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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. Any findings, opinions, and conclusions or recommendations
expressed in this report are those of the authors and do not necessarily reflect those of the United
States Government or any agency thereof.
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1 Executive Summary

The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher
than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true
especially at a cost lower than 55/kg (typical value for magnesium alloys). Recently, high-entropy alloys
(HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions
complex and time-consuming.

Over the course of this 2-year project we started from 150 billion compositions and reduced the number
of potential low-density (<5g/cc), low-cost (<55/kg) high-entropy alloy (LDHEA) candidates that are
single-phase, disordered, solid-solution (SPSS) to a few thousand compositions. This was accomplished
by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive
partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91
calculated parameters serving as phenomenological selection rules.

Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller,
experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy
of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database
is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed
to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy
convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%.

Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA
composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al,
necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-
centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based on Al-Cr-Fe-Ni, shows
compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g, yet does not show
ductility in tensile tests due to cleavage. When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA
with Mn, hardness drops 2x. Combined with compression test results, including those on the ternaries
Al-Cr-Fe and Al-Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. These initial results
only represent one compressive stress-strain curve per composition without any property optimization.
As such, reproducibility needs to be followed by optimization to show their full potential.

When including Li, Mg, and Zn, single-phase Li-Mg-Al-Ti-Zn LDHEA has been found with a specific
ultimate compressive strength of 289MPa x cc/g. Al-Ti-Mn-Zn showed a specific ultimate compressive
strength of 73MPa x cc/g. These initial results after hot isostatic pressing (HIP) of the ball-milled
powders represent the lower end of what is possible, since no secondary processing (e.g. extrusion) has
been performed to optimize strength and ductility.

Compositions for multi-phase (e.g. dual-phase) LDHEA were identified largely by automated searches
through CALPHAD databases, while screening for large face-centered-cubic (FCC) volume fractions,
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followed by experimental verification. This resulted in several new alloys. Li-Mg-Al-Mn-Fe and Mg-Mn-
Fe-Co ball-milled powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and
45MPa x cc/g, respectively. Several malleable quarternary Al-Zn-based alloys have been found upon
arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial
results are all without any optimization for strength and/or ductility.

High-throughput experimentation allowed us to triple the existing experimental HEA database as
published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous
methods. Furthermore, we showed that high-throughput thin-film combinatorial methods can be used
to get insight in isothermal phase diagram slices.

Although it is straightforward to map hardness as a function of composition for sputtered, thin-film,
compositional gradients by nano-indentation and compare the results to micro-indentation on bulk
samples, the simultaneous impact of composition, roughness, film density, and microstructure on
hardness requires monitoring all these properties as a function of location on the compositional
gradient, including dissecting the impact of these 4 factors on the hardness map. These additional
efforts impact throughput significantly.

This work shows that a lot of progress has been made over the years in predicting phase formation that
aids the discovery of new alloys, yet that a lot of work needs to be done to predict phases more
accurately for LDHEA, whether done by CALPHAD or by other means. More importantly, more work
needs to be done to predict mechanical properties of novel alloys, like yield strength, and ductility.
Furthermore, this work shows that there is a need for the generation of an empirical alloy database
covering strategic points in a multi-dimensional composition space to allow for faster and more accurate
predictive interpolations to identify the oasis in the dessert more quickly. Finally, this work suggests that
it is worth pursuing a ductile alloy with a SYS > 300 MPa x cc/g in a mass density range of 6-7 g/cc, since
the chances for a single-phase or majority-phase FCC increase significantly. Today’s lightweight steels
are in this density range.
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2 Original Hypotheses

The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher
than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true
especially at a cost lower than 55/kg (typical value for magnesium alloys). Recently, high-entropy alloys
(HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions
complex and time-consuming.

HEAs are a new class of multi-principal element alloys, a field over a decade old, in which the design of
the alloys is based not on adding solutes at low weight-% to a single “base” element, but rather on
choosing multiple elements all around equi-atomic concentrations. Several definitions for HEA exist,
typically based on composition, or configurational entropy, and sometimes with the motivation to
produce a single-phase, disordered, solid solution (SPSS).

HEA have potential applications outside light-weighting which includes protective coatings, catalysts,
high-temperature environments, magnetics (e.g. rare-earth replacement), and a range of other areas
that require extraordinary material properties or cost reduction. As such, HEA open up a wealth of new
opportunities for the US economy.

LDHEAs (e.g. Li-Mg-Al-Sc-Ti (1)) have been shown to possess higher SYS than traditional alloys. In
addition, because each element in the LDHEA is at a high atomic-%, it is possible to tailor macroscopic
functional characteristics in a way not previously explored for traditional base alloys. As such, LDHEAs
have the potential to combine a dramatically improved SYS with a concomitant improvement in the
balance between strength and ductility of metals, together with a reduced sensitivity to minority
elements, and corrosion.

Preliminary LDHEA studies (1) have demonstrated SYS of 749 MPa x cc/g (see Table 1), with the potential
to reduce primary metal weight in automotive applications by almost 50% (2), assuming a blend of
stiffness and strength limited metal parts. This does not include downsizing (engine, brakes, cooling
system) made possible by primary metal light-weighting. Such materials could be highly impactful in
DOE’s effort toward light-weighting, and are an ideal candidate for future MYPPs.

Each of the key elements of our proposed approach are commonly used for other, related applications.
The accumulated experimental work on HEA over the past decade (3-5) has made it possible to improve
the predictions on phase formation and hardness for LDHEA through phenomenological selection rules,
as evidenced by Koch’s LDHEA work (1). These empirical selection rules are a refinement to the Hume-
Rothery rules, made specifically for HEA. Similarly, CALPHAD modeling of various alloys has been
extensively validated, including more recently modeling of HEA (6). Traditional thin-film alloy
development has been demonstrated through multiple studies as a good screening tool for bulk alloys

(7).
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Table 1. SOTA lightweight structural alloys, plus Program Targets Yr 1 Target | Yr 2 Target
AHSS | Ti-alloy | Mg-alloy | Al-alloy LSDO}-ITEAA IIEII(DJEEESAC TSEES:
1000 880 285 230 2000 1500 3000
7.85 4.43 1.80 2.70 2.67 5.00 5.00
127 199 158 85 749 300 600
$1.50/kg | $20/kg S5/kg | $2.75/kg | $5,000/kg S5/kg S5/kg
0.58 4.69 0.84 0.77 469 1.01 0.72

3 Approach

3.1 High-throughput material design and experimentation

The approach taken to accelerate the discovery of a promising LDHEA is based on a combination of high-
throughput material design, prediction validation by fabricating a single composition via a small bulk

fabrication method, subsequent mapping of the composition space by thin-film sputter (PVD) deposition
and annealing, followed by taking the most promising compositions to a larger bulk scale fabrication and
thermo-mechanical optimization, see Figure 1 below.

The material design is accelerated by database-driven design. Multiple approaches are used in parallel
to ensure a well-balanced approach. In addition to phenomenological selection rules, experimental
phase diagrams, CALPHAD, and a simple phase diagram tool is used. A brief overview of pros and cons is

given below in Table 2.

ltem PSR CALPHAD SPD
Designed for experimentally unassessed systems yes no yes
Results potentially biased towards database input yes yes no
fce/bee/hep aware possible yes no
Temperature aware possible yes yes
Distinguishes single-phase from two-phase no yes no
disordered solid solution mixtures
Adjustable for new experimental data yes difficult no
Basis Experiment Experiment + Model + DFT +

Thermodynamics Thermodynamics

Table 2. Comparison of phenomenological selection rules (PSR), CALPHAD, and simple phase diagrams (SPD) for the purpose

of material design of LDHEA.
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High-Throughput Material Design Validate Prediction

Market Needs Phenomenological Alloy Design Simple phase Puck fabrication & characterization
diagrams

—_

Strength 1. HEA experimental database

2.  Price 2. Phase diagrams

3. Density (experiments & CALPHAD)
3. Selectionrules

1. Fabrication (melt, mill) & anneal
2. Microstructure (XRD, SEM/EDS)
3. Micro-hardness & indent images

$1

. . . N
Small Bulk Samples verification, High-Throughput Experimentation to
optimization, tests identify trends with composition
Composition map XRD Map
Bl L
. Al lly
Large Bulk Samples verification, .' ﬁﬁt
optimization, tests 1. Phase space mapping with XRD
\_ 2. Hardness mapping with nano-indentation )

Figure 1. Visualization of the high-throughput material design and experimentation approach.
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3.2 High-throughput material design

3.2.1 Databases used for high-throughput material design

High-throughput material design relies heavily on databases. Five input tables were created to allow for
high-throughput material design. In addition, TCAL4, TCNI8, and TCHEA1 were used within the Thermo-
Calc CALPHAD software package. Regarding the 5 input tables. The first table contains 20 parameters
per element for 48 elements of the periodic table, collected from multiple sources. Table 3 shows an
overview on parameters used for the elements.

1 Atomic # of Elements Atomic number of element

2 Symbol Symbol of element

3 Element Element

4 VEC Valence electron concentration

5 sap Sum of s and p electrons for Friedel model, see Acta Materialia 75 (2014) 297-306
6 Atomic Mass (gr/mole) Atomic mass in gram/mole

7 Melting Point (C) Melting point in Celsius

8 Mass Density (g/cm3) Mass density in gram/cc

9 Molar volume (cm3/mole) Molar volume in cc/mole
10 Allen Electronegativity Electronegativity based on Allen scale, see J. Am. Chem. Soc. 2000, 122, 5132-5137
11 Pauling Electronegativity  Electronegativity based on Pauling scale

12 AR Electronegativity Electronegativity based on Allred-Rochow scale, see J. Am. Chem. Soc. 2000, 122, 5132-5137

13 Wiki-E. At. R. (pm) Atomic radius (in pm) from Wikipedia

14 MEH At. R. (pm) Atomic radius (in pm) from Materials Science and Engineering Handbook (CRC, 3rd edition)

15 GUO At. R. (pm) Atomic radius (in pm) from GUO, Progress in Natural Science: Materials International 21(2011) 433-446
16 Zhang At. R. (pm) Atomic radius (in pm) from Zhang, Progress in Materials Science 61 (2014) 1-93

17 CN12 At. R. (pm) Atomic radius for CN =12 (in pm) from W.B. Pearson's (after Teatum, Gschneidner, and Waber)
18 MEH lon. R. (pm) lonic radius (in pm) from Materials Science and Engineering Handbook (CRC, 3rd edition)

19 Price ($/kg) Raw metal price in $/kg for early 2015 based on multi-year trends, not spot prices

20 Young's Modulus (GPa) Young's Modulus in GPa

21 Shear Modulus (GPa) Shear Modulus in GPa

22 Compressibility (1/GPa) Compressibility in 1/GPa

23 Crystal Structure Most common crystal structure

Table 3. Parameters tabulated per element of the periodic table for each of the 48 elements investigated.

An overview of the 48 elements of the periodic table investigated, including values for 5 out of 20
parameters for each element, is shown in Table 4.
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3L
4 Be
5B
6C
11 Na
12 Mg
13 Al
14 Si
19K
20 Ca
21 Sc
22Ti
23V
24 Cr
25 Mn
26 Fe
27 Co
28 Ni
29 Cu
302Zn
31 Ga
32 Ge
33 As
37 Rb
38 Sr
39Y
40 Zr
41 Nb
42 Mo
47 Ag
48 Cd
49 In
50 Sn
51 Sb
56 Ba
57 La
58 Ce
59 Pr
60 Nd
62 Sm
64 Gd
66 Dy
67 Ho
72 Hf
73 Ta
74 W
82 Pb
83 Bi

Lithium
Beryllium
Boron
Carbon
Sodium
Magnesium
Aluminum
Silicon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron

Cobalt
Nickel
Copper
Zinc
Gallium
Germanium
Arsenic
Rubidium
Strontium
Yttrium
Zirconium
Niobium
Molybdenum
Silver
Cadmium
Indium

Tin
Antimony
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Samarium
Gadolinium
Dysprosium
Holmium
Hafnium
Tantalum
Tungsten
Lead
Bismuth

W0 ~NOUEWNRDBEWNER-REWRNR

@ U R WN R OBR W

B
NP

U R OU D WWWwWwWwWwwwNUu s W

0.53
185
234
2.26
0.97
1.74
2.70
2.33
0.86
1.55
2.99
4.51
6.11
7.19
7.47
7.87
8.92
8.91
8.93
7.14
591
5.32
5.78
1.53
2.64
4.47
6.51
857
10.22
10.50
8.65
7.31
7.27
6.69
3.59
6.17
6.71
6.77
7.00
7.54
7.89
8.56
8.78
13.31
16.67
19.30
11.34
9.79

0.98
157
2.04
2.55
0.93
131
161
1.90
0.82
1.00
136
1.54
1.63
1.66
1.55
1.83
1.88
191
1.9
1.65
181
2.01
2.18
0.82
0.95
122
133
1.60
2.16
1.93
1.69
178
1.96
2.05
0.89
110
112
113
114
117
120
122
123
1.30
1.50
2.36
2.33
2.02

152
114

97

77
186
160
143
117
231
197
160
147
132
125
112
124
125
125
128
133
135
122
125
251
215
181
158
143
136
144
150
157
158
161
217
187
182
183
182
181
180
177
176
159
147
137
175
182

75
240

18,000
15
75
10

3

1

30
15

5

3
600
1,250
2
25,000
1,000
80
100
200
30
560
3
720
25

2

50

5

5
100
85
20
40
350
1,000
500
150
100
3

17

Table 4. An overview of the 48 elements of the periodic table investigated for LDHEA design, including 5 parameters out of

20 parameters for each element. For explanation of column headers, see Table 3.

The second table involves a matrix of the enthalpy of mixing of the binary liquid in an A-B system at an
equi-atomic composition based on Miedema’s model and taken from literature (8). The third table
involves a matrix of the enthalpy of mixing (solution) of the binary liquid at infinite dilution for Ain B in
an A-B system based on Miedema’s model, taken from literature (9). The fourth table provides a matrix
of Density-Functional-Theory-calculated enthalpy of formation terms of the lowest energy structure of

each binary compound, taken from literature (10) and the Materials Project
(https://materialsproject.org/).

An experimental HEA database was compiled from 24 literature sources (see Table 5) listing whether

HEA compositions resulted in single-phase, disordered, solid solutions (SPSS, e.g. FCC, BCC, or HCP), or

multiple phases. The database contains 1,490 entries, and all process conditions are being considered
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(whether ball milled, sputtered, as-cast, annealed, etc.). After removing duplicates and (perceived)
conflicts >550 entries are left. Most entries have a mass density in the 7-8g/cc and are heavily
concentrated around the typical 3d transition metal HEA (11). The experimental HEA database contains
only a few data points with density <5g/cc, most of which are not SPSS. The data points that are SPSS
with a density <5g/cc are the result of ball milling.

Acta Materialia, 104 (2016) 172-179

Acta Materialia, 75 (2014) 297-306

CALPHAD, 50 (2015) 32-48

Entropy, 2013, 15, 5338-5345

High-Entropy Alloys, Elsevier, 2014, [Murty, Yeh, Ranganathan]
Intermetallics, 41 (2013) 96-103

Intermetallics, 58 (2015) 1-6

Intermetallics, 59 (2015) 75-80

International Journal of Minerals, Metallurgy, and Materials, 2016, 23 (1), pp 77-82
JOM, Vol. 66, No. 10, 2014, p. 2009

JOM, Vol. 66, No. 10, 2014, p. 2021

Journal of Alloys and Compounds, 460 (2008) 253-257

Journal of Alloys and Compounds, 506 (2010) 210-215

Journal of Alloys and Compounds, 658 (2016) 603-607

Materials Research Letters, Volume 3, 2015 - Issue 2, Pages 95-99
Mater. Sci. Forum, 686 (2011) 235

Materials Characterization, 110 (2015) 116-125

Materials Chemistry and Physics, 132 (2012) 233-238

Materials Letters, 169 (2016) 62-64

Materials Science and Technology, 31(15), 2015, Pages 1842-1849
Nature Communications 6, Article number: 6529 (2015)

Progress in Natural Science: Materials Inter., 21 (2011), p. 433-446
Progress in Natural Science: Materials Inter., 24 (4), 2014, p. 305-312
Koch, North Carolina State University, unpublished

Table 5. Main literature sources to construct the experimental HEA database.

3.2.2 Computations for high-throughput material design

Computations are required to implement fast filtering of billions of compositions (LDHEA design) based
on phenomenological selection rules (“cut-off” values), machine learning, construction of a simple phase
diagram, and CALPHAD.

The computational part for both the phenomenological selection rules and machine learning was
implemented in BIOVIA Pipeline Pilot version 9.2, a scientific software platform that includes a wide
variety of functionality for data analytics and modeling (see http://accelrys.com). The main method for

the machine learning was Recursive Partitioning, a method that constructs decision trees to classify data
based on a set of input and output variables (also referred to as Classification and Regression Trees,
CART).

In addition to the use of phenomenological selection rules and machine learning, we calculate a simple
phase diagram by constructing the Gibbs-free energy convex hull using Pipeline Pilot with ghull.
Formation enthalpies for ordered compounds are based on DFT calculations
(https://materialsproject.org/) without entropy terms. Only fully ordered compounds are being

considered, no ordered compounds with fractional occupancies are included. Disordered solid solutions
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are modeled based on either binary equi-atomic Miedema enthalpy terms (3), or the sum of chemical
and elastic enthalpy terms (12) with either ideal or the sum of ideal and excess configurational entropy
(13) terms.

CALPHAD computations are made via the software package of Thermo-Calc.

3.2.3 Parameters for phenomenological selection rules and machine learning

The parameters calculated per LDHEA composition in Pipeline Pilot include thermodynamic, geometric,
electronic and physical parameters, see Table 6. Typical phenomenological selection rule parameters are
used (up to calendar year 2016), yet often calculated based on multiple sources, like several
electronegativity scales, and several sources for atomic size. This will allow a detailed comparison of the
predictability of the different parameters based on different sources.

Furthermore, the Gibbs-free energy is calculated at various temperatures (e.g. 300K, 600K, and 1200K)
based on the most commonly used enthalpy terms in the HEA community (8), and less commonly used
enthalpy terms in the HEA community (12). The latter being the sum of chemical and elastic enthalpy
contributions, instead of the binary equi-atomic Miedema enthalpy terms (3). In addition, the sum of
ideal and excess configurational entropy (13) is used in the Gibbs-free energy calculations, as
comparison with the purely ideal configurational entropy term.

A recent, further expansion on enthalpy terms (not applied in this work) applied to HEA can be found in

literature (14). Some more recent phenomenological selection rule parameters (2016 and beyond) are
not included, like ¢ and A (15).
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1 Formula
2 Formula_pc
3 Price
4 Density
5 Ave_Melting_Point
6 Youngs_Modulus
7 Mol_Wt
8 VEC
9 VECD
12 dH_Miedema
13 Omega
15 Singh
16 dS_excess_div_ideal
17 e_over_a
18 Eps_Sd
19 VEC_div_CN12_AtRad
20 VEC_div_Guo_AtRad
21 dH_IM_div_Mied
22 Kappa_CR1
23 Kappa_CR1_div_dH_IM_div_Mied
24 N_Elements
10 ASD_GUO
25 ASD_CN12
26 ASD_Wiki
27 ASD_MEH
28 ASD_Zhang
29 ISD_MEH
14 gamma_Guo
30 gamma_CN12
31 gamma_Zhang
32 gamma_Wiki
11 END_Pauling
33 END_Allen
34 END_AR
41 dS_ideal
42 dS_excess
48 dH_chemical
49 dH_elastic
87 dG_M_|_1200

Alloy composition as entered

Alloy composition in at.-%

Alloy metal price based on rule of mixtures

Alloy mass density based on rule of mixtures

Alloy melting temperature based on rule of mixtures

Young's modulus based on rule of mixtures

Molecular weight based on rule of mixtures

Valence electron concentration

Valence electron concentration difference, calculated similar to ASD
Enthalpy of mixing based on binary, equi-atomic, Miedema enthalpy terms
Disordered solid solution thermodynamic prediction parameter, Q
Disordered solid solution geometric prediction parameter, A

Excess configurational entropy divided by ideal configurational entropy
Itinerant electron concentration

e_over_aminus 1.5

VEC divided by average atomic radius (CN12 At. R.) based on rule of mixtures
VEC divided by average atomic radius (GUO At. R.) based on rule of mixtures
Enthalpy for intermetallic compound formation divided by dH_Miedema
Disordered solid solution thermodynamic prediction parameter
Kappa_CR1 divided by dH_IM_div_Mied

Number of elements in alloy

Atomic size difference based on GUO At. R.

Atomicsize difference based on CN12 At. R.

Atomic size difference based on Wiki-E. At. R.

Atomic size difference based on MEH At. R.

Atomic size difference based on Zhang At. R.

lonic size difference based on MEH lon. R., calculated similar to atomic size difference
Effective atomic size parameter based on GUO At. R.

Effective atomic size parameter based on CN12 At. R.

Effective atomic size parameter based on Zhang At. R.

Effective atomic size parameter based on Wiki-E. At. R.

Electronegativity difference based on Pauling scale

Electronegativity difference based on Allen scale

Electronegativity difference based on Allred-Rochow scale

Ideal configurational entroy

Excess configurational entroy

Chemical enthalpy contribution

Elastic enthalpy contribution

Simple Gibbs-free model based on dH_Miedema and dS_ideal at 1200K

n/a

n/a

Nature Communications 6, Article number: 6529 (2015)
Nature Communications 6, Article number: 6529 (2015)
Materials Chemistry and Physics, 132 (2012) 233-238
Nature Communications 6, Article number: 6529 (2015)
n/a

JOM, Vol. 66, No. 10, 2014, 2009-2020

n/a

Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Intermetallics, 53 (2014) 112-119

Intermetallics, 59 (2015) 750-80

Acta Materialia, 75 (2014) 297-306

Acta Materialia, 75 (2014) 297-306

n/a

n/a

Journal of Alloys and Compounds, 658 (2016) 603-607
Journal of Alloys and Compounds, 658 (2016) 603-607
Journal of Alloys and Compounds, 658 (2016) 603-607
n/a

Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Scripta Materialia, 94 (2015) 28-31

Scripta Materialia, 94 (2015) 28-31

Scripta Materialia, 94 (2015) 28-31

Scripta Materialia, 94 (2015) 28-31

Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Materials Chemistry and Physics, 132 (2012) 233-238
Intermetallics, 59 (2015) 750-80

Intermetallics, 23 (2012) 148-157

Intermetallics, 23 (2012) 148-157

Materials Chemistry and Physics, 132 (2012) 233-238

Table 6. Main parameters (50 out of 91) calculated for each LDHEA composition as used for phenomenological selection

rules, machine learning, and the simple phase diagram model.

3.2.4 Alloy composition range

The main focus of the LDHEA design has been on 4-element and 5-element alloys based on 19 elements

of the periodic table in a composition range per element of 5at.-% to 45at.-% and restricting

compositions of interest by calculated raw LDHEA metal price (<55/kg) and LDHEA mass density

(<5g/cc). Subsequent filtering was performed by phenomenological means, including CALPHAD, or a

simple phase diagram model.

However, to get a better understanding of the alloy design in the LDHEA space, alloys ranging from 2 to

8 elements have been evaluated. Similarly, the composition range per element in an initial stage was

kept broader ranging from 5at.-% to 90at.-%. Compositional resolution varies (2at.-% to 15at.-%)

dependent on number of elements in an alloy (from 2 to 8), and how many elements of the periodic

table are being considered (from 16 to 33) to limit computation time. See Table 7 for some examples.
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Computation time can vary from less than an hour to a few days per batch. These computations are
described in the section “Computations for high-throughput material design”.

1 4 B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Ta, W 5-85at.-%  10at.-%
2 4 21 Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ta, W 5-85at.-%  10at.-%
3 4 Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Sn, Sb, Ta, W, Bi, Ce, Gd 5-85at.-%  10at.-%
4 4 _ Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Cd, Sn, Sb, Hf, Ta, W, Pb, Bi, Ce, Gd  5-85at.-%  10at.-%
5 3 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-90at.-% 5at.-%
6 4 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-85at.-% Sat.-%
7 5 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-80at.-%  5at.-%
s [a 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-75at.-%  Gat.-%
9 3 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 10-60at.-% 2at.-%
10 4 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-45at.-% 2at.-%
11 5 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-35at.-% 2at.-%
12 e 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-35at-%  2at-%
13 3 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a
14 4 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a
15 5 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a
i 28 Li, B, Na, Mg, Al Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic  n/a
17 7 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a
18 8 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

Table 7. Examples of LDHEA design criteria related to elements of the periodic table, composition range per element, and
composition resolution within composition range for LDHEA.

3.3 High-throughput experimentation

3.3.1 Combinatorial, sputtered, thin-film, compositional gradients

Intermolecular’s high-throughput, combinatorial, thin-film, sputter platform was used for mapping the
composition space within each alloy of interest. Films were deposited by co-sputtering from up to 5
sputter guns to deposit up to 5 elements simultaneously. Compositional gradients of 1700mm x 100mm
with a thickness ranging from 100-250nm for basic characterization to >1,000nm for nano-indentation
were deposited onto thermally-oxidized silicon wafers.

Annealing of the compositional gradient films was performed for 10-60min under inert/reducing
atmosphere. Anneal temperatures were selected either based on CALPHAD or rule of mixtures.
Characterization and nano-indentation is mainly performed after annealing.

The compositional gradient films were analyzed by X-ray diffraction, and tested for hardness by nano-
indentation. Composition was monitored by Energy Dispersive X-ray Spectroscopy (EDS), and X-ray
Fluorescence (XRF), calibrated by Rutherford Back Scattering (RBS). This way, maps of composition (e.g.
XRF), phases (e.g. XRD), and hardness (nano-indentation) can be created per compositional gradient
(100mm x 100mm) coupon, typically with a grid of 5, 16, or 25 points per coupon. Multiple coupons are
required to map the complete composition space (see Figure 2), yet most work was performed away
from phase diagram corners and edges.
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e, 70%

90% 70% 50% 30% 10%

Figure 2. Sputtered, thin-film, compositional gradient (left), and example of distribution of coupons to map a ternary phase
diagram (right).

3.3.2 Bulk samples

Bulk samples were manufactured by ball milling (mechanical alloying), arc, or induction melting. Powder
consolidation (hot isostatic pressing, or HIP) was used to convert the ball-milled powders into cylinders
for mechanical testing.

Most ball milling was performed at room temperature for either 5 gram or 200 gram batch size, starting
from -325mesh, 3N-purity atomized powders with a small amount of organic added to minimize cold
welding. Most powders were elements, except for the use of Li50AI50, and Mn50Fe50 alloy powders.
Arc and induction melting were used to manufacture 3N-purity bulk samples, typically either 0.75"-
diameter by 0.25”-thick pucks for basic characterization, or 0.5”-diameter by 0.75”-high cylinders for
compressive or tensile stress-strain tests.

Annealing of the 5 gram batches of ball-milled powder was performed for 1 hour under Ar-2%H2
atmosphere with positive pressure up to 4-5 psi. Cooling was conducted to room temperature with
average cooling rate of 3-5 °C/s. Arc and induction melted pucks were annealed for 18hrs. Anneal
temperatures were selected either based on CALPHAD or rule of mixtures. Characterization and
mechanical testing is mainly performed after annealing, except for ball milling, where powders are
characterized prior to and after annealing.

Bulk samples were analyzed by X-ray diffraction, and tested for Vickers hardness. Photos were taken on
individual indents to investigate pile up as an indication for ductility (malleability). Composition was
monitored by Energy Dispersive X-ray Spectroscopy (EDS), and Inductively Coupled Plasma Optical
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Emission Spectrometry (ICP-OES). Toughness, and malleability were qualitatively monitored by both
hammering pucks and drilling holes in pucks with carbide bits. Quantitative mechanical testing was
performed by both compressive and tensile stress-strain setups.

4 Project activities and accomplishments

4.1 High-throughput material design

4.1.1 Statistical analysis of phenomenological parameters for experimental HEA database

As shown in Table 8, the electronegativity difference based on the Allred-Rochow scale (END_AR) ranks
as the most significant phenomenological parameter for single-phase, disordered, solid solutions (SPSS)
for the experimental HEA database, followed by a few other electronegativity parameters (not shown).

Subsequently, the atomic size difference, based on coordination number equal to 12 (ASD_CN12), ranks
as the second most significant (non-electronegativity) parameter.

Both END_AR and ASD_CN12 are more significant than any of the thermodynamic parameters. The
significance (p-value) of these two parameters is much higher than the significance of more recent
parameters like “Singh”, or “Omega”, yet 80% of the investigated parameters are considered significant
(p-value < 0.05).

The analysis suggests a larger probability of SPSS for higher mass density (positive p-value), which is not
in favor of LDHEA. In addition, a larger probability of SPSS for alloys is expected with fewer elements
(negative p-value).

The importance of the electronegativity difference for LDHEA has been addressed recently in literature
(5). The weaker significance of “Omega” has been discussed (11, 16). Furthermore, it is known that cut-
off values of these parameters are often considered “necessary, but not sufficient” in guiding SPSS HEA
design.
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ID Parameter p-value t-statistic C
<5.E-02 Considered Significant

1 END_AR 8.E-36 -14.3 END based on Allred-Rochow scale

6 ASD_CN12 1.E-25 -11.5 ASD based on coordination number 12
10 dS_excess 5.E-22 10.2 Excess Configurational Entropy
11 gamma_CN12 8.E-22 -10.2 Effective atomic size parameter
12 dS_excess_div_ideal 2.E-20 9.7 Excess divided by ideal entropy
15 dH_elastic 4.E-15 -8.1 Elastic Enthalpy
18 VECD 1.E-13 -8.0 VEC difference
20 dG_M_I_1200 3.E12 7.4 Simple Gibbs-free energy @ 1200K
22 Density 1.E-11 7.2 Mass Density
26 dH_miedema 7.E-11 6.8 Enthalpy of mixing based on Miedema
35 N_Elements 2.E-08 -5.9 Number of elements
46 Youngs_Modulus 7.E-07 5.1 Young's Modulus
50 dS_ideal 4.E-06 -4.7 |deal configurational entropy
58 Singh 1.E-05 4.5 Geometric Singh parameter
67 VEC 2.E-04 3.9 Valence Electron Concentration
72 Omega 2.E-02 2.4 Thermodynamic Omega parameter
75 Eps_Sd 8.E-02 -1.8 e_over_aminus 1.5
76 e_over_a 8.E-02 -1.8 Itinerant electron concentration
77 Kappa_CR1_div_dH_IM_div_Mied 2.E-01 -1.3 Thermodynamic parameter
80 Price 3.E-01 1.2 Price
87 Kappa_CR1 7.E-01 0.4 Thermodynamic parameter

Table 8. Statistical analysis based on the experimental HEA database for the 91 parameters shows that the electronegativity
difference and atom size difference are most significant for single-phase disordered solid solution (SPSS).

4.1.2 Phenomenological selection rules and machine learning

When relying on visual cut-off values in graphs, as often done in literature, trends can be recognized for
the location of the largest population of SPSS. Graphs of ASD_CN12 vs END_Pauling, ASD_CN12 vs
Omega, and ASD_CN12 vs gamma_CN12 for the experimental HEA database show that most SPSS are
captured by ASD_CN12 < 7%, END_Pauling < 0.20, Omega > 1.1, and gamma_CN12 < 1.175, with similar
values often used in literature.

Figure 3 shows the reduction in number of alloy compositions for 2 to 6 element LDHEA based on 28
elements of the periodic table when introducing a phenomenological filter combined with both a
density and price filter. Less than 10 compositions are left from the initial 100,000’s of possibilities as
potential equi-atomic SPSS LDHEA based on this filter. Less than 5,000 compositions are left from the
initial 100’s of millions of off-equi-atomic possibilities. As previously mentioned, these
phenomenological selection rules (cut-off values) are considered necessary, not sufficient, which means
that the actual number of SPSS LDHEA candidates is likely smaller.

Finally, when considering more strict phenomenological selection rules for LDHEA, e.g. ASD_Guo < 4.5%,
END_Pauling < 0.175, and Omega > 10 (5) for 23 common elements in 5-element LDHEA in a range of 5-
45at.-% and step size of 5at.-%, the number of potential candidates gets further reduced drastically with
only a handful of candidates, see Table 9. These are Al-Zn-based alloys. These alloys combine easy
boilers (Li, Mg, Zn) with high melters (Cr, Cu, Fe).
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Figure 3. Number of alloy compositions versus number of elements in the HEA when considering 28 elements of the periodic
table for both equi-atomic and off-equi-atomic compositions, both with and without an HEA design filter. The applied filter is
the following: END_Pauling < 0.20, ASD_CN12 < 7%, Omega > 1.1, gamma_CN12 < 1.175, Density < 5g/cc, and Price < 55/kg.
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Li
Li
Li
Li
Li
Li
Li
Li
Li
Li
Li

Table 9. Potential 5-element SPSS LDHEA candidates when filtering for ASD_Guo < 4.5%, END_Pauling < 0.175, Omega > 10,

Mg Al Cr Zn 5
Mg Al Cr Zn
Mg Al Cu Zn
Al Cr Cu Zn
Al Cr Cu Zn
Al Cr Cu Zn
Al Cr Cu Zn
Al Fe Cu Zn
Al Fe Cu Zn
Al Cr Fe Zn
Al Cr Fe Zn

(O RGO RV VNV IR IR, e,

5
5
5

45

45

40

40

45

40

45

40

45
40
45

(SRR R RO RV RV RV V)

5 40
5 45
5 40
5 40
10 35
5 45
10 40
5 40
5 45
5 40
5 45

5

(SRS RN RV, RV, RV RO G R,

3.6
3.5
33
3.7
3.9
3.6
3.8
3.2
3.1
3.4
3.4

4.3
4.5
4.4
4.7
4.7
4.9
4.9
4.7
4.9
4.6
4.8

4.4
44
41
3.9
4.4
3.9
4.4
4.0
4.0
4.3
4.2

0.156
0.157
0.170
0.158
0.170
0.158
0.170
0.164
0.165
0.152
0.152

Density <5g/cc, and Price < 55/kg for 23 elements of the periodic table in range of 5-45at.-% in steps of 5at.-%. el = element
1, pcl = at.-% el. See Table 6 for other column headers.

In an attempt to improve on the visual cutoffs based on a handful of phenomenological parameters,

machine learning was introduced based on 91 parameters and the experimental HEA database to guide
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SPSS LDHEA design. The main method for the machine learning was Recursive Partitioning, a method
that constructs decision trees to classify data based on a set of input and output variables (also referred
to as Classification and Regression Trees, CART). The trained model provides a confidence level whether
a composition will exist as an SPSS. Applying this to billions of compositions combined with mass density
and price filters reduces the number of compositions to only a few thousand, see Figure 4.

Literature data
2 (2015)s,a -

le+11

16410 100 0? 2% e oo 00
i <
" le+9 3’11000 O:Q, o
< :
C 1e+8 $ o\lo o\? he 0% goo%
) le+7 "(_5' "g'g' "c'é ] %§b° ;33032&”
) o
g le+6 LD_ 0 Ln. i 100 < 1
> > > < 010, S 5 o7§&> 10 11 12 13 14
g— le+5 (e S ) *g o%?‘%o 6 °
o le+4 g (P g = °% o 8
O 1e+3 L? <$ QID % 10 00 % X ©
< S 4
le+2 q-_ q-_ q-. = o &« % g N
2 EEHEE - ¢ New data
< ™ 3¢ [ I}

Te+0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Mass Density (g/cc)

Figure 4. Left: Number of alloy compositions for sum of 4-element, 5-element-, and 6-element alloys based on 5at.-% steps
per element for SPSS LDHEA design, for 48 (48e), 31 (31e), and 20 (20e) common elements of the periodic table. Filtering
(Filter) based on a trained machine learning model for a confidence level >0.50, and both density <5g/cc and price <5$/kg
reduces the potential SPSS LDHEA candidates from 150 billion to a few thousand. The number of experimental compositions
(Exp.) evaluated in this project is of the same order of magnitude. Right: Overview of new experimental LDHEA data points
generated during this project plotted versus calculated raw alloy price and mass density.

A distribution plot of the confidence level for the existence of SPSS for quarternary LDHEA with each
element in a range of 5-85at.-% in steps of 10at.-% and starting from 31 common elements of the
periodic table is shown in Figure 5 (left graph). Roughly 3% of the population, without filtering for mass
density and price, shows a confidence level >0.50. When filtering for mass density (<5g/cc), price
(<5S/kg), confidence level (>0.50), and reducing the composition range per element from 5-85at.-% to 5-
45at.-% only about 350 compositions are left from the initial 2 million compositions, see Figure 5 (right
graph).
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Figure 5. Left: Distribution plot of the confidence level for the existence of SPSS for 4-element LDHEA starting from 31
common elements in a range of 5-85at.-% in steps of 10at.-%. Right: Population of 4-element LDHEA when progressively
adding more filters. All = 5-85at.-%, 10at.-% steps, 31 common elements, 4-element LDHEA. Subsequently, additional filters
(CL > 0.5, Price < 5$/kg, range 5-45at.-%) are being added.

As a result of these material design efforts, combined with initial experimental results showing only
hard, brittle, BCC, SPSS LDHEA, the constraints were slightly relaxed for mass density, and price, now
including mass densities slightly over 5g/cc, and prices slightly over 55/kg. In addition, since there is no
strong argument to only pursue SPSS LDHEA (11, 17), multinary-phase LDHEA containing 2 (or more)
phases were pursued as well, provided that the majority phase is a simple, disordered, solid solution
(e.g. FCC) to guarantee a reasonable level of ductility.

4.1.3 Simple phase diagram (SPD) model

Both phenomenological selection rules and CALPHAD are very powerful alloy design tools. However,
they also have their weaknesses, see Table 2. Therefore, a 3™ tool has been developed to allow for
temperature-aware, phase diagram construction for experimentally unassessed systems. This new tool,

simple phase diagrams (SPD), allows for the calculation of a simple phase diagram by constructing the
Gibbs-free energy convex hull.

Formation enthalpies for ordered compounds are based on DFT calculations
(https://materialsproject.org/) without entropy terms. Only fully ordered compounds are being
considered, no ordered compounds with fractional occupancies are included. Disordered solid solutions
are modeled based on either binary equi-atomic Miedema enthalpy terms (3), or the sum of chemical

and elastic enthalpy terms (12) with either ideal or the sum of ideal and excess configurational entropy
(13) terms.

20| Page


https://materialsproject.org/

Intermolecular, Inc. - Award DE- EE0007213
Final scientific/technical report — December 2017

Table 10 shows a steady increase from 0.68 to 0.81 in accuracy of the prediction of SPSS for a large
experimental HEA database going from the simplest model for disordered solid solutions to the most
advanced disordered solid solution model considered in this project.

The simplest model relies on binary equi-atomic Miedema enthalpies and the ideal configurational
entropy only. These are the most typical terms considered in literature in design of HEA. The most
advanced model relies on the sum of binary chemical and elastic enthalpy terms with the sum of the
ideal and excess configurational entropy. It should be noted that accuracy increased significantly by
lowering the temperature below what would be considered a typical anneal temperature (e.g. 85% of
melting temperature). Temperatures were 43% of melting temperature based on rule of mixtures, or
35% of (melting) transition temperature based on CALPHAD when system fully assessed in CALPHAD.
Furthermore, the high accuracy might be due to the concentration of experimental literature data
around more ideally behaving HEA (11).

TP FP FN TN [ ACC

0.68
M IE 41 89 61 308 0.70
CE I 35 32 67 365 0.80
CE IE 35 30 67 367 0.81

Table 10. Accuracy (ACC) predicting SPSS for different simple phase diagram models. AH = enthalpy. AS = entropy. M = equi-
atomic Miedema enthalpy terms. CE = sum of chemical and elastic enthalpy terms. | = ideal configurational entropy. IE = sum
of ideal and excess configurational entropy. TP = true positive. FP = false positive. FN = false negative. TN = true negative.

4.1.4 CALPHAD

CALPHAD was used to investigate the SPSS LDHEA design results from phenomenological selection rules,
machine learning, simple phase diagrams, or used as a source for SPSS LDHEA design itself. However,
CALPHAD was the main source of LDHEA design in the pursuit of multi-phase LDHEA with the majority
phase being a simple disordered solid solution (e.g. FCC).

The automated search within CALPHAD for multi-phase LDHEA was filtered for fraction of binary phase
diagrams assessed in the CALPHAD database (16) being equal to 1.0 (all binaries assessed), FCC volume
fraction >0.70, number of phases 2-3, mass density (<5g/cc), and price (<55/kg). The most likely
candidates based on CALPHAD were multi-phase LDHEA based on Ca-Mn-Fe, e.g. Ca-Mn-Fe-Ni, Ca-Mn-
Fe-La, Si-Ca-Mn-Fe, or Al-Zn-based alloys, e.g. Al-Mn-Cu-Zn, and Al-Si-Cu-Zn. Other automated searches,
where the number of assessed binaries and volume fraction of FCC was monitored, yet with slightly
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relaxed filters, resulted in Mg-Mn-Fe-Co, and Li-Mg-Mn-Fe as potential multinary LDHEA candidates.
These candidates combine easy boilers (Li, Mg) with high melters (Mn, Fe, Co).

CALPHAD was compared to experimental results achieved during the project, see Figure 6. Typically,
comparison of XRD results with CALPHAD results showed limited overlap. There can be multiple reasons
for the discrepancies. First of all, experimental results are not necessarily fully equilibrated, where
CALPHAD results assume full equilibrium. Secondly, CALPHAD historically has been designed to be
accurate in the corners of phase diagrams, not around equi-atomic compositions for multinary alloys.
Furthermore, often not all binary and ternary phase diagrams are assessed in CALPHAD, necessary to
improve accuracy in the region around equi-atomic compositions for quarternary and quinary alloys.
Finally, experimental results might include errors.

Match

Partizl Match | No Match

Experiment (XRD) CALPHAD (HEA) Comparison

Jmol Jmol Jmol

Figure 6. Isothermal phase diagram for Al-Ti-Cr-Fe based on XRD on annealed, thin films (left) and CALPHAD (middle).
Different colors represent different phase space. The right tetrahedron shows the comparison of the XRD and CALPHAD
results.

4.1.5 Comparison SPSS accuracy for different design methods

When comparing the accuracy of machine learning, CALPHAD, and simple phase diagrams (SPD), the
database used to train the machine learning model cannot be used, since this would bias the results of
machine learning. Therefore, machine learning was trained on a smaller database, and all 3 methods
were compared based on another database.

Machine learning shows an accuracy of 82% in identifying which compositions are SPSS HEA, see Table
11. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by
the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. The
accuracy for single phase diagrams was 78%. Recently, phenomenological selection rules and CALPHAD
predictions were compared for a handful of systems (18).
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Model TP FN FP TN Accuracy
Machine Learning 0.33 0.02 0.16  0.49 0.82
Simple Phase Diagrams  0.31 0.04 0.18 047 0.78
CALPHAD-DB1 0.20 0.10 0.13 0.57 0.77
CALPHAD-DB2 0.21 0.10 0.19 0.50 0.71

Table 11. Accuracy predicting SPSS for machine learning, simple phase diagrams (SPD), and two different CALPHAD
databases. TP = true positive. FP = false positive. FN = false negative. TN = true negative.

As mentioned previously, the high accuracy might be due to the concentration of experimental
literature data around more ideally behaving HEA (11).

4.2 High-throughput experimentation

4.2.1 Combinatorial, sputtered, thin-film, compositional gradients

High-throughput experimentation allowed us to triple the existing experimental HEA database as
published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous
methods. See Figure 4 for the population of new data expressed in mass density and alloy price.
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Figure 7. Left: Map of at.-% Al for Al,CrFeCoNi gradient film as measured by EDX. Middle: Hardness map for same
AlCrFeCoNi gradient film as measured by nano-indentation. Right: XRD graphs for Al,CrFeCoNi gradient film with varying x in
Al,CrFeCoNi. Films are annealed at 800C for 10min in inert/reducing atmosphere.

A typical example of a sputtered, thin-film, compositional gradient is shown in Figure 7. The left map
shows the aluminum atomic concentration as a function of location in an Al,CrFeCoNi film with a
thickness of 100nm. The accompanying nano-indentation hardness map is shown in the middle. An
increase in hardness is observed with an increase in Al concentration. This might be explained by going
from the softer FCC to the harder BCC with increasing Al concentration. The right graphs shows the XRD
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spectra for Al,CrFeCoNi thin films with a change in Al concentration. This thin-film XRD data is in good
agreement with literature data on cast samples annealed at 1100C for 24hrs (19).

We were able to show 100% agreement of crystal structures observed for 21 thin film and bulk samples
that were compared with XRD, which includes AlcCrFeCoN:i (see Figure 8), a common literature example
(19), and other 3-element, 4-element, and 5-element alloys. It should be noted that attempts are made
to anneal sputtered, thin-film samples and bulk samples under similar conditions. This means similar
soak temperatures, yet not similar soak times or ramp and cooldown rates. This is largely dictated by the
need for homogenization for bulk samples requiring longer soak times (typically 18hrs), and the more
reactive nature (surface area) of the thin films requiring shorter soak times (typically 10-60min). Care
needs to be taken to prevent reaction with the substrate and oxygen incorporation due to air exposure,
especially, for anneals at high temperatures (>500C), or reactive elements (e.g. Ti, Mg, Cu, Fe).
Therefore, it is recommended to include a diffusion barrier layer and anneal films prior to breaking

vacuum.

Summarizing, we showed that high-throughput thin-film combinatorial methods can be used to get
insight in isothermal phase diagram slices provided proper care is taken to avoid film reaction.

Thin Film (10%) ‘ Thin Film (35%)
Bulk (0%) Bulk (24%) Bulk (35%)
10% equals x = 0.44 24% equals x = 1.26 35% equals x = 2.15

‘( " ! | | |} ‘
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Figure 8. XRD comparison for sputtered, thin-films with ball-milled powders for Al,CrFeCoNi shows good agreement between

thin-film and bulk spectra.

Although it is straightforward to map hardness as a function of composition for sputtered, thin-film,
compositional gradients by nano-indentation and compare the results to micro-indentation on bulk
samples, the simultaneous impact of composition, roughness, film density, and microstructure (for
sufficiently thick films to avoid substrate effects) on hardness requires monitoring all these properties as
a function of location on the compositional gradient, including dissecting the impact of these 4 factors
on the hardness map. These additional efforts impact throughput significantly. Nevertheless, we were
able to show a reasonable correlation between thin-film and bulk samples when comparing thin films to
bulk literature data for pure Ti (20), pure Al (21), and AlCrFe (22), or when considering a typical Hall-
Petch relation (21) for AlkCrFeCoNi for thin-film and bulk samples.

4.2.2 Bulk samples

Pursuing the LDHEA candidates from the SPSS LDHEA design efforts resulted mainly in LDHEA composed
of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al. Most of these LDHEA did not contain high
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concentrations of Li, Mg, or Zn due to the presence of high concentrations of high melters, and the
elusive nature of Li-Mg-Al-Sc-Ti (see section 5). The combination of easy boilers (Li, Mg, Zn) at high
concentrations with high concentrations of high melters are challenging to manufacture by arc or
induction melting. As such, initial focus did not include high concentrations of Li, Mg, and/or Zn.

The high concentration of Al in these SPSS LDHEA, necessary to bring the mass density below 5.0g/cc,
makes these materials hard and brittle, body-centered-cubic (BCC) alloys. These include alloys made
from AI-Ti-Cr-Fe, Al-Cr-Fe-Cu, and Al-Ti-Cr-Mn-Fe. A related, yet multi-phase BCC alloy, based on Al-Cr-
Fe-Ni (23), shows compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g
(Figure 9), yet does not show ductility in tensile tests due to cleavage, the latter observed by SEM
imaging.
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Figure 9. Compressive stress-strain curves at room temperature on 0.5”-dia x 0.75”-long cylinders manufactured by arc or
induction melting followed by 18hrs anneal in inert/reducing environment.

When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA with Mn, hardness drops 2x, from typically
6GPa to 3GPa. Combined with compression test results, including those on the ternaries Al-Cr-Fe and Al-
Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. Al-Mn-Fe shows compressive strain
of 10-15% and specific compressive yield strength of >100 MPa x cc/g, see Figure 10. These initial results
only represent one compressive stress-strain curve per composition without any property optimization.
As such, reproducibility needs to be followed by optimization to show their full potential.
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Figure 10. Compressive stress-strain curves at room temperature on 0.310"-dia x 0.775"-long cylinders manufactured by arc
or induction melting followed by 18hrs anneal in inert/reducing environment.

The compressive stress-strain results on the family of Cu(Al) matrix with silicide precipitates (e.g. Al-Si-
Mn-Cu, Al-Si-Fe-Cu, Al-Si-Ti-Cu) shows poor malleability (see Figure 9). Compositional mapping by EDS
suggests 40-60vol.-% of silicide (Mn-Si, Fe-Si, Ti-Si) precipitates in the Cu(Al) matrix to achieve a low
enough mass density.

When including Li, Mg, and Zn at high concentrations, introduced by ball milling, single-phase Li-Mg-Al-
Ti-Zn LDHEA has been found with a specific ultimate compressive strength of 289MPa x cc/g, see Table
12. Al-Ti-Mn-Zn showed a specific ultimate compressive strength of 73MPa x cc/g. These initial results
after hot isostatic pressing (HIP) of the ball-milled powders represent the lower end of what is possible,
since no secondary processing (e.g. extrusion) has been performed to optimize strength and ductility.

ID Formula_pc MD (Exp) MD (Calc) Vicker's Hardness H (Vickers) CYS(=H/3) SCYS  Ultimate Compressive Strength UCS SUCS
at.-% g/cc g/cc GPa GPa MPa cc/g psi GPa MPa cc/g
1 Mg24Mn31Fe31Col4 5.7 5.5 410 4.0 1.3 237 36,906 0.3 45.0
2 Li10Mg18AI26Ti36Zn10 3.5 3.2 468 4.6 15 441 145,657 1.0 289.4
3 AI22Ti31Mn31Zn16 5.3 5.2 843 8.3 2.8 523 55,648 0.4 72.8
4 Li3Mg22AI3Mn26Fe46 5.4 5.1 338 3.3 11 203 156,148 1.1 198.3

Table 12. Mechanical test results on consolidated ball-milled powder. Consolidation by HIP. MD = Mass Density. H =
Hardness in GPa. CYS = Compressive Yield Strength from Hardness. SCYS = Specific Compressive Yield Strength. UCS =
Ultimate Compressive Strength from compression test. SUCS = Specific Ultimate Compressive Strength.

CALPHAD resulted in pursuit of various multinary LDHEA. Li-Mg-Al-Mn-Fe and Mg-Mn-Fe-Co ball-milled
powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 45MPa x cc/g,
respectively (Table 12). Several malleable quarternary Al-Zn-based alloys have been found upon
arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial
results are all without any optimization for strength and/or ductility.
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5 Problems encountered, departure from planned methodology, and
project impact

The most significant issue we identified in the first months of the project was that neither ball-milling
nor thin-film sputtering could reproduce the earlier ball-milling results reported in literature regarding
Li2oMg10Al20Sc20Tizg LDHEA (1). Furthermore, CALPHAD was unable to reproduce the results as well, yet
this might have several causes. Similarly, more strict phenomenological selection rules did not support
the formation of SPSS (5), nor did machine learning.

This Li2oMg10Al20S€20Tizo SPSS LDHEA system was meant both as a benchmark to validate the approach,
and as a starting point for LDHEA design to replace the costly Sc with a less costly element. The work-
around on the benchmarking issue was selecting a second, more well-known HEA system, Al,CrFeCoNi
(19), and matching published results for that system. Regarding Li,oMg10Al0Sc20Tis0 being a starting point
for SPSS LDHEA design. The elusive nature of LizoMgi0Al0Sc20Tizoand the difficulty of finding promising
Li-Mg-Al-based SPSS LDHEA by others (5) did raise the question whether the class of Li-Mg-Al-based
SPSS LDHEA is a good starting point. As such, focus shifted towards SPSS LDHEA based on Mg, Al, and
low concentrations of Si and Ti in the first year of the project.

Another issue encountered in the first year of the project was extremely low thin-film sputter deposition
rates for Fe, due to its ferromagnetic properties. The issue was resolved by both redesigning the
magnets of the sputter gun, and by working with binary Fe-containing sputter targets.

After meeting all the program targets of the first budget year, we encountered a major issue at the start
of the second year. All LDHEA that met hardness targets in year 1 turned out to be hard and brittle
(single-phase) BCC alloys showing no signs of malleability in compression testing. Therefore, a change of
approach to expand alloy exploration with slightly relaxed mass density (<5.5g/cc) and price targets
(<7S/kg) was proposed and implemented, including opening up the window to multinary LDHEA.

Once a multinary LDHEA was identified that showed compressive strain >10% (malleability), plans were
made for a scale-up to 25lbs, provided tensile testing would show encouraging results. Unfortunately,
tensile testing showed no signs of ductility, and SEM imaging showed that this was due to cleavage.
Therefore, alloy exploration continued, including more use of ball milling to allow the investigation of
LDHEA with volatile elements at high concentrations combined with high melting elements at high
concentrations.
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