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INTRODUCTION

Successful, scalable implementation of biofuels is dependent on the efficient and near
complete utilization of diverse biomass sources. One approach is to utilize the large
recalcitrant biomass fraction (or any organic waste stream) through the thermochemical
conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon
dioxide (CO,), and hydrogen (H3), which can subsequently be metabolized by acetogenic
microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the
development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen
biofuel production from cheap, renewable sources and to detail the interconnectivity of
metabolism, energy conservation, and regulation of acetogens using next-gen sequencing

and next-gen modeling. To achieve this goal we specifically used:

Omics-driven elucidation of the multidimensional genome architecture. A higher level
of genome annotation captures the elements responsible for the flow of information encoded
by the genome. This genome architecture is comprised of the collection of components
including (but not limited to) promoters, transcription start sites, regulatory non-coding
regions, untranslated regions, transcription units, and ribosome binding sites. Integration of
data from cutting edge experimental methods developed in our lab, such as ChlP-exo and
ribosome profiling allowed for characterization of regulation and gene expression patterns
and, subsequently, the extraction of novel information such as transcriptional pause sites,
translational pause sites, and multi-protein complex stoichiometry. In particular we
investigated the role of translation in optimization of carbon and energy utilization through

differential translational efficiency.

The control of MRNA translation is vital to all species. We employed RNA-seq, TSS-seq, and
Ribo-seq to decipher condition-dependent translational regulation in the model acetogen
Clostridium ljungdahlii. Integration of multi-omics data obtained from cells grown
autotrophically or heterotrophically revealed that pathways critical to carbon and energy
metabolism are under strong translational regulation. We showed that major subsystems
involved in energy and carbon metabolism are not only differentially transcribed and
translated, but their translational efficiencies are differentially elevated in response to
resource availability under different growth conditions. Translational efficiency is controlled
on the molecular level by a combination of features associated with the coding and the 5'-
untranslated regions of mMRNA, suggesting that C. ljungdahlii prioritizes translation of genes

essential for thriving in energy-deprived niches.

Reconstruction and validation of a predictive next-gen model including metabolism
and macromolecular synthesis (ME-model). The Wood-Ljungdahl pathway (WLP) in

Clostridium ljungdahlii enables the use of either H, or CO as electron donors with



accompanied reduction of CO, thereby making WLP the only known CO,-fixing pathway
coupled to energy conservation. The feasibility of autotrophic growth was poorly understood
for a long time as no ATP was gained at the substrate level. Knowledge of how a bacterium
completely lacking cytochrome-encoding genes could maintain the proton motive force was
lacking. It was then discovered that the RNF complex couples ferredoxin oxidation, NAD*
reduction and proton exportation by a novel mechanism called “electron bi furcation”. To
explore how growth strategies occur, models like constraint-based genome scale models of
metabolism (i.e., M-models) have been useful for gaining insight to possible energy flux
routes. While M-models have enabled much progress in elucidating cofactor fluxes, critical
components of the cell, such as the production of macromolecules and the mechanistic
utilization of metals, vitamins, and cofactors, are usually absent in these models thereby

limiting in-depth understanding of cellular life.

So-called metabolic and gene expression models (ME-models) include not only metabolic
reactions, but they also include explicit representations of major cellular processes such as
macromolecular synthesis and basic transcriptional regulation, which significantly broadens
the scope and predictability of microbial systems biology. Specifically, the ME-model will: 1)
Account for the transcriptional and translational cost of proteins and complex formation; 2)
Incorporate the energetics associated with cofactor dependencies and prosthetic group
usage; 3) Quantitatively predict transcript and protein levels; 4) Predict optimal codon usage
for heterologous pathways. With these ME-models, the optimal molecular constitution of
cells can be computed as a function of genetic and environmental parameters. Since both
RNA and protein abundances are explicitly predicted, cofactor requirements can now be

explored.

We completed the C. ljungdahlii ME-model, named iJL965-ME, that captures all major
central metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin synthesis
pathways as well as pathways to synthesis RNA and protein molecules necessary to
catalyze these reactions. Furthermore, the reconstruction includes the WLP, with updated
cofactors, and its associated mechanisms for energy conservation. iJL965-ME was used to
reveal how protein allocation and media composition influence metabolic pathways and
energy conservation in C. [jungdahlii, and to accurately predict secretion of acetate, ethanol,

and glycerol during changing carbon.

Trace metals are essential for all living organisms, for they are required for catalytic
processes essential to energy conservation, metabolism, replication, and maintenance. Yet
metals pose a unique challenge in constraint-based models of metabolism (i.e. M-models) as
they are neither produced nor consumed biochemically; instead, metals in M-models are

generally treated as a lumped sum in the biomass objective function rather than be



integrated into the network. In M-models, metal availability and growth rate are linearly
correlated even though there is contrary experimental evidence. In iHN637, the M-model for
C. ljungdahliii reconstructed by our group, seven of ten metals (Ca®*, Cu**, Mg®*, Mn?*, Mo*",
Ni%*, Zn?*, Co®, Fe?*, Na*) could only be imported or exported (in addition to their inclusion in
the biomass objective function, which represents the total composition of the cell, and only
Co?" was predicted to participate in flux-carrying reactions that were not a transport reaction
or biomass production. Thus, most metal ions were not associated to the reactions they help

catalyze. This represents a general fact for M-models.

The next generation of constraint-based genome-scale models change this paradigm.
Metabolic and gene expression models (ME-models) cover the processes of transcription,
translation, and metabolism, which can also include protein modifications. Protein
modifications can account for the presence of metals in biochemical reactions and thus
enable predictions of the optimal distribution of resources in response to limited metal
availability. Therefore, ME-models provide a robust, genome-wide approach to define how
transition metals affect an organism’s functional network, which addresses the articulated
need to bridge chemistry and biology in a coherent and systematic way. The detailed
representation of cofactors and prosthetic groups will enable us to manipulate the cofactor
dependency of heterologous pathways to maximize energy conservation, subsequently

optimizing chemical production by C. ljungdahlii.

Our study substantially enhanced our knowledge about chemolithoautotrophs and their
potential for advanced biofuel production. It provides next-gen modeling capability, offers
innovative tools for genome-scale engineering, and provides novel methods to utilize next-
gen models for the design of tunable systems. The following report contains information
about work performed under contract DE-SC0012586.

The report consists of three parts, addressing varies aspects of the work:

A Optimization of carbon and energy utilization through differential translational
efficiency
B Predicting proteome allocation, overflow metabolism, and metal requirements in a

model acetogen

C Exploring the evolutionary significance of tRNA operon structure using metabolic and

gene expression models
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A Optimization of carbon and energy utilization through differential translational

efficiency

The metabolic versatility of acetogens for the fermentation of a large number of sugars yields
great promise for the production of biofuels and commodity chemicals. In particular the ability
to grow autotrophically with H,:CO, or syngas (H2/CO/CO;) makes these organisms ideal
chassis for sustainable bioproduction and acetogenic clostridia are currently deployed for the
commercial conversion of syngas to biofuels. Clostridium ljungdahlii is emerging as a
promising cell factory for bioproduction (Kopke et al., 2010) as well as a model organism for
gaining in-depth knowledge necessary to develop new design strategies for acetogens. C.
ljungdahlii is readily cultured heterotrophically in the laboratory in simple media, either on a
diverse set of five or six carbon sugars, or autotrophically with CO or H;, as electron donor.
Furthermore, metabolic models and genetic manipulation tools already developed and
optimized for this organism, make C. ljungahlii an ideal candidate for the study of

acetogenesis (Nagarajan et al., 2013).

However, in order to harness the full biosynthetic potential, it is important to understand the
regulatory mechanisms that orchestrate energy metabolism in C. ljungdahlii. These include,
but are not limited to, the Wood-Ljungdahl pathway (WLP), the formate dehydrogenase
complex, the hydrogenase complex, and the Rnf complex, which are all central to energy
equilibrium in C. ljungdahlii (Ljungdahl, 2009; 2et al., 2013, Latif et al., 2013). A thorough
understanding of all factors that regulate energy metabolism under autotrophic and
heterotrophic growth conditions is crucial for the metabolic engineering of acetogens and for

optimizing targeted production of desired chemicals.

In recent years, next-generation omics approaches, such as RNA-seq, Ribo-seq,
proteomics, and metabolomics have been employed to identify the functionality and
organizational structure of the bacterial genome. These approaches directly address the
genotype-phenotype relationship in bacteria, providing crucial insights into the design
strategies for microbial cell factories. In particular, Ribo-seq in combination with RNA-seq
has enabled global measurements of translation and provided new insights into translational
regulation (Ingolia et al., 2009). Here we carried out cognitive analysis of RNA-seq and Ribo-
seq to understand the translational control underlying energy and metabolism in the model
acetogen C. ljungdahlii. Furthermore, we integrated transcription start site (TSS) information
with RNA-seq to gain insight into the structure of the 5"-untranslated region (5’ UTR) and
used Ribo-seq to understand its effect on the translational efficiency (TE). We provide
evidence that metabolic pathways required for utilization of carbon and energy are not only

regulated at the transcriptional and translational level, but they h1ave evolved to enhance TE



of specific nodes in the network to maintain optimized energy homeostasis in a growth-
condition-dependent manner. We show that the AU content of the 5" UTR, the AU content of
the coding region and to a lesser extent, codon adaptation control TE and are crucial factors

for acetogens to thrive in energy-deprived environments.

Multi-omics analyses of heterotrophically and autotrophically grown cultures. We
carried out RNA-seq and Ribo-seq experiments for autotrophic cultures grown either on CO
or H,:CO; and heterotrophic cultures grown on fructose. To enable direct comparison
between transcription and translation, strand-specific RNA-seq libraries were prepared from
the same lysates used for Ribo-seq experiments in biological duplicates. RNA-seq and Ribo-
seq libraries were deeply sequenced and mapped reads were normalized as FPKM and
RPKM, respectively. RNA-seq replicates for cultures grown on CO, H,:CO,, or fructose were
highly reproducible with a Pearson correlation of 0.995, 0.991, and 0.989, respectively. Ribo-
seq replicates were also highly correlated with Pearson correlations of 0.995, 0.952, and

0.930, respectively.
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Fig. 1 Overview of omics experiments carried out for each growth condition and the correlation between
RNA-seq and Ribo-seq in all growth conditions. (a) Correlations between RNA-seq and Ribo-seq in CO,
H2:CO; and fructose. Pearson’s and Spearman’s coefficients are shown inside each subfigure. Colors represent
in the scatter plot represents the translational efficiency values, as depicted in the colorbars. (b) An example of
Ribo-seq, RNA-seq, TE, and TSS profiles mapped onto genomic region between 4,535,800 to 4,564,000. RNA-
seq and Ribo-seq profiles were normalized in RPM. TE of each gene is calculated by Ribo-seq level divided by
RNA-seq level. Arrows indicate TSS positions.

While the majority of genes are regulated at the transcriptional level, transcription and
translation in bacteria are spatially coupled and many genes are subjected to firm
translational control (McCarthy and Gualerzi, 1990; Ingolia et al., 2009; Ingolia, 2014). In line
with previous findings in Escherichia coli and Streptomyces coelicolor (Ingolia et al., 2009,

Jeong et al., 2016), RNA-seq and Ribo-seq data from Clostridium ljungdahlii were
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moderately correlated in all conditions tested (Fig. 1a), suggesting widespread translational

regulation. We calculated the TE of each gene by dividing the translational level by the
transcriptional level and noticed significant discrepancy in TE among different genes (Fig.
1b).
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Fig. 2 Differential translation and differential TE of subsystems in fructose-, CO- and H,:COz-grown
cultures. Genes were grouped into subsystems and translation and transcription were both percent-normalized
per each experiment. Color of bubbles represents the level of translation or transcription per each experiment (%
normalized). The size of bubbles represents the level of translation or transcription per each subsystem (%
normalized). The top panel represents the top 20 subsystems that are translationally induced in fructose relative
to both autotrophic (CO and H2:CO,) conditions (P<0.01) and sorted in descending order according to translation
levels in fructose. Subsystems with differential TE are depicted by up-pointing triangle with thick edges in fructose
(Fruc). The bottom panel represents the top 20 subsystems that are differentially translationally induced in both
autotrophic conditions relative to heterotrophic growth in fructose (P<0.01) and are sorted in descending order
according to translation in CO. Subsystems with differential TE are depicted by up-pointing triangles with thick
edges in CO and H2:COa.

Translational efficiency is differentially controlled in a condition-dependent manner
The variability of TE was observed both within a given condition as well as across different
conditions (Figs. 1a, b), indicating a functional link between TE and phenotype.
Classification of genes into discrete functional units and the measurement of transcription or
translation of these units provides insight into the control of gene expression in its functional
context. Therefore, we functionally annotated the C. [jungdahlii genome using RAST (Aziz et
al., 2008), resulting in the classification of 1731 genes into 270 subsystems. Differentially

translated subsystems under all growth conditions were determined by DESeq2 (Love et.
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2014). To enable direct comparisons between the three conditions, RNA-seq and Ribo-seq

data per subsystem for growth on CO, H,:CO, were compared as percent values. The top 20
differentially translated subsystems (P<0.01) in heterotrophic (Fig. 2 top) and autotrophic

conditions (Fig. 2 bottom) are shown.

The top differentially translated subsystems in heterotrophic and autotrophic conditions were
associated with carbon and energy sources present in the corresponding growth media. In
heterotrophic growth 16 out of the 20 most differentially translated subsystems were those
related to carbon metabolism (Fig. 2: H1, H2 and H7) and de novo macromolecule synthesis
and maintenance (Fig. 2: H3, H5, H6, H9-H16, H18 and H19). The remaining clusters (Fig.
2: H4, H8, H17 and H20) had no obvious link to heterotrophic metabolism or fast growth.
Glycolysis and the pentose phosphate pathways (H1 and H2) were highly enriched followed
by the chorismate synthesis subsystem (H3), which is the precursor molecule for de novo
synthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. The
sporulation cluster (H4) was unexpectedly highly enriched. After close inspection, we found
that out of four genes in this subsystem, Clju_c41620 (encoding a putative RNA-binding S1
domain-containing protein) was the only differentially translated gene. This protein weakly
interacts with the ribosome and facilitates the recognition of the translation start site (further
discussed below).

Under autotrophic growth, subsystems were differentially translated according to the energy
and carbon sources provided. 13 out of 20 subsystems were closely connected to carbon
fixation and energy conservation (Fig- 2: A1 A4, A6-A8, A12, A14 and A18), fermentation
(Fig. 2: A2 and A5) and motility (Fig. 2: A3, A9 and A17). The top four subsystems (A1-A4)
consisted of the CODH/AscA cluster, 2,3-butanediol dehydrogenase (BDD), flagellum, and
the Rnf complex. The CODH/AscA complex is directly involved in carbon fixation and energy
conservation through the Wood-Ljungdahl pathway (WLP). Under CO growth, BDD
translation represented 7% of the total translation and the flagellum, flagellar motility, and
bacterial chemotaxis (all related to motility and chemotaxis) represented 4% of total
translation. Generally, differentially TE subsystems were less frequent under autotrophic
growth compared to heterotrophic growth. A2 and A4 had the most differentially TE
subsystems. A2 represents the 2,3-butanediol/acetoin fermentation pathway, whereas A4
represents the Rnf complex cluster (Fig. 2), which consists of the rnfCDGEAB genes and the
Rnf transcriptional regulator, rseC. The Rnf complex has been shown to be essential for

autotrophic growth, but redundant under heterotrophic growth (Tremblay et al., 2012).

Differentially translated subsystem specific to autotrophic or heterotrophic growth
Highly responsive subsystems in H,:CO, encompassed the Rnf complex, flavodoxin, and the

aldehyde:ferredoxin oxidoreductase (Fig. 2: A12). The Rnf complex, discussed below in
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more detail, is under strong translational control. On the other hand, subsystems induced

specifically under CO growth were related to acetoin, butanediol metabolism, the flagellum,
and one-carbon metabolism (i.e. WLP). Cells growing in CO were conspicuously the most
highly motile when examined under the microscope, which supports the measured
differential translation. Overall, differentially translated subsystems related to pathways
involved in H,:CO, and CO, hint at a regulatory mechanism that specifically accounts for

physiological requirements when growing under autotrophic conditions.

To gain insight into how TE is differentially controlled under autotrophic and heterotrophic
conditions, we analyzed genes of major carbon and energy subsystems that were
significantly enriched (Fig. 2). These systems consisted of glycolysis/gluconeogenesis, the
WLP, fermentation pathways, the Rnf complex, and the ATPase complex (Fig. 3). Genes
with redundant functions which are not differentially translated were not included in the
analysis. As expected, the majority of genes in glycolysis and gluconeogenesis were
differentially enriched during heterotrophic growth (Fig. 3, blue arrows), whereby fructose is
taken up preferentially via the fructokinase/fructose-6-phosphate isomerase (G1) and the 6-
phosphofructokinase (G3) route. Under autotrophic growth, the fructose phosphotransferase
system (PTS) and 1-phosphofructokinase (G2) were also significantly enriched. Two
enzymes involved in pyruvate metabolism were differentially translated (P4 and B1 in Fig. 3).
The incomplete TCA cycle exhibited differential translation, whereas genes involved in
fermentation were only differentially translated under autotrophic growth. Most notably are
E1 (bifunctional aldehyde/alcohol dehydrogenase) and B3 (2,3-butanediol dehydrogenase),
both differentially translated with high efficiency in autotrophic conditions (Fig. 3, A2 in Fig.
2). The WLP is mostly differentially translated under autotrophic growth with W5 (methenyl-
THF cyclohydrolase) and W7 (methylene-THF reductase) being the least efficient (Fig. 3).
All genes encoding the F1F0 ATPase are differentially transcribed and differentially
translated under heterotrophic growth condition. The remarkable low-TE of the ATPase
cluster implies that its translation is relatively more resilient to transcriptional fluctuations.
The Rnf genes (rnfCDGEAB) are differentially transcribed, differentially translated, and most
genes, including the Rnf regulator rseC, exhibit differential TE under autotrophic growth

conditions (further discussed below).
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Fig. 3 Metabolic map of major carbon and energy pathways exhibiting differential translation and
differential TE. Differential fold change is calculated as the log2 CO/fructose or H,:COy/fructose translation ratio.
Heterotrophically induced (red arrows), autotrophically induced (blue arrows), insignificant (grey arrows) and
condition-specific (green arrows) translation is depicted in all pathways. Glycolysis & Gluconeogenesis:
fructose phosphotransferase system (PTS); fructokinase /fructose-6-phosphate isomerase (G1); 1-
phosphofructokinase (G2); 6-phosphofructokinase (G3); ketose-bisphosphate aldolase (G4); triose-phosphate
isomerase (G5); glyceraldehyde-3-phosphate dehydrogenase (G6); phosphoglycerate kinase (G7);
phosphoglycerate mutase (G8); enolase phosphopyruvate hydratase (G9); pyruvate:ferredoxin oxidoreductase
(P1); pyruvate, phosphate dikinase (P2); pyruvate kinase (P3); pyruvate carboxylase (P4); PEP carboxykinase
(P5). Fermentation: phosphotransacetylase (Ac1), acetate kinase (Ac2), bifunctional aldehyde/alcohol
dehydrogenase (E1), aldehyde:ferredoxin oxidoreductase (E2), additional alcohol dehydrogenases (E3),
acetolactate synthase (B1), acetolactate decarboxylase (B2), 2,3-butanediol dehydrogenase (B3); lactate
dehydrogenase (L). Incomplete TCA cycle: citrate synthase (T1); citrate lyase (T2); aconitase (T3); isocitrate
dehydrogenase (T4); malate dehydrogenase (T5); fumarase (T6); fumarate reductase (T7). Wood-Ljungdahl
pathway: electron-bifurcating [FeFe] hydrogenase (H1); Other [FeFe] hydrogenases (H2); [NiFe] hydrogenase
(H3); hydrogenase maturation factor (H4); bifunctional CO dehydrogenase/ acetyl-CoA synthase (CODH/ACS)
(W1); seleno formate dehydrogenase (W2); non-seleno formate dehydrogenase (W3); Formyl-THF ligase (W4);
methenyl-THF cyclohydrolase (W5); methylene-THF dehydrogenase (W6); methylene-THF reductase (W7). Rnf
complex & ATPase: RnfC (RC); RnfD (RD); RnfG (RG); RnfE (RE); RnfA (RA); RnfB (RB); ATPase (A).
Fructose (Fruc); fructose 1-phosphate/6-phosphate (Fruc-1P/-6P); fructose 1,6-bisphosphate (Fru-1,6P);
dihydroxyacetone phosphate (DHAP); glycerol 3-phosphate (Gly-3P); 1,3-bisphosphoglycerate (1,3-DPG); 3-
phosphoglycerate (3-PG); 2-phosphoglycerate (2-PG); phosphoenolpyruvate (PEP); oxaloacetate (OXACO);
citrate (Cit); isocitrate (Cit-Ac); a-ketoglutarate (a-KetoGlu); malate(Mal); fumarate (Fum); succinate (Suc);
acetolactate (AcLac); acetoin (Acn); acetaldehyde (AcHO); acetyl-phosphate (Acl-p); tetrahydrofolate (THF);
reduced ferredoxin (Fdr); oxidized ferredoxin (Fdo).

Rnf subunits are under strict translational control in heterotrophic growth

The rnfC gene is transcribed at a significantly lower level during heterotrophic growth
(FPKM= 621.7 under fructose growth compared to 2560.7 and 3080.8 under CO and
H2:CO2 growth, respectively; Figs. 3, 4a). Notably, rnfC is acutely translationally repressed
under heterotrophic condition (TE = 0.1 for fructose compared to 0.9 in CO and 1.3 in

H,:COy; Fig. 4b), thus contributing only ~1% of the rnf gross translation. Under heterotrophic
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growth, the Rnf regulator rseC is transcribed at a high level in each growth condition

(FPKM= 2098.1, 2991.8, 1022.9, for CO, H,:CO, and fructose growth conditions). However,
rseC translation is highly repressed under heterotrophic growth at the translational level
comparable to that of rnfC (TE= 20, 2.2, 0.3 for CO, H,:CO, and fructose growth conditions,
respectively; Fig. 4b). Thus, the Rnf complex is highly translationally repressed especially for

rnfC and rseC.
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Fig. 4 Transcriptional and translational regulation of the Rnf (white), formate dehydrogenase (black), and
hydrogenase (grey) complexes in all growth conditions. Results are shown for CO, H2:CO, and fructose in
blue, green and red, respectively. (a) The rnf complex (Clju_c11350-Clju_c11410) has one major TSS upstream
of rnfC. In addition rnfEAB are transcribed from an internal promoter that is positioned at the 3'-end of rfG. rseC
is transcribed from one TSS and transcription is comparable across all conditions, however it is poorly translated
in fructose. (b) rnfC has the lowest translation and lowest TE in heterotrophic growth. (¢) Expression of the
formate dehydrogenase and the hydrogenase genes (Clju_c06990-Clju_c07080). Both clusters are expressed
from upstream TSSs. hydN and fdhA are translated at a much lower efficiency compared to the hydrogenase B
and D genes despite having higher transcription. (d) The hydrogenase genes have higher TE compared to the
formate dehydrogenase genes. The hydrogenase E2 gene is transcribed at a significantly higher level from an
internal promoter, however its TE is the lowest in the hydrogenase gene cluster. The translational regulation of
the two clusters is independent of the growth condition.

The formate dehydrogenase operon is inefficiently translated compared to the
downstream hydrogenase complex in all growth conditions

The only active hydrogenase (Hyd) in C. ljungdahlii is the one orthologous to HytABCDE1E2
in C. autoethanogenum, which is the only hydrogenase active under H,:CO, growth (Mock et
al., 2015). In C. ljungdahlii, Hyd catalyzes the reduction of NADP and ferredoxin and the
oxidation of Hyunder H,:CO, growth. Additionally, Hyd interacts with formate dehydrogenase
(Fdh) and the resulting complex (Hyd-Fdh) catalyzes the reduction of CO, to formate and the
oxidation of H, (Mock et al., 2015). Under CO growth, the bifurcating carbon monoxide
dehydrogenase (CODH) catalyzes the oxidation of CO to CO, and the reduction of
ferredoxin. The Hyd-Fdh complex then catalyzes the oxidation of ferredoxin and the
reduction of CO, to formate. Under heterotrophic growth, the pyruvate ferredoxin

oxidoreductase catalyzes the oxidation of pyruvate to acetyl-CoA, the reduction of ferredoxin
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and the generation of CO, as byproduct (Latif et al., 2014). CODH catalyzes the oxidation

of ferredoxin and the reduction of CO, into CO, whereas Hyd-Fdh catalyzes the reduction of
CO; into formate using reduced ferredoxin. Fdh and Hyd are both multimeric complexes,
both active under all growth conditions tested, and both are essential for the WLP, which
plausibly underscores the observed stable TE of both complexes in all conditions (Fig. 4c,
d). Our omics analysis illustrates that at least hydN and fdhA are transcribed from one
upstream TSSs and their transcriptional levels are greater than hydCBDAE1. The latter
genes are also transcribed from one detectable TSS, whereas hydE?2 is transcribed from an
internal TSS positioned at the 3" end of hydA (Fig. 4c). Despite higher transcriptional levels
of hydN and fdhA, hydBDE1 are translated at a much higher level (higher TE). In fact, hydB
is at least three-fold more translationally efficient than hydN and fdhA. These results suggest
translational regulation is seminal for the regulation of key energy conservation centres in

this model acetogen.

TE is governed by a combination of features linked to the 5’ untranslated region as
well as the coding region

As illustrated above, a wide spectrum of genes exhibited condition-dependent variability in
their TE, suggesting plausible regulation at the translational level. Under the growth
conditions tested, the vast majority of genes exhibited stable TE despite differences in the
levels of transcription across growth conditions (88.8%, 89.1%, 88.4% for CO, H,:CO, and
fructose respectively). Interestingly, we find strong variability in TE of operonic genes,
despite having comparable transcriptional level, suggesting that intrinsic mRNA features
fine-tune the rate of translation (Fig. 1b). To explore these features and determine their
influence on translation and TE, we compared RNA-seq and Ribo-seq data of genes with
low-TE (<20™ percentile) or low-TE (>80" percentile). The difference between the two sets
was strikingly more significant at the translational level (Wilcoxon signed-rank test P= 1.7,
1.2e78, 8.2 for CO, H,:CO,, and fructose, respectively) when compared to the
transcriptional level (Wilcoxon signed-rank test P= 1.2e”®, 0.13, 4.4e™ for CO, H,:CO,, and

fructose, respectively), implying pronounced translational regulation (Fig. 5a).
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Fig. 5 Influence of UTR features on translational efficiency. (a) Comparlson between genes with low and high
translatlonal efficiency (TE) in all conditions. Low TE genes are below 20 percentile, whereas high-TE genes are
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P>0.01 are signified with “n.s” (b) Low- and high-TE genes in all condltlons have visible differences in their RBS
sequence and the AU content in their upper RBS region (URR). RBS and URR are highlighted by boxes at their
corresponding regions. (¢) RBS affinity towards the anti-Shine Dalgarno (anti-SD) sequence (AAGGAGGU)
positively affects the translational efficiency in all conditions. The affinities of RBS towards the anti-SD region
were grouped into eleven categories ranging from AG of 0 to -12.7. (d) The RBS motif per each category in CO
was determined using MEME. (e) Positive effect of the 15 bp AU% content in the URR on TE in all conditions.
TSS data were used to ensure that TSS is upstream of the URR. (f) The distance of the RBS 5' end from the start
codon is most optimum at 13 bp. Deviation of the RBS position in either direction negatively influences TE.

Previous studies have reported a direct regulation of TE via the 5'-untranslated regions
(Migone et al., 2002; Gebauer and Hentze, 2004; Wade and Grainger, 2014). Here we
investigated the effect of different features in the 5' UTR on TE. To accurately determine the
5' UTR regions, we first performed a comprehensive transcription start site (TSS) analysis
using four different growth conditions. We comprehensively determined a total of 1,465 TSSs
that correspond to the 5'-end of the primary transcriptome. The TSSs were further
categorized by their genomic locations. 1,245 TSSs were annotated as primary TSSs, which
cover 29% of total gene content excluding operons and 50% of total gene content including
operons. In addition, we detected 116 internal TSSs and 25 antisense TSSs that could
manifest potential control of gene expression (Wade and Grainger, 2014). 125 orphan TSSs
were also identified at intergenic regions with no associated genes, suggesting the presence

of novel transcriptional units. Alignment of 50 bp upstream of TSS revealed conservation of
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two motifs at -10 and to a lesser extent at -35 consistent with sigma factor binding motifs,

implying high-accuracy detection of TSS. It is worth to note that we could not detect any
leaderless genes under the growth conditions tested, which further emphasize the
importance of translational regulation via the 5" UTR in C. ljungdahlii.

To investigate cis-acting regulatory elements of translational control, we defined the 5' UTR
from the region between primary TSSs and start codon of corresponding genes. The most
frequent size range of 5" UTR distribution was 20-39 nt. The median 5' UTR length was 47
nt, implying that for the vast majority of genes, cis-acting elements, and secondary structures
play a critical role in translational regulation. The ribosome-binding site (RBS) is one of the
critical elements for translational initiation'® (Li and Weissman, 2012), which in turn directly
impacts TE. We compared the composition of the -10 and -35 regions of the 5' UTR by
analyzing 40 nt upstream of the TSS using WebLogo (Crooks et al., 1994). There were two
clear differences between low-TE and high-TE genes, namely the high-TE genes had a
stronger RBS motif and the upper RBS region (URR) had an increased AU content (Figs.4,
5b). Based on these differences, we investigated how TE is influenced by RBS affinity
towards the anti-Shine Dalgarno (aSD) sequence (AAGGAGGU), the RBS distance from the
TSS, and the AU% content of the URR. We analyzed the affinity of the aSD sequence
towards RBS (see Methods) for both low- and high-TE genes. The difference was highly
significant between the two groups under all three conditions, suggesting that RBS affinity
towards the initiating ribosomes is a key determinant for TE. Further, we organized all genes
into eleven categories according to their AG affinity and compared their TE (Fig. 5¢). The
gradual decrease in mean TE with increasing AG implies that TE is strongly influenced by
the RBS affinity towards the aSD (Fig. 5¢). Furthermore, MEME analysis (http://meme-
suite.org/tools/meme) showed that RBS motif conservation increased with TE and those with
lowest TE had a hardly recognizable RBS motif, whereas groups with low-TE exhibit an
optimal RBS motif (Fig. 5d).

RPS1 (Clju_c41620), a protein weakly associated with the 30S ribosomal subunit, has strong
affinity towards AU-rich regions at the 5' UTR (Komarova et al., 2005; Nakagawa et al.,
2010) and interacts with the 5" UTR of mRNA through a 10-15 nt motif to facilitates the
initiation of translatio (Subramanian, 1983). In addition, RPS1 furnishes the 30S subunit with
an RNA chaperone activity that is essential for the binding and unfolding of structured
mMRNAs, allowing the correct positioning of the initiation codon for translation (Duval et al.,
2013). Further, RPS1 competes with RNases for the binding of AU-rich regions, plausibly
protecting AU-rich URR from degradation, which leads to increased TE (Hajnsdorf & Boni
2012; Komarova et al., 2005). We reasoned that AU-rich URRs could result in greater TE. To
validate this hypothesis, we calculated the AU% in regions 15 nt (15 nt showed strongest

difference between low- and high-TE sets in Fig. 5b) upstream of each RBS. To eliminate
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false positives arising from the high AT content of the C. ljungdahlii genome (31.1 % GC),

we limited our analysis to promoters that had their TSS at least 15 nt upstream of the URR.
Genes associated with transcripts harboring URRs with 100% AU had the highest TE (Fig.
5e). TE of low- versus high-AU% groups were statistically significant in all growth conditions,
suggesting that the AU content at the URR significantly impacts TE.

We further compared the position of the RBS relative to the translation start site and showed
that genes with highest TE were those harboring RBSs 13 nt upstream of the translation
start site (Fig. 5f). In addition, we found that the most conserved RBS motifs tend to be at
optimum distance from the translation start site. Finally, we analyzed the effect of codon
usage on TE, using the codon adaptation index (CAl; Sharp & Li 1987). We found that the
average AU% has strikingly more influence on TE when comparing low- and high-TE sets
than CAl (Mann-Whitney test, Pca=1.9e-07, Pay%=8.3e-60).

Features that promote low-TE are enriched in differentially transcribed genes involved
in condition-specific carbon and energy metabolic pathways

Our results hint towards prioritization of subsystems involved in carbon and energy
metabolism by differentially increasing their TE in a condition-dependent manner.
Accordingly, we reasoned that genes classified in these subsystems could plausibly be
prioritized for higher translation rates through optimization of UTR and coding region features
that facilitate higher initiation rates and/or features that promote mRNA stability. In contrast,
genes under other subsystems involved in general cell maintenance activities would carry
less optimal features. This could be beneficial since less translationally efficient systems are
higher translational stability (Fig. 5a). Accordingly, if features in the UTRs and in the coding
regions have significant influence on TE in a mRNA-level-dependent manner, we expect to
find subsystems related to carbon and energy metabolism enriched in genes that are
differentially transcribed and show a low-TE, but not enriched in differentially transcribed and
low-TE genes.

We created two groups comprising differentially transcribed genes (>1.5 fold change) with
high or low-TE, without a priori knowledge of the subsystems they are classified under.
Group 1 represents our “test” group and consist of low-TE genes (>80th percentile) for both
autotrophic growth (blue and green dots in Fig. 6a, b) and heterotrophic growth (red dots in
Fig. 6a, b). group 2 represents our “control” group and consists of low-TE genes (<20th
percentile) in both autotrophic (blue and green squares in Fig. 6a, b) and heterotrophic
conditions (red squares in Fig. 6a, b).

We calculated RAST-enrichment as the ratio of the number of genes found in group 1 or
group 2 relative to the total number of genes in each subsystem, excluding subsystems that
contain only one gene. We sorted the subsystems according their highest ratio and aligned

the top 10 subsystems in autotrophic group 1, heterotrophic group1, autotrophic group 2 and
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heterotrophic group 2 to RAST categories. We found a clear enrichment of subsystems

under the energy (respiration) category in autotrophic group 1 (Fig. 6¢). Likewise, we found
clear enrichment of subsystems under the carbon metabolism category in heterotrophic
group 1 (Fig. 6d). In contrast, no enrichment of subsystems under carbon or energy
categories in autotrophic or heterotrophic group 2 were detected. Instead, we identified

subsystems involved in general cell maintenance.
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Fig. 6 Analysis of translational efficiency, functional allocation, and genomic features of differentially
transcribed mRNA. (a) X-axis represents Log?2 ratio of differentially induced genes in cells grown with CO or
fructose (Fruc). TE above 8o™ percentile is represented in blue and red dots for CO and fructose, respectively.
TE below 20" percentile is represented in blue and red squares for CO and fructose, respectively. (b) Similar to
(a), with H2:CO; instead of CO. (c) RAST subsystem count of low-TE genes that are autotrophically differentially
expressed; (d) low-TE genes that are heterotrophically DE; (e) RAST subsystem count of low-TE genes that are
autotrophically differentially expressed; (f) RAST subsystem count of low-TE genes that are heterotrophically
differentially expressed. Autotrophic and heterotrophic low-TE and low-TE genes are taken from those shown in

(a) and (b).

Overall, our results show that carbon and energy metabolism subsystems have evolved to
be profoundly translationally efficient, such that they are highly responsive to changes in
MRNA levels in a growth-condition-dependent manner. On the other hand, less responsive

subsystems involved in general cell maintenance that are growth-condition-independent
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have lower TE such that their translation is less affected by fluctuations in transcription,

that might result from changes in growth conditions.

We see a clear influence of UTR features, CAl, and coding region AU% on TE. The Mann-
Whitney test was used to calculate P values (Table 1). The AU% of the coding region had a
more significant P value than CAl, suggesting that AU% in the coding region has a stronger
impact on TE than CAl. The AU% at the URR was also more significantly different between
low- and high-TE groups in autotrophic growth but lower in heterotrophic growth. Thus, the
AU% of the URR could be more important in regulating TE in differentially translational
efficient genes than RBS strength under autotrophic growth, whereas those genes that are
differentially translational efficient under heterotrophic growth could be more influenced by
the RBS strength.

Table 1. Comparison of 5 UTR and coding region features
for groups discussed in Fig. 6.

Feature Autotrophic Heterotrophic

P values'’ P values™

URR AU% 5.81E-05 2.23E-03
RBS AG 2.60E-03 6.37E-05
RBS distance 8.51E-02 1.54E-02
Codon adaptation index 6.87E-05 3.10E-04
Coding region AU% 6.60E-10 1.20E-07

* Mann-Whitney U test between low- and high-TE mRNA

1 N=159

1 N=196

Here, we carried out a multi-omics approach to study the translational control underlying
important carbon and energy metabolism in the model acetogen C. ljungdahlii. RNA-seq and
Ribo-seq data were combined from identical samples to ensure high robustness. Datasets
were highly correlated in comparison to previous studies, in which RNA and ribosome
footprints were obtained from different samples. In all growth conditions, we found that a
sizable number of genes had TEs markedly above or below the average, implying strong
translational regulation. By using RAST functional enrichment at the subsystem level, we
showed that carbon and energy pathways were highly regulated at the translational level
under autotrophic growth, whereas under heterotrophic growth translational regulation was
highest for carbon metabolism subsystems and subsystems involved in fast growth including
de novo synthesis of amino and nucleic acids.

We provided examples of strong translational control in energy conservation pathways. For
example, the Rnf-, the formate dehydrogenase-, and the hydrogenase complexes were all
highly regulated at the translational level. The Rnf complex was shown to be translationally
repressed in heterotrophic growth, where it has been shown to be dispensable. However, the
formate dehydrogenase and the hydrogenase complexes showed no apparent difference in
their TE in all growth conditions; the hydrogenase complex on average has higher TE than

the formate dehydrogenase in all growth conditions. The ATPase genes were translationally
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inefficient regardless of the growth condition, implying strong translational stability that is

independent of autotrophic or heterotrophic growth conditions.

We defined multiple features in the 5" UTR and in the coding region that showed a clear
effect on TE. By comparing enrichment of these features in highly translationally efficient and
in highly translationally inefficient subsystems, we showed that AU content at the URR as
well as at the coding region are very important determinants of TE. In addition, RBS affinity
to aSD and the distance of the RBS from the translation start site were also critical

determinants.

By analyzing high-TE (group 1) and low-TE (group 2) differentially transcribed mRNA, we
demonstrate that genes related to carbon and energy metabolism are enriched in group 1
plausibly because they are required to be translated readily and efficiently to quickly adapt to
changes in the relevant growth conditions tested. In contrast to group 1, we demonstrate that
translationally inefficient genes in group 2 are involved in housekeeping activities, such as
membrane transport and protein synthesis (ribosomal proteins) and tend to have constant,
but low-TE. Thereby, we argue that genes in group 1 are very sensitive to changes in mRNA
levels and their TE positively correlates with mRNA levels. We further demonstrate that
genes important in all growth conditions, including housekeeping genes, have lower TE,
which render them less sensitive to fluctuations in mRNA levels. Furthermore, we show that
metabolic and energy subsystems specific for growth in autotrophic or heterotrophic
conditions are mostly enriched in group 1. Whereas group 2 contained mostly housekeeping

subsystems.

Our study uncovers a novel regulatory mechanism for a bacterium that thrives at the
energetic limit of life and highlights utilization of scarce resources at optimal efficiency. We
propose that pathways involved in carbon and energy metabolism are specifically controlled
through optimizing the TE level, allowing for dynamic resource allocation. Our findings have
broad implications on how microorganisms control and optimize their metabolic networks.
The results provide a new framework for metabolic regulation in this model acetogen, that
can readily be extrapolated to other industrially important microbes. Unraveling of regulatory

mechanisms lays the foundation for advanced strain design and engineering efforts.
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B Predicting proteome allocation, overflow metabolism, and metal

requirements in a model acetogen

Reconstructing an acetogen ME-model. To create an acetogen metabolic and gene
expression model (ME-model), an existing genome-scale M-model of C. ljungdahlii (IHN637)
was first updated (Nagarajan et al., 2013). By using recent literature and genome
annotations as reference (Mock et al., 2015; Tan et al., 2015; Seemann, 2104; Kopke et al.,
2010; Becker et al., 2005), twentyeight reactions were added and four reactions removed
from iHN637. The updated M-model (iJL680) consisted of 43 additional genes and contained

updated cofactor stoichiometry and directionality of redox reactions based on experimental
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Fig. 7: Representation of the ME-model. The E-matrix reconstruction accounted for transcription,
translation, and translocation as well as associated reactions to produce functional enzymes. Integration of
the E-matrix (colored arrows) with the M-model (grey arrows) resulted in the ME-model.



21
data and exhibits comparable predictability.

Following established methods, an acetogen gene expression network (i.e., E-matrix) was
reconstructed from C. ljungdahlii (Lerman et al., 2012; Thiele and Palsson, 2010; Thiele et
al., 2009; Lloyd et al., 2017). This reconstruction included an additional 196 protein-coding
open reading frames (ORFs), 89 RNA genes, 576 transcription units (415 of which were rho-
dependent and 29 were RNA-stable), 19 types of rRNA modifications, 17 types of tRNA
modifications, 735 protein complexes with updated stoichiometry, 219 modified protein
complexes, and 134 translocated proteins. The turnover rate for metabolic enzymes
(approximated by k.s, a required parameter for ME-models) was set to the average turnover
rate of all enzymes found in acetogens in the enzyme database Brenda, 25 s™ (Placzek et
al., 2017). Coupling constraints, which link macromolecular synthesis costs with reactions,
were calculated using the formulation in COBRAme (O’Brien et al., 2014; Lloyd et al., 2017;
Placzek et al., 2017).

Using the COBRAme framework, the acetogen E-matrix was integrated with iJL680 to create
the ME-model, iJL965-ME. iJL965-ME accounts for all of the major central metabolic
pathways and biomass synthesis pathways as well as transcription, translation,
macromolecule modifications, and translocation reactions (Fig. 7). Because iJL965-ME
covers an extensive scope of cellular processes, we can predict fermentation profiles,
including overflow metabolism products, gene expression, and usage of co-factors and

metals, which are described in detail below.

Accuracy of predicted growth and yield phenotypes improve with iJL965-ME. Unlike
the M-model, iJL965-ME predicted both batch (i.e., maximum nutrient uptake) and nutrient-
limited growth conditions for C. [jungdahlii. Due to internal constraints on protein production
and catalysis, referred to as proteomic limitations (O’Brien et al., 2014), iJL965-ME growth
rate was a non-linear function of the substrate uptake rate. Thus, optimal carbon uptake rate
and maximum growth rate could be simultaneously predicted, whereas M-models require
information of one rate to predict the other (O’Brien et al., 2014). As a result, we identified

unique growth rate and yield functions for growth with CO, CO,+Hj,, or fructose (Fig. 8).

Overflow metabolism is the seemingly wasteful process in which a substrate is not fully
oxidized, resulting in lower energy yields, inefficient metabolism, and fermentation products.
Hypotheses for why this phenomenon occurs are varied, which makes characterizing and
modelling mixed fermentation production so challenging. Generally, M-models do not predict
alternative fermentation products without additional constraints on redox fluxes, oxygen

uptake, or the objective function Nagarajan et al., 2013; Valgepea et al., 2017a; Valgepea et
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al., 2017b; Dash et al., 2014). However, iJL965-ME was able to predict intrinsically changes

in the primary fermentation product as a function of substrate availability for CO and fructose

growth. When protein production approached proteome limitations (exemplified by in silico

maximum growth rate and in vivo mid-log phase), iJL965-ME correctly predicted the start of

ethanol secretion after acetate secretion due to trade-offs in protein production (Fig. 8A, C).

Thus, iJL965-ME was able to recapitulate overflow metabolism by accounting for redox

balancing and concurrent proteome limitations.

The ME-model also predicted substrate-specific growth rates with high accuracy.

Specifically, growth rate predictions from iJL965-ME were more accurate than the M-model,
iJL680 (Pearson’s r: 0.68 > 0.29; Spearman p: 0.60 > 0.091; Fig. 9A). Due to distinct

resource requirements (the main factor being proteome composition) when metabolizing

different substrates, unique in silico maximum growth rates for individual substrates can be
obtained through iJL965-ME. Unlike the M-model (iJL680), which predicted that glucose and

fructose would have identical growth rates, iJL965-ME correctly predicted slower growth on

glucose than for fructose. Furthermore, iJL965-ME highly improved predictions of the ratio of

maximum acetate secretion rate to substrate uptake rate compared to the M-models iIHNG37
and iJL680 (Fig- 9B).
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Fig. 9: Predictions of growth rate and product production. a, Two sets of predicted growth rates, from
iJL680 and iJL965-ME, were plotted against in vivo measured growth rates for arginine, xylose, pyruvate,
glucose, CO, and fructose growth conditions (+std, n=3). Linear regressions and 95% confidence intervals
were represented by dashed lines and shaded areas, respectively. In iJL680, carbon atom uptake was
constrained to 30 mmoI*gDW’1*h'1, while in iJL965-ME, the optimal carbon uptake was constrained by
inherent proteome limitations. r and p represent Pearson's correlation and p-value. b, Predicted maximum
acetate secretion rate (Ac; mmol*gDW’1*h'1) to substrate uptake rate (SUR; mmoI*gDW’1*h'1) was plotted
against measured averaged values. ¢, Predicted pathway mechanism for observed glycerol production in
spent media. Glycerol was a byproduct of cell membrane formation during cardiolipin production. While the
cell was carbon-limited, glycerol was recycled into biomass using the pathway highlighted in green. When
cells were proteome-limited, C. ljungdahlii secreted glycerol (purple arrow). Abbreviations: 1 =
phosphatidylglycerol (n-C14:0), 2 = cardiolipin (n-C14:0), 3 = glycerol, 4 = dihydroxyacetone, 5 =
dihydroxyacetone phosphate, CLPNS140 = cardiolipin synthase (n-C14:0), GLYCt = glycerol transport,
GLYCDx = glycerol dehydrogenase, DHAK = dihydroxyacetone kinase.

Interestingly, iJL965-ME predicted previously unknown secretion of glycerol (<2.5e-3
mmol*gDW"*h™") following acetate and ethanol production during growth on xylose or
glucose, but not on arginine or pyruvate. Like ethanol, glycerol secretion occurred due to
trade-offs in proteomic limitations resulting in overflow metabolism, as the cell no longer
invested resources to recycle glycerol, a byproduct of cardiolipin production (Fig- 9C). In
order to verify glycerol production, we carried out HPLC analysis and measured 0.024+0.012
mM and 0.083+0.018 mM of glycerol from cultures grown on either xylose or glucose,

respectively.

Predicting gene expression. Because RNA and protein abundance requirements are
coupled to reaction fluxes in ME-models instead of a lumped biomass composition like in M-
models, ME-models enable in silico predictions of transcription and translation (mmol*gDW"

*h™) (O’Brien et al., 2014, Lloyd et al., 2017). To test the accuracy of our model, genes were
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Fig. 10: Predicted and experimental gene expression. Categorized by RAST subsystem and summed,
predicted gene expression (transcription flux reactions) was compared to RNA-seq data for C. [jungdahlii
grown on a, CO, b, CO,+Hy, and ¢, fructose. Linear regressions, 95% confidence intervals of the regression,
and 95% prediction intervals are represented by lines, dark shaded areas, and light shaded areas
respectively. Scatter plots shown are for the hiqhest Pearson r between predicted and experimental data.
Normalized total transcription flux (mmol*gDW" *h'1) of the Wood-Ljungdahl pathway was plotted against
carbon substrate uptake rate for d, CO, e, CO>+H, and f, fructose. Pearson r reflects correlation with growth
rate.

categorized by RAST subsystems and summed as per predicted transcription flux reactions.
The in silico results were strongly correlated to RNA-seq data for C. l[jungdahlii grown on CO,
CO,+H,, or fructose (r >=0.82). At the highest correlation, all categories fell within the
prediction interval of the linear regression (Fig. 10A-C), enabling to forecast substrate-

specific expression of pathways.

At the gene level, 396 genes could be strongly linked to growth rate (r>0.9,
p<0.05*Bonferonni). However, correlation of these genes was dependent on the growth
substrate (68 genes for CO, 275 for CO,+H,, and 224 for fructose). Growth-correlated genes
that were shared between conditions involved genes related to translation (e.g. rRNA and
specific tRNAs). Under autotrophic conditions, expression of WLP genes were correlated
more with substrate availability than growth rate (rco: 0.983>0.955, rcoz+m2: 0.996>0.884; Fig.
10D, E). In addition, the reactions fluxes of essential WLP reactions carbon monoxide
dehydrogenase (CODH4) and 5,10-methylenetetrahydrofolate reductase (MTHFRS5) were
linearly related to CO uptake during growth on CO, while other non-WLP redox reactive
reactions (e.g. RNF) were correlated with growth rate. Similarly, WLP reactions were linearly
linked to CO, uptake in CO,+H, conditions, in addition to the linear response of
ferredoxin:NADPH hydrogenase to H,, while non-WLP redox reactions were correlated with

growth rate.

In heterotrophic conditions, the WLP was more active under nutrient-limitations than

proteome limitations, as its activity level was related to acetate secretion (r = 0.993, p<0.01,
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Fig. 10F). The WLP was recapturing CO; for biomass production using the reducing

power gained by metabolizing fructose. At greater than 57% of the optimal fructose uptake

(Fig. 10F), the primary provider of oxidized ferredoxin switched from WLP to

ferredoxin:NADP reductase (FRNDPR2r) and acetaldehyde:ferredoxin oxidoreductase

(AOR_CL). Extraneous reducing power captured by NAD" from glyceraldehyde-3-phosphate

dehydrogenase (GADP) was removed by producing ethanol (alcohol dehydrogenase;

ALCD2x). These findings are corroborated by a previous report that C. l[jungdahlii grows

mixotrophically, instead of heterotrophically, when presented with sugar as a carbon source
(Jones et al., 2016).

Nickel controls phenotype through Wood-Ljungdahl activity. In M-models, metal
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Fig. 11: Effects of nickel availability on C.
ljungdahlii grown on CO. a, Maximum predicted
growth rate was plotted against relative nickel
uptake (line), and in vivo maximum growth rate
verses the concentration of added nickel was
plotted on the opposite axes (dot, std, n=3). b,
Predicted protein activity of the nickel-containing
enzymes, carbon monoxide dehydrogenase
(CODH4) and carbon monoxide
dehydrogenase:acetyl-CoA synthase
(CODH_ACS), was plotted against relative nickel

uptake.

- - CODH4
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availability and growth rate are linearly
correlated even though there is contrary
experimental evidence (Saxena and Tanner,
2011). In iHN637, seven of ten metals (Ca*,
Cu2+, Mgz+’ Mn2+, M02+, Ni2+, Zn2+ + C02+, Fez+’
Na®) could only be imported or exported (in
addition to their inclusion in the biomass
objective function, which represents the total
composition of the cell (Feist and Palsson,
2010)), and only Co was predicted to
participate in flux-carrying reactions that were
not a transport reaction or biomass
production. Thus, most metal ions were not
associated to the reactions they help catalyze.
This represents a general fact for M-models.
Cofactor integration in iJL965-ME, however,
allows systematic interrogation of the effects
of metal availability. Particularly, iJL965-ME’s
only nickel-containing proteins, CODH4 and
carbon monoxide dehydrogenase:Acetyl-CoA
synthase (CODH_ACS), are part of the WLP,
which afforded the possibility of controlling this
pathway through changes in media
composition both in silico and in vivo. Due to
C. ljungdahlii's reliance on WLP for

autotrophic growth, nickel was predicted to be



a — WIT — CODH_ACS Ox[Ni2+] 10x[Ni2*]
0.6 1 3 d o4 __
T z% £03
= 0 2 280 i
o 0.4 ° ?J‘ © 02}
T 0.5% i
£ s 2 S
s 0.2 20 3 0.
: & o
o)) o 0 — ===
o E x
0, " 2 £
0 0.5 - 8 .28
P 2+ ’ = -
b Relative Ni<™ uptake Z 20f
- WT - = . N2t § 15¢
- 30 - Qo
= I RaLL]
- - ¢
= & a Jf
é, 20 N |
5 f 0
:= 10
— 8 A
I T
relative fructose uptake % 5
C 2
= 2D 1
_"___ l\J D—.
> 20
= 15 9 s
o 40 |t
5 10 —
:f . E 30
o < 20
< 0 oy y
0 02040608 1 10}
relative fructose uptake ( S—_—

Fig. 12: Effects of nickel availability on C. [jungdahlii
grown on fructose. a, Predicted growth rate and protein
activity of carbon monoxide dehydrogenase:acetyl-CoA
synthase (CODH_ACS) were plotted against relative nickel
uptake (mmol*gDW *h™). b, Predicted ethanol (EtOH)
secretion at optimal nickel uptake (WT) and no available
nickel (-Ni2+) were plotted against relative fructose uptake
(mmol*gDW’1*h’1). ¢, Predicted acetate (Ac) secretion at
optimal nickel uptake and no available nickel were plotted
against relative fructose uptake (mmoI*gDW’1*h’1).
Measured d, growth rate, e, fructose consumption, f, final
ethanol concentration, and g, final acetate concentration of
fructose-grown C. ljungdahlii without added nickel and with
ten times the concentration of nickel were plotted (tstd,
n=3). Gray asterisk indicates difference significance is
p=0.06, and three black asterisk indicates significance of
p<0.001.
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essential for CO-growth. Although true

essentiality could not be tested due to
trace nickel in the media, the amount of
additional nickel (added as multiples of
0.10 mM) significantly influenced in vivo
growth rate in a quadratic fashion as
predicted (Fig. 11A). According to
iJL965-ME, the non-linear effects of
nickel limitations were caused by an
uneven distribution of metal resources
between CODH_ACS and CODH4,
resulting in different rates of decreasing
protein activity (Fig. 11B). In turn, the
other reactions in WLP were correlated
to either CODH_ACS, like MTHFR5 and
methyltetrahydrofolate corrinoid/iron-
sulfur protein methyltransferase
(METR), or CODH4. Finally, iJL965-ME
predicted that while nickel availability
affected growth rate, protein activity, and
acetate and ethanol yield, the acetate-
to-ethanol production rate would not
change. The acetate:ethanol production
rate ratio, as determined by HPLC,
remained constant at 1.4 for different
nickel concentrations. Acetate:ethanol
production rate was unchanged with a
ratio of 1.48+0.34, regardless of the
nickel concentrations used (0x, 1x, and
5x [10x excluded due to carbon

depletion].

iJL965-ME predicted that nickel limitations would have different effects on fructose-grown

cells. Removal of nickel was not predicted to affect growth rate or fructose uptake
significantly (Ag=98%, Atructose=99%, Fig 6A). However, there was no CODH_ACS or METR

activity under nickel depletion, which reduced the WLP activity and eliminated acetate

secretion. Instead, the model predicted that only ethanol secretion would occur (Fig. 12B,
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C). To test this prediction, C. ljungdahlii was grown either without added nickel (0x) or with

high nickel concentrations (10x). Both cultures consumed the same amount of fructose
(p=0.26) and produced identical amounts of ethanol (p=0.95), but exhibited different growth
rates (p=0.062) and final concentrations of acetate (p=2.2e-4) (Fig. 12D-G). Increased
acetate secretion rate (p=0.016) and final acetate concentrations in the 10x condition were

due to the nickel-stimulated WLP consuming more CO..

We showed that the incorporation of the E-matrix into constraint-based genome-scale
models significantly widens the scope of their application, including prediction of overflow
metabolism and optimal expression levels, as well as media optimization strategies. Such
capabilities proved useful for exploring and understanding system responses of C.
ljungdabhlii. The reconstructed C. ljungdahlii ME-model (iJL965-ME) was not only more
accurate than the M-model at predicting growth rates and acetate secretion rates, but was
also capable of predicting secretion of ethanol (H,, as a less effective oxidizing agent than
CO, was an exception) and the novel secretion of glycerol (Figs. 8, 9). Furthermore, in silico
predictions of gene/subsystem expression were highly comparable to in vivo transcriptomics
for three separate conditions, bolstering confidence in predicting macromolecular responses
to environmental changes (Fig. 10A-C). C1 metabolism under both autotrophic and
mixotrophic conditions was examined in more depth, and the potential of controlling WLP
activity through media composition was explored (Figs. 10-12). Note that acetogens grow
mixotrophically while using organic substrates. Although the lack of CODH_ACS activity
(achieved by removing nickel from the media) may not cease WLP activity entirely, it may
stop acetate production (as in vivo nickel depletion results suggest), leading to ethanol
production as the main fermentation end product (Fig. 12). However, the discrepancy
between in silico and in vivo growth rates of nickel-depleted cells grown on fructose implied
that WLP was more important than predicted for maximizing growth in mixotrophic conditions
(Fig. 12). In contrast, nickel was essential for CO-growth, but had no effect on the
acetate:ethanol ratio (Fig. 11).

As demonstrated in this study, ME-models like iJL965-ME provide a comprehensive,
genome-scale, systems biology approach that links the environment and macronutrient
metabolism. In particular, the combination of C1 metabolism, multi-omics predictions, and
cofactor integration in iJL965-ME is an important milestone for a holistic understanding of
metals in metabolism. Although nickel was the only trace metal to be investigated here,
iJL965-ME invites further studies elucidating specific effects of concurrent metal limitations
and genetic perturbations. The ME-model represents an inclusive method that unites

analysis and integration of multiple data types.
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C Exploring the evolutionary significance of tRNA operon structure using

metabolic and gene expression models

An operon is a co-regulated cluster of genes that are expressed on the same RNA transcript.
These genomic features arise through a variety of means, including horizontal gene transfer
that places a gene under another gene’s promoter, horizontal gene transfer of whole
operons, deletion of intervening sequences, and genome rearrangement. Though the
presence of an operon may be a random event, selection pressures can drive the
maintenance of operons. For example, potential benefits bestowed by an operon onto the
host organism include a reduction in regulation costs (Price et al., 2005), diminished
stochastic gene expression through synchronicity of protein ratios (Ray and Igoshin, 2012;
Nunez et al., 2013) and insurance that all functional steps in a pathway are produced
(Zaslaver et al., 2006). Such theories hint at an evolutionary optimization problem to promote

efficiency in gene expression.

In order to optimize cellular efficiency, translation must be carefully controlled because it
requires the highest energy and resource expenditure of any process in fast-growing cells.
Since the available tRNA pool could be rate-limiting during protein translation (Kurland,
1993), close correspondence between codon usage and the available tRNA pool, often
quantified through the tRNA adaptation index (tAl) (dos Reis et al., 2004), must be
maintained efficiently. Even though tRNA co-expression explained E. coli’s tRNA profile
better than tRNA gene copy number (widely recognized as a correlated estimate for tRNA
profile (Kanaya et al., 1999; McDonald et al., 2015) relatively few papers have investigated
the influence of operons on tRNA expression levels (Wald et al., 2014). Yet rRNA and tRNA
genes can often be found on the same operon, and 23.8% of all tRNA genes from
prokaryotic genomes sequenced by 2014 were found to be located in an operon with another
tRNA gene Wald et al., 2014). Such evidence implies that evolutionary pressures may also

shape genomic tRNA structure.

Constraint-based modeling offers a biophysically-based approach to estimate tRNA
concentrations and usage. In particular, constraint-based metabolic and gene expression
models (i.e., ME-models) are well-suited for examining potential insights into operon
structure. The scope of predictions that ME-models cover is extensive; these models
account for transcription, tRNA charging, translation, and metabolic reactions. Additionally,
ME-models incorporate the underlying genome architecture through transcriptional units that
account for co-expression of genes. ME-models have been used to successfully recapitulate
several levels of phenotypes, from growth rates to pathway expression levels, and even
undiscovered operons (Lerman et al, 2012; O’Brien et al., 2013). As of writing, only E. coli

and C. ljungdahlii have completed ME-models that use the COBRAme framework, which



29
allowed comparisons of model perturbations with the knowledge that the constraints within

the models (e.g., coupling constraints) were similarly formulated.

Using the two available COBRAme-based ME-models, one for Escherichia coli and one for
Clostridium ljungdhalii, we examined the systematic importance of tRNA co-expression. We
validated the two models for the purposes of this study and examined the tRNA operon
structures, thereby identifying unique tRNA operon solutions to two different selective
pressures. One solution led to optimization of phenotype through fragmenting operons and

the other solution to optimized efficiency through optimal grouping of tRNAs.

tRNA operon structure: Fragmentation versus modularity. Examination of tRNA-
containing operons organization in two bacteria, the fast-growing generalist E. coli and the
slower-growing homoacetogen C. ljungdahlii, revealed two different strategies (Caspi et al.,
2008). These two strategies will be referred to as fragmentation, where tRNA organization
leads to both a high number of singly-transcribed tRNA genes and a minimization of co-
transcribed tRNA species, and modularization, which is the tendency towards polycistronic
tRNA genes. In E. coli, 23% of tRNA genes could be transcribed monocistronically, and 37%
could be expressed as polycistronic transcripts that lack other tRNA genes. When
considering unique tRNA species by anticodon, the number of single transcripts that can be
uniquely expressed increased to 54%, and for tRNA species by amino acid (AA), 56%.
Furthermore, E. coli appeared to favor less tRNA genes per transcript and did not have an
operon containing more than seven tRNAs, while the highest number of unique tRNA
species per operon was four. Thus, E. coli displays a fragmentation strategy for its tRNA

operon structure (blue bars, Fig. 13).
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Fig. 13: Distribution of tRNAs by operon in E. coli and C. ljungdahlii. Bar graphs show operon count by
(a) the number of genes per operon, (b) the number of tRNAs per operon, (c) the number of unique
anticodons as represented by tRNAs per operon, and (d) the number of unique amino acids as represented
by tRNAs per operon for E. coli (blue) and C. ljungdahlii (green). All potential operons, including alternative
start and end sites, are included.

In case of C. ljungdahlii, the analysis revealed that only 8.4% of tRNA genes could be
expressed monocistronically and 26% could be expressed as polycistronic transcripts
lacking other tRNA genes. Looking at tRNA species, only 32% of tRNAs by anticodon and

34% of tRNAs by AA were capable of being uniquely expressed on a single transcript. Thus,
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C. ljungdahlii had the majority of its tRNA species co-transcribed with another tRNA type,

and C. ljungdahlii could express fifteen tRNAs, including the only tRNA-his gene, on a single
transcript. The bias towards polycistronic tRNA genes means that C. [jungdahlii prefers

modularization in comparison to E. coli (green bars, Fig. 13).

Predicted tRNA charging amino acid usage is consistent with amino acid
requirements. AA compositions predicted by the E. coli ME-model (iLE1678-ME) and the C.
ljungdahlii ME-model (iJL965-ME) were compared against in vivo data. AA composition was
calculated from transcriptomic data using RNA-seq (FPKM) data from E. coli batch-grown on
glucose, glycerol, xylose, and acetate and C. ljungdahlii batch-grown on fructose, CO and
CO; +H; as a proxy for protein count. Only proteins reconstructed in the ME-models were
considered. For each substrate condition, the ME-models were simulated at maximum
growth rate (which was calculated when substrate availability was greater than what can be
consumed, and considered to be equivalent to in vivo batch growth), half of the maximum
substrate uptake rate, and minimal substrate availability (i.e., tenth of maximum substrate
uptake rate). Predicted AA compositions were calculated from tRNA charging reactions

(mmol*gDW-1*h-1) which reflects the exact AA requirements of the in silico cell.
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Fig. 14: Comparing in silico and in vivo AA composition for E. coli and C. ljungdahlii. In vivo AA
compositions were calculated using RNA-seq, harvested mid-log phase from batch-grown cells, as a proxy
for protein count. In silico AA compositions were the sum of AA-categorized tRNA charging reactions
(mmol*gDW*-1*h-1) at maximum growth rate (red), half of the maximum substrate uptake (green), and
minimum (i.e., tenth) of the maximum substrate uptake rate (blue) on glucose, glycerol, or xylose for E. coli
(top row) and fructose, CO, or CO, +H; for C. ljungdahlii (bottom row). Values are relative to the most AA
required, which is alanine for E. coli and lysine for C. ljungdabhlii.
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The predicted and measured AA compositions were highly comparable (R2 = 0.964 for all

batch-growth conditions in both models; Fig. 14). The high correlation between in silico and
in vivo values continued to hold true for tRNA molecule concentrations (uM) and calculated
AA composition from protein expression (ribosome profiling, RPKM) in E. coli, both of which
were more appropriate comparisons for in silico tRNA expression and tRNA charging
reactions. With these validations for AA composition and our knowledge of the genome
architecture, we have confidence in the output of translation and the underlying structure of
transcription in the ME-models for batch conditions. The goodness of fit decreased when in
vivo batch-grown cells were compared to in silico growth on half of the maximum substrate
uptake rate and minimal substrate availability. Thereby iLE1678-ME and iJL965-ME
demonstrated their capability to predict variable AA compositions dependent on substrate
availability. Furthermore, expression values from in silico minimal and half substrate
availability were able to explain tRNA molecule concentrations in low growth rate (0.4 h-1)
better than in silico maximum growth rate could. Although the higher correlations imply that
ME-models continue to be accurate at lower growth rates, the actual influence of growth rate
on tRNA pools is currently inconclusive and requires more investigation. Despite the lack of
evidence to support conclusions from non-optimal growth rates, ME-models still provide an

opportunity to specifically examine the effects of varying tRNA operon structure.

Optimized tRNA operon structure meets tRNA abundance requirements. To examine
whether tRNA gene location and co-transcription influences the cell, 1000 models with all
tRNAs randomly shuffled into another tRNA’s location, henceforth referred to as Monte-Carlo
(MC) tRNA location models, were built for E. coli and C. ljungdahlii each. The MC tRNA
location models were then simulated with validated substrates (glucose, glycerol, xylose, and
acetate for E. coli and fructose, CO, and CO,+H, for C. ljungdahlii) at maximum growth rate,
half of the maximum substrate uptake rate, and minimal substrate uptake (Fig. 15). With this
setup, we can examine whether the two organisms’ different tRNA organization strategies,
fragmentation and modularization, promote optimization for translational purposes under

particular growth conditions.
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Fig. 15: Diagram of the Monte-Carlo method for tRNA location shuffling. Red boxes represent tRNA
genes, blue boxes represent rRNA genes, and grey boxes represent open reading frames. Operon diagram
is not to scale for gene size and distance.

Shuffling tRNA order and location has a dramatic effect on tRNA expression, as the range of
AA-categorized tRNA (tRNA-AA) expression can vary drastically in relation to other tRNA-AA
molecules (Fig. 16). When tRNA-AA expressions of the MC tRNA location models were
compared against the original models’ (iLE1678-ME and iJL965-ME which contain published
genome architectures), tRNA expression was revealed to be minimized. Both iLE1678-ME
and iJL965-ME performed better than the median MC tRNA location model because they
expressed less total tRNA for a significant number of tRNA-AA molecules (p< 0.02 for all
maximum growth rate conditions; Fig. 16). Thus, the original tRNA operon structures led to

reduced cost of tRNA expression.

In contrast to the flux ranges of tRNA expression, the AA composition of the cell, as
represented by tRNA charging reactions, remains relatively constant. Regardless, iLE1678-
ME and iJL965-ME revealed that the published tRNA operon structures also promoted
utilization of tRNA usage (i.e., tRNA charging reactions) at maximum growth rate. For a
significant number of tRNA-AA molecules, iLE1678-ME and iJL965-ME used more tRNA in
tRNA charging reactions than the median MC tRNA location model (p < 0.05 for all
conditions but two; Fig. 16). E. coli on acetate and C. ljungdahlii on fructose were the
exceptions, as tRNA expression was minimized, but tRNA usage was not maximized. Thus,

the original tRNA operon structures generally led to increased tRNA usage.
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Fig. 16 Comparing tRNA expression and tRNA charging fluxes against the original models’. AA-
categorized in silico tRNA expression (mmol*gDW-1) and tRNA charging fluxes (mmol*gDW-1) from the MC
tRNA location models were plotted as box-plots, and red dots indicate the original models’ predictions. E. coli
was batch simulated on (a) glucose, (b) glycerol, and (c) xylose, and C. ljungdahlii on (d) fructose, (e) CO,
and (f ) CO2ot+H, . P values are from binomal tests of whether the original models give rise to lower expression
levels or higher tRNA usage than the median values from the MC tRNA location models. Asterisks indicate
tRNAs by AA that had both less than average tRNA expression and greater than average tRNA usage.

If tRNA expression could be likened to capital costs and tRNA usage to operating costs, then

E. coli and C. ljungdahlii have minimized capital costs by optimizing expression of necessary

tRNAs. The operating costs have likewise been maximized, even though tRNA operon

structure does not influence operating costs as strongly as it does capital costs, as seen
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through the lack of fluctuation in tRNA usage and the non-optimal tRNA usage in acetate-

grown iLE1678-ME. Together, these observations suggest that the cells partly control their
capital expenses at maximum growth rate though tRNA operon structure. At least half of the
tRNA-AA molecules in the original models have both lower expression and higher usage
than the median MC tRNA location model (i.e., tRNA-AA optimization) at maximum growth in
multiple substrate conditions (Fig. 16). However, E. coli and C. ljungdahlii did not optimize
the same tRNA-AA molecules, with only F, G, K, M, and Y being shared between the two

models, thereby showing that optimized tRNA-AA molecules may differ by organism.

Both iLE1678-ME and iJL965-ME displayed less efficient tRNA expression and tRNA
charging usage as growth rate dropped from maximum, and they were no longer efficient at
minimum growth rate with the exception of CO, +H,, implying that tRNA operon structures
have been optimized for growth when nutrients were abundant. The number of optimized
tRNA-AA molecules also decreased with growth rate. E. coli on xylose and C. ljungdahlii
stood out as retaining the most optimized number of tRNA-AA molecules with 9 AAs and 7
AAs respectively. Perhaps this optimization of tRNA-AA molecules for lower growth rate
inducing substrates (grglucose = 0.92 vs grxylose = 0.87; grC O= 0.38 vs grC O2 +H2 =
0.31) hints at an evolutionary process that ensured continued resource efficiency in less

desirable conditions once preferred substrates are depleted.

Positive selection for high tRNA efficiency. Despite a trend towards minimization in
capital expenses, iLE1678-ME (E. coli) performed at an average in total tRNA efficiency, as
measured by the total tRNA usage to total tRNA expression ratio, compared to the MC tRNA
location models (Fig. 17e). Its maximum growth rate was also average (Fig. 17g). However,
when the range of tRNA efficiency values and growth rates of the MC tRNA location models
were compared against C. ljungdahlii’s ranges, E. coli has evolved to minimize the potential
error around tRNA efficiency, rRNA expression, and growth rate (Fig. 17). Fragmentation of
the operon structure ensured that regardless of tRNA order or location, potential phenotypes
cannot deviate too far from the original value (Fig. 17a, b), which may reflect a history of
tRNA genes being regularly added and subtracted from the genome to reach its current,
optimal state (Wald et al., 2014). The only non-random gene locations in tRNA-containing
operons were occupied by rRNA genes, which refers to the set of 16S, 55, and 23S rRNAs.
In iLE1678-ME, all seven rRNA gene sets were co-expressed with tRNA genes, and rRNA
expression was driven, in part, by the need for the associated tRNA genes. All three of the
tRNAs with anticodon UGC, which codes for tRNA-ala, were on a polycistronic transcript with
an rRNA gene set. Since alanine was the most required AA, iLE1678-ME subsequently
expressed a significant amount of rRNA genes at maximum growth rate (Fig. 17f). The
selective maximization of rRNA expression points at growth rate optimization in E. coli, as

ribosome amount is linearly correlated to growth rate (Scott et al, 2010).
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Fig. 17 Comparing efficiencies and growth rates from the MC tRNA location models as a percentage
of the original models’. All results are from batch simulations on different substrates, with E. coli data
coming from glucose, glycerol, or xylose conditions (n=3000), and C. l[jungdahlii from fructose, CO, or
CO2+H2 conditions (n=3000). (a & c) rRNA expression (LrRNA mmol*gDW-1 ) was plotted against
protein:tRNA (LtRNA charging mmol*gDW-1:LtRNA mmol*gDW-1). (b & d) Growth rate (h—1) was plotted
against protein:tRNA, and soft upper boundaries (red dashed line) were found. Red dots represent the
original models’ averaged results. R2 values are from linear regressions. A histograph of each dataset is
displayed opposite to its axis in (a- d). Cumulative density functions (cdf) calculated from the histographs in
(a-d) were plotted against (e) protein:tRNA, (f ) rRNA expression, and (g) growth rate. Dotted lines indicate
the probability of obtaining a value less than the original models’ prediction for E. coli (blue) and C. ljungdahlii

(green).

While E. coli has been optimized for output, particularly rRNA production, C. [jungdahlii

seemed to be focused on minimizing capital expenditures, as demonstrated by the

significantly high tRNA efficiency in iJL965-ME which remained high even as growth rate

dropped, while both growth rate and rRNA expression were average compared to the MC

tRNA location models (Fig. 17). However, average rRNA expression may also point to

efficient resource usage. Unlike rRNA arrangement in E. coli, seven of iJL965-ME’s nine

rRNA gene sets were co-expressed with tRNAs. Furthermore, C. ljungdahlii does not

associate a specific tRNA species with rRNA, which allowed C. ljungdahlii the ability to fine
tune its rRNA need by expressing operons with the necessary amount of tRNAs per species,
thereby minimizing resources spent on producing more rRNA, while E. coli has evolved so
that an abundant amount of rRNA is available for maximum growth rate. Finally, unlike E.
coli’s tight range of values, shuffling of tRNA locations would lead to drastic changes in tRNA
efficiency, rRNA expression, and growth rate. Thus, in contrast to E. coli’s fragmentation,

modularization in C. l[jungdahlii sacrificed growth rate for tRNA efficiency and resource
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frugality.
Although tRNA efficiency, rRNA expression, and growth rate were not correlated (R2 <
0.176, Fig 3.10a-d), there were operon structures that resulted in higher growth rates. This
may not be so important for E. coli, since its range of potential growth rates was limited, and
the payoff between tRNA efficiency and growth rate was low (slope of the upper soft
boundary, mE.coli =0.010)

Does tRNA operon structure reflect K/r strategists? Fragmentation and modularization
may hint at a deeper understanding of the differences between K- and r-strategists, where K-
strategists are typically associated with slow growth due to limitations by density-dependent
controls, and r-strategists with fast growth (Note: K and r strategists can be differentiated by
their maximum specific growth rate under conditions with excess substrate (i.e., batch
growth). C. ljungdahlii, as a K-strategist (max in silico growth rate on fructose is 0.57 h*-1),
evolved to maximize efficiency of resources at the tRNA operon structure level. Thus, C.
ljungdahlii matches cost to need, which may provide C. ljungdahlii with a slight edge over
competitors when nutrients are limiting for the ecological community. E. coli, an r-strategist
(max in silico growth rate on glucose is 0.92 h*-1), has evolved to always perform near
optimum in regards to its tRNA operon structure, and rRNA expression, which is tied to tRNA
expression, is maximized. Furthermore, E. coli’s fractured tRNA-containing operon structure
may allow E. coli to quickly match tRNA-demands specific to available substrates, as E. coli
is a generalist that consumes multiple carbon sources. Thus, E. coli has optimized its output,

which may allow it to persist in an ecological community through rapid growth.

Although ME-models currently lack other factors that affect tRNA amounts (e.g., regulation,
proximity to the origin of replication, leading verses lagging strand, individualized aminoacyl-
synthase turnovers), ME-models account for genome architecture (gathered from publicly
available databases), transcription, tRNA charging, and translation (validated through a
combination of ’omics and Northern blot data), which allowed us the ability to interrogate the
importance of tRNA operon structure for two organisms, E. coli and C. ljungdahlii.
Examination of these two organisms’ operon structures revealed two different strategies:
Fragmentation in E. coli and modularization in C. ljungdahlii. Using iLE1678-ME (E. coli) and
iJL965-ME (C. ljungdahlii) as a basis, 1000 models with randomly shuffled tRNA locations for
each organism were built. Predictions from these MC tRNA location models compared to
those from iLE1678-ME or iJL965-ME showed that tRNA operon structure was optimized for
tRNA abundance requirements. In iLE1678-ME, the tRNA operon structure also leads to

high rRNA expression, while in iJL965-ME, tRNA efficiency was optimized. These
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conclusions regarding optimization primarily hold strong for batch growth conditions, which

implies that tRNA operon structure is a nonrandom result of selective pressures for

maximizing growth rate.



SUMMMARY

Successful, scale-able implementation of biofuels is dependent on the efficient and near
complete utilization of diverse biomass sources. Lignocellulosic biomass holds great promise for
achieving renewable fuel standards set forth by the US and EU. However, a major limitation in
the production of biofuels from lignocellulosic biomass is conversion of the lignin fraction. A
promising approach to utilize this recalcitrant biomass (or any organic waste stream) is through
thermochemical conversion of organic compounds to syngas, a mixture of CO, CO,, and H..
Subsequently, syngas can be metabolized by acetogenic microorganisms and converted to
multi-carbon organics such as acetate, ethanol, butanol, butyrate, and 2,3-butanediol.
Acetogens are comprised of a physiologically diverse panel of organisms. In addition to being
able to ferment a variety of organic molecules, acetogens offer several attractive metabolic
features absent in model microorganisms currently used for biofuel production, such as
Escherichia coli and yeast. Chief among these is their ability to reduce CO, as an electron
acceptor via the Wood-Ljungdahl pathway to produce multi-carbon organic molecules. This
capacity for CO,-reduction makes it feasible to achieve near stoichiometric conversion of
biomass to desired organic products and fuel molecules via the recovery of low-potential
electrons. Production of biofuels with acetogens has been stymied so far by a poor
understanding of their metabolic, energetic, and regulatory networks that govern its physiology.
Thus, desirable physiological properties of acetogens for biofuel production cannot, at present,
be introduced into E. coli or other chassis organisms. Next-generation omics approaches, e.g.
RNA-seq, ChlP-exo, and Ribosome profiling, enable researchers to rapidly decipher genome
architecture and deeply characterize organisms. Generation of such data in acetogens is not
only beneficial to better understanding these microorganisms but also is the basis upon which
systems level analysis can be performed. Recently, the development of genetic manipulation
tools for the acetogen Clostridium ljungdahlii has opened the window for establishing this

species as a new chassis for biofuel production.

Computational modeling is a prerequisite for rational genome-scale engineering for biofuel
production. In addition to genome-scale models of metabolism, next generation models, so
called ME-models, have recently been developed, expanding the scope of models to include
major cellular processes such as macromolecular synthesis and transcriptional regulation.
These next-generation models enable engineering of multiple cellular processes resulting in the

advanced design of tunable systems for bioproduction.



In work performed under the contract contract DE-SC0012586 we elucidated how the model
acetogen Clostridium ljungdahlii regulates energy and carbon metabolism not only at a
transcriptional level but that major pathways related to energy conservation and product
formation are controlled at a translational level. Furthermore, we identified major genomic
features that control carbon and energy flow in different growth conditions this Gram-positive
bacterium. While postranscriptional control of gene expression plays a major role in gene
regulation, we currently lack a deeper understanding of posttranscriptional control of gene
expression in industrial relevant bacteria. Using a multi-omics approach and detailed analysis of
the mRNA 5' untranslated regions, we discovered that translational efficiency is not only
affected by the strength of RBS, but also depends on the AU content upstream of RBA and the
distance of the RBS from the translation start site. These findings provide novel mechanistic
insights into posttranscriptional regulation, resulting in differential translational efficiency (TE) in
a growth-dependent manner. Our work uncovers a novel regulatory mechanism for the model
acetogen C. ljundabhlii that thrives at the energetic limit of life and highlights utilization of scarce
resources at optimal efficiency. We propose that energy and carbon metabolism pathways are
specifically controlled at the TE level, allowing for dynamic resource allocation. Our findings
have broad implications on how microorganisms control and optimize their metabolic networks.
The results provide a new framework for metabolic regulation in this model acetogen that can
readily be extrapolated to other industrially important microbes, and will thus lay the foundation

for advanced strain design and engineering efforts.

To use this new knowledge for a system biology-based design, we developed a novel genome-
scale model of metabolism and macromolecular synthesis is deployed to gain new insights into
the biology of the model acetogen C. ljungdahlii. Metabolic and gene expression models (ME-
models) include more than metabolic reactions; they also contain representations of major
cellular processes like macromolecular synthesis and basic transcriptional regulation, which
significantly broadens the scope and predictability of microbial systems biology. The model of C.
ljungdahlii reconstructed represents the first ME-model of a gram-positive bacterium and
captures all major central metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin
synthesis pathways as well as pathways to synthesis RNA and protein molecules necessary to
catalyze these reactions. The model was used to reveal how protein allocation and media

composition influence metabolic pathways and energy conservation in acetogens. While



standard metabolic models only predict formation of a single product, the ME-model allows for
the first time to accurately predict secretion of acetate, ethanol, and glycerol during changing
carbon and metal availability. Predicting overflow metabolism is of particular interest since it
enables new design strategies, e.g. the formation of glycerol by C. ljungdahlii (which was
experimentally confirmed) had not been described and describes new metabolic capability of
this microbe. Furthermore, prediction and experimental validation of changing secretion rates
based on metal availability opens the window into fermentation optimization and provides new

knowledge about the proteome utilization and carbon flux in acetogens.

Lastly, we investigated the effect of the operon structure of C. lungdahlii on its growth
phenotype, using the newly reconstructed ME-model. An operon is a co-regulated cluster of
genes that are expressed on the same RNA transcript. Though the presence of an operon may
be a random event, selection pressures can drive the maintenance of operons. In order to
optimize cellular efficiency, translation must be carefully controlled because it requires the
highest energy and resource expenditure of any process in fast-growing cells. Using the
COBRAme-based ME-model for C. ljungdhalii, we examined the systematic importance of tRNA
co-expression. We validated the two models for the purposes of this study and examined the
tRNA operon structures, thereby identifying unique tRNA operon solutions to two different
selective pressures. One solution led to optimization of phenotype through fragmenting operons

and the other solution to optimized efficiency through optimal grouping of tRNAs.

This study substantially enhanced our knowledge about chemolithoautotrophs and their
potential for advanced biofuel production. It provides next-generation modeling capability, offer
innovative tools for genome-scale engineering, and provide novel methods to utilize next-
generation models for the design of tunable systems that produce commodity chemicals from

inexpensive sources.
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