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Abstract

We review the theory of mixed-valent metals and make comparison
with experiments. A single-impurity description of the mixed-valent state
is discussed alongside the description of the nearly-integer valent or Kondo
limit. The degeneracy N of the f-shell plays an important role in the de-
scription of the low-temperature Fermi-liquid state. In particular, for
large N , there is a rapid cross-over between the mixed-valent and the
Kondo limit when the number of f electrons is changed. We discuss
the limitations on the application of the single-impurity description to
concentrated compounds such as those caused by the saturation of the
Kondo effect and those due to the presence of magnetic interactions be-
tween the impurities. This discussion is followed by a description of a
periodic lattice of mixed-valent ions, including the role of the degeneracy
N . The article concludes with a comparison of theory and experiment.
Topics covered include the single-impurity Anderson Model, Luttinger’s
theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the
single-impurity Kondo Model, Kondo Screening, the Wilson Ratio, Local
Fermi-Liquids, Fermi-liquid sum rules, the Noziéres exhaustion princi-
ple, Doniach’s Diagram, the Anderson Lattice Model, the Slave-Boson
Method, etc.

1 Introduction

Mixed valence or intermediate valence is a concept introduced to describe
the characteristic features of the electronic states of atoms in a solid with
partially filled, almost localized configurations that are nearly degener-
ate. Mixed-valent compounds include those which are inhomogeneous,
i.e. where atoms with differing static valence reside on inequivalent sites
of the crystal, and those for which the valence is homogeneous, with the
same non-integral value on each site. The latter, which are often referred
to as intermediate-valence compounds, are the topic of this paper. This
review, which is intended to be pedagogical, addresses a subject that has
developed over fifty years, and focuses on the basic concepts of mixed
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valence.

Mixed-valence frequently occurs in compounds containing elements at
the beginning, middle and end of the lanthanide series. In the lanthanide
materials, the 4f-orbitals are partially filled, spatially located inside the
outer atomic (5d6s) shell and, therefore, are less sensitive to the effects of
external perturbations and experience fairly strong intra-atomic Coulomb
interactions. The properties of most compounds containing lanthanide el-
ements can be described in terms of almost localized (4f)n orbitals with a
valence band which is derived from the (5d6s)m shell. A discussion of the
normal rare-earth compounds can be found in the book by Coqblin [1].
The anomalous rare earths are those in which two or more configurations
are nearly degenerate, so the effect of perturbations due to the crystalline
environment produces a state which is a linear superposition of the con-
figurations [2]. For example, the electronic state on an atom | ψ > can
be crudely thought of as being composed of the linear superposition of
electrically neutral atomic states

| ψ > = a | (4f)n (5d6s)m > + b | (4f)(n+1) (5d6s)m−1
> (1)

where a and b are complex numbers, n and m are integers. The state is
normalized to unity if

| a |2 + | b |2 = 1 . (2)

The number representing the average valence v of this state is expressed
as

v = | a |2 m + | b |2 ( m − 1 )

= m − | b |2

= ( m − 1 ) + | a |2 . (3)

When a and b are both non-zero, the system has a mixed or non-integer
valence, whereas if only one number from the pair a and b is non-zero,
the system is integer valent. The stability of open and closed shells leads
to mixed-valence being found in materials containing Ce and Yb. For Ce
mixed-valent compounds, the relevant configurations are

| ψCe > = a | (4f)0 (5d6s)4 > + b | (4f)1 (5d6s)3 > (4)

for which the valence is intermediate between 4 and 3. Likewise, for Yb
mixed-valence compounds, one has

| ψY b > = a | (4f)14 (5d6s)2 > + b | (4f)13 (5d6s)3 > (5)

so the valence may be intermediate between 2 and 3. The Ce and Yb
compounds are frequently thought of as being f electron - hole symmetric
partners, connected by the transformation nf → (14 − nf ). The half-
filled 4f shell (4f)7 is stabilized by the Hund’s rule exchange and can lead
to the formation of Sm and Eu mixed-valent materials. The rare-earth
heavy-fermion materials are all, to some extent, mixed-valent. Although
the heavy-fermion systems with the highest effective masses are close to
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the integer valent limit, the not-so-heavy systems (such as CePd3) are
more mixed-valent. Since the description of mixed-valence involves par-
tially filled (4f)n shells which are almost localized, they should be subject
to Hund’s rule correlations and, therefore, may posses a degeneracy asso-
ciated with the magnetic 4f configurations.

2 A Localized Paradigm

The anomalous nature of the mixed-valent lanthanide compounds is clearly
seen through inspection of their magnetic properties. The integer-valent
lanthanide metals usually posses 4f magnetic moments that are primarily
governed by the atomic Hund’s rule correlations and crystalline electric
field splittings. Generally, the strength of the local interactions are consid-
ered to follow the hierarchy composed of the direct Coulomb interactions
U and the Coulomb exchange interactions J between pairs of 4f electrons
on the same ion, the spin-orbit interaction, followed by the splittings pro-
duced by the crystalline electric field. The local 4f magnetic moments
are coupled by the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
involving the electrons in the conduction band [3, 4, 5]. In the RKKY
mechanism, a 4f magnetic moment produces a polarization in the conduc-
tion band electrons which then propagates to a neighboring 4f magnetic
moment and interacts with it. Since this indirect interaction between the
4f moments primarily involves producing a polarization of the conduction
electron states near the Fermi-level, the RKKY interaction is oscillatory
with a period governed by the 2kF momentum transfer cutoff imposed by
the Fermi-surface. The RKKY interaction causes the localized moments of
the integer-valent rare earths to order magnetically, thereby lifting much
of the degeneracy associated with the array of local 4f moments. By
contrast, the mixed-valent compounds are frequently found to be param-
agnetic. Since, for both Ce and Yb compounds, one 4f configuration has
a magnetic moment and the other is non-magnetic, it is natural to ask
“What are the magnetic properties associated with a localized (magnet-
ically degenerate) state that couples to a non-magnetic (non-degenerate)
state?” A model that describes this situation was formulated by P.W.
Anderson [6].

3 Single-Impurity Models

A simple model that describes a mixed-valent state is given by the single-
impurity Anderson Model [6]. The model consists of an f level localized on
the impurity site, which hybridizes with a conduction band. The Hamil-
tonian can be written as the sum

Ĥ = Ĥf + Ĥd + Ĥfd (6)

where Ĥf governs the f electrons, Ĥd describes the conduction band and
Ĥfd describes the hybridization process. The localized f orbital is de-
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scribed by a Hamiltonian Ĥf

Ĥf =
∑

α

Ef,α f
†
α fα +

U

2

∑

α 6=β

f
†
α fα f

†
β fβ (7)

where f†
α, fα, respectively, create and destroy an electron on the impurity

site on the f-orbital labeled by α, Ef,α is the binding-energy and U is the
screened Coulomb interaction between pairs of f electrons on the impurity
site. The factor of one-half in the Coulomb interaction term is introduced
so that the interaction energy U between each pair of electrons is only
counted once in the double summation. The index α represents the com-
bined spin and orbit quantum numbers which run over N values. The
effect of the spin-orbit coupling is assumed to lift the fourteen-fold degen-
eracy of the ionic 4f states, reducing it to an effective degeneracy N given
by either six for Ce or eight for Yb. Generally, for most mixed-valent met-
als, the crystalline electric field is neglected since the splittings it produces
are smaller than the widths introduced by the mixing of 4f configurations.
However, for systems with large crystalline field splittings the value of N
can be replaced by the degeneracy of the lowest crystal field level. We
assume that the system is invariant under special unitary transformations
SU(N) of the basis states labeled by α. The Pauli-principle excludes an
interaction between a pair of electrons in the same single-particle state
α = β. A generalization of the form of the spin-rotationally invariant
Coulomb interaction to the case of degenerate orbitals can be found in
reference [7]. The direct and exchange Coulomb interactions ought to
depend on the spin and orbital indices. The conduction electrons are
described by Ĥd given by

Ĥd =
∑

k,α

ǫd(k) d
†
k,α dk,α (8)

where d†k,α, dk,α, respectively, create and destroy an electron in the Bloch
state labeled by wavevector k and quantum number α with the single-
particle Bloch energy ǫd(k). The f states are coupled to the conduction
states by the hybridization term Ĥfd, given by

Ĥfd =
1√
Ns

∑

k,α

(

V (k) f†
α dk,α + V

∗(k) d†k,α fα

)

(9)

where Ns is the number of sites in the host crystal. The index α is as-
sumed to be conserved since the model is invariant under SU(N). The
first term describes a process whereby a conduction electron makes a tran-
sition from the Bloch state labeled by the Bloch wave vector k and index
α to the state of the localized f orbital labeled by the index α. The second
term represents the time-reversed process. The quantity V (k) is known
as the hybridization matrix element.

3.1 The non-interacting (U = 0) limit.

In the absence of the Coulomb interaction U , the model describes the
Friedel virtual-bound state and the model is exactly soluble. The f density

4
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of states is given by

ρf (ω) = − 1

π

∑

α

ℑm
(

1

ω + iη − Ef,α − 1
Ns

∑

k

|V (k)|2

ω+iη−ǫd(k)

)

(10)

in the limit η → 0. The real part of the quantity

S(ω) =
1

Ns

∑

k

| V (k) |2
ω + iη − ǫd(k)

(11)

can be thought of as a frequency dependent shift of the f level binding
energy which is produced by the hybridization, and the imaginary part
reduces to

ℑm S(ω) = − π

Ns

∑

k

| V (k) |2 δ( ω − ǫd(k) ) (12)

which is half the Fermi-Golden decay rate for an electron placed in the
f-orbital due to the hybridization process whereby the electron leaks into
the conduction band. Thus, if one ignores the frequency-dependence and
sets

S(ω) ≈ ∆Ef − i π ∆ (13)

the f density of states has an approximate Lorentzian form. The conduc-
tion band density of states is also modified by the hybridization with the
impurity level and is evaluated as

ρd(ω) =
∑

k,α

δ( ω − ǫd(k) ) +
1

π

∑

α

ℑm
(

∂

∂ω

S(ω)

ω + iη − Ef,α − S(ω)

)

(14)
where the second term vanishes if the f density of states is approximated
by a Lorentzian. The total density of states is given by

ρf (ω) + ρd(ω) =
∑

k,α

δ( ω − ǫd(k) )

− 1

π

∑

α

ℑm ∂

∂ω
ln

(

ω + iη − Ef,α − S(ω)

)

.

(15)

Since the term involving the derivative has a single pole with unit residue,
the total number of states is unaffected by the hybridization in accordance
with Levinson’s theorem [9].

The Friedel sum rule [10] relates the phase shift of the conduction
electrons δα(ǫ) with quantum number α to the change in the density of
states ∆ρ(ǫ) via

∆ρ(ǫ) =
1

π

∑

α

∂δα(ǫ)

∂ǫ
. (16)

5
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Therefore, the change in the number of electrons caused by the introduc-
tion of the impurity is given by

nimp =
∑

α

(

δα(µ)− δα(−∞)

π

)

. (17)

If the impurity carries an excess charge of ∆Z relative to the host metal,
then local electrical neutrality requires that

∆Z = nimp . (18)

For the approximation in which S(ω) is assumed to be independent of ω,
∆ρ(ω) is entirely of f character and one has the relation

∆Z = nT (19)

with the total number of f electrons nT .

The single-impurity Anderson model has been studied extensively, in-
cluding exact solution by numerical renormalization group [11] and by
Bethe Ansatz [12, 13, 14]. A comprehensive review can be found in a
book by Hewson [15]. Here, we shall restrict our attention to only the
most transparent descriptions of physical properties.

3.2 A Mean-Field Description

Anderson examined the condition under which local moments should
form by using a mean-field description, in which the interaction term
was linearized in the deviation ∆nf,α of the f electron number operator
n̂f,α = f†

α fα from its ground expectation value nf,α = < | f†
α fα | >.

The deviation operators are defined by

∆nf,α = n̂f,α − nf,α . (20)

The mean-field Hamiltonian is found by replacing the Coulomb interaction

Ĥint =
U

2

∑

α 6=β

nf,α nf,β

=
U

2

∑

α 6=β

(

∆nf,α ∆nf,β + ∆nf,α nf,β + nf,α ∆nf,β + nf,α nf,β

)

(21)

with

Ĥ
MF
int =

U

2

∑

α 6=β

(

∆nf,α nf,β + nf,α ∆nf,β + nf,α nf.β

)

=
U

2

∑

α 6=β

(

n̂f,α nf,β + nf,α n̂f,β − nf,α nf,β

)

(22)

in which one has neglected terms of second-order in the deviation opera-
tors. The last term is simply a real number which prevents over-counting

6
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the contribution of the interaction to the total energy. The mean-field
approximation simply results in the modification of the non-interacting
model by the replacement

Ef,α → Ef,α + U
∑

β 6=α

nf,β (23)

which simply shifts the position of the α-th f orbital due to its interaction
with the average number of electrons in the other f orbitals.

In the Lorentzian approximation, the number nf,α is evaluated as

nf,α =
1

π
cot−1

(

Ef,α + U
∑

β 6=α
nf,β − µ

∆

)

(24)

which is consistent with the Friedel sum rule. Therefore, it is found that,
in general, the self-consistency equations form a set of N coupled tran-
scendental equations.

For the case where the f level is degenerate, one has a solution corre-
sponding to the state being fully degenerate, in which nα = nT

N
for all α

where nT is the total number of electrons in the f level. If one introduces
the parameter θ = 2 π nT

N
, the self-consistency equation can be written as

cot
θ

2
=

(

Ef − µ

∆

)

+

(

U (N − 1)

2 π ∆

)

θ (25)

which always has a solution with positive θ. This solution corresponds
to a state with unbroken symmetry. There are other solutions in which

the symmetry is broken. The boundaries of the regions of (
Ef−µ

U
) and

∆
U

phase space where the symmetric solutions first become unstable are
determined parametrically by the equations

1

2 π

(

1 − cos θ

)

=
∆

U

1

2 π

(

(N − 1) θ − sin θ

)

=

(

µ − Ef

U

)

. (26)

The first equation shows that the tendency for symmetry breaking is great-
est when the f orbitals are nearly half-filled and it sets the minimum value
of U

∆
= π required to produce symmetry breaking. It should be noted

that as N increases, the minimum value of U required to produce a bro-
ken symmetry increases rapidly for a nearly empty or nearly filled f shell,
since

Uc

∆
=

π

sin2(π nT

N
)
. (27)

Hence, the critical value Uc for local moment formation with nT ≈ 1 scales
as N2. Although other terms of the Coulomb interactions between the f
electrons (such as Hund’s rule exchange and the pair hopping terms) may
alter this criterion [8], since we are primarily concerned with occupancies
of either around unity for Ce or around (N − 1) for Yb, their effects on

7
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incoherent peak at - 2 eV as being about 2 eV. Theory suggests that the
width of the incoherent photoemission peak is given by N ∆, since there
are N channels for filling the empty 4f level and there are N channels
each of which has a decay rate of ∆. For Ce, where the lowest spin orbit
multiplet corresponds to j = 5

2
, the appropriate degeneracy is N = 6, so

∆ ∼ 1
3
eV. The value of U for Ce is usually estimated from the joint pho-

toemission/BIS spectrum as the energy difference between the incoherent
peak ( - 2 eV) and the 4f1 → 4f2 peak ( + 4 eV) [see fig.(3)] which yields
U = 6 eV. Using the values of ∆ inferred from experiment, one estimates
that Uc ∼ 4 eV for nf = 1, but the critical value increases to 6.5 eV for
a case of mixed-valence with nf ∼ 0.8. Comparison of the measured U
with the critical value Uc leads to the conclusion that integer valent Ce
systems should posses local magnetic moments but highly mixed-valent
systems should not. Since the spin-orbit splitting between the j = 5

2
and

the j = 7
2
levels is reversed in the last half of the lanthanide series, Yb

4f13 has a ground state configuration with j = 7
2
, so the 4f levels have a

degeneracy of N = 8. A typical value of ∆ for Yb systems is estimated to
be 0.15 eV. The value of U is approximately 6 eV as it is almost constant
across the entire lanthanide series [17]. This implies that for Yb, the f
occupancies which correspond to the non-magnetic state should be larger
than nf ∼ 13.72.

The Hartree-Fock approximation is a reasonable approximation for
small values of U and is exact in the atomic limit defined by V = 0. It
does provide a description of the high-energy spectral features but fails to
describe a narrow low-energy peak close to the Fermi-energy associated
with the Kondo effect.

However, the major problem with the above mean-field description is
that it predicts phase transitions in which symmetry is broken. This is
an artifact of the approximation; the properties of a finite system cou-
pled to a Fermi-sea with an infinite number of degrees of freedom must
change smoothly as the parameters are varied. Specifically, the fluctua-
tions ∆nf,α are not negligible compared with the expectation values nf,α

found in the mean-field approximation, due to the quantities being mi-
croscopic not macroscopic like the order-parameters that describe phase
transitions in the thermodynamic limit. Hence, inclusion of fluctuations
must restore the broken symmetry.

3.3 The Large Degeneracy Limit

The absence of magnetic states for mixed-valent systems with nT ≤ 1 is
supported by a variational calculation which assumes that the Coulomb
interaction U tends to infinity, so that the occupation number of the f level
is restricted to be less than unity. The variational ansatz appropriate for
the U → ∞ limit was originally introduced by Varma and Yafet [18]
for the case where N = 2 but, following Anderson’s remark [19] that the
degeneracy N is responsible for stabilizing the non-magnetic state, has
been generalized to the case of large N [20]. The ansatz for the non-

10
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magnetic (singlet) state | Ψ0 > is expressed as

| Ψ0 > =

(

A +
∑

k,α

Bk f
†
α dk,α

)

| Φ0 > (28)

where | Φ0 > represents the filled Fermi-sea of conduction electrons k <
kF , and A and Bk are variational parameters. The first term represents
a state consisting of a filled Fermi-sea and an unoccupied f-level. The
second term represents a linear superposition of states in which an electron
has been taken from the filled Fermi-sea and placed in the f-level. It
should be noted that both terms are non-magnetic, the second term is
non-magnetic since it represents a state in which the electron with spin α
is accompanied by a compensating polarization of the conduction electron
spin density. On applying the variational method for the energy subject to
the constraint that the state is normalized to unity, one finds two coupled
equations

A ( E − E0 ) − 1√
Ns

∑

k,α

V
∗(k) f(k) Bk = 0

Bk ( E − E0 − Ef + ǫd(k) ) − 1√
Ns

V (k) A = 0 (29)

where E0 is the energy of the filled Fermi-sea and f(k) is the Fermi-Dirac
distribution function for the conduction band states. On defining the
Kondo binding-energy kB TK as

E = E0 + Ef − µ − kB TK , (30)

one finds that the holes in the conduction band have an amplitude given
by

Bk =
1√
Ns

(

V (k)

ǫd(k) − µ − kB TK

)

A . (31)

The Kondo binding-energy is then determined from

µ − Ef + kB TK =
N

Ns

∑

k

| V (k) |2 f(k)
kB TK + µ − ǫd(k)

(32)

where, unlike in the expression for S(ω) for the non-interacting model, the
summation over k is cut off by the Fermi-function and, therefore, gives
rise to a logarithmic dependence on TK . On assuming a constant density
of d states ρd(µ) per host site, one finds that the binding-energy is given
by the solution of

µ − Ef + kB TK ≈ N | V |2 ρd(µ) ln

∣

∣

∣

∣

W + µ + kB TK

kB TK

∣

∣

∣

∣

(33)

where W is a cut-off energy of the order of the band width. This leads to
the approximate expression for the Kondo temperature

kB TK ≈ W exp

[

Ef − µ

N ρd(µ) | V |2

]

(34)
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where we have assumed that (W + µ) ≫ kB TK . The total number of f
electrons differs from unity by an exponentially small term which is pro-
portional to the Kondo temperature. Equivalently, the relation between
the Kondo temperature and the f occupation number can be expressed as

kB TK =
( 1 − nT )

nT

N ∆

π
. (39)

This suggests that, in the infinite U limit, the Kondo temperature can
be viewed as being due to the renormalization of the rate ∆ for a con-
duction electron from hopping onto the f level. The average value of the
hopping rate is expected to be reduced by a factor of ( 1 − nT ) since
the Coulomb interaction will prohibit an electron to hop into a level that
is already occupied.

The analysis of the nonmagnetic and magnetic states can be system-
atically extended to more complex variational functions in which the sub-
sequent correction terms decrease in inverse powers of the degeneracy, if
one scales ∆ so that N ∆ is considered as constant. While it is true that
for cerium compounds N−1 = 1

6
so the N−1 corrections can be considered

as small, since the ratio N∆
U

is 1
3
, the finite U corrections appear to be

more important [22].

3.4 The Schrieffer-Wolff Transformation

The single-impurity Anderson model is equivalent to the single-impurity
s-d or Kondo model, in the limit where the set of f levels are only occupied
by one electron. The equivalence was first shown by Schrieffer and Wolff
[23] for the case N = 2 and was generalized to finite N by Coqblin and
Schrieffer [24]. The equivalence can be shown by writing the Hamiltonian
for the single-impurity Anderson model as

Ĥ = Ĥ0 + Ĥfd (40)

and then performing a canonical transformation

Ĥ
′ = exp

[

− Â

]

Ĥ exp

[

+ Â

]

(41)

where Â is an anti-Hermitean operator which is considered to be of the
same order as Ĥfd and still has to be determined. The transformed Hamil-
tonian Ĥ ′, when expanded in powers of Â, has the form

Ĥ
′ = Ĥ0 + [ Ĥ0 , Â ] + Ĥfd

+
1

2!
[ [ Ĥ0 , Â ] , Â ] + [ Ĥfd , Â ] + . . . . (42)

The operator Â is then chosen such that the terms in Ĥ ′ which are first-
order in the hybridization matrix element V vanish

[ Ĥ0 , Â ] + Ĥfd = 0 . (43)

13

Page 13 of 45 AUTHOR SUBMITTED MANUSCRIPT - ROPP-100535.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



This leads to the transformed Hamiltonian being given by

Ĥ
′ = Ĥ0 +

1

2!
[ Ĥfd , Â ] + . . . (44)

which is accurate up to second-order in the hybridization matrix elements.

The anti-Hermitean operator Â can be written as

Â =
∑

k,α

[

Θ̂k,α f
†
α dα,k − Θ̂†

k,α d
†
α,k fα

]

(45)

where Θ̂k,α is given by

Θ̂k,α =
∑

n

P
n
α θ

n
k,α (46)

where Pn
α are operators which project on to the subspace where the set

of (N − 1) 4f states with quantum numbers β 6= α are occupied by n

electrons. The complex numbers θnk,α are found as

θ
n
α,k = − V ∗(k)

Ef,α + Un− ǫd(k)
. (47)

Since the f levels are assumed to have a total occupancy of unity in the
initial and final states, only the terms with n = 0 and n = 1 are needed.
In the transformed basis, the interaction Ĥ ′

int between the f electrons and
the conduction electrons as calculated to second-order in the hybridization
can be reduced to

Ĥ
′
int = − 1

2 Ns

∑

k,k′,α,β

V ∗(k) V (k′) U

(Ef − ǫd(k)) (Ef + U − ǫd(k))
f
†
β fα d

†
k,α dk′,β

(48)
which is the Coqblin-Schrieffer interaction. This interaction represents
an exchange between the f electrons and the conduction electrons at the
location of the impurity site. The interaction proceeds via virtual valence
fluctuations involving both the non-occupied and doubly-occupied f states
and has the strength

Jk,k′ =
V ∗(k) V (k′) U

(Ef − ǫd(k)) (Ef + U − ǫd(k))
(49)

which is negative. In the limit U → ∞, the interaction strength reduces
to

JK ∼ | V |2
Ef − µ

(50)

which also appears in the exponent of eqn.(34) that defined an approxi-
mate expression for the Kondo temperature. The Coqblin-Schrieffer in-
teraction reduces to the Kondo interaction for the case N = 2, apart from
a potential scattering term at the impurity site.
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The elimination of (4f)n configurations with n 6= 1 is reasonable when
the 4f density of states is spilit into two peaks with characteristic energies
far removed from the Fermi-energy. In this case, the virtual admixture of
the higher-energy configurations into (4f)1 can be neglected if the condi-
tion

∆

π

[

nT

µ− Ef

+
N − nT

Ef + U − µ

]

≪ 1 (51)

is satisfied [7]. It should be noted that the Schrieffer-Wolff transforma-
tion does generate additional interactions that cannot be neglected in the
mixed-valent limit. This is especially true for lattice models [25].

For N = 2 the model can be mapped onto a spin one-half model by
introducing the f spin-flip operators, Ŝ±

Ŝ
+ = f

†
+ f−

Ŝ
− = f

†
− f+ (52)

and defining the z-component of the spin Ŝz via

Ŝ
z =

1

2

(

f
†
+ f+ − f

†
− f−

)

. (53)

Likewise, one can introduce the spin density operators for the conduction
electrons

σ̂
+
k,k′ = d

†
k,+ dk′,−

σ̂
−
k,k′ = d

†
k′,− dk,+ (54)

etc. Using this notation and on enforcing the constraint

f
†
+ f+ + f

†
− f− = 1 , (55)

one finds the interaction

Ĥ
′
int = − 1

Ns

∑

k,k′

Jk,k′ S . σk,k′ − 1

4 Ns

∑

k,k′,σ

Jk,k′ d
†
k′,σ

dk,σ . (56)

The first term represents an interaction between the f spin and the spin of
the conduction electrons at the impurity site. The second term represents
potential scattering.

The finite U form of JK has a simple explanation based on second-
order perturbation theory. If the localized f level is occupied by an electron
with spin up, its energy is lowered by an amount

∆E↑ ∼ | V |2
Ef − µ

(57)

due to virtual hopping into the conduction band. However, the down-spin
conduction electrons decrease their energy by an amount

∆E↓ ∼ | V |2
µ − Ef − U

(58)
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due to virtual hopping into the f level leading it to be doubly-occupied
which, therefore, involves the energy difference Ef + U − µ. The sum of
these energies is just JK which represents an antiferromagnetic exchange
interaction between the f electrons and the conduction electrons.

3.5 The Kondo Model

The s-d model [26] or Kondo model describes a localized spin with degen-
eracy (2S+1), which interacts with a single band of conduction electrons.
The interaction can be written as

Ĥ
′
int = − 1

Ns

∑

k,k′

JK S . σk,k′ . (59)

The main difference between the Kondo and Coqblin-Schrieffer interac-
tions is that in the Kondo model the localized spin can only change by
amounts + 1, 0 or - 1, whereas in the Coqblin-Schrieffer Model the change
is unrestricted. The s-d model was used by Kondo [27] to describe the
resistivity minimum of metals containing magnetic impurities. His third-
order perturbation approximation showed that the scattering rate for the
conduction electrons diverged logarithmically at low temperatures. Fur-
thermore, Abrikosov [28] showed that, on summing the leading logarithmic
terms, the series diverges at TK for negative JK when

1 = 2 JK ρd(µ) ln

∣

∣

∣

∣

kB TK

W

∣

∣

∣

∣

(60)

which defines the Kondo temperature for N = 2. For positive JK , the
logarithmic terms suppress the interaction leading to the spin being free
at zero temperature. A perturbative renormalization calculation by An-
derson [29] also shows that at low T the antiferromagnetic model scales to
strong coupling where the Kondo temperature is a scale invariant. Like-
wise for ferromagnetic coupling, the scaling trajectory leads to a ferromag-
netic fixed point at which the spin-flip scattering vanishes. Extending
Anderson’s analysis to the Coqblin-Schrieffer model, one finds that the
system scales to strong antiferromagnetic coupling ρd(µ) |Jeff | = 1

N
at

the energy scale

kB TK = W e

(

N |JK | ρd(µ)
)

1

N

exp

[

− 1

N |JK | ρd(µ)

]

(61)

where e = 2.71828 is Napier’s number.

When nT is not too different from unity, models for mixed-valent im-
purities may be approximately described by Kondo models. In particular,
like the Kondo model, all physical quantities may be expressed in terms
of one single scale parameter, such as N∆

µ−Ef
. However, when nT deviates

significantly from unity, single parameter scaling may break down and
physical properties may depend on N ∆ and µ− Ef separately.
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3.6 The Local Fermi-Liquid

Wilson’s numerical renormalization group calculations for the Kondo model
[30] show that, at sufficiently high temperatures, the interaction JK can be
treated as a perturbation. However, for negative JK , as the temperature
is lowered, the system undergoes a smooth cross-over to a state where JK
can be regarded as being infinitely strong. The strong coupling nature of
the T = 0 state had been previously inferred by Anderson [29] who used a
perturbational renormalization technique. In this low temperature state,
the antiferromagnetic nature of the Kondo coupling can be thought of as
binding a compensating conduction electron cloud to the localized spin,
resulting in a rigid singlet state [31]. Nozières [32] has pointed out that in
this low temperature state, the other conduction electrons will experience
a weak interaction mediated by virtual fluctuations of the singlet state.
Furthermore, he pointed out that the non-bound conduction electrons can
be described as a local Fermi-liquid.

At low temperature, the system settles into a Fermi-liquid state. The
Fermi-liquid properties can be derived by considering the f electron self-
energy Σf (ǫ). The inclusion of the Coulomb interactions results in the
replacement

ǫ − Ef + i ∆ → ǫ − Ef − Σ(ǫ) + i∆ (62)

in expressions involving the single-particle Green’s function, such as the
4f density of states

ρf (ǫ) =
∑

α

ρf,α(ǫ)

= − 1

π
ℑm

[

N

ǫ− Ef − Σ(ǫ) + i∆

]

. (63)

For low-energy excitations, one can expand in powers of ǫ− µ leading to
the approximation

ρf (ǫ) ≈ − 1

π
ℑm

[

N

Z (ǫ− µ)− Ef + µ− Σ(µ) + i∆

]

(64)

where Z is the wave function renormalization

Z =

(

1− ∂Σ(ǫ)

∂ǫ

∣

∣

∣

∣

ǫ=µ

)

(65)

and where we have used

ℑm Σ(µ) = 0 . (66)

The last equation follows since [33]

ℑm Σ(ǫ) ∝ ( ǫ − µ )2 (67)
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close to the Fermi-energy, which is a consequence of the limited phase
space for producing particle-hole pairs. Hence, for ǫ in the vicinity of the
Fermi-energy, the one-electron density of states can be expressed as

ρf (ǫ) ≈ − N

π Z
ℑm

[

1

ǫ− Ẽf + i∆̃

]

(68)

where

Ẽf =
Ef +Σ(µ)− µ

Z

∆̃ =
∆

Z
(69)

are the renormalized f level energy and the renormalized hybridization
lifetime. The Coulomb interactions result in the electronic excitations
consisting of coherent quasiparticles which are in a one-to-one correspon-
dence with the electrons of a non-interacting model, but which have a
spectral weight of only Z−1 with Z > 1. The remaining spectral weight is
transferred to higher energies such as the spectral features seen in fig.(3).
However, following arguments originally due to Luttinger [33, 34], it has
been proven [35, 36, 37] that the Friedel sum rule applies to the quasipar-
ticle portion of the spectrum of the Anderson model. The total number
of f electrons is given by

nT

N
=

1

π
tan−1

(

∆̃

Ẽf − µ

)

(70)

which reduces to the expression for the non-interacting model, as the wave
function renormalization cancels out. This remarkable result leads to the
f electronic density of states at the Fermi-level having the form

ρf (µ) =
N sin2(πnT

N
)

π ∆
(71)

which is identical to the expression for the non-interacting model. Thus,
the value of the density of states at the Fermi-energy is unchanged by the
interactions. Furthermore, the fact that ρf (µ) is independent of U and
the assumption that Z > 1 guarantees that the density of states will
have a peak in the vicinity of the Fermi-energy.

In the Kondo limit nT → 1, the wave function renormalization can
be inferred from exact Bethe Ansatz calculations [38, 39, 40, 41], and is
found to be

Z =
π ∆ wN

kB TK

(

N − 1

N2 sin2 π
N

)

(72)

where wN is the Wilson number [39] which is given by

wn =
exp[1 + C − 3

2N
]

2 π Γ(1 + 1
N
)

(73)

where C is Euler’s constant. For ∆ ≫ kBTK , one sees that the wave func-
tion renormalization is much larger than unity. Once Z has been found,
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pressed as

χ = (gµB)
2 j(j + 1) wN

3 kB TK

. (75)

The coefficient of the linear T term in the impurity’s electronic specific
heat term can be expressed as

γ = π
2
k
2
B

wN

3 kB TK

(N − 1)

N
. (76)

These two expressions, like all physical quantities in the Kondo limit, only

depend on one single scaling parameter given by

(

kB TK

wN

)

. On defining

the Wilson ratio R for the impurity as

R =
π2k2B

j(j + 1) ( gµB )2

(

χ

γ

)

, (77)

one finds that for the Coqblin-Schrieffer model [38, 40, 41], or equivalently
for the Kondo limit of the degenerate Anderson model [42, 43, 44], R is
calculated as

R =
N

(N − 1)
(78)

which differs from the value of unity expected from non-interacting elec-
trons. The increased value of the ratio is due to a contribution to the
susceptibility originating from the interactions between the quasiparticles
in the different channels α. The numerical value R = 2 was first obtained
for the S = 1

2
Kondo model by Wilson [30] from numerical renormalization

group calculations. The ratio of 2 was subsequently re-derived analyti-
cally by Nozières [32] by applying concepts from Fermi-liquid theory. By
combining the above relations, one obtains eqn.(72).

For mixed-valent systems the Wilson ratio differs from the simple ratio
N

(N−1)
due to the presence of charge fluctuations. This can easily be proved

by considering the magnetic susceptibility χ, the f charge susceptibility
χc and the coefficient of the linear term in the specific heat γ. Starting
from the expression for the magnetic susceptibility in the form

χ = g µB

∑

α

α

(

∂nf,α

∂H

)

, (79)

using the equation1

nf,α =
1

π
tan−1

(

∆

Ef +Σα(µ)− µ

)

(80)

(like eqn.(70)) and on defining the chemical potential for electrons with
quantum number α in a field via µα = µ+ αgµBH, one finds

χ = (gµB)
2
∑

α,α′

αα
′

(

δ
α,α′

− ∂Σα(µ)

∂µα′

)

ρf,α(µ) . (81)

1The equality of nf,α for all α is a consequence of the unbroken SU(N) symmetry, or
equivalently, the singlet character of the ground state.
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Due to the SU(N) symmetry, not only are all the self energies equal but

all the off-diagonal α 6= α′ derivatives of the self energy ( ∂Σα(µ)
∂µα′

) are also

equal. Due to the symmetric distribution of the α around zero, only the
diagonal terms α′ = α and the off-diagonal terms with α′ = −α remain
after the summation over α′. Therefore, the susceptibility reduces to

χ = (gµB)
2
∑

α

α
2

(

1− ∂Σα(µ)

∂µα

+
∂Σα(µ)

∂µ−α

)

ρf,α(µ) . (82)

Likewise, using the equality of all the (N−1) off-diagonal derivatives, one
finds an expression for the charge susceptibility

χc =

(

∂nT

∂µ

)

=
∑

α

(

1− ∂Σα(µ)

∂µα

− (N − 1)
∂Σα(µ)

∂µ−α

)

ρf,α(µ) . (83)

The off-diagonal derivatives cancel in the combination

(N−1)
3 χ

(gµB)2 j(j + 1)
+ χc = N

∑

α

(

1− ∂Σα(µ)

∂µα

)

ρf,α(µ) . (84)

We note that the coefficient of the linear T term in the specific heat is
given by

γ =
π2k2B
3

∑

α

(

1− ∂Σα(ω)

∂ω

∣

∣

∣

∣

ω=0

)

ρf,α(µ) (85)

and that the self-energy rides on its own chemical potential 2,

(

∂Σα

∂ω

)

=

(

∂Σα

∂µα

)

. (86)

Therefore, one finds the equality

(N − 1)
3 χ

(gµB)2 j(j + 1)
+ χc = N

3 γ

π2k2B
. (87)

In the Kondo limit, the charge fluctuations are suppressed so χc = 0 and
so one trivially recovers the Wilson ratio of N

(N−1)
.

Bethe Ansatz calculations have been performed for the mixed-valent,
degenerate, single-impurity Anderson model [42, 43, 44], in the limit U →
∞. It was found that the magnetic susceptibility was composed of two
contributions: one from the valence induced spin-fluctuations with energy

2The equality ∂Σα
∂ω

= ∂Σα
∂µα

follows from the observation that, since α is conserved, there

is one chain of lines that runs throughout the self energy which can be labeled by α and
by frequencies ω + ωs. Since all other lines labeled by the quantum number α form closed
loops, their contributions to ∂Σα

∂µα
cancel. Hence, since the propagators that contribute to the

derivative with respect to µα only depend on the quantity ω + µα, the equality follows.
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scale ∆ and the second from the Kondo fluctuations with an energy scale
kB TK . In the mixed-valent regime, the results [45] are expressed in terms
of the two energy scales ∆ and the renormalized f-level energy E∗

f given
by [46]

E
∗
f = Ef + (N − 1)

∆

π
ln
W

∆
. (88)

Thus scaling requires two independent parameters. This can be seen from
the leading exponential term in the expansion of the exact expression for
the magnetic susceptibility [42]

χ ≈ π (gµB)
2 j(j + 1)

3 N ∆

exp

[

+
(E∗

f
−µ)

N ∆

]

Γ(1 + 1
N
)

(89)

which depends on both N ∆ and
(E∗

f
−µ)

N ∆
separately, as does the new scal-

ing parameter TH which describes the dependence on a magnetic field [43].

The crossover from the Kondo limit to the mixed-valent case is smooth,
but sharpens for large N [42]. This can be seen by comparing the ex-
pression for the large N logarithm of the susceptibility with the large N
expression for the number of f electrons nT ,

nT ≈ 1 +
1

N

(

N∆

π(E∗
f − µ)

)

− 1

N

(

N∆

π(E∗
f − µ)

)2 (

1− 1

N

) [

1−ln

∣

∣

∣

∣

N∆

π(E∗
f − µ)

∣

∣

∣

∣

]

.

(90)
Combining the results, one obtains the expression [47]

χ ∼ π (gµB)
2 j(j + 1)

3 N ∆
exp

[

1

N (1− nT )

]

. (91)

Thus, in the large N limit, χ appears to have an essential singularity as
nT → 1, instead of the simple pole

χ ∼ π (gµB)
2 j(j + 1)

3 N ∆

(

nT

1− nT

)

(92)

found with 1
N

expansion methods (see fig.(6)).

One may also find an expression for the quasiparticle peak in the
density of states for the mixed-valent case, for large N . This proceeds
by noting that, if the charge susceptibility is to be positive, then the
off-diagonal derivative ∂Σα(µ)

∂µα′

must tend to zero when N → ∞. In this
case,

χ =
(gµB)

2 j(j + 1)

3
Z ρf (µ) (93)

which can be compared with the standard definition of the form of the
mixed-valent magnetic susceptibility

χ =
(gµB)

2 j(j + 1) nT

3 kB TA

(94)
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since the quasiparticle renormalization factor is given by

Z =
N ∆

nTπkBTA

. (101)

Thus, like in the Kondo limit, the T = 0 one-electron density of states
for a mixed-valent system consists of two prominent peaks far removed
from the Fermi-energy and also has a small intensity quasiparticle peak of
weight 1

Z
with width ∝ kBTA

N
that is located at an energy kBTA measured

from the Fermi-energy. In the Fermi-liquid regime, it can be shown that
an increase in temperature results in a T 2 increase in Z and a shift in
|µ − Ẽf | away from the Fermi-energy, all of which produces a “melting”
of the quasiparticle peak.

4 Concentrated Compounds

Experimental results on concentrated mixed-valence and heavy-fermion
compounds can frequently be described by the Anderson single-impurity
model (See Section 6). However, generalization of the single-impurity the-
ory to concentrated compounds runs into a number of major difficulties,
such as saturation of the Kondo effect and the effect of interactions which
may lead to magnetic ordering. These aspects are discussed below.

4.1 Nozieres Exhaustion

The spatial extent ξ of the screening cloud of conduction electrons sur-
rounding a Kondo impurity is given by

kF ξ =
W

kB TK

. (102)

The length scale is much greater than the lattice spacing. This is expected
to put limitations on the application of the single-impurity models to con-
centrated compounds.

In particular, one expects that the Kondo impurities will start to in-
teract when the compensating clouds start to interfere. This condition
would suggest that interaction effects should first occur when the number
of impurities Nimp satisfies

Ns a
3 ∼ Nimp ξ

3 (103)

where Ns is the number of lattice sites. Equivalently, this can be expressed
as

Nimp ∼ 6 π2
Ncon

(

kB TK

W

)3

(104)

where Ncon is the total number of conduction electrons. This condition
suggests that interaction effects should set in for extremely small impu-
rity concentrations. There is, however, no experimental evidence for such
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interference effects in mixed-valent or heavy-fermion alloys or compounds.

A second limitation that has been suggested is the exhaustion principle
[21]. The electrons that form the “compensating screening cloud” have
energies of kB TK below the Fermi-energy. Hence, the maximum number
of conduction electrons available to screen the impurity local moments,
Neff is estimated

Neff = Ns ρd(µ) kB TK ∼ Ns

(

kB TK

W

)

. (105)

Hence, this argument leads to the hypothesis that, when Nimp > Neff ,
the number of conduction electrons is insufficient to screen the local mo-
ments. In particular, there would never be enough conduction electrons to
screen a lattice of local magnetic moments, if one is to retain the picture
of the single-impurity Kondo effect.

Nozieres has refined this picture by switching to a semi-classical time-
domain argument and by making a key assumption [48], namely that the
only relevant energy scale is set by the Kondo temperature, as in the
single-ion Kondo effect. In particular, the number of conduction elec-
trons Neff that are available for screening local moments is assumed
to be identical with the number found in the single-ion Kondo effect
(Neff = Ns ρ(µ) kB TK). These moment screening conduction elec-
trons are itinerant and consecutively visit the magnetic sites producing
precessions of the local moments that eventually result in an isotropic
distribution of magnetic moments. The time scale τ at which a moment
screening conduction electron, present at a magnetic site, produces a pre-
cession of the local moment by 2π about an axis is assumed to be given
by

τ =
h̄

kB TK

. (106)

The precession redistributes the moment’s direction over a circular ring
on the surface of the unit sphere. However, it requires visits by at least
N electrons in order to redistribute the moment’s direction over a solid
angle of 4π.3 The coherence time τcoh, defined as the time-scale for the
randomization of the direction of every moment, is then given by

τcoh = (N − 1)

(

Nimp

Neff

)

h̄

kB TK

(107)

which leads to a coherence temperature Tcoh given by

kB Tcoh =
h̄

τcoh
∼ 1

(N − 1)

(

Ns

Nimp

)

ρ(µ) ( kB TK )2 . (108)

The distribution of moments is expected to have become isotropic and the
system is expected to become non-magnetic below the coherence temper-
ature. Nozieres’s coherence scale can be much smaller than the single-ion

3The (N − 1) different precessions or visits by (N − 1) electrons, should be sufficient to
destroy all the time-dependent phase relations between the components of the spinor.
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Kondo temperature for large impurity concentrations.

The above argument leads to the conclusion that there exists more
than one relevant energy scale for concentrated compounds, which in turn
implies that they are governed by physics other than that contained in
the single-impurity Kondo model. This undermines Nozieres’s assumption
that there is just one relevant energy scale [49]. Further guidance is given
by mean-field calculations for the Kondo or Anderson Lattice Models of
the type discussed in section (5.1), for which Ns = Nimp. These calcula-
tions indicate the existence of two related energy scales Ṽ and |Ṽ |2ρ(µ).
The last scale represents both the single-impurity Kondo temperature
which marks the temperature of the onset of moment loss

kB TK = | Ṽ |2 ρ(µ) (109)

and the T = 0 lowering of the ground state energy due to the coherent
hybridization of the bands. Nozieres’s argument can be modified by as-
suming that only electrons within Ṽ of the Fermi-energy participate in
the screening of moments and that the energy scale for precession is also
given by Ṽ . These substitutions result in a coherence scale that is given
by

kB Tcoh =
kB TK

(N − 1)
. (110)

This coherence scale is a factor of N−1 times smaller than the Kondo
scale, in agreement with a scale inferred from mean-field calculations for
the Anderson Lattice Model [50]. This argument could imply that all that
is needed to destroy coherent hybridization (i.e. produce Ṽ (k) = 0) at
the Kondo temperature TK is that the contributions to V from each site
have randomized overall phases and does not require the randomization
of each individual component of the spinors.

4.2 Doniach’s Diagram

Heavy-fermions metals are frequently found in the vicinity of quantum
critical points, and can be phenomenologically described by the Doniach’s
diagram [51]. Doniach’s diagram is a statement about the relative energy
scales of a lattice of magnetic ions which interact with the conduction
electrons via a Coqblin-Schrieffer exchange interaction JK . For an isolated
impurity, the Kondo temperature is given by

kB TK ∼ W exp

[

− 1

N |JK | ρd

]

, (111)

For temperatures below the Kondo temperature, an isolated local mo-
ment will be compensated by the magnetization of a screening cloud of
conduction electrons leading to a singlet state. The Kondo effect competes
with magnetic ordering promoted by an RKKY-like interaction which is
second-order in the Kondo interaction. The RKKY-like interaction be-
tween two local moments has a magnitude of ρd J

2
K [52]. A spontaneous

magnetic fluctuation δm at one site, will generate an effective local field
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5 The Anderson Lattice Model

Mixed-valent compounds which have an f ion in each unit cell can be
modeled by the Anderson Lattice Model. In this model, there is a 4f ion
at every lattice site which hybridizes with the conduction bands. The
Hamiltonian can be expressed as

Ĥ = Ĥf + Ĥd + Ĥfd (112)

where Ĥf governs the lattice of f ions, Ĥd describes the conduction band
and Ĥfd describes the hybridization process. The localized f orbital is
described by a Hamiltonian Ĥf

Ĥf =
∑

i,α

Ef,α f
†
i,α fα +

U

2

∑

i,α 6=β

f
†
i,α fi,α f

†
i,β fi,β (113)

where f†
i,α and fi,α, respectively, create and destroy an electron in the

f-orbital on the lattice site labeled by i and α, Ef,α is the binding-energy
and U is the screened Coulomb interaction between pairs of f electrons on
the same lattice site. The Pauli-principle excludes an interaction between
a pair of electrons in the same single-particle state α = β on the i-th f
ion. As before, we shall consider the SU(N) model where the index α

represents the combined spin and orbit quantum numbers which run over
N values. The conduction electron Hamiltonian is denoted by Ĥd and is
given by

Ĥd =
∑

k,α

ǫd(k) d
†
k,α dk,α (114)

where d†k,α and dk,α, respectively, create and destroy an electron in the
Bloch state labeled by wavevector k and quantum number α with the
single-particle Bloch energy ǫd(k). The f states are coupled to the con-
duction states by the hybridization term Ĥfd, given by

Ĥfd =
∑

k,α

(

V (k) f†
k,α dk,α + V

∗(k) d†k,α fk,α

)

(115)

where f†
k,α and fk,α, respectively create and destroy electrons in the f state

labeled by the Bloch wavevector k and α. Unlike the impurity model, crys-
tal momentum is conserved in the hybridization process. For the SU(N)
model, α is conserved by the hybridization process.

The model can be solved in the limit where U → 0. In this limit,
the electronic structure consists of two sets of N -fold degenerate bands of
mixed f and d characters with dispersion relations given by

Eα,±(k) =
1

2

(

Ef,α + ǫd(k) ±
√

(Ef,α − ǫd(k))2 + 4 | V (k) |2
)

.

(116)
The f weight of the hybridized states is given by

| Aα,±(k) |2 =
1

2

(

1 ∓ (Ef,α − ǫd(k))
√

(Ef,α − ǫd(k))2 + 4 | V (k) |2

)

. (117)
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which includes the presence of the other f ions. The energy-dependence
of the effective conduction band density of states has to be solved for
self-consistency. The single-impurity problem then has to be solved ei-
ther by Numerical Renormalization Group, Quantum Monte-Carlo [57]
calculations or large N approximations [58]. The mapping onto a single-
impurity model is motivated by the limit of infinite number of dimensions
of the lattice d → ∞, in which correlations between two lattice sites is
washed out[55]. Therefore, the approximation should be reasonable when-
ever the electronic correlations are predominantly local.

5.1 The Slave-Boson Method

The U → ∞ limit of the Anderson Lattice Model has been investigated by
using the slave boson method [59]. The slave boson method was initially
developed to treat the degenerate single-impurity Anderson model [60, 61]
and, unlike other large N approaches to single-impurity model such as the
Non-Crossing Approximation (NCA) [58], can be systematically applied
to lattice problems.

The slave boson method is based on the observation that, as U → ∞, it
becomes energetically prohibitive to have multiply occupied f states on any
ion and one must project out all the multiply occupied states whether they
are physical or virtual. In the method [60, 61], the f electron operators
(f†

i,α and fi,α) are replaced by the product of f quasiparticle operators

(f̃†
i,α and f̃i,α) with the slave boson operators (b†i and bi), according to

the prescription

f
†
i,α → f̃

†
i,α bi

fi,α → b
†
i f̃i,α . (118)

The f quasi-particle operators are fermion operators which satisfy anti-
commutation relations, only if one enforces the constraint

∑

α

f̃
†
i,α f̃i,α + b

†
i bi = 1 (119)

at each site i. Since the eigenvalues of the boson number operators are
limited to the set of positive integers supplemented by zero, this constraint
eliminates multiply occupied f states at site i and results in

1 ≥ nT ≥ 0 . (120)

This constraint can be enforced by using Lagrange’s method of undeter-
mined multipliers λi. Lagrange’s method produces an effective Hamilto-
nian similar to the original Anderson lattice Hamiltonian in which the
Coulomb term has been projected out, but in which

Ef f
†
i,αfi,α → (Ef + λi) f̃

†
i,αf̃i,α

V f
†
i,α dk,α → V f̃

†
i,α dk,α bi . (121)
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The effective Hamiltonian also contains the non-interacting boson Hamil-
tonian

Ĥb =
∑

i

λi b
†
i bi (122)

The mean-field approximation, which is exact for the single-impurity
model when N → ∞, assumes that the boson field enters into a conden-
sate at low temperatures. In this case, the condensate can be considered
as an eigenstate of the operators b†i and bi and so the boson operators can
be replaced by the complex numbers b∗ and b.

On applying the mean-field slave boson method to the lattice [59] and
only imposing the constraint on average, one finds that the hybridization
matrix elements are renormalized according to

V → Ṽ = V b (123)

where b is a complex number, which satisfies the constraint

| b |2 = ( 1 − nT ) . (124)

In the above equation we have made use of Luttinger’s theorem which
ensures that the number of f electrons, nT , is equal to the number of
quasiparticles. The magnitude of b is found by minimizing the effective
Hamiltonian with respect to b. The minimization results in the equation

λ b
∗ +

1

Ns

∑

k,α

V (k) < f̃
†
k,α dk,α > = 0 (125)

which has to be solved self-consistently together with the constraint. For
the lattice model, the chemical potential µ has also to be adjusted to keep
the total number of electrons constant. The non-trivial solution, for which
b 6= 0, yields a renormalization of the energy of the f level

Ef → Ẽf = Ef + λ . (126)

The renormalization of Ef and V have the effect of minimizing the
Coulomb interaction. The inclusion of λ in Ẽf raises the f quasiparti-
cle energy above the Fermi-energy and, therefore, reduces the interaction
energy. The renormalization of V reduces the rate at which conduction
electrons can hop into an f state (∝ | V |2) by a factor of | b |2 = (1−nT )
which reflects the average effect of the Coulomb blocking hopping which
would produce multiply occupied f orbitals. This renormalization is sim-
ilar to the renormalization of ∆ found for the U → ∞ limit of the single-
impurity model as expressed in eqn.(39).

5.2 The Coherent Fermi-Liquid

The self-consistent equations only have the trivial solution b = 0 for tem-
peratures above a characteristic temperature determined from

Ef − µ ≈ N ∆

2 π

∫ W

−W

dǫ

(

2 f(ǫ) − 1

ǫ − µ

)

(127)
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since the chemical potential is pinned to the energy Ẽf of the partially
occupied f quasiparticle level when b → 0. This temperature is identified
as the Kondo temperature TK for the lattice below which the conduction
electrons start to screen the localized magnetic moments

kBTK ∼ W exp

[

π (Ef − µ)

∆

]

(128)

and nT (T ) starts decreasing from unity. This expression has been derived
by assuming a flat conduction band. Using more realistic forms of the
conduction band density of states shows that TK decreases and finally
vanishes as the conduction electron density decreases [50]. For tempera-
tures below TK , the solution with finite b becomes stable and the system
starts condensing into a Fermi-liquid state. In the mean-field approxima-
tion, the cross-over from the high-temperature state to a low-temperature
Fermi-liquid state resembles a mean-field phase transition in which | b |2 is
the order parameter. Fluctuations of the order parameter are expected to
smooth out the cross-over. This is expected [62] since, if the phase of the
complex number b is known precisely (as in the mean-field state), then the
condensate must be a coherent state which involves a linear superposition
of states with different numbers of bosons. In this case, due to the large
fluctuations in the boson number, the constraint cannot be satisfied at
every lattice site and b is certainly not a static field. However, the phase
or gauge fluctuations do not affect physical properties. Anyway, since the
fluctuations are of higher-order in N−1, the situation is similar to that
of the single-impurity model where the cross-over from integer valent to
mixed valence is smooth but becomes abrupt when calculated to leading
order in N−1.

Below TK , b is a function of temperature and continues evolving but
saturates at a temperature Tcoh at which the Fermi-liquid is fully-formed
[50]. The coherence temperature Tcoh is related to TK by a factor which
depends on the density of conduction electrons. In this sense, the depen-
dence of TK and Tcoh on the number of conduction electrons lends support
to the arguments of Noziéres [21].

Once Ṽ , Ẽf and µ have been found, the effective Hamiltonian can
be diagonalized in exactly the same way as the non-interacting model.
However, the indirect gap between the quasiparticle dispersion relations

is reduced to 2 | V |2

W
(1− nT (T )) and the direct gap has a magnitude of

2 | V |
√

1− nT (T ). The first renormalization shows up in the enhance-
ment of the quasiparticle mass which is manifest in numerous experimental
quantities [62], such as in the amplitude of the de Haas - van Alphen os-
cillations, the coefficient of the linear T term in the specific heat γ, the
magnetic susceptibility χ, a reduction of the width of the low-temperature
quasiparticle Drude peak in the optical conductivity and a quadratic en-
hancement of the coefficient A of the T 2 term in the electrical resistivity.
The second renormalization shows up in terms of a mid-infrared peak in
the optical conductivity due to a direct (q ≈ 0) inter-quasiparticle-band
transition. However, at T = 0, all the Fermi-liquid properties can be ex-
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pressed in terms of the coherence temperature scale, Tcoh.

Millis and Lee [62] addressed Noziéres’s question [21] as to whether
the Kondo screening occurs in the lattice and obtained the analogue of
the magnetic screening function P (r) for the itinerant particles. Like in
eqn.(35) for the single-impurity, the correlation can be expressed as

P (r) =
1

Ns a3

∑

k,k′<kF

Bk B
∗
k′ exp

[

i (k − k
′) , r

]

(129)

However, since the f quasiparticles are itinerant which elastic scatter co-
herently, the functions Bk are given by

Bk =
Ṽ (k)

√

(Ẽf − ǫd(k))2 + 4 |Ṽ (k)|2
(130)

Unlike the corresponding function for the single-impurity model which is
maximized at the Fermi-surface k = kF , Bk is maximized at the direct

gap where ǫd(k) = Ẽf and which defines the small Fermi-surface (which
would be realized if Ṽ ≡ 0). Millis and Lee determined the correlation
length for the lattice ξ to be given by

kF ξ =
W

Ṽ
(131)

which, although much shorter that the correlation length for the single-
impurity model ( since kF ξ ∼ W

kBTK
∼ (W

Ṽ
)2), is still greater than the

lattice spacing. They also determine the number of electrons screening

each itinerant magnetic moment and found that it was given by Ṽ
W

. They
argued that this shows the physics of the lattice is different from that of
a single-impurity and that it is the itinerant character of the f electrons
which results in the paramagnetism.

Doniach [52] has investigated whether the effects of interparticle in-
teractions can produce magnetic instabilities. He found that magnetic in-
teractions are produced by high-energy processes which are proportional
to the fourth power of the hybridization matrix element V . Although
calculated for the lattice, this magnetic interaction has a resemblance to
the RKKY interaction between magnetic impurities for which JRKKY ∼
J2
K ρd(µ) since the Schrieffer-Wolff transformation leads to JK ∼ V 2

(µ−Ef )
.

On scaling V 2 with a factor of N , the RKKY-like interaction become of
order N−2. By treating these interactions in the Random Phase Approx-
imation, Doniach reproduced essentially the same criterion for magnetic
instability that he had found previously [51], JRKKY ∼ kB TK . Evans
[63] has extended this analysis by including small interaction processes
(of the order of Z−1) that occur between the quasiparticles of the low-
temperature Fermi-liquid state. Unlike Doniach’s mechanism, which pro-
duces instabilities at temperatures TN where TN > TK , the low-energy
processes may tip the balance and produce magnetic instabilities at tem-
peratures below the coherence temperature Tcoh.
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6 Comparison with Experiment

The magnetic susceptibility χ(T ), the 4f occupation number nf (as mea-
sured by L3 x-ray absorption), and the Q-averaged dynamic susceptibility
χ′′(E) (as measured by neutron scattering) of the intermediate valence
(IV) compound CePd3 are shown in fig.(9). The ground state occupation
number nf ∼ 0.75 (implying a Ce valence z = 4 − nf = 3.25) and the
characteristic energy of the spin fluctuations (kBTK ∼ Emax = 55 meV)
are typical of IV compounds. [67] The linear coefficient of specific heat
γ = 29 mJ/mol-K2 is also typical, indicating that these materials have
moderately heavy Fermi liquid ground states.
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Figure 9: (a) The magnetic susceptibility; (b) the 4f occupation number as
measured by L3 x-ray absorption; and (c) the low temperature polycrystalline-
average neutron spectrum of CePd3 compared to the predictions of the Anderson
impurity model (solid lines) as calculated in the non-crossing approximation.
The parameters for the bandwidth W, the f-level position Ef , the hybridization
constant V , and the spin orbit splitting ∆so are given in panel (b). (From
Fanelli et al. [64])

These properties of Ce and Yb intermediate valence (IV) compounds
can be fit simultaneously by the predictions of the Anderson impurity
model (AIM). The solid lines in fig.(9) make this apparent for CePd3.
The low temperature specific heat coefficient (30 mJ/mol-K2) deduced
from this calculation is basically equal to the experimental value. [64]
The low temperature upturn in the susceptibility is an intrinsic coherence
effect, as discussed further below. Similar fits are observed in YbAl3 [66]

34

Page 34 of 45AUTHOR SUBMITTED MANUSCRIPT - ROPP-100535.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



and YbAgCu4 [65].

The Kondo temperature TK in these compounds is large (∼ 500 K)
compared to typical rare earth crystal field energies, so that in the calcu-
lations the latter can be ignored and the Ce (Yb) atoms can be treated as
j = 5

2
(j = 7

2
) ions. Given the large TK , these materials also are far from

magnetic instabilities, so that the effects associated with a quantum crit-
ical point for a magnetic/nonmagnetic transition (viz., strong critical an-
tiferromagnetic correlations) can be ignored. Under these circumstances,
the physics is basically that of f electrons hybridizing with conduction
electrons in the presence of strong Coulomb correlations - which in the
impurity limit is the physics of the AIM. For the fits shown in fig.(9),
the AIM was solved using the non-crossing approximation (NCA). [58]
The results are moderately insensitive to the background bandwidth W ,
and the spin-orbit splitting ∆so is fixed at the experimentally determined
value so the fits depend essentially only on two parameters, the energy Ef

of the 4f level and the hybridization parameter V . Given this latter fact,
it is perhaps surprising that the impurity theory fits the data so well over
such a large range of temperature and energy, particularly since the Ce
(Yb) atoms are not impurities but sit on periodic cubic lattices in these
compounds.

The measurements for which the AIM works well - χ(T ), nf (T ), γ(T )
and χ′′(E) - are primarily sensitive to the local 4f fluctuations. For mea-
surements that depend strongly on the lattice periodicity, this is not the
case. While the high temperature resistivity of CePd3 exhibits the nega-
tive dρ

dT
expected for Kondo impurity behavior, at lower temperature the

resistivity decreases with temperature, approaching (apart from extrinsic
effects) ρ = 0 at T = 0 and exhibiting the T 2 behavior of a Fermi liquid (
fig.(10) ). This is the most obvious manifestation of the coherent behav-
ior of the 4f lattice; similar low-T behavior is observed in all metallic IV
compounds.

The appropriate model for localized f-electrons hybridizing with a sin-
gle band of conduction electrons in the presence of strong Coulomb cor-
relations is the Anderson lattice. As shown in section (5.2), in this model
a hybridization gap sets in at low temperature and the bands have the
same form as the non-interacting bands of fig.(8a) but with renormalized
parameters Ṽ and Ẽf . The optical conductivity, which probes Q = 0 ex-
citations, then exhibits a peak in the mid infrared (the “mid-IR peak”) on
the scale of Ṽ . Okamura and collaborators [69] have shown that the mid-
IR peak is endemic to Ce and Yb IV compounds, and the energy of the
peak scales in an appropriate manner with the Kondo energy, as expected
for the Anderson lattice. When the Fermi level lies in the region of high
density of states (DOS) the system is a Fermi liquid with an enhanced ef-
fective mass. The optical conductivity then develops a Drude peak which
is very narrow because the relaxation time is also renormalized. [70] As
the temperature is raised, the f electrons decouple from the conduction
electrons as the hybridization becomes increasingly less effective. At high
temperature the conductivity no longer exhibits the mid-IR peak, but
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Figure 10: (a) The resistivity of CePd3 as a function of temperature exhibits
negative dρ

dT
at high temperature, as expected for Kondo scattering, and T

2

behavior at low temperature (inset) as expected for a Fermi liquid. (From Fanelli
[76]) (b) The Hall mobility of CePd3 exhibits a dramatic change of behavior in
the coherent Fermi liquid state below 50 K. (Adapted from Cattaneo et al. [68])

rather has a broad Drude response due to scattering of the conduction
electrons from an incoherent set of f impurities. These two limits can be
seen in the optical conductivity of CePd3 (fig.(11)). Similar behavior is
seen in other IV compounds such as YbAl3. [71]

The optical conductivity of IV compounds gives a clear experimental
example of the crossover from high temperature incoherent behavior to
the coherent behavior of renormalized hybridized bands. Although the
crossover occurs on a broad temperature scale (essentially that of the
Kondo temperature), on a lower temperature scale Tcoh the renormal-
ization is essentially complete. As discussed in section (5.2), this is the
temperature at which the order parameter saturates in slave boson theo-
ries. [50] Below the coherence temperature Tcoh the growth of the mid-IR
peak is complete, de Haas - van Alphen signals appropriate to the hy-
bridized bands can be observed, and the resistivity shows the T 2 behavior
expected of a Fermi liquid. The best-studied case is that of YbAl3. Below
50 K, the mid-IR peak is completely established, the resistivity exhibits
T 2 behavior, and the Hall coefficient exhibits a dramatic anomaly [66],
similar to that seen in the Hall mobility of CePd3 (fig.10), indicating an
alteration of the Fermi surface. The de Haas - van Alphen signals at low
temperature are those appropriate for a hybridized f band, with effective
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Figure 11: (a) The optical conductivity of CePd3 at 300 and 4 K. (Adapted from
Webb et al. [70]) The broad Drude behavior at high temperature transforms to
the sum of a narrow Drude peak and a mid infrared peak on the scale Ṽ at low
temperature.

masses in the range m∗ ∼ 10 − 25me. [72] The d.c. susceptibility also
shows a small anomalous increase below this temperature. The similar
increase seen in CePd3 below 50 K (fig.(9a)) has been attributed [64] to
the onset of a 5d contribution to the susceptibility reflecting coherent hy-
bridization between the 4f and the 5d electrons in this compound.

Capturing the details of the hybridized ground state over the full Bril-
louin zone of actual IV materials requires going beyond the Anderson
lattice model to correlated band theory, such as density functional theory
where the correlations are treated in the dynamic mean field approxima-
tion [56] (DFT+DMFA). A recent calculation [73] for CePd3 is shown
in fig.(12). Clearly the most direct experiment to test this calculation
would be angle-resolved photoemission on a single crystal. To our knowl-
edge, however, such experiments have not been performed to date on the
metallic rare earth IV compounds. On the other hand, the particle-hole
excitations arising in the hybridized band structure can be measured by
Q-resolved inelastic neutron scattering in single crystals. Since the inten-
sity of the particle-hole excitation varies with the joint density of initial
and final states, it will be strongest for excitations between flat regions
of the bands of occupied and unoccupied states. In fig.(13), we show
results for CePd3 which show that on the Kondo scale (55 meV) the
scattering is strongest for (1/2,1/2,0) momentum transfer and weakest
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Figure 12: The correlated bandstructure of CePd3 at low temperature as calcu-
lated using density functional theory and the dynamic mean field approximation.
(Adapted from Sakai [73])

for (1/2,1/2,1/2). Below 40 meV the situation reverses: the scattering at
(1/2,1/2,1/2) becomes larger than that at (1/2,1/2,0). (Similar variations
of the Kondo scale scattering with Q have been observed in YbAl3. [74])
While the energy scale of the excitations in the calculation appear to be
somewhat smaller than that of the experiment, fig.(12) shows that the
Γ/M transition with momentum transfer (1/2,1/2,0) should be strong at
40 meV, which is the Kondo scale in the calculation, while the Γ/R tran-
sition with momentum transfer (1/2,1/2,1/2) lies at an energy 90 meV
which is larger than the energy window of fig.(13). The R/Γ transition at
20 meV suggests that the (1/2,1/2,1/2) scattering should become larger
than the (1/2,1/2,0) transitions below 40 meV, as we observe. Clearly
a full calculation of the Q-dependent dynamic susceptibility is needed.
However, this comparison between the neutron scattering and the corre-
lated band theory is very encouraging in suggesting that the latter can
quantitatively capture the behavior of real IV materials.

An important issue is why the Anderson impurity model works so well
to describe much of the behavior of IV compounds. There are several
reasons for this. The first, as mentioned above, is that the properties for
which the AIM works well - the susceptibility, specific heat, Q-averaged
neutron spectrum, and 4f occupation number - are primarily sensitive to
local 4f fluctuations. The second is that the neutron scattering indicates
that the variations with momentum transfer Q, while significant, are not
enormous - the differences between the spectra seen in fig.(13) are only
of order 20%. To the extent that these differences can be ignored, the
spectra would be Q-independent, as for impurity scattering. This weak
dependence on Q clearly is a product of the fact that the hybridized f
bands are flat over appreciable regions of the Brillouin zone. Another im-
portant contribution to the quasi-Q-independence is the strong inelastic
scattering expected in correlated systems. The states of the renormalized
band theory are only sharp in energy or momentum at low temperatures
and for energies close to the Fermi level. As the temperature and/or the
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Figure 13: Inelastic neutron scattering spectra of a single crystal of CePd3
as measured on the ARCS spectrometer at the Oak Ridge Spallation Neutron
Source. The spectrum for momentum transfer (1/2,1/2,0) is more intense than
that at (1/2,1/2,1/2) on the Kondo scale (∆E ∼ 55 meV) but weaker at energy
transfer below 40 meV. (From Lawrence et al. [77])

distance of the energy from the Fermi level increases, the spectral func-
tions rapidly become quite broad. The effect of this broadening has been
shown to create a crossover to incoherent (Q-independent) behavior on a
moderate temperature scale. [75] For example, we find that the neutron
spectra of CePd3 are already Q-independent at room temperature. [64]
In any case, it is the weak Q-dependence which explains the applicability
of the AIM to periodic IV compounds over a broad range of energy and
temperature.

7 Summary

We have presented features of descriptions of intermediate or mixed-valent
systems. Some of the descriptions that have been proposed were based on
single-impurity models that, in the limit of almost integer f occupations,
reduce to Kondo models. These impurity models have been extensively
studied and many exact results have been derived, either through numeri-
cal renormalization group calculations, Bethe-Ansatz calculations or with
Fermi-liquid theory. The degeneracy of the f orbital plays an important
role in these descriptions. For large N , the smooth cross-over between
mixed valence and the Kondo limit becomes rapid. We have also de-
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scribed the features of a periodic array of mixed-valent atoms. Unlike the
impurity models, exact results are scarce for lattice models. Nevertheless,
like the impurity models, the degeneracy plays an important role in their
description and, for large degeneracy, the cross-over between the high-
temperature behavior (similar to that found in impurity models) to the
low-temperature Fermi-liquid phase appears to be quite abrupt. Many
of the experimental results on concentrated compounds can be described
in terms of single-impurity models, despite theoretical arguments which
question the applicability of single-impurity physics. Nevertheless, there
are other features that are interpretable in terms of features of the lattice
models.

Theories of lattice models of mixed-valent metals provide considerable
opportunities for further developments. There is no exact theory and each
of the various approximations that have provided so much insight into the
mixed-valent lattice have their own limitations. Hartree-Fock [6], Ran-
dom Phase Approximations [78] and the self-consistent and conserving
[79] Fluctuation Exchange Approximation [80, 81, 82, 83, 84] (FEA) are
only expected to be reasonable for sufficiently small values of the Coulomb
interaction U . This condition is not met in the anomalous rare-earth com-
pounds. Although valid at large U , mean-field slave boson theories run
into difficulties in satisfying the constraints that exclude unphysical states.
The Dynamical Mean-Field Approximation [55, 56] (DMFA) approxi-
mately maps lattice problems onto an effective single-impurity problem,
which can then be iteratively solved with existing techniques. A result of
the approximate mapping is that the spatial or momentum-dependence of
the self-energy is washed out. This is perhaps not a great problem when
discussing local properties, especially if the system is dominated by local
correlations. However, it has been found [85] that non-local corrections
due to the RKKY interaction can yield significant deviations from the elec-
tronic spectrum calculated in DMFA. DMFA methods [86, 87] take steps
to address the deficiency of DMFA in treating spatial correlations, but
so far have only been implemented with clusters containing a few nearest
neighbor atoms. This hampers the application to situations such as in the
vicinity of a quantum critical point, where long-ranged correlations are ex-
pected to develop. The combined use of the Local Density Approximation
(LDA) to Density Functional Theory (DFT) with DMFA is a very posi-
tive and essential step towards the description of real materials. However,
LDA+DMFA also raises new questions. Density Functional Theory is a
theory which describes the ground state energy and the ground state den-
sity [88], if one has an appropriate non-local functional. The Kohn-Sham
equation [89] used in DFT describes an effective single-particle problem,
and the eigenvalues and eigenfunctions that are generated are artifacts
which have no real physical meaning. The Kohn-Sham eigenfunctions
only provide a method for generating an non-physical Slater determinant
from which the ground state density can be obtained. If the Slater de-
terminant were to be assigned a real physical meaning, then DFT would
be reducible to a Hartree-Fock approximation and, therefore, would not
be exact. Since the Coulomb correlations should have already been in-
cluded in the Density Functional ground state, the inclusion of additional
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Coulomb interactions, such as U and J , in LDA+DMFA raises the ques-
tion as to whether the effect of the correlations have been double-counted.

Many direct numerical investigations of finite-size correlated systems
using exact diagonalization or quantum Monte Carlo methods have been
performed. Exact diagonalization, has been severely limited by the ex-
ponential increase of computational effort required for increasing system
size, while quantum Monte Carlo methods [90] have suffered from the
fermionic minus sign problem at low temperatures. Due to these diffi-
culties, and the vast number of states in Hilbert space needed to treat
the degenerate Anderson Lattice, the work has hitherto been confined
to consideration of one-band and low-dimensional models [91, 92]. An-
other difficulty faced by intensive numerical methods arises from their
strong dependence on the finite-size of the lattices, which often has pre-
vented the reliable extraction of the low-energy scales that are important
for the description of strongly correlated systems. The great increase in
computational power, combined with new efficient techniques show great
promise for numerical approaches. The Density Matrix Renormalization
Group (DMRG) is one such technique [93, 94], and is a generalization
of Wilson’s numerical renormalization group technique used to solve the
single-impurity Kondo problem. This renormalization group technique is
bases on iterative diagonalization of blocks of states and rescaling their
interactions with neighboring blocks. In the DMRG technique, not all
the low-energy states need to be kept on rescaling, but only those which
make a substantial contribution to the density matrix. This results in a
greater computational efficiency and optimizes the calculation of physical
observables [95, 96, 97]. Another such approach is the continuous-time
quantum Monte Carlo technique [98, 99, 100], which instead of sampling
configurations in Hilbert space, samples terms in a diagramatic expan-
sion of the partition function. However, the fermionic sign problem does
remain [99]. The continuous time method offers the exciting possibility
of studying the time-evolution of non-equilibrium correlated states. The
rapid increase in computational power combined with technical improve-
ments promises the production of accurate results for lattice models at low
temperatures, which would be of prime interest for models which exhibit
quantum critical behavior.

New results produced with newer methods combined with rigorous
numerical results may provide a unifying picture of the physics of corre-
lated hybridization problem which is at the core of mixed-valent physics.
LDA+DMFT has made great progress in moving towards understanding
real mixed-valence metals, and this progress should be continued by in-
cluding interactions not already included in the simple Anderson Model
picture. It is conceivable that close to a quantum critical point or far
from equilibrium, these less conspicuous interactions could lead to the
emergence of a rich variety of physical behavior that could be explored by
future generations of researchers.
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