort required for increasing system
size, while quantum Monte Carlo methods [90] have suffered from the
fermionic minus sign problem at low temperatures. Due to these diffi-
culties, and the vast number of states in Hilbert space needed to treat
the degenerate Anderson Lattice, the work has hitherto been confined
to consideration of one-band and low-dimensional models [91, 92]. An-
other difficulty faced by intensive numerical methods arises from their
strong dependence on the finite-size of the lattices, which often has pre-
vented the reliable extraction of the low-energy scales that are important
for the description of strongly correlated systems. The great increase in
computational power, combined with new efficient techniques show great
promise for numerical approaches. The Density Matrix Renormalization
Group (DMRG) is one such technique [93, 94], and is a generalization
of Wilson’s numerical renormalization group technique used to solve the
single-impurity Kondo problem. This renormalization group technique is
bases on iterative diagonalization of blocks of states and rescaling their
interactions with neighboring blocks. In the DMRG technique, not all
the low-energy states need to be kept on rescaling, but only those which
make a substantial contribution to the density matrix. This results in a
greater computational efficiency and optimizes the calculation of physical
observables [95, 96, 97]. Another such approach is the continuous-time
quantum Monte Carlo technique [98, 99, 100], which instead of sampling
configurations in Hilbert space, samples terms in a diagramatic expan-
sion of the partition function. However, the fermionic sign problem does
remain [99]. The continuous time method offers the exciting possibility
of studying the time-evolution of non-equilibrium correlated states. The
rapid increase in computational power combined with technical improve-
ments promises the production of accurate results for lattice models at low
temperatures, which would be of prime interest for models which exhibit
quantum critical behavior.

New results produced with newer methods combined with rigorous
numerical results may provide a unifying picture of the physics of corre-
lated hybridization problem which is at the core of mixed-valent physics.
LDA+4+DMFT has made great progress in moving towards understanding
real mixed-valence metals, and this progress should be continued by in-
cluding interactions not already included in the simple Anderson Model
picture. It is conceivable that close to a quantum critical point or far
from equilibrium, these less conspicuous interactions could lead to the
emergence of a rich variety of physical behavior that could be explored by
future generations of researchers.
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