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INTRODUCTION 

Successful, scalable implementation of biofuels is dependent on the efficient and near 

complete utilization of diverse biomass sources. One approach is to utilize the large 

recalcitrant biomass fraction (or any organic waste stream) through the thermochemical 

conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon 

dioxide (CO2), and hydrogen (H2), which can subsequently be metabolized by acetogenic 

microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the 

development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen 

biofuel production from cheap, renewable sources and to detail the interconnectivity of 

metabolism, energy conservation, and regulation of acetogens using next-gen sequencing 

and next-gen modeling. To achieve this goal we specifically used: 

Omics-driven elucidation of the multidimensional genome architecture. A higher level 

of genome annotation captures the elements responsible for the flow of information encoded 

by the genome. This genome architecture is comprised of the collection of components 

including (but not limited to) promoters, transcription start sites, regulatory non-coding 

regions, untranslated regions, transcription units, and ribosome binding sites. Integration of 

data from cutting edge experimental methods developed in our lab, such as ChIP-exo and 

ribosome profiling allowed for characterization of regulation and gene expression patterns 

and, subsequently, the extraction of novel information such as transcriptional pause sites, 

translational pause sites, and multi-protein complex stoichiometry. In particular we 

investigated the role of translation in optimization of carbon and energy utilization through 

differential translational efficiency. 

The control of mRNA translation is vital to all species. We employed RNA-seq, TSS-seq, and 

Ribo-seq to decipher condition-dependent translational regulation in the model acetogen 

Clostridium ljungdahlii. Integration of multi-omics data obtained from cells grown 

autotrophically or heterotrophically revealed that pathways critical to carbon and energy 

metabolism are under strong translational regulation. We showed that major subsystems 

involved in energy and carbon metabolism are not only differentially transcribed and 

translated, but their translational efficiencies are differentially elevated in response to 

resource availability under different growth conditions. Translational efficiency is controlled 

on the molecular level by a combination of features associated with the coding and the 5′-

untranslated regions of mRNA, suggesting that C. ljungdahlii prioritizes translation of genes 

essential for thriving in energy-deprived niches.  

 

Reconstruction and validation of a predictive next-gen model including metabolism 

and macromolecular synthesis (ME-model). The Wood-Ljungdahl pathway (WLP) in 

Clostridium ljungdahlii enables the use of either H2 or CO as electron donors with 
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accompanied reduction of CO2 thereby making WLP the only known CO2-fixing pathway 

coupled to energy conservation. The feasibility of autotrophic growth was poorly understood 

for a long time as no ATP was gained at the substrate level. Knowledge of how a bacterium 

completely lacking cytochrome-encoding genes could maintain the proton motive force was 

lacking. It was then discovered that the RNF complex couples ferredoxin oxidation, NAD+ 

reduction and proton exportation by a novel mechanism called “electron bi furcation”. To 

explore how growth strategies occur, models like constraint-based genome scale models of 

metabolism (i.e., M-models) have been useful for gaining insight to possible energy flux 

routes. While M-models have enabled much progress in elucidating cofactor fluxes, critical 

components of the cell, such as the production of macromolecules and the mechanistic 

utilization of metals, vitamins, and cofactors, are usually absent in these models thereby 

limiting in-depth understanding of cellular life.  

So-called metabolic and gene expression models (ME-models) include not only metabolic 

reactions, but they also include explicit representations of major cellular processes such as 

macromolecular synthesis and basic transcriptional regulation, which significantly broadens 

the scope and predictability of microbial systems biology. Specifically, the ME-model will: 1) 

Account for the transcriptional and translational cost of proteins and complex formation; 2) 

Incorporate the energetics associated with cofactor dependencies and prosthetic group 

usage; 3) Quantitatively predict transcript and protein levels; 4) Predict optimal codon usage 

for heterologous pathways. With these ME-models, the optimal molecular constitution of 

cells can be computed as a function of genetic and environmental parameters. Since both 

RNA and protein abundances are explicitly predicted, cofactor requirements can now be 

explored. 

We completed the C. ljungdahlii ME-model, named iJL965-ME, that captures all major 

central metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin synthesis 

pathways as well as pathways to synthesis RNA and protein molecules necessary to 

catalyze these reactions. Furthermore, the reconstruction includes the WLP, with updated 

cofactors, and its associated mechanisms for energy conservation. iJL965-ME was used to 

reveal how protein allocation and media composition influence metabolic pathways and 

energy conservation in C. ljungdahlii, and to accurately predict secretion of acetate, ethanol, 

and glycerol during changing carbon.  

Trace metals are essential for all living organisms, for they are required for catalytic 

processes essential to energy conservation, metabolism, replication, and maintenance. Yet 

metals pose a unique challenge in constraint-based models of metabolism (i.e. M-models) as 

they are neither produced nor consumed biochemically; instead, metals in M-models are 

generally treated as a lumped sum in the biomass objective function rather than be 
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integrated into the network. In M-models, metal availability and growth rate are linearly 

correlated even though there is contrary experimental evidence. In iHN637, the M-model for 

C. ljungdahliii reconstructed by our group, seven of ten metals (Ca2+, Cu2+, Mg2+, Mn2+, Mo2+, 

Ni2+, Zn2+, Co2+, Fe2+, Na+) could only be imported or exported (in addition to their inclusion in 

the biomass objective function, which represents the total composition of the cell, and only 

Co2+ was predicted to participate in flux-carrying reactions that were not a transport reaction 

or biomass production. Thus, most metal ions were not associated to the reactions they help 

catalyze. This represents a general fact for M-models.  

The next generation of constraint-based genome-scale models change this paradigm. 

Metabolic and gene expression models (ME-models) cover the processes of transcription, 

translation, and metabolism, which can also include protein modifications. Protein 

modifications can account for the presence of metals in biochemical reactions and thus 

enable predictions of the optimal distribution of resources in response to limited metal 

availability. Therefore, ME-models provide a robust, genome-wide approach to define how 

transition metals affect an organism’s functional network, which addresses the articulated 

need to bridge chemistry and biology in a coherent and systematic way. The detailed 

representation of cofactors and prosthetic groups will enable us to manipulate the cofactor 

dependency of heterologous pathways to maximize energy conservation, subsequently 

optimizing chemical production by C. ljungdahlii.  

Our study substantially enhanced our knowledge about chemolithoautotrophs and their 

potential for advanced biofuel production. It provides next-gen modeling capability, offers 

innovative tools for genome-scale engineering, and provides novel methods to utilize next-

gen models for the design of tunable systems. The following report contains information 

about work performed under contract DE-SC0012586. 

The report consists of three parts, addressing varies aspects of the work: 

A Optimization of carbon and energy utilization through differential translational 

efficiency  

B Predicting proteome allocation, overflow metabolism, and metal requirements in a 

model acetogen 

C Exploring the evolutionary significance of tRNA operon structure using metabolic and 

gene expression models  
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A Optimization of carbon and energy utilization through differential translational 

efficiency 

 
The metabolic versatility of acetogens for the fermentation of a large number of sugars yields 

great promise for the production of biofuels and commodity chemicals. In particular the ability 

to grow autotrophically with H2:CO2 or syngas (H2/CO/CO2) makes these organisms ideal 

chassis for sustainable bioproduction and acetogenic clostridia are currently deployed for the 

commercial conversion of syngas to biofuels. Clostridium ljungdahlii is emerging as a 

promising cell factory for bioproduction (Kopke et al., 2010) as well as a model organism for 

gaining in-depth knowledge necessary to develop new design strategies for acetogens. C. 

ljungdahlii is readily cultured heterotrophically in the laboratory in simple media, either on a 

diverse set of five or six carbon sugars, or autotrophically with CO or H2 as electron donor. 

Furthermore, metabolic models and genetic manipulation tools already developed and 

optimized for this organism, make C. ljungahlii an ideal candidate for the study of 

acetogenesis (Nagarajan et al., 2013). 

 

However, in order to harness the full biosynthetic potential, it is important to understand the 

regulatory mechanisms that orchestrate energy metabolism in C. ljungdahlii. These include, 

but are not limited to, the Wood-Ljungdahl pathway (WLP), the formate dehydrogenase 

complex, the hydrogenase complex, and the Rnf complex, which are all central to energy 

equilibrium in C. ljungdahlii (Ljungdahl, 2009; 2et al., 2013, Latif et al., 2013). A thorough 

understanding of all factors that regulate energy metabolism under autotrophic and 

heterotrophic growth conditions is crucial for the metabolic engineering of acetogens and for 

optimizing targeted production of desired chemicals. 
 

In recent years, next-generation omics approaches, such as RNA-seq, Ribo-seq, 

proteomics, and metabolomics have been employed to identify the functionality and 

organizational structure of the bacterial genome. These approaches directly address the 

genotype-phenotype relationship in bacteria, providing crucial insights into the design 

strategies for microbial cell factories. In particular, Ribo-seq in combination with RNA-seq 

has enabled global measurements of translation and provided new insights into translational 

regulation (Ingolia et al., 2009). Here we carried out cognitive analysis of RNA-seq and Ribo-

seq to understand the translational control underlying energy and metabolism in the model 

acetogen C. ljungdahlii. Furthermore, we integrated transcription start site (TSS) information 

with RNA-seq to gain insight into the structure of the 5′-untranslated region (5′ UTR) and 

used Ribo-seq to understand its effect on the translational efficiency (TE). We provide 

evidence that metabolic pathways required for utilization of carbon and energy are not only 

regulated at the transcriptional and translational level, but they h1ave evolved to enhance TE 
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of specific nodes in the network to maintain optimized energy homeostasis in a growth-

condition-dependent manner. We show that the AU content of the 5′ UTR, the AU content of 

the coding region and to a lesser extent, codon adaptation control TE and are crucial factors 

for acetogens to thrive in energy-deprived environments. 
 

Multi-omics analyses of heterotrophically and autotrophically grown cultures. We 

carried out RNA-seq and Ribo-seq experiments for autotrophic cultures grown either on CO 

or H2:CO2 and heterotrophic cultures grown on fructose. To enable direct comparison 

between transcription and translation, strand-specific RNA-seq libraries were prepared from 

the same lysates used for Ribo-seq experiments in biological duplicates. RNA-seq and Ribo-

seq libraries were deeply sequenced and mapped reads were normalized as FPKM and 

RPKM, respectively. RNA-seq replicates for cultures grown on CO, H2:CO2, or fructose were 

highly reproducible with a Pearson correlation of 0.995, 0.991, and 0.989, respectively. Ribo-

seq replicates were also highly correlated with Pearson correlations of 0.995, 0.952, and 

0.930, respectively. 

 

 
 
Fig. 1 Overview of omics experiments carried out for each growth condition and the correlation between 
RNA-seq and Ribo-seq in all growth conditions. (a) Correlations between RNA-seq and Ribo-seq in CO, 
H2:CO2 and fructose. Pearson’s and Spearman’s coefficients are shown inside each subfigure. Colors represent 
in the scatter plot represents the translational efficiency values, as depicted in the colorbars. (b) An example of 
Ribo-seq, RNA-seq, TE, and TSS profiles mapped onto genomic region between 4,535,800 to 4,564,000. RNA-
seq and Ribo-seq profiles were normalized in RPM. TE of each gene is calculated by Ribo-seq level divided by 
RNA-seq level. Arrows indicate TSS positions. 
 

While the majority of genes are regulated at the transcriptional level, transcription and 

translation in bacteria are spatially coupled and many genes are subjected to firm 

translational control (McCarthy and Gualerzi, 1990; Ingolia et al., 2009; Ingolia, 2014). In line 

with previous findings in Escherichia coli and Streptomyces coelicolor (Ingolia et al., 2009, 

Jeong et al., 2016), RNA-seq and Ribo-seq data from Clostridium ljungdahlii were 
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moderately correlated in all conditions tested (Fig. 1a), suggesting widespread translational 

regulation. We calculated the TE of each gene by dividing the translational level by the 

transcriptional level and noticed significant discrepancy in TE among different genes (Fig. 

1b). 

 

 

 
 
Fig. 2 Differential translation and differential TE of subsystems in fructose-, CO- and H2:CO2-grown 
cultures. Genes were grouped into subsystems and translation and transcription were both percent-normalized 
per each experiment. Color of bubbles represents the level of translation or transcription per each experiment (% 
normalized). The size of bubbles represents the level of translation or transcription per each subsystem (% 
normalized). The top panel represents the top 20 subsystems that are translationally induced in fructose relative 
to both autotrophic (CO and H2:CO2) conditions (P<0.01) and sorted in descending order according to translation 
levels in fructose. Subsystems with differential TE are depicted by up-pointing triangle with thick edges in fructose 
(Fruc). The bottom panel represents the top 20 subsystems that are differentially translationally induced in both 
autotrophic conditions relative to heterotrophic growth in fructose (P<0.01) and are sorted in descending order 
according to translation in CO. Subsystems with differential TE are depicted by up-pointing triangles with thick 
edges in CO and H2:CO2. 
 
 
Translational efficiency is differentially controlled in a condition-dependent manner 

The variability of TE was observed both within a given condition as well as across different 

conditions (Figs. 1a, b), indicating a functional link between TE and phenotype. 

Classification of genes into discrete functional units and the measurement of transcription or 

translation of these units provides insight into the control of gene expression in its functional 

context. Therefore, we functionally annotated the C. ljungdahlii genome using RAST (Aziz et 

al., 2008), resulting in the classification of 1731 genes into 270 subsystems. Differentially 

translated subsystems under all growth conditions were determined by DESeq2 (Love et. 
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2014). To enable direct comparisons between the three conditions, RNA-seq and Ribo-seq 

data per subsystem for growth on CO, H2:CO2 were compared as percent values. The top 20 

differentially translated subsystems (P<0.01) in heterotrophic (Fig. 2 top) and autotrophic 

conditions (Fig. 2 bottom) are shown. 

 

The top differentially translated subsystems in heterotrophic and autotrophic conditions were 

associated with carbon and energy sources present in the corresponding growth media. In 

heterotrophic growth 16 out of the 20 most differentially translated subsystems were those 

related to carbon metabolism (Fig. 2: H1, H2 and H7) and de novo macromolecule synthesis 

and maintenance (Fig. 2: H3, H5, H6, H9-H16, H18 and H19). The remaining clusters (Fig. 

2: H4, H8, H17 and H20) had no obvious link to heterotrophic metabolism or fast growth. 

Glycolysis and the pentose phosphate pathways (H1 and H2) were highly enriched followed 

by the chorismate synthesis subsystem (H3), which is the precursor molecule for de novo 

synthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. The 

sporulation cluster (H4) was unexpectedly highly enriched. After close inspection, we found 

that out of four genes in this subsystem, Clju_c41620 (encoding a putative RNA-binding S1 

domain-containing protein) was the only differentially translated gene. This protein weakly 

interacts with the ribosome and facilitates the recognition of the translation start site (further 

discussed below). 

Under autotrophic growth, subsystems were differentially translated according to the energy 

and carbon sources provided. 13 out of 20 subsystems were closely connected to carbon 

fixation and energy conservation (Fig. 2: A1 A4, A6-A8, A12, A14 and A18), fermentation 

(Fig. 2: A2 and A5) and motility (Fig. 2: A3, A9 and A17). The top four subsystems (A1-A4) 

consisted of the CODH/AscA cluster, 2,3-butanediol dehydrogenase (BDD), flagellum, and 

the Rnf complex. The CODH/AscA complex is directly involved in carbon fixation and energy 

conservation through the Wood-Ljungdahl pathway (WLP). Under CO growth, BDD 

translation represented 7% of the total translation and the flagellum, flagellar motility, and 

bacterial chemotaxis (all related to motility and chemotaxis) represented 4% of total 

translation. Generally, differentially TE subsystems were less frequent under autotrophic 

growth compared to heterotrophic growth. A2 and A4 had the most differentially TE 

subsystems. A2 represents the 2,3-butanediol/acetoin fermentation pathway, whereas A4 

represents the Rnf complex cluster (Fig. 2), which consists of the rnfCDGEAB genes and the 

Rnf transcriptional regulator, rseC. The Rnf complex has been shown to be essential for 

autotrophic growth, but redundant under heterotrophic growth (Tremblay et al., 2012). 

 

Differentially translated subsystem specific to autotrophic or heterotrophic growth 

Highly responsive subsystems in H2:CO2 encompassed the Rnf complex, flavodoxin, and the 

aldehyde:ferredoxin oxidoreductase (Fig. 2: A12). The Rnf complex, discussed below in 
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more detail, is under strong translational control. On the other hand, subsystems induced 

specifically under CO growth were related to acetoin, butanediol metabolism, the flagellum, 

and one-carbon metabolism (i.e. WLP). Cells growing in CO were conspicuously the most 

highly motile when examined under the microscope, which supports the measured 

differential translation. Overall, differentially translated subsystems related to pathways 

involved in H2:CO2 and CO, hint at a regulatory mechanism that specifically accounts for 

physiological requirements when growing under autotrophic conditions. 

 

To gain insight into how TE is differentially controlled under autotrophic and heterotrophic 

conditions, we analyzed genes of major carbon and energy subsystems that were 

significantly enriched (Fig. 2). These systems consisted of glycolysis/gluconeogenesis, the 

WLP, fermentation pathways, the Rnf complex, and the ATPase complex (Fig. 3). Genes 

with redundant functions which are not differentially translated were not included in the 

analysis. As expected, the majority of genes in glycolysis and gluconeogenesis were 

differentially enriched during heterotrophic growth (Fig. 3, blue arrows), whereby fructose is 

taken up preferentially via the fructokinase/fructose-6-phosphate isomerase (G1) and the 6-

phosphofructokinase (G3) route. Under autotrophic growth, the fructose phosphotransferase 

system (PTS) and 1-phosphofructokinase (G2) were also significantly enriched. Two 

enzymes involved in pyruvate metabolism were differentially translated (P4 and B1 in Fig. 3). 

The incomplete TCA cycle exhibited differential translation, whereas genes involved in 

fermentation were only differentially translated under autotrophic growth. Most notably are 

E1 (bifunctional aldehyde/alcohol dehydrogenase) and B3 (2,3-butanediol dehydrogenase), 

both differentially translated with high efficiency in autotrophic conditions (Fig. 3, A2 in Fig. 

2). The WLP is mostly differentially translated under autotrophic growth with W5 (methenyl-

THF cyclohydrolase) and W7 (methylene-THF reductase) being the least efficient (Fig. 3). 

All genes encoding the F1F0 ATPase are differentially transcribed and differentially 

translated under heterotrophic growth condition. The remarkable low-TE of the ATPase 

cluster implies that its translation is relatively more resilient to transcriptional fluctuations. 

The Rnf genes (rnfCDGEAB) are differentially transcribed, differentially translated, and most 

genes, including the Rnf regulator rseC, exhibit differential TE under autotrophic growth 

conditions (further discussed below). 
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Fig. 3 Metabolic map of major carbon and energy pathways exhibiting differential translation and 
differential TE. Differential fold change is calculated as the log2 CO/fructose or H2:CO2/fructose translation ratio. 
Heterotrophically induced (red arrows), autotrophically induced (blue arrows), insignificant (grey arrows) and 
condition-specific (green arrows) translation is depicted in all pathways. Glycolysis & Gluconeogenesis: 
fructose phosphotransferase system (PTS); fructokinase /fructose-6-phosphate isomerase (G1); 1-
phosphofructokinase (G2); 6-phosphofructokinase (G3); ketose-bisphosphate aldolase (G4); triose-phosphate 
isomerase (G5); glyceraldehyde-3-phosphate dehydrogenase (G6); phosphoglycerate kinase (G7); 
phosphoglycerate mutase (G8); enolase phosphopyruvate hydratase (G9); pyruvate:ferredoxin oxidoreductase 
(P1); pyruvate, phosphate dikinase (P2); pyruvate kinase (P3); pyruvate carboxylase (P4); PEP carboxykinase 
(P5). Fermentation: phosphotransacetylase (Ac1), acetate kinase (Ac2), bifunctional aldehyde/alcohol 
dehydrogenase (E1), aldehyde:ferredoxin oxidoreductase (E2), additional alcohol dehydrogenases (E3), 
acetolactate synthase (B1), acetolactate decarboxylase (B2), 2,3-butanediol dehydrogenase (B3); lactate 
dehydrogenase (L). Incomplete TCA cycle: citrate synthase (T1); citrate lyase (T2); aconitase (T3); isocitrate 
dehydrogenase (T4); malate dehydrogenase (T5); fumarase (T6); fumarate reductase (T7). Wood-Ljungdahl 
pathway: electron-bifurcating [FeFe] hydrogenase (H1); Other [FeFe] hydrogenases (H2); [NiFe] hydrogenase 
(H3); hydrogenase maturation factor (H4); bifunctional CO dehydrogenase/ acetyl-CoA synthase (CODH/ACS) 
(W1); seleno formate dehydrogenase (W2); non-seleno formate dehydrogenase (W3); Formyl-THF ligase (W4); 
methenyl-THF cyclohydrolase (W5); methylene-THF dehydrogenase (W6); methylene-THF reductase (W7). Rnf 
complex & ATPase: RnfC (RC); RnfD (RD); RnfG (RG); RnfE (RE); RnfA (RA); RnfB (RB); ATPase (A). 
Fructose (Fruc); fructose 1-phosphate/6-phosphate (Fruc-1P/-6P); fructose 1,6-bisphosphate (Fru-1,6P); 
dihydroxyacetone phosphate (DHAP); glycerol 3-phosphate (Gly-3P); 1,3-bisphosphoglycerate (1,3-DPG); 3-
phosphoglycerate (3-PG); 2-phosphoglycerate (2-PG); phosphoenolpyruvate (PEP); oxaloacetate (OXACO); 
citrate (Cit); isocitrate (Cit-Ac); a-ketoglutarate (a-KetoGlu); malate(Mal); fumarate (Fum); succinate (Suc); 
acetolactate (AcLac); acetoin (Acn); acetaldehyde (AcHO); acetyl-phosphate (Acl-p); tetrahydrofolate (THF); 
reduced ferredoxin (Fdr); oxidized ferredoxin (Fdo). 
 

Rnf subunits are under strict translational control in heterotrophic growth 

The rnfC gene is transcribed at a significantly lower level during heterotrophic growth 

(FPKM= 621.7 under fructose growth compared to 2560.7 and 3080.8 under CO and 

H2:CO2 growth, respectively; Figs. 3, 4a). Notably, rnfC is acutely translationally repressed 

under heterotrophic condition (TE = 0.1 for fructose compared to 0.9 in CO and 1.3 in 

H2:CO2; Fig. 4b), thus contributing only ~1% of the rnf gross translation. Under heterotrophic 
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growth, the Rnf regulator rseC is transcribed at a high level in each growth condition 

(FPKM= 2098.1, 2991.8, 1022.9, for CO, H2:CO2 and fructose growth conditions). However, 

rseC translation is highly repressed under heterotrophic growth at the translational level 

comparable to that of rnfC (TE= 20, 2.2, 0.3 for CO, H2:CO2 and fructose growth conditions, 

respectively; Fig. 4b). Thus, the Rnf complex is highly translationally repressed especially for 

rnfC and rseC. 

 

 
Fig. 4 Transcriptional and translational regulation of the Rnf (white), formate dehydrogenase (black), and 
hydrogenase (grey) complexes in all growth conditions. Results are shown for CO, H2:CO2 and fructose in 
blue, green and red, respectively. (a) The rnf complex (Clju_c11350-Clju_c11410) has one major TSS upstream 
of rnfC. In addition rnfEAB are transcribed from an internal promoter that is positioned at the 3′-end of rnfG. rseC 
is transcribed from one TSS and transcription is comparable across all conditions, however it is poorly translated 
in fructose. (b) rnfC has the lowest translation and lowest TE in heterotrophic growth. (c) Expression of the 
formate dehydrogenase and the hydrogenase genes (Clju_c06990-Clju_c07080). Both clusters are expressed 
from upstream TSSs. hydN and fdhA are translated at a much lower efficiency compared to the hydrogenase B 
and D genes despite having higher transcription. (d) The hydrogenase genes have higher TE compared to the 
formate dehydrogenase genes. The hydrogenase E2 gene is transcribed at a significantly higher level from an 
internal promoter, however its TE is the lowest in the hydrogenase gene cluster. The translational regulation of 
the two clusters is independent of the growth condition. 
 
 

The formate dehydrogenase operon is inefficiently translated compared to the 

downstream hydrogenase complex in all growth conditions 

The only active hydrogenase (Hyd) in C. ljungdahlii is the one orthologous to HytABCDE1E2 

in C. autoethanogenum, which is the only hydrogenase active under H2:CO2 growth (Mock et 

al., 2015). In C. ljungdahlii, Hyd catalyzes the reduction of NADP and ferredoxin and the 

oxidation of H2 under H2:CO2 growth. Additionally, Hyd interacts with formate dehydrogenase 

(Fdh) and the resulting complex (Hyd-Fdh) catalyzes the reduction of CO2 to formate and the 

oxidation of H2 (Mock et al., 2015). Under CO growth, the bifurcating carbon monoxide 

dehydrogenase (CODH) catalyzes the oxidation of CO to CO2 and the reduction of 

ferredoxin. The Hyd-Fdh complex then catalyzes the oxidation of ferredoxin and the 

reduction of CO2 to formate. Under heterotrophic growth, the pyruvate ferredoxin 

oxidoreductase catalyzes the oxidation of pyruvate to acetyl-CoA, the reduction of ferredoxin 
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and the generation of CO2 as byproduct (Latif et al., 2014). CODH catalyzes the oxidation 

of ferredoxin and the reduction of CO2 into CO, whereas Hyd-Fdh catalyzes the reduction of 

CO2 into formate using reduced ferredoxin. Fdh and Hyd are both multimeric complexes, 

both active under all growth conditions tested, and both are essential for the WLP, which 

plausibly underscores the observed stable TE of both complexes in all conditions (Fig. 4c, 

d). Our omics analysis illustrates that at least hydN and fdhA are transcribed from one 

upstream TSSs and their transcriptional levels are greater than hydCBDAE1. The latter 

genes are also transcribed from one detectable TSS, whereas hydE2 is transcribed from an 

internal TSS positioned at the 3′ end of hydA (Fig. 4c). Despite higher transcriptional levels 

of hydN and fdhA, hydBDE1 are translated at a much higher level (higher TE). In fact, hydB 

is at least three-fold more translationally efficient than hydN and fdhA. These results suggest 

translational regulation is seminal for the regulation of key energy conservation centres in 

this model acetogen. 

 

TE is governed by a combination of features linked to the 5′ untranslated region as 

well as the coding region 

As illustrated above, a wide spectrum of genes exhibited condition-dependent variability in 

their TE, suggesting plausible regulation at the translational level. Under the growth 

conditions tested, the vast majority of genes exhibited stable TE despite differences in the 

levels of transcription across growth conditions (88.8%, 89.1%, 88.4% for CO, H2:CO2 and 

fructose respectively). Interestingly, we find strong variability in TE of operonic genes, 

despite having comparable transcriptional level, suggesting that intrinsic mRNA features 

fine-tune the rate of translation (Fig. 1b). To explore these features and determine their 

influence on translation and TE, we compared RNA-seq and Ribo-seq data of genes with 

low-TE (<20th percentile) or low-TE (>80th percentile). The difference between the two sets 

was strikingly more significant at the translational level (Wilcoxon signed-rank test P= 1.7e-92, 

1.2e-78, 8.2e-81 for CO, H2:CO2, and fructose, respectively) when compared to the 

transcriptional level (Wilcoxon signed-rank test P= 1.2e-9, 0.13, 4.4e-6 for CO, H2:CO2, and 

fructose, respectively), implying pronounced translational regulation (Fig. 5a). 
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Fig. 5 Influence of UTR features on translational efficiency. (a) Comparison between genes with low and high 
translational efficiency (TE) in all conditions. Low-TE genes are below 20th percentile, whereas high-TE genes are 
above 80th percentile in all conditions. P<1e-10 are signified with “***”, 1e-10≤P<0.01 are signified with “*” and 
P>0.01 are signified with “n.s” (b) Low- and high-TE genes in all conditions have visible differences in their RBS 
sequence and the AU content in their upper RBS region (URR). RBS and URR are highlighted by boxes at their 
corresponding regions. (c) RBS affinity towards the anti-Shine Dalgarno (anti-SD) sequence (AAGGAGGU) 
positively affects the translational efficiency in all conditions. The affinities of RBS towards the anti-SD region 
were grouped into eleven categories ranging from ∆G of 0 to -12.7. (d) The RBS motif per each category in CO 
was determined using MEME. (e) Positive effect of the 15 bp AU% content in the URR on TE in all conditions. 
TSS data were used to ensure that TSS is upstream of the URR. (f) The distance of the RBS 5′ end from the start 
codon is most optimum at 13 bp. Deviation of the RBS position in either direction negatively influences TE. 
 

 

Previous studies have reported a direct regulation of TE via the 5′-untranslated regions 

(Migone et al., 2002; Gebauer and Hentze, 2004; Wade and Grainger, 2014). Here we 

investigated the effect of different features in the 5′ UTR on TE. To accurately determine the 

5′ UTR regions, we first performed a comprehensive transcription start site (TSS) analysis 

using four different growth conditions. We comprehensively determined a total of 1,465 TSSs 

that correspond to the 5′-end of the primary transcriptome. The TSSs were further 

categorized by their genomic locations. 1,245 TSSs were annotated as primary TSSs, which 

cover 29% of total gene content excluding operons and 50% of total gene content including 

operons. In addition, we detected 116 internal TSSs and 25 antisense TSSs that could 

manifest potential control of gene expression (Wade and Grainger, 2014). 125 orphan TSSs 

were also identified at intergenic regions with no associated genes, suggesting the presence 

of novel transcriptional units. Alignment of 50 bp upstream of TSS revealed conservation of 
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two motifs at -10 and to a lesser extent at -35 consistent with sigma factor binding motifs, 

implying high-accuracy detection of TSS. It is worth to note that we could not detect any 

leaderless genes under the growth conditions tested, which further emphasize the 

importance of translational regulation via the 5′ UTR in C. ljungdahlii. 

To investigate cis-acting regulatory elements of translational control, we defined the 5′ UTR 

from the region between primary TSSs and start codon of corresponding genes. The most 

frequent size range of 5’ UTR distribution was 20-39 nt. The median 5′ UTR length was 47 

nt, implying that for the vast majority of genes, cis-acting elements, and secondary structures 

play a critical role in translational regulation. The ribosome-binding site (RBS) is one of the 

critical elements for translational initiation19 (Li and Weissman, 2012), which in turn directly 

impacts TE. We compared the composition of the -10 and -35 regions of the 5′ UTR by 

analyzing 40 nt upstream of the TSS using WebLogo (Crooks et al., 1994). There were two 

clear differences between low-TE and high-TE genes, namely the high-TE genes had a 

stronger RBS motif and the upper RBS region (URR) had an increased AU content (Figs.4, 

5b). Based on these differences, we investigated how TE is influenced by RBS affinity 

towards the anti-Shine Dalgarno (aSD) sequence (AAGGAGGU), the RBS distance from the 

TSS, and the AU% content of the URR. We analyzed the affinity of the aSD sequence 

towards RBS (see Methods) for both low- and high-TE genes. The difference was highly 

significant between the two groups under all three conditions, suggesting that RBS affinity 

towards the initiating ribosomes is a key determinant for TE. Further, we organized all genes 

into eleven categories according to their ∆G affinity and compared their TE (Fig. 5c). The 

gradual decrease in mean TE with increasing ∆G implies that TE is strongly influenced by 

the RBS affinity towards the aSD (Fig. 5c). Furthermore, MEME analysis (http://meme-

suite.org/tools/meme) showed that RBS motif conservation increased with TE and those with 

lowest TE had a hardly recognizable RBS motif, whereas groups with low-TE exhibit an 

optimal RBS motif (Fig. 5d). 

 

RPS1 (Clju_c41620), a protein weakly associated with the 30S ribosomal subunit, has strong 

affinity towards AU-rich regions at the 5′ UTR (Komarova et al., 2005; Nakagawa et al., 

2010) and interacts with the 5′ UTR of mRNA through a 10-15 nt motif to facilitates the 

initiation of translatio (Subramanian, 1983). In addition, RPS1 furnishes the 30S subunit with 

an RNA chaperone activity that is essential for the binding and unfolding of structured 

mRNAs, allowing the correct positioning of the initiation codon for translation (Duval et al., 

2013). Further, RPS1 competes with RNases for the binding of AU-rich regions, plausibly 

protecting AU-rich URR from degradation, which leads to increased TE (Hajnsdorf & Boni 

2012; Komarova et al., 2005). We reasoned that AU-rich URRs could result in greater TE. To 

validate this hypothesis, we calculated the AU% in regions 15 nt (15 nt showed strongest 

difference between low- and high-TE sets in Fig. 5b) upstream of each RBS. To eliminate 
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false positives arising from the high AT content of the C. ljungdahlii genome (31.1 % GC), 

we limited our analysis to promoters that had their TSS at least 15 nt upstream of the URR. 

Genes associated with transcripts harboring URRs with 100% AU had the highest TE (Fig. 

5e). TE of low- versus high-AU% groups were statistically significant in all growth conditions, 

suggesting that the AU content at the URR significantly impacts TE. 

We further compared the position of the RBS relative to the translation start site and showed 

that genes with highest TE were those harboring RBSs 13 nt upstream of the translation 

start site (Fig. 5f). In addition, we found that the most conserved RBS motifs tend to be at 

optimum distance from the translation start site. Finally, we analyzed the effect of codon 

usage on TE, using the codon adaptation index (CAI; Sharp & Li 1987). We found that the 

average AU% has strikingly more influence on TE when comparing low- and high-TE sets 

than CAI (Mann-Whitney test, PCAI=1.9e-07, PAU%=8.3e-60). 

 

Features that promote low-TE are enriched in differentially transcribed genes involved 

in condition-specific carbon and energy metabolic pathways 

Our results hint towards prioritization of subsystems involved in carbon and energy 

metabolism by differentially increasing their TE in a condition-dependent manner. 

Accordingly, we reasoned that genes classified in these subsystems could plausibly be 

prioritized for higher translation rates through optimization of UTR and coding region features 

that facilitate higher initiation rates and/or features that promote mRNA stability. In contrast, 

genes under other subsystems involved in general cell maintenance activities would carry 

less optimal features. This could be beneficial since less translationally efficient systems are 

higher translational stability (Fig. 5a). Accordingly, if features in the UTRs and in the coding 

regions have significant influence on TE in a mRNA-level-dependent manner, we expect to 

find subsystems related to carbon and energy metabolism enriched in genes that are 

differentially transcribed and show a low-TE, but not enriched in differentially transcribed and 

low-TE genes. 

We created two groups comprising differentially transcribed genes (>1.5 fold change) with 

high or low-TE, without a priori knowledge of the subsystems they are classified under. 

Group 1 represents our “test” group and consist of low-TE genes (>80th percentile) for both 

autotrophic growth (blue and green dots in Fig. 6a, b) and heterotrophic growth (red dots in 

Fig. 6a, b). group 2 represents our “control” group and consists of low-TE genes (<20th 

percentile) in both autotrophic (blue and green squares in Fig. 6a, b) and heterotrophic 

conditions (red squares in Fig. 6a, b). 

We calculated RAST-enrichment as the ratio of the number of genes found in group 1 or 

group 2 relative to the total number of genes in each subsystem, excluding subsystems that 

contain only one gene. We sorted the subsystems according their highest ratio and aligned 

the top 10 subsystems in autotrophic group 1, heterotrophic group1, autotrophic group 2 and 
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heterotrophic group 2 to RAST categories. We found a clear enrichment of subsystems 

under the energy (respiration) category in autotrophic group 1 (Fig. 6c). Likewise, we found 

clear enrichment of subsystems under the carbon metabolism category in heterotrophic 

group 1 (Fig. 6d). In contrast, no enrichment of subsystems under carbon or energy 

categories in autotrophic or heterotrophic group 2 were detected. Instead, we identified 

subsystems involved in general cell maintenance. 

 

 
Fig. 6 Analysis of translational efficiency, functional allocation, and genomic features of differentially 
transcribed mRNA. (a) X-axis represents Log2 ratio of differentially induced genes in cells grown with CO or 
fructose (Fruc). TE above 80th percentile is represented in blue and red dots for CO and fructose, respectively. 
TE below 20th percentile is represented in blue and red squares for CO and fructose, respectively. (b) Similar to 
(a), with H2:CO2 instead of CO. (c) RAST subsystem count of low-TE genes that are autotrophically differentially 
expressed; (d) low-TE genes that are heterotrophically DE; (e) RAST subsystem count of low-TE genes that are 
autotrophically differentially expressed; (f) RAST subsystem count of low-TE genes that are heterotrophically 
differentially expressed. Autotrophic and heterotrophic low-TE and low-TE genes are taken from those shown in 
(a) and (b). 
 
 
Overall, our results show that carbon and energy metabolism subsystems have evolved to 

be profoundly translationally efficient, such that they are highly responsive to changes in 

mRNA levels in a growth-condition-dependent manner. On the other hand, less responsive 

subsystems involved in general cell maintenance that are growth-condition-independent 



	 18	
have lower TE such that their translation is less affected by fluctuations in transcription, 

that might result from changes in growth conditions. 

We see a clear influence of UTR features, CAI, and coding region AU% on TE. The Mann-

Whitney test was used to calculate P values (Table 1). The AU% of the coding region had a 

more significant P value than CAI, suggesting that AU% in the coding region has a stronger 

impact on TE than CAI. The AU% at the URR was also more significantly different between 

low- and high-TE groups in autotrophic growth but lower in heterotrophic growth. Thus, the 

AU% of the URR could be more important in regulating TE in differentially translational 

efficient genes than RBS strength under autotrophic growth, whereas those genes that are 

differentially translational efficient under heterotrophic growth could be more influenced by 

the RBS strength. 

 
Table 1. Comparison of 5′ UTR and coding region features 
for groups discussed in Fig. 6. 
Feature Autotrophic 

P values*† 
Heterotrophic 
P values*‡ 

URR AU% 5.81E-05 2.23E-03 
RBS ΔG 2.60E-03 6.37E-05 
RBS distance 8.51E-02 1.54E-02 
Codon adaptation index 6.87E-05 3.10E-04 
Coding region AU% 6.60E-10 1.20E-07 
* Mann-Whitney U test between low- and high-TE mRNA 
† N=159 
‡ N=196 

 

Here, we carried out a multi-omics approach to study the translational control underlying 

important carbon and energy metabolism in the model acetogen C. ljungdahlii. RNA-seq and 

Ribo-seq data were combined from identical samples to ensure high robustness. Datasets 

were highly correlated in comparison to previous studies, in which RNA and ribosome 

footprints were obtained from different samples. In all growth conditions, we found that a 

sizable number of genes had TEs markedly above or below the average, implying strong 

translational regulation. By using RAST functional enrichment at the subsystem level, we 

showed that carbon and energy pathways were highly regulated at the translational level 

under autotrophic growth, whereas under heterotrophic growth translational regulation was 

highest for carbon metabolism subsystems and subsystems involved in fast growth including 

de novo synthesis of amino and nucleic acids. 

We provided examples of strong translational control in energy conservation pathways. For 

example, the Rnf-, the formate dehydrogenase-, and the hydrogenase complexes were all 

highly regulated at the translational level. The Rnf complex was shown to be translationally 

repressed in heterotrophic growth, where it has been shown to be dispensable. However, the 

formate dehydrogenase and the hydrogenase complexes showed no apparent difference in 

their TE in all growth conditions; the hydrogenase complex on average has higher TE than 

the formate dehydrogenase in all growth conditions. The ATPase genes were translationally 
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inefficient regardless of the growth condition, implying strong translational stability that is 

independent of autotrophic or heterotrophic growth conditions. 

 

We defined multiple features in the 5′ UTR and in the coding region that showed a clear 

effect on TE. By comparing enrichment of these features in highly translationally efficient and 

in highly translationally inefficient subsystems, we showed that AU content at the URR as 

well as at the coding region are very important determinants of TE. In addition, RBS affinity 

to aSD and the distance of the RBS from the translation start site were also critical 

determinants. 

 

By analyzing high-TE (group 1) and low-TE (group 2) differentially transcribed mRNA, we 

demonstrate that genes related to carbon and energy metabolism are enriched in group 1 

plausibly because they are required to be translated readily and efficiently to quickly adapt to 

changes in the relevant growth conditions tested. In contrast to group 1, we demonstrate that 

translationally inefficient genes in group 2 are involved in housekeeping activities, such as 

membrane transport and protein synthesis (ribosomal proteins) and tend to have constant, 

but low-TE. Thereby, we argue that genes in group 1 are very sensitive to changes in mRNA 

levels and their TE positively correlates with mRNA levels. We further demonstrate that 

genes important in all growth conditions, including housekeeping genes, have lower TE, 

which render them less sensitive to fluctuations in mRNA levels. Furthermore, we show that 

metabolic and energy subsystems specific for growth in autotrophic or heterotrophic 

conditions are mostly enriched in group 1. Whereas group 2 contained mostly housekeeping 

subsystems. 

 

Our study uncovers a novel regulatory mechanism for a bacterium that thrives at the 

energetic limit of life and highlights utilization of scarce resources at optimal efficiency. We 

propose that pathways involved in carbon and energy metabolism are specifically controlled 

through optimizing the TE level, allowing for dynamic resource allocation. Our findings have 

broad implications on how microorganisms control and optimize their metabolic networks. 

The results provide a new framework for metabolic regulation in this model acetogen, that 

can readily be extrapolated to other industrially important microbes. Unraveling of regulatory 

mechanisms lays the foundation for advanced strain design and engineering efforts. 
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B Predicting proteome allocation, overflow metabolism, and metal 

requirements in a model acetogen 

Reconstructing an acetogen ME-model. To create an acetogen metabolic and gene 

expression model (ME-model), an existing genome-scale M-model of C. ljungdahlii (iHN637) 

was first updated (Nagarajan et al., 2013). By using recent literature and genome 

annotations as reference (Mock et al., 2015; Tan et al., 2015; Seemann, 2104; Kopke et al., 

2010; Becker et al., 2005), twentyeight reactions were added and four reactions removed 

from iHN637. The updated M-model (iJL680) consisted of 43 additional genes and contained 

updated cofactor stoichiometry and directionality of redox reactions based on experimental 

Fig. 7: Representation of the ME-model. The E-matrix reconstruction accounted for transcription, 
translation, and translocation as well as associated reactions to produce functional enzymes. Integration of 
the E-matrix (colored arrows) with the M-model (grey arrows) resulted in the ME-model. 
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data and exhibits comparable predictability. 

 

Following established methods, an acetogen gene expression network (i.e., E-matrix) was 

reconstructed from C. ljungdahlii (Lerman et al., 2012; Thiele and Palsson, 2010; Thiele et 

al., 2009; Lloyd et al., 2017). This reconstruction included an additional 196 protein-coding 

open reading frames (ORFs), 89 RNA genes, 576 transcription units (415 of which were rho-

dependent and 29 were RNA-stable), 19 types of rRNA modifications, 17 types of tRNA 

modifications, 735 protein complexes with updated stoichiometry, 219 modified protein 

complexes, and 134 translocated proteins. The turnover rate for metabolic enzymes 

(approximated by keff, a required parameter for ME-models) was set to the average turnover 

rate of all enzymes found in acetogens in the enzyme database Brenda, 25 s-1 (Placzek et 

al., 2017). Coupling constraints, which link macromolecular synthesis costs with reactions, 

were calculated using the formulation in COBRAme (O’Brien et al., 2014; Lloyd et al., 2017; 

Placzek et al., 2017). 

 

Using the COBRAme framework, the acetogen E-matrix was integrated with iJL680 to create 

the ME-model, iJL965-ME. iJL965-ME accounts for all of the major central metabolic 

pathways and biomass synthesis pathways as well as transcription, translation, 

macromolecule modifications, and translocation reactions (Fig. 7). Because iJL965-ME 

covers an extensive scope of cellular processes, we can predict fermentation profiles, 

including overflow metabolism products, gene expression, and usage of co-factors and 

metals, which are described in detail below. 

 

Accuracy of predicted growth and yield phenotypes improve with iJL965-ME. Unlike 

the M-model, iJL965-ME predicted both batch (i.e., maximum nutrient uptake) and nutrient-

limited growth conditions for C. ljungdahlii. Due to internal constraints on protein production 

and catalysis, referred to as proteomic limitations (O’Brien et al., 2014), iJL965-ME growth 

rate was a non-linear function of the substrate uptake rate. Thus, optimal carbon uptake rate 

and maximum growth rate could be simultaneously predicted, whereas M-models require 

information of one rate to predict the other (O’Brien et al., 2014). As a result, we identified 

unique growth rate and yield functions for growth with CO, CO2+H2, or fructose (Fig. 8).  

 

Overflow metabolism is the seemingly wasteful process in which a substrate is not fully 

oxidized, resulting in lower energy yields, inefficient metabolism, and fermentation products.  

Hypotheses for why this phenomenon occurs are varied, which makes characterizing and 

modelling mixed fermentation production so challenging. Generally, M-models do not predict 

alternative fermentation products without additional constraints on redox fluxes, oxygen 

uptake, or the objective function Nagarajan et al., 2013; Valgepea et al., 2017a; Valgepea et 
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al., 2017b; Dash et al., 2014). However, iJL965-ME was able to predict intrinsically changes 

in the primary fermentation product as a function of substrate availability for CO and fructose 

growth. When protein production approached proteome limitations (exemplified by in silico 

maximum growth rate and in vivo mid-log phase), iJL965-ME correctly predicted the start of 

ethanol secretion after acetate secretion due to trade-offs in protein production (Fig. 8A, C). 

Thus, iJL965-ME was able to recapitulate overflow metabolism by accounting for redox 

balancing and concurrent proteome limitations. 

 

The ME-model also predicted substrate-specific growth rates with high accuracy. 

Specifically, growth rate predictions from iJL965-ME were more accurate than the M-model, 

iJL680 (Pearson’s r: 0.68 > 0.29; Spearman ρ: 0.60 > 0.091; Fig. 9A). Due to distinct 

resource requirements (the main factor being proteome composition) when metabolizing 

different substrates, unique in silico maximum growth rates for individual substrates can be 

obtained through iJL965-ME. Unlike the M-model (iJL680), which predicted that glucose and 

fructose would have identical growth rates, iJL965-ME correctly predicted slower growth on 

glucose than for fructose. Furthermore, iJL965-ME highly improved predictions of the ratio of 

maximum acetate secretion rate to substrate uptake rate compared to the M-models iHN637 

and iJL680 (Fig. 9B).  
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Interestingly, iJL965-ME predicted previously unknown secretion of glycerol (<2.5e-3 

mmol*gDW-1*h-1) following acetate and ethanol production during growth on xylose or 

glucose, but not on arginine or pyruvate. Like ethanol, glycerol secretion occurred due to 

trade-offs in proteomic limitations resulting in overflow metabolism, as the cell no longer 

invested resources to recycle glycerol, a byproduct of cardiolipin production (Fig. 9C). In 

order to verify glycerol production, we carried out HPLC analysis and measured 0.024±0.012 

mM and 0.083±0.018 mM of glycerol from cultures grown on either xylose or glucose, 

respectively.  

 

Predicting gene expression. Because RNA and protein abundance requirements are 

coupled to reaction fluxes in ME-models instead of a lumped biomass composition like in M-

models, ME-models enable in silico predictions of transcription and translation (mmol*gDW-

1*h-1) (O’Brien et al., 2014, Lloyd et al., 2017). To test the accuracy of our model, genes were 

Fig. 9: Predictions of growth rate and product production. a, Two sets of predicted growth rates, from 
iJL680 and iJL965-ME, were plotted against in vivo measured growth rates for arginine, xylose, pyruvate, 
glucose, CO, and fructose growth conditions (±std, n=3). Linear regressions and 95% confidence intervals 
were represented by dashed lines and shaded areas, respectively. In iJL680, carbon atom uptake was 
constrained to 30 mmol*gDW-1*h-1, while in iJL965-ME, the optimal carbon uptake was constrained by 
inherent proteome limitations. r and p represent Pearson's correlation and p-value. b, Predicted maximum 
acetate secretion rate (Ac; mmol*gDW-1*h-1) to substrate uptake rate (SUR; mmol*gDW-1*h-1) was plotted 
against measured averaged values. c, Predicted pathway mechanism for observed glycerol production in 
spent media. Glycerol was a byproduct of cell membrane formation during cardiolipin production. While the 
cell was carbon-limited, glycerol was recycled into biomass using the pathway highlighted in green. When 
cells were proteome-limited, C. ljungdahlii secreted glycerol (purple arrow). Abbreviations: 1 = 
phosphatidylglycerol (n-C14:0), 2 = cardiolipin (n-C14:0), 3 = glycerol, 4 = dihydroxyacetone, 5 = 
dihydroxyacetone phosphate, CLPNS140 = cardiolipin synthase (n-C14:0), GLYCt = glycerol transport, 
GLYCDx = glycerol dehydrogenase, DHAK = dihydroxyacetone kinase. 
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categorized by RAST subsystems and summed as per predicted transcription flux reactions. 

The in silico results were strongly correlated to RNA-seq data for C. ljungdahlii grown on CO, 

CO2+H2, or fructose (r >=0.82). At the highest correlation, all categories fell within the 

prediction interval of the linear regression (Fig. 10A-C), enabling to forecast substrate-

specific expression of pathways.  

 

At the gene level, 396 genes could be strongly linked to growth rate (r>0.9, 

p<0.05*Bonferonni). However, correlation of these genes was dependent on the growth 

substrate (68 genes for CO, 275 for CO2+H2, and 224 for fructose). Growth-correlated genes 

that were shared between conditions involved genes related to translation (e.g. rRNA and 

specific tRNAs). Under autotrophic conditions, expression of WLP genes were correlated 

more with substrate availability than growth rate (rCO: 0.983>0.955, rCO2+H2: 0.996>0.884; Fig. 

10D, E). In addition, the reactions fluxes of essential WLP reactions carbon monoxide 

dehydrogenase (CODH4) and 5,10-methylenetetrahydrofolate reductase (MTHFR5) were 

linearly related to CO uptake during growth on CO, while other non-WLP redox reactive 

reactions (e.g. RNF) were correlated with growth rate. Similarly, WLP reactions were linearly 

linked to CO2 uptake in CO2+H2 conditions, in addition to the linear response of 

ferredoxin:NADPH hydrogenase to H2, while non-WLP redox reactions were correlated with 

growth rate. 

 

In heterotrophic conditions, the WLP was more active under nutrient-limitations than 

proteome limitations, as its activity level was related to acetate secretion (r = 0.993, p<0.01, 

Fig. 10: Predicted and experimental gene expression. Categorized by RAST subsystem and summed, 
predicted gene expression (transcription flux reactions) was compared to RNA-seq data for C. ljungdahlii 
grown on a, CO, b, CO2+H2, and c, fructose. Linear regressions, 95% confidence intervals of the regression, 
and 95% prediction intervals are represented by lines, dark shaded areas, and light shaded areas 
respectively. Scatter plots shown are for the highest Pearson r between predicted and experimental data. 
Normalized total transcription flux (mmol*gDW-1*h-1) of the Wood-Ljungdahl pathway was plotted against 
carbon substrate uptake rate for d, CO, e, CO2+H2, and f, fructose. Pearson r reflects correlation with growth 
rate. 
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Fig. 10F). The WLP was recapturing CO2 for biomass production using the reducing 

power gained by metabolizing fructose. At greater than 57% of the optimal fructose uptake 

(Fig. 10F), the primary provider of oxidized ferredoxin switched from WLP to 

ferredoxin:NADP reductase (FRNDPR2r) and acetaldehyde:ferredoxin oxidoreductase 

(AOR_CL). Extraneous reducing power captured by NAD+ from glyceraldehyde-3-phosphate 

dehydrogenase (GADP) was removed by producing ethanol (alcohol dehydrogenase; 

ALCD2x). These findings are corroborated by a previous report that C. ljungdahlii grows 

mixotrophically, instead of heterotrophically, when presented with sugar as a carbon source 

(Jones et al., 2016).  

 

Nickel controls phenotype through Wood-Ljungdahl activity. In M-models, metal 

availability and growth rate are linearly 

correlated even though there is contrary 

experimental evidence (Saxena and Tanner, 

2011). In iHN637, seven of ten metals (Ca2+, 

Cu2+, Mg2+, Mn2+, Mo2+, Ni2+, Zn2+ + Co2+, Fe2+, 

Na+) could only be imported or exported (in 

addition to their inclusion in the biomass 

objective function, which represents the total 

composition of the cell (Feist and Palsson, 

2010)), and only Co was predicted to 

participate in flux-carrying reactions that were 

not a transport reaction or biomass 

production. Thus, most metal ions were not 

associated to the reactions they help catalyze. 

This represents a general fact for M-models.  

Cofactor integration in iJL965-ME, however, 

allows systematic interrogation of the effects 

of metal availability. Particularly, iJL965-ME’s 

only nickel-containing proteins, CODH4 and 

carbon monoxide dehydrogenase:Acetyl-CoA 

synthase (CODH_ACS), are part of the WLP, 

which afforded the possibility of controlling this 

pathway through changes in media 

composition both in silico and in vivo. Due to 

C. ljungdahlii’s reliance on WLP for 

autotrophic growth, nickel was predicted to be 
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essential for CO-growth. Although true 

essentiality could not be tested due to 

trace nickel in the media, the amount of 

additional nickel (added as multiples of 

0.10 mM) significantly influenced in vivo 

growth rate in a quadratic fashion as 

predicted (Fig. 11A). According to 

iJL965-ME, the non-linear effects of 

nickel limitations were caused by an 

uneven distribution of metal resources 

between CODH_ACS and CODH4, 

resulting in different rates of decreasing 

protein activity (Fig. 11B). In turn, the 

other reactions in WLP were correlated 

to either CODH_ACS, like MTHFR5 and 

methyltetrahydrofolate corrinoid/iron-

sulfur protein methyltransferase 

(METR), or CODH4. Finally, iJL965-ME 

predicted that while nickel availability 

affected growth rate, protein activity, and 

acetate and ethanol yield, the acetate-

to-ethanol production rate would not 

change. The acetate:ethanol production 

rate ratio, as determined by HPLC, 

remained constant at 1.4 for different 

nickel concentrations. Acetate:ethanol 

production rate was unchanged with a 

ratio of 1.48±0.34, regardless of the 

nickel concentrations used (0x, 1x, and 

5x [10x excluded due to carbon 

depletion]. 

 

iJL965-ME predicted that nickel limitations would have different effects on fructose-grown 

cells. Removal of nickel was not predicted to affect growth rate or fructose uptake 

significantly (Δgr=98%, Δfructose=99%, Fig 6A). However, there was no CODH_ACS or METR 

activity under nickel depletion, which reduced the WLP activity and eliminated acetate 

secretion. Instead, the model predicted that only ethanol secretion would occur (Fig. 12B, 

Fig. 12: Effects of nickel availability on C. ljungdahlii 
grown on fructose. a, Predicted growth rate and protein 
activity of carbon monoxide dehydrogenase:acetyl-CoA 
synthase (CODH_ACS) were plotted against relative nickel 
uptake (mmol*gDW-1*h-1). b, Predicted ethanol (EtOH) 
secretion at optimal nickel uptake (WT) and no available 
nickel (-Ni2+) were plotted against relative fructose uptake 
(mmol*gDW-1*h-1).  c, Predicted acetate (Ac) secretion at 
optimal nickel uptake and no available nickel were plotted 
against relative fructose uptake (mmol*gDW-1*h-1).  
Measured d, growth rate, e, fructose consumption, f, final 
ethanol concentration, and g, final acetate concentration of 
fructose-grown C. ljungdahlii without added nickel and with 
ten times the concentration of nickel were plotted (±std, 
n=3). Gray asterisk indicates difference significance is 
p=0.06, and three black asterisk indicates significance of 
p<0.001. 
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C). To test this prediction, C. ljungdahlii was grown either without added nickel (0x) or with 

high nickel concentrations (10x). Both cultures consumed the same amount of fructose 

(p=0.26) and produced identical amounts of ethanol (p=0.95), but exhibited different growth 

rates (p=0.062) and final concentrations of acetate (p=2.2e-4) (Fig. 12D-G). Increased 

acetate secretion rate (p=0.016) and final acetate concentrations in the 10x condition were 

due to the nickel-stimulated WLP consuming more CO2.  

 

We showed that the incorporation of the E-matrix into constraint-based genome-scale 

models significantly widens the scope of their application, including prediction of overflow 

metabolism and optimal expression levels, as well as media optimization strategies. Such 

capabilities proved useful for exploring and understanding system responses of C. 

ljungdahlii. The reconstructed C. ljungdahlii ME-model (iJL965-ME) was not only more 

accurate than the M-model at predicting growth rates and acetate secretion rates, but was 

also capable of predicting secretion of ethanol (H2, as a less effective oxidizing agent than 

CO, was an exception) and the novel secretion of glycerol (Figs.  8, 9). Furthermore, in silico 

predictions of gene/subsystem expression were highly comparable to in vivo transcriptomics 

for three separate conditions, bolstering confidence in predicting macromolecular responses 

to environmental changes (Fig. 10A-C). C1 metabolism under both autotrophic and 

mixotrophic conditions was examined in more depth, and the potential of controlling WLP 

activity through media composition was explored (Figs. 10-12). Note that acetogens grow 

mixotrophically while using organic substrates. Although the lack of CODH_ACS activity 

(achieved by removing nickel from the media) may not cease WLP activity entirely, it may 

stop acetate production (as in vivo nickel depletion results suggest), leading to ethanol 

production as the main fermentation end product (Fig. 12). However, the discrepancy 

between in silico and in vivo growth rates of nickel-depleted cells grown on fructose implied 

that WLP was more important than predicted for maximizing growth in mixotrophic conditions 

(Fig. 12). In contrast, nickel was essential for CO-growth, but had no effect on the 

acetate:ethanol ratio (Fig. 11). 

As demonstrated in this study, ME-models like iJL965-ME provide a comprehensive, 

genome-scale, systems biology approach that links the environment and macronutrient 

metabolism. In particular, the combination of C1 metabolism, multi-omics predictions, and 

cofactor integration in iJL965-ME is an important milestone for a holistic understanding of 

metals in metabolism. Although nickel was the only trace metal to be investigated here, 

iJL965-ME invites further studies elucidating specific effects of concurrent metal limitations 

and genetic perturbations. The ME-model represents an inclusive method that unites 

analysis and integration of multiple data types.  
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C Exploring the evolutionary significance of tRNA operon structure using 

metabolic and gene expression models 

 

An operon is a co-regulated cluster of genes that are expressed on the same RNA transcript. 

These genomic features arise through a variety of means, including horizontal gene transfer 

that places a gene under another gene’s promoter, horizontal gene transfer of whole 

operons, deletion of intervening sequences, and genome rearrangement. Though the 

presence of an operon may be a random event, selection pressures can drive the 

maintenance of operons. For example, potential benefits bestowed by an operon onto the 

host organism include a reduction in regulation costs (Price et al., 2005), diminished 

stochastic gene expression through synchronicity of protein ratios (Ray and Igoshin, 2012; 

Nunez et al., 2013) and insurance that all functional steps in a pathway are produced 

(Zaslaver et al., 2006). Such theories hint at an evolutionary optimization problem to promote 

efficiency in gene expression. 

In order to optimize cellular efficiency, translation must be carefully controlled because it 

requires the highest energy and resource expenditure of any process in fast-growing cells. 

Since the available tRNA pool could be rate-limiting during protein translation (Kurland, 

1993), close correspondence between codon usage and the available tRNA pool, often 

quantified through the tRNA adaptation index (tAI) (dos Reis et al., 2004), must be 

maintained efficiently. Even though tRNA co-expression explained E. coli’s tRNA profile 

better than tRNA gene copy number (widely recognized as a correlated estimate for tRNA 

profile (Kanaya et al., 1999; McDonald et al., 2015) relatively few papers have investigated 

the influence of operons on tRNA expression levels (Wald et al., 2014). Yet rRNA and tRNA 

genes can often be found on the same operon, and 23.8% of all tRNA genes from 

prokaryotic genomes sequenced by 2014 were found to be located in an operon with another 

tRNA gene Wald et al., 2014). Such evidence implies that evolutionary pressures may also 

shape genomic tRNA structure. 

Constraint-based modeling offers a biophysically-based approach to estimate tRNA 

concentrations and usage. In particular, constraint-based metabolic and gene expression 

models (i.e., ME-models) are well-suited for examining potential insights into operon 

structure. The scope of predictions that ME-models cover is extensive; these models 

account for transcription, tRNA charging, translation, and metabolic reactions. Additionally, 

ME-models incorporate the underlying genome architecture through transcriptional units that 

account for co-expression of genes.  ME-models have been used to successfully recapitulate 

several levels of phenotypes, from growth rates to pathway expression levels, and even 

undiscovered operons (Lerman et al, 2012; O’Brien et al., 2013). As of writing, only E. coli 

and C. ljungdahlii have completed ME-models that use the COBRAme framework, which 
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allowed comparisons of model perturbations with the knowledge that the constraints within 

the models (e.g., coupling constraints) were similarly formulated. 

Using the two available COBRAme-based ME-models, one for Escherichia coli and one for 

Clostridium ljungdhalii, we examined the systematic importance of tRNA co-expression. We 

validated the two models for the purposes of this study and examined the tRNA operon 

structures, thereby identifying unique tRNA operon solutions to two different selective 

pressures. One solution led to optimization of phenotype through fragmenting operons and 

the other solution to optimized efficiency through optimal grouping of tRNAs.  

tRNA operon structure: Fragmentation versus modularity. Examination of tRNA-

containing operons organization in two bacteria, the fast-growing generalist E. coli and the 

slower-growing homoacetogen C. ljungdahlii, revealed two different strategies (Caspi et al., 

2008).  These two strategies will be referred to as fragmentation, where tRNA organization 

leads to both a high number of singly-transcribed tRNA genes and a minimization of co-

transcribed tRNA species, and modularization, which is the tendency towards polycistronic 

tRNA genes. In E. coli, 23% of tRNA genes could be transcribed monocistronically, and 37% 

could be expressed as polycistronic transcripts that lack other tRNA genes. When 

considering unique tRNA species by anticodon, the number of single transcripts that can be 

uniquely expressed increased to 54%, and for tRNA species by amino acid (AA), 56%. 

Furthermore, E. coli appeared to favor less tRNA genes per transcript and did not have an 

operon containing more than seven tRNAs, while the highest number of unique tRNA 

species per operon was four. Thus, E. coli displays a fragmentation strategy for its tRNA 

operon structure (blue bars, Fig. 13).

 

In case of C. ljungdahlii, the analysis revealed that only 8.4% of tRNA genes could be 

expressed monocistronically and 26% could be expressed as polycistronic transcripts 

lacking other tRNA genes.  Looking at tRNA species, only 32% of tRNAs by anticodon and 

34% of tRNAs by AA were capable of being uniquely expressed on a single transcript. Thus, 

Fig. 13: Distribution of tRNAs by operon in E. coli and C. ljungdahlii. Bar graphs show operon count by 
(a) the number of genes per operon, (b) the number of tRNAs per operon, (c) the number of unique 
anticodons as represented by tRNAs per operon, and (d) the number of unique amino acids as represented 
by tRNAs per operon for E. coli (blue) and C. ljungdahlii (green). All potential operons, including alternative 
start and end sites, are included. 
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C. ljungdahlii had the majority of its tRNA species co-transcribed with another tRNA type, 

and C. ljungdahlii could express fifteen tRNAs, including the only tRNA-his gene, on a single 

transcript. The bias towards polycistronic tRNA genes means that C. ljungdahlii prefers 

modularization in comparison to E. coli (green bars, Fig. 13). 

Predicted tRNA charging amino acid usage is consistent with amino acid 

requirements. AA compositions predicted by the E. coli ME-model (iLE1678-ME) and the C. 

ljungdahlii ME-model (iJL965-ME) were compared against in vivo data. AA composition was 

calculated from transcriptomic data using RNA-seq (FPKM) data from E. coli batch-grown on 

glucose, glycerol, xylose, and acetate and C. ljungdahlii batch-grown on fructose, CO and 

CO2 +H2 as a proxy for protein count. Only proteins reconstructed in the ME-models were 

considered. For each substrate condition, the ME-models were simulated at maximum 

growth rate (which was calculated when substrate availability was greater than what can be 

consumed, and considered to be equivalent to in vivo batch growth), half of the maximum 

substrate uptake rate, and minimal substrate availability (i.e., tenth of maximum substrate 

uptake rate).  Predicted AA compositions were calculated from tRNA charging reactions 

(mmol*gDW−1*h−1) which reflects the exact AA requirements of the in silico cell. 

Fig. 14: Comparing in silico and in vivo AA composition for E. coli and C. ljungdahlii. In vivo AA 
compositions were calculated using RNA-seq, harvested mid-log phase from batch-grown cells, as a proxy 
for protein count. In silico AA compositions were the sum of AA-categorized tRNA charging reactions 
(mmol*gDW*−1*h−1) at maximum growth rate (red), half of the maximum substrate uptake (green), and 
minimum (i.e., tenth) of the maximum substrate uptake rate (blue) on glucose, glycerol, or xylose for E. coli 
(top row) and fructose, CO, or CO2 +H2 for C. ljungdahlii (bottom row). Values are relative to the most AA 
required, which is alanine for E. coli and lysine for C. ljungdahlii. 
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The predicted and measured AA compositions were highly comparable (R2  ≥ 0.964 for all 

batch-growth conditions in both models; Fig. 14). The high correlation between in silico and 

in vivo values continued to hold true for tRNA molecule concentrations (uM) and calculated 

AA composition from protein expression (ribosome profiling, RPKM) in E. coli, both of which 

were more appropriate comparisons for in silico tRNA expression and tRNA charging 

reactions. With these validations for AA composition and our knowledge of the genome 

architecture, we have confidence in the output of translation and the underlying structure of 

transcription in the ME-models for batch conditions. The goodness of fit decreased when in 

vivo batch-grown cells were compared to in silico growth on half of the maximum substrate 

uptake rate and minimal substrate availability.  Thereby iLE1678-ME and iJL965-ME 

demonstrated their capability to predict variable AA compositions dependent on substrate 

availability. Furthermore, expression values from in silico minimal and half substrate 

availability were able to explain tRNA molecule concentrations in low growth rate (0.4 h−1) 

better than in silico maximum growth rate could. Although the higher correlations imply that 

ME-models continue to be accurate at lower growth rates, the actual influence of growth rate 

on tRNA pools is currently inconclusive and requires more investigation. Despite the lack of 

evidence to support conclusions from non-optimal growth rates, ME-models still provide an 

opportunity to specifically examine the effects of varying tRNA operon structure. 

Optimized tRNA operon structure meets tRNA abundance requirements. To examine 

whether tRNA gene location and co-transcription influences the cell, 1000 models with all 

tRNAs randomly shuffled into another tRNA’s location, henceforth referred to as Monte-Carlo 

(MC) tRNA location models, were built for E. coli and C. ljungdahlii each. The MC tRNA 

location models were then simulated with validated substrates (glucose, glycerol, xylose, and 

acetate for E. coli and fructose, CO, and CO2+H2 for C. ljungdahlii) at maximum growth rate, 

half of the maximum substrate uptake rate, and minimal substrate uptake (Fig. 15). With this 

setup, we can examine whether the two organisms’ different tRNA organization strategies, 

fragmentation and modularization, promote optimization for translational purposes under 

particular growth conditions.
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Shuffling tRNA order and location has a dramatic effect on tRNA expression, as the range of 

AA-categorized tRNA (tRNA-AA) expression can vary drastically in relation to other tRNA-AA 

molecules (Fig. 16). When tRNA-AA expressions of the MC tRNA location models were 

compared against the original models’ (iLE1678-ME and iJL965-ME which contain published 

genome architectures), tRNA expression was revealed to be minimized.  Both iLE1678-ME 

and iJL965-ME performed better than the median MC tRNA location model because they 

expressed less total tRNA for a significant number of tRNA-AA molecules (p< 0.02 for all 

maximum growth rate conditions; Fig. 16). Thus, the original tRNA operon structures led to 

reduced cost of tRNA expression. 

In contrast to the flux ranges of tRNA expression, the AA composition of the cell, as 

represented by tRNA charging reactions, remains relatively constant. Regardless, iLE1678-

ME and iJL965-ME revealed that the published tRNA operon structures also promoted 

utilization of tRNA usage (i.e., tRNA charging reactions) at maximum growth rate.  For a 

significant number of tRNA-AA molecules, iLE1678-ME and iJL965-ME used more tRNA in 

tRNA charging reactions than the median MC tRNA location model (p < 0.05 for all 

conditions but two; Fig. 16).  E. coli on acetate and C. ljungdahlii on fructose were the 

exceptions, as tRNA expression was minimized, but tRNA usage was not maximized. Thus, 

the original tRNA operon structures generally led to increased tRNA usage. 

Fig. 15: Diagram of the Monte-Carlo method for tRNA location shuffling. Red boxes represent tRNA 
genes, blue boxes represent rRNA genes, and grey boxes represent open reading frames. Operon diagram 
is not to scale for gene size and distance. 
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If tRNA expression could be likened to capital costs and tRNA usage to operating costs, then 

E. coli and C. ljungdahlii have minimized capital costs by optimizing expression of necessary 

tRNAs. The operating costs have likewise been maximized, even though tRNA operon 

structure does not influence operating costs as strongly as it does capital costs, as seen 

Fig. 16  Comparing tRNA expression and tRNA charging fluxes against the original models’.  AA-
categorized in silico tRNA expression (mmol*gDW−1) and tRNA charging fluxes (mmol*gDW−1) from the MC 
tRNA location models were plotted as box-plots, and red dots indicate the original models’ predictions. E. coli 
was batch simulated on (a) glucose, (b) glycerol, and (c) xylose, and C. ljungdahlii on (d) fructose, (e) CO, 
and (f ) CO2+H2 . P values are from binomal tests of whether the original models give rise to lower expression 
levels or higher tRNA usage than the median values from the MC tRNA location models. Asterisks indicate 
tRNAs by AA that had both less than average tRNA expression and greater than average tRNA usage. 
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through the lack of fluctuation in tRNA usage and the non-optimal tRNA usage in acetate-

grown iLE1678-ME. Together, these observations suggest that the cells partly control their 

capital expenses at maximum growth rate though tRNA operon structure. At least half of the 

tRNA-AA molecules in the original models have both lower expression and higher usage 

than the median MC tRNA location model (i.e., tRNA-AA optimization) at maximum growth in 

multiple substrate conditions (Fig. 16). However, E. coli and C. ljungdahlii did not optimize 

the same tRNA-AA molecules, with only F, G, K, M, and Y being shared between the two 

models, thereby showing that optimized tRNA-AA molecules may differ by organism. 

Both iLE1678-ME and iJL965-ME displayed less efficient tRNA expression and tRNA 

charging usage as growth rate dropped from maximum, and they were no longer efficient at 

minimum growth rate with the exception of CO2 +H2, implying that tRNA operon structures 

have been optimized for growth when nutrients were abundant. The number of optimized 

tRNA-AA molecules also decreased with growth rate. E. coli on xylose and C. ljungdahlii 

stood out as retaining the most optimized number of tRNA-AA molecules with 9 AAs and 7 

AAs respectively.  Perhaps this optimization of tRNA-AA molecules for lower growth rate 

inducing substrates (grglucose = 0.92 vs grxylose = 0.87; grC O= 0.38 vs grC O2 +H2 = 

0.31) hints at an evolutionary process that ensured continued resource efficiency in less 

desirable conditions once preferred substrates are depleted. 

Positive selection for high tRNA efficiency. Despite a trend towards minimization in 

capital expenses, iLE1678-ME (E. coli) performed at an average in total tRNA efficiency, as 

measured by the total tRNA usage to total tRNA expression ratio, compared to the MC tRNA 

location models (Fig. 17e). Its maximum growth rate was also average (Fig. 17g). However, 

when the range of tRNA efficiency values and growth rates of the MC tRNA location models 

were compared against C. ljungdahlii’s ranges, E. coli has evolved to minimize the potential 

error around tRNA efficiency, rRNA expression, and growth rate (Fig. 17). Fragmentation of 

the operon structure ensured that regardless of tRNA order or location, potential phenotypes 

cannot deviate too far from the original value (Fig. 17a, b), which may reflect a history of 

tRNA genes being regularly added and subtracted from the genome to reach its current, 

optimal state (Wald et al., 2014). The only non-random gene locations in tRNA-containing 

operons were occupied by rRNA genes, which refers to the set of 16S, 5S, and 23S rRNAs.  

In iLE1678-ME, all seven rRNA gene sets were co-expressed with tRNA genes, and rRNA 

expression was driven, in part, by the need for the associated tRNA genes. All three of the 

tRNAs with anticodon UGC, which codes for tRNA-ala, were on a polycistronic transcript with 

an rRNA gene set. Since alanine was the most required AA, iLE1678-ME subsequently 

expressed a significant amount of rRNA genes at maximum growth rate (Fig. 17f). The 

selective maximization of rRNA expression points at growth rate optimization in E. coli, as 

ribosome amount is linearly correlated to growth rate (Scott et al, 2010). 
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While E. coli has been optimized for output, particularly rRNA production, C. ljungdahlii 

seemed to be focused on minimizing capital expenditures, as demonstrated by the 

significantly high tRNA efficiency in iJL965-ME which remained high even as growth rate 

dropped, while both growth rate and rRNA expression were average compared to the MC 

tRNA location models (Fig. 17). However, average rRNA expression may also point to 

efficient resource usage. Unlike rRNA arrangement in E. coli, seven of iJL965-ME’s nine 

rRNA gene sets were co-expressed with tRNAs. Furthermore, C. ljungdahlii does not 

associate a specific tRNA species with rRNA, which allowed C. ljungdahlii the ability to fine 

tune its rRNA need by expressing operons with the necessary amount of tRNAs per species, 

thereby minimizing resources spent on producing more rRNA, while E. coli has evolved so 

that an abundant amount of rRNA is available for maximum growth rate. Finally, unlike E. 

coli’s tight range of values, shuffling of tRNA locations would lead to drastic changes in tRNA 

efficiency, rRNA expression, and growth rate. Thus, in contrast to E. coli’s fragmentation, 

modularization in C. ljungdahlii sacrificed growth rate for tRNA efficiency and resource 

Fig. 17 Comparing efficiencies and growth rates from the MC tRNA location models as a percentage 
of the original models’. All results are from batch simulations on different substrates, with E. coli data 
coming from glucose, glycerol, or xylose conditions (n=3000), and C. ljungdahlii from fructose, CO, or 
CO2+H2 conditions (n=3000).  (a & c) rRNA expression (LrRNA mmol*gDW−1 ) was plotted against 
protein:tRNA (LtRNA charging mmol*gDW−1:LtRNA mmol*gDW−1).  (b & d) Growth rate (h−1) was plotted 
against protein:tRNA, and soft upper boundaries (red dashed line) were found. Red dots represent the 
original models’ averaged results. R2 values are from linear regressions. A histograph of each dataset is 
displayed opposite to its axis in (a- d).  Cumulative density functions (cdf) calculated from the histographs in 
(a-d) were plotted against (e) protein:tRNA, (f ) rRNA expression, and (g) growth rate. Dotted lines indicate 
the probability of obtaining a value less than the original models’ prediction for E. coli (blue) and C. ljungdahlii 
(green). 
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frugality. 

Although tRNA efficiency, rRNA expression, and growth rate were not correlated (R2  ≤ 

0.176, Fig 3.10a-d), there were operon structures that resulted in higher growth rates.  This 

may not be so important for E. coli, since its range of potential growth rates was limited, and 

the payoff between tRNA efficiency and growth rate was low (slope of the upper soft 

boundary, mE.coli =0.010) 

 

Does tRNA operon structure reflect K/r strategists? Fragmentation and modularization 

may hint at a deeper understanding of the differences between K- and r-strategists, where K-

strategists are typically associated with slow growth due to limitations by density-dependent 

controls, and r-strategists with fast growth (Note: K and r strategists can be differentiated by 

their maximum specific growth rate under conditions with excess substrate (i.e., batch 

growth). C. ljungdahlii, as a K-strategist (max in silico growth rate on fructose is 0.57 h*−1), 

evolved to maximize efficiency of resources at the tRNA operon structure level. Thus, C. 

ljungdahlii matches cost to need, which may provide C. ljungdahlii with a slight edge over 

competitors when nutrients are limiting for the ecological community. E. coli, an r-strategist 

(max in silico growth rate on glucose is 0.92 h*−1), has evolved to always perform near 

optimum in regards to its tRNA operon structure, and rRNA expression, which is tied to tRNA 

expression, is maximized. Furthermore, E. coli’s fractured tRNA-containing operon structure 

may allow E. coli to quickly match tRNA-demands specific to available substrates, as E. coli 

is a generalist that consumes multiple carbon sources. Thus, E. coli has optimized its output, 

which may allow it to persist in an ecological community through rapid growth. 

 

Although ME-models currently lack other factors that affect tRNA amounts (e.g., regulation, 

proximity to the origin of replication, leading verses lagging strand, individualized aminoacyl-

synthase turnovers), ME-models account for genome architecture (gathered from publicly 

available databases), transcription, tRNA charging, and translation (validated through a 

combination of ’omics and Northern blot data), which allowed us the ability to interrogate the 

importance of tRNA operon structure for two organisms, E. coli and C. ljungdahlii. 

Examination of these two organisms’ operon structures revealed two different strategies: 

Fragmentation in E. coli and modularization in C. ljungdahlii. Using iLE1678-ME (E. coli) and 

iJL965-ME (C. ljungdahlii) as a basis, 1000 models with randomly shuffled tRNA locations for 

each organism were built. Predictions from these MC tRNA location models compared to 

those from iLE1678-ME or iJL965-ME showed that tRNA operon structure was optimized for 

tRNA abundance requirements. In iLE1678-ME, the tRNA operon structure also leads to 

high rRNA expression, while in iJL965-ME, tRNA efficiency was optimized.  These 
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conclusions regarding optimization primarily hold strong for batch growth conditions, which 

implies that tRNA operon structure is a nonrandom result of selective pressures for 

maximizing growth rate. 



	

SUMMMARY 

Successful, scale-able implementation of biofuels is dependent on the efficient and near 

complete utilization of diverse biomass sources. Lignocellulosic biomass holds great promise for 

achieving renewable fuel standards set forth by the US and EU. However, a major limitation in 

the production of biofuels from lignocellulosic biomass is conversion of the lignin fraction. A 

promising approach to utilize this recalcitrant biomass (or any organic waste stream) is through 

thermochemical conversion of organic compounds to syngas, a mixture of CO, CO2, and H2. 

Subsequently, syngas can be metabolized by acetogenic microorganisms and converted to 

multi-carbon organics such as acetate, ethanol, butanol, butyrate, and 2,3-butanediol. 

Acetogens are comprised of a physiologically diverse panel of organisms. In addition to being 

able to ferment a variety of organic molecules, acetogens offer several attractive metabolic 

features absent in model microorganisms currently used for biofuel production, such as 

Escherichia coli and yeast. Chief among these is their ability to reduce CO2 as an electron 

acceptor via the Wood-Ljungdahl pathway to produce multi-carbon organic molecules. This 

capacity for CO2-reduction makes it feasible to achieve near stoichiometric conversion of 

biomass to desired organic products and fuel molecules via the recovery of low-potential 

electrons. Production of biofuels with acetogens has been stymied so far by a poor 

understanding of their metabolic, energetic, and regulatory networks that govern its physiology. 

Thus, desirable physiological properties of acetogens for biofuel production cannot, at present, 

be introduced into E. coli or other chassis organisms. Next-generation omics approaches, e.g. 

RNA-seq, ChIP-exo, and Ribosome profiling, enable researchers to rapidly decipher genome 

architecture and deeply characterize organisms. Generation of such data in acetogens is not 

only beneficial to better understanding these microorganisms but also is the basis upon which 

systems level analysis can be performed. Recently, the development of genetic manipulation 

tools for the acetogen Clostridium ljungdahlii has opened the window for establishing this 

species as a new chassis for biofuel production. 

 

Computational modeling is a prerequisite for rational genome-scale engineering for biofuel 

production. In addition to genome-scale models of metabolism, next generation models, so 

called ME-models, have recently been developed, expanding the scope of models to include 

major cellular processes such as macromolecular synthesis and transcriptional regulation. 

These next-generation models enable engineering of multiple cellular processes resulting in the 

advanced design of tunable systems for bioproduction. 



	

 

In work performed under the contract contract DE-SC0012586 we elucidated how the model 

acetogen Clostridium ljungdahlii regulates energy and carbon metabolism not only at a 

transcriptional level but that major pathways related to energy conservation and product 

formation are controlled at a translational level. Furthermore, we identified major genomic 

features that control carbon and energy flow in different growth conditions this Gram-positive 

bacterium. While postranscriptional control of gene expression plays a major role in gene 

regulation, we currently lack a deeper understanding of posttranscriptional control of gene 

expression in industrial relevant bacteria. Using a multi-omics approach and detailed analysis of 

the mRNA 5' untranslated regions, we discovered that translational efficiency is not only 

affected by the strength of RBS, but also depends on the AU content upstream of RBA and the 

distance of the RBS from the translation start site. These findings provide novel mechanistic 

insights into posttranscriptional regulation, resulting in differential translational efficiency (TE) in 

a growth-dependent manner. Our work uncovers a novel regulatory mechanism for the model 

acetogen C. ljundahlii that thrives at the energetic limit of life and highlights utilization of scarce 

resources at optimal efficiency. We propose that energy and carbon metabolism pathways are 

specifically controlled at the TE level, allowing for dynamic resource allocation. Our findings 

have broad implications on how microorganisms control and optimize their metabolic networks. 

The results provide a new framework for metabolic regulation in this model acetogen that can 

readily be extrapolated to other industrially important microbes, and will thus lay the foundation 

for advanced strain design and engineering efforts. 

 

To use this new knowledge for a system biology-based design, we developed a novel genome-

scale model of metabolism and macromolecular synthesis is deployed to gain new insights into 

the biology of the model acetogen C. ljungdahlii. Metabolic and gene expression models (ME-

models) include more than metabolic reactions; they also contain representations of major 

cellular processes like macromolecular synthesis and basic transcriptional regulation, which 

significantly broadens the scope and predictability of microbial systems biology. The model of C. 

ljungdahlii reconstructed represents the first ME-model of a gram-positive bacterium and 

captures all major central metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin 

synthesis pathways as well as pathways to synthesis RNA and protein molecules necessary to 

catalyze these reactions. The model was used to reveal how protein allocation and media 

composition influence metabolic pathways and energy conservation in acetogens. While 



	

standard metabolic models only predict formation of a single product, the ME-model allows for 

the first time to accurately predict secretion of acetate, ethanol, and glycerol during changing 

carbon and metal availability. Predicting overflow metabolism is of particular interest since it 

enables new design strategies, e.g. the formation of glycerol by C. ljungdahlii (which was 

experimentally confirmed) had not been described and describes new metabolic capability of 

this microbe. Furthermore, prediction and experimental validation of changing secretion rates 

based on metal availability opens the window into fermentation optimization and provides new 

knowledge about the proteome utilization and carbon flux in acetogens. 

 

Lastly, we investigated the effect of the operon structure of C. lungdahlii on its growth 

phenotype, using the newly reconstructed ME-model. An operon is a co-regulated cluster of 

genes that are expressed on the same RNA transcript. Though the presence of an operon may 

be a random event, selection pressures can drive the maintenance of operons. In order to 

optimize cellular efficiency, translation must be carefully controlled because it requires the 

highest energy and resource expenditure of any process in fast-growing cells. Using the 

COBRAme-based ME-model for C. ljungdhalii, we examined the systematic importance of tRNA 

co-expression. We validated the two models for the purposes of this study and examined the 

tRNA operon structures, thereby identifying unique tRNA operon solutions to two different 

selective pressures. One solution led to optimization of phenotype through fragmenting operons 

and the other solution to optimized efficiency through optimal grouping of tRNAs.  

 

This study substantially enhanced our knowledge about chemolithoautotrophs and their 

potential for advanced biofuel production. It provides next-generation modeling capability, offer 

innovative tools for genome-scale engineering, and provide novel methods to utilize next-

generation models for the design of tunable systems that produce commodity chemicals from 

inexpensive sources. 
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