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Disclaimer 
 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government, nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, 

or represents that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does 

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 

Government or any agency thereof. Any findings, opinions, and conclusions or recommendations 

expressed in this report are those of the authors and do not necessarily reflect those of the United 

States Government or any agency thereof. 
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1 Executive Summary 
 

The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher 

than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true 

especially at a cost lower than 5$/kg (typical value for magnesium alloys). Recently, high-entropy alloys 

(HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions 

complex and time-consuming. 

Over the course of this 2-year project we started from 150 billion compositions and reduced the number 

of potential low-density (<5g/cc), low-cost (<5$/kg) high-entropy alloy (LDHEA) candidates that are 

single-phase, disordered, solid-solution (SPSS) to a few thousand compositions. This was accomplished 

by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive 

partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91 

calculated parameters serving as phenomenological selection rules. 

Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller, 

experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy 

of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database 

is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed 

to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy 

convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%. 

Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA 

composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al, 

necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-

centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based on Al-Cr-Fe-Ni, shows 

compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g, yet does not show 

ductility in tensile tests due to cleavage. When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA 

with Mn, hardness drops 2x. Combined with compression test results, including those on the ternaries 

Al-Cr-Fe and Al-Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. These initial results 

only represent one compressive stress-strain curve per composition without any property optimization. 

As such, reproducibility needs to be followed by optimization to show their full potential. 

When including Li, Mg, and Zn, single-phase Li-Mg-Al-Ti-Zn LDHEA has been found with a specific 

ultimate compressive strength of 289MPa x cc/g. Al-Ti-Mn-Zn showed a specific ultimate compressive 

strength of 73MPa x cc/g. These initial results after hot isostatic pressing (HIP) of the ball-milled 

powders represent the lower end of what is possible, since no secondary processing (e.g. extrusion) has 

been performed to optimize strength and ductility. 

Compositions for multi-phase (e.g. dual-phase) LDHEA were identified largely by automated searches 

through CALPHAD databases, while screening for large face-centered-cubic (FCC) volume fractions, 



Intermolecular, Inc. - Award DE- EE0007213 

Final scientific/technical report – December 2017 
 
 

 5 | P a g e  
 

followed by experimental verification. This resulted in several new alloys. Li-Mg-Al-Mn-Fe and Mg-Mn-

Fe-Co ball-milled powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 

45MPa x cc/g, respectively. Several malleable quarternary Al-Zn-based alloys have been found upon 

arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial 

results are all without any optimization for strength and/or ductility. 

High-throughput experimentation allowed us to triple the existing experimental HEA database as 

published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous 

methods. Furthermore, we showed that high-throughput thin-film combinatorial methods can be used 

to get insight in isothermal phase diagram slices. 

Although it is straightforward to map hardness as a function of composition for sputtered, thin-film, 

compositional gradients by nano-indentation and compare the results to micro-indentation on bulk 

samples, the simultaneous impact of composition, roughness, film density, and microstructure on 

hardness requires monitoring all these properties as a function of location on the compositional 

gradient, including dissecting the impact of these 4 factors on the hardness map. These additional 

efforts impact throughput significantly. 

This work shows that a lot of progress has been made over the years in predicting phase formation that 

aids the discovery of new alloys, yet that a lot of work needs to be done to predict phases more 

accurately for LDHEA, whether done by CALPHAD or by other means. More importantly, more work 

needs to be done to predict mechanical properties of novel alloys, like yield strength, and ductility. 

Furthermore, this work shows that there is a need for the generation of an empirical alloy database 

covering strategic points in a multi-dimensional composition space to allow for faster and more accurate 

predictive interpolations to identify the oasis in the dessert more quickly. Finally, this work suggests that 

it is worth pursuing a ductile alloy with a SYS > 300 MPa x cc/g in a mass density range of 6-7 g/cc, since 

the chances for a single-phase or majority-phase FCC increase significantly. Today’s lightweight steels 

are in this density range. 
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2 Original Hypotheses 
 

The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher 

than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true 

especially at a cost lower than 5$/kg (typical value for magnesium alloys). Recently, high-entropy alloys 

(HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions 

complex and time-consuming. 

HEAs are a new class of multi-principal element alloys, a field over a decade old, in which the design of 

the alloys is based not on adding solutes at low weight-% to a single “base” element, but rather on 

choosing multiple elements all around equi-atomic concentrations. Several definitions for HEA exist, 

typically based on composition, or configurational entropy, and sometimes with the motivation to 

produce a single-phase, disordered, solid solution (SPSS). 

HEA have potential applications outside light-weighting which includes protective coatings, catalysts, 

high-temperature environments, magnetics (e.g. rare-earth replacement), and a range of other areas 

that require extraordinary material properties or cost reduction. As such, HEA open up a wealth of new 

opportunities for the US economy. 

LDHEAs (e.g. Li-Mg-Al-Sc-Ti (1)) have been shown to possess higher SYS than traditional alloys. In 

addition, because each element in the LDHEA is at a high atomic-%, it is possible to tailor macroscopic 

functional characteristics in a way not previously explored for traditional base alloys. As such, LDHEAs 

have the potential to combine a dramatically improved SYS with a concomitant improvement in the 

balance between strength and ductility of metals, together with a reduced sensitivity to minority 

elements, and corrosion. 

Preliminary LDHEA studies (1) have demonstrated SYS of 749 MPa x cc/g (see Table 1), with the potential 

to reduce primary metal weight in automotive applications by almost 50% (2), assuming a blend of 

stiffness and strength limited metal parts. This does not include downsizing (engine, brakes, cooling 

system) made possible by primary metal light-weighting. Such materials could be highly impactful in 

DOE’s effort toward light-weighting, and are an ideal candidate for future MYPPs. 

Each of the key elements of our proposed approach are commonly used for other, related applications. 

The accumulated experimental work on HEA over the past decade (3-5) has made it possible to improve 

the predictions on phase formation and hardness for LDHEA through phenomenological selection rules, 

as evidenced by Koch’s LDHEA work (1). These empirical selection rules are a refinement to the Hume-

Rothery rules, made specifically for HEA. Similarly, CALPHAD modeling of various alloys has been 

extensively validated, including more recently modeling of HEA (6). Traditional thin-film alloy 

development has been demonstrated through multiple studies as a good screening tool for bulk alloys 

(7). 
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Table 1. SOTA lightweight structural alloys, plus Program Targets Yr 1 Target Yr 2 Target 

Material AHSS Ti-alloy Mg-alloy Al-alloy SOTA 
LDHEA 

Non-Sc 
LDHEA 

Non-Sc 
LDHEA 

Yield Strength (MPa) 1000 880 285 230 2000 1500 3000 

Mass density (gram/cm3) 7.85 4.43 1.80 2.70 2.67 5.00 5.00 

SYS (MPa x cm3/gram) 127 199 158 85 749 300 600 

Cost ($/kg) $1.50/kg $20/kg $5/kg $2.75/kg $5,000/kg $5/kg $5/kg 

Performance Cost Index 0.58 4.69 0.84 0.77 469 1.01 0.72 

 

3 Approach 
 

3.1 High-throughput material design and experimentation 
 

The approach taken to accelerate the discovery of a promising LDHEA is based on a combination of high-

throughput material design, prediction validation by fabricating a single composition via a small bulk 

fabrication method, subsequent mapping of the composition space by thin-film sputter (PVD) deposition 

and annealing, followed by taking the most promising compositions to a larger bulk scale fabrication and 

thermo-mechanical optimization, see Figure 1 below. 

The material design is accelerated by database-driven design. Multiple approaches are used in parallel 

to ensure a well-balanced approach. In addition to phenomenological selection rules, experimental 

phase diagrams, CALPHAD, and a simple phase diagram tool is used. A brief overview of pros and cons is 

given below in Table 2. 

 

Table 2. Comparison of phenomenological selection rules (PSR), CALPHAD, and simple phase diagrams (SPD) for the purpose 

of material design of LDHEA. 

Item PSR CALPHAD SPD

Designed for experimentally unassessed systems yes no yes

Results potentially biased towards database input yes yes no

fcc/bcc/hcp aware possible yes no

Temperature aware possible yes yes

Distinguishes single-phase from two-phase

disordered solid solution mixtures

no yes no

Adjustable for new experimental data yes difficult no

Basis Experiment Experiment + 

Thermodynamics

Model + DFT + 

Thermodynamics
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Figure 1. Visualization of the high-throughput material design and experimentation approach. 
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3.2 High-throughput material design 

 

3.2.1 Databases used for high-throughput material design 

 

High-throughput material design relies heavily on databases. Five input tables were created to allow for 

high-throughput material design. In addition, TCAL4, TCNI8, and TCHEA1 were used within the Thermo-

Calc CALPHAD software package. Regarding the 5 input tables. The first table contains 20 parameters 

per element for 48 elements of the periodic table, collected from multiple sources. Table 3 shows an 

overview on parameters used for the elements. 

 

 
Table 3. Parameters tabulated per element of the periodic table for each of the 48 elements investigated. 

 

An overview of the 48 elements of the periodic table investigated, including values for 5 out of 20 

parameters for each element, is shown in Table 4. 

ID Table Header Description

1 Atomic # of Elements Atomic number of element

2 Symbol Symbol of element

3 Element Element

4 VEC Valence electron concentration

5 sap Sum of s and p electrons for Friedel model, see Acta Materialia 75 (2014) 297–306

6 Atomic Mass (gr/mole) Atomic mass in gram/mole

7 Melting Point (C) Melting point in Celsius

8 Mass Density (g/cm3) Mass density in gram/cc

9 Molar volume (cm3/mole) Molar volume in cc/mole

10 Allen Electronegativity Electronegativity based on Allen scale, see J. Am. Chem. Soc. 2000, 122, 5132-5137

11 Pauling Electronegativity Electronegativity based on Pauling scale

12 AR Electronegativity Electronegativity based on Allred-Rochow scale, see J. Am. Chem. Soc. 2000, 122, 5132-5137

13 Wiki-E. At. R. (pm) Atomic radius (in pm) from Wikipedia

14 MEH At. R. (pm) Atomic radius (in pm) from Materials Science and Engineering Handbook (CRC, 3rd edition)

15 GUO At. R. (pm) Atomic radius (in pm) from GUO, Progress in Natural Science: Materials International 21(2011) 433-446

16 Zhang At. R. (pm) Atomic radius (in pm) from Zhang, Progress in Materials Science 61 (2014) 1-93

17 CN12 At. R. (pm) Atomic radius for CN = 12 (in pm) from W.B. Pearson's (after Teatum, Gschneidner, and Waber)

18 MEH Ion. R. (pm) Ionic radius (in pm) from Materials Science and Engineering Handbook (CRC, 3rd edition)

19 Price ($/kg) Raw metal price in $/kg for early 2015 based on multi-year trends, not spot prices

20 Young's Modulus (GPa) Young's Modulus in GPa

21 Shear Modulus (GPa) Shear Modulus in GPa 

22 Compressibility (1/GPa) Compressibility in 1/GPa

23 Crystal Structure Most common crystal structure
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Table 4. An overview of the 48 elements of the periodic table investigated for LDHEA design, including 5 parameters out of 

20 parameters for each element. For explanation of column headers, see Table 3. 

 

The second table involves a matrix of the enthalpy of mixing of the binary liquid in an A-B system at an 
equi-atomic composition based on Miedema’s model and taken from literature (8). The third table 
involves a matrix of the enthalpy of mixing (solution) of the binary liquid at infinite dilution for A in B in 
an A-B system based on Miedema’s model, taken from literature (9). The fourth table provides a matrix 
of Density-Functional-Theory-calculated enthalpy of formation terms of the lowest energy structure of 
each binary compound, taken from literature (10) and the Materials Project 
(https://materialsproject.org/). 
 
An experimental HEA database was compiled from 24 literature sources (see Table 5) listing whether 

HEA compositions resulted in single-phase, disordered, solid solutions (SPSS, e.g. FCC, BCC, or HCP), or 

multiple phases. The database contains 1,490 entries, and all process conditions are being considered 

Atomic # of Elements Symbol Element VEC Mass Density (g/cm3) Pauling Electronegativity MEH At. R. (pm) Price ($/kg)

3 Li Lithium 1 0.53 0.98 152 75                    

4 Be Beryllium 2 1.85 1.57 114 240                  

5 B Boron 3 2.34 2.04 97 50                    

6 C Carbon 4 2.26 2.55 77 1                       

11 Na Sodium 1 0.97 0.93 186 5                       

12 Mg Magnesium 2 1.74 1.31 160 3                       

13 Al Aluminum 3 2.70 1.61 143 3                       

14 Si Silicon 4 2.33 1.90 117 3                       

19 K Potassium 1 0.86 0.82 231 25                    

20 Ca Calcium 2 1.55 1.00 197 5                       

21 Sc Scandium 3 2.99 1.36 160 18,000            

22 Ti Titanium 4 4.51 1.54 147 15                    

23 V Vanadium 5 6.11 1.63 132 75                    

24 Cr Chromium 6 7.19 1.66 125 10                    

25 Mn Manganese 7 7.47 1.55 112 3                       

26 Fe Iron 8 7.87 1.83 124 1                       

27 Co Cobalt 9 8.92 1.88 125 30                    

28 Ni Nickel 10 8.91 1.91 125 15                    

29 Cu Copper 11 8.93 1.90 128 5                       

30 Zn Zinc 12 7.14 1.65 133 3                       

31 Ga Gallium 3 5.91 1.81 135 600                  

32 Ge Germanium 4 5.32 2.01 122 1,250              

33 As Arsenic 5 5.78 2.18 125 2                       

37 Rb Rubidium 1 1.53 0.82 251 25,000            

38 Sr Strontium 2 2.64 0.95 215 1,000              

39 Y Yttrium 3 4.47 1.22 181 80                    

40 Zr Zirconium 4 6.51 1.33 158 100                  

41 Nb Niobium 5 8.57 1.60 143 200                  

42 Mo Molybdenum 6 10.22 2.16 136 30                    

47 Ag Silver 11 10.50 1.93 144 560                  

48 Cd Cadmium 12 8.65 1.69 150 3                       

49 In Indium 3 7.31 1.78 157 720                  

50 Sn Tin 4 7.27 1.96 158 25                    

51 Sb Antimony 5 6.69 2.05 161 2                       

56 Ba Barium 2 3.59 0.89 217 50                    

57 La Lanthanum 3 6.17 1.10 187 5                       

58 Ce Cerium 3 6.71 1.12 182 5                       

59 Pr Praseodymium 3 6.77 1.13 183 100                  

60 Nd Neodymium 3 7.00 1.14 182 85                    

62 Sm Samarium 3 7.54 1.17 181 20                    

64 Gd Gadolinium 3 7.89 1.20 180 40                    

66 Dy Dysprosium 3 8.56 1.22 177 350                  

67 Ho Holmium 3 8.78 1.23 176 1,000              

72 Hf Hafnium 4 13.31 1.30 159 500                  

73 Ta Tantalum 5 16.67 1.50 147 150                  

74 W Tungsten 6 19.30 2.36 137 100                  

82 Pb Lead 4 11.34 2.33 175 3                       

83 Bi Bismuth 5 9.79 2.02 182 17                    

https://materialsproject.org/
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(whether ball milled, sputtered, as-cast, annealed, etc.). After removing duplicates and (perceived) 

conflicts >550 entries are left. Most entries have a mass density in the 7-8g/cc and are heavily 

concentrated around the typical 3d transition metal HEA (11). The experimental HEA database contains 

only a few data points with density <5g/cc, most of which are not SPSS. The data points that are SPSS 

with a density <5g/cc are the result of ball milling. 

 

 
Table 5. Main literature sources to construct the experimental HEA database. 

 

3.2.2 Computations for high-throughput material design 

 

Computations are required to implement fast filtering of billions of compositions (LDHEA design) based 

on phenomenological selection rules (“cut-off” values), machine learning, construction of a simple phase 

diagram, and CALPHAD. 

 

The computational part for both the phenomenological selection rules and machine learning was 

implemented in BIOVIA Pipeline Pilot version 9.2, a scientific software platform that includes a wide 

variety of functionality for data analytics and modeling (see http://accelrys.com). The main method for 

the machine learning was Recursive Partitioning, a method that constructs decision trees to classify data 

based on a set of input and output variables (also referred to as Classification and Regression Trees, 

CART). 

In addition to the use of phenomenological selection rules and machine learning, we calculate a simple 

phase diagram by constructing the Gibbs-free energy convex hull using Pipeline Pilot with qhull. 

Formation enthalpies for ordered compounds are based on DFT calculations 

(https://materialsproject.org/) without entropy terms. Only fully ordered compounds are being 

considered, no ordered compounds with fractional occupancies are included. Disordered solid solutions 

Resources HEA Database

Acta Materialia, 104 (2016) 172-179

Acta Materialia, 75 (2014) 297–306

CALPHAD, 50 (2015) 32–48

Entropy, 2013, 15, 5338-5345

High-Entropy Alloys, Elsevier, 2014, [Murty, Yeh, Ranganathan]

Intermetallics, 41 (2013) 96-103

Intermetallics, 58 (2015) 1-6

Intermetallics, 59 (2015) 75-80

International Journal of Minerals, Metallurgy, and Materials, 2016, 23 (1), pp 77-82

JOM, Vol. 66, No. 10, 2014, p. 2009

JOM, Vol. 66, No. 10, 2014, p. 2021

Journal of Alloys and Compounds, 460 (2008) 253–257

Journal of Alloys and Compounds, 506 (2010) 210–215

Journal of Alloys and Compounds, 658 (2016) 603-607

Materials Research Letters, Volume 3, 2015 - Issue 2, Pages 95-99

Mater. Sci. Forum, 686 (2011) 235

Materials Characterization, 110 (2015) 116–125

Materials Chemistry and Physics, 132 (2012) 233-238

Materials Letters, 169 (2016) 62-64

Materials Science and Technology, 31(15), 2015, Pages 1842-1849

Nature Communications 6, Article number: 6529 (2015)

Progress in Natural Science: Materials Inter., 21 (2011), p. 433-446

Progress in Natural Science: Materials Inter., 24 (4), 2014, p. 305–312

Koch, North Carolina State University, unpublished

http://accelrys.com/
https://materialsproject.org/
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are modeled based on either binary equi-atomic Miedema enthalpy terms (3), or the sum of chemical 

and elastic enthalpy terms (12) with either ideal or the sum of ideal and excess configurational entropy 

(13) terms. 

CALPHAD computations are made via the software package of Thermo-Calc. 

3.2.3 Parameters for phenomenological selection rules and machine learning 

 

The parameters calculated per LDHEA composition in Pipeline Pilot include thermodynamic, geometric, 

electronic and physical parameters, see Table 6. Typical phenomenological selection rule parameters are 

used (up to calendar year 2016), yet often calculated based on multiple sources, like several 

electronegativity scales, and several sources for atomic size. This will allow a detailed comparison of the 

predictability of the different parameters based on different sources. 

 

Furthermore, the Gibbs-free energy is calculated at various temperatures (e.g. 300K, 600K, and 1200K) 

based on the most commonly used enthalpy terms in the HEA community (8), and less commonly used 

enthalpy terms in the HEA community (12). The latter being the sum of chemical and elastic enthalpy 

contributions, instead of the binary equi-atomic Miedema enthalpy terms (3). In addition, the sum of 

ideal and excess configurational entropy (13) is used in the Gibbs-free energy calculations, as 

comparison with the purely ideal configurational entropy term. 

 

A recent, further expansion on enthalpy terms (not applied in this work) applied to HEA can be found in 

literature (14). Some more recent phenomenological selection rule parameters (2016 and beyond) are 

not included, like φ and λ (15). 
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Table 6. Main parameters (50 out of 91) calculated for each LDHEA composition as used for phenomenological selection 

rules, machine learning, and the simple phase diagram model. 

 

3.2.4 Alloy composition range 

 

The main focus of the LDHEA design has been on 4-element and 5-element alloys based on 19 elements 

of the periodic table in a composition range per element of 5at.-% to 45at.-% and restricting 

compositions of interest by calculated raw LDHEA metal price (<5$/kg) and LDHEA mass density 

(<5g/cc). Subsequent filtering was performed by phenomenological means, including CALPHAD, or a 

simple phase diagram model. 

 

However, to get a better understanding of the alloy design in the LDHEA space, alloys ranging from 2 to 

8 elements have been evaluated. Similarly, the composition range per element in an initial stage was 

kept broader ranging from 5at.-% to 90at.-%. Compositional resolution varies (2at.-% to 15at.-%) 

dependent on number of elements in an alloy (from 2 to 8), and how many elements of the periodic 

table are being considered (from 16 to 33) to limit computation time. See Table 7 for some examples. 

 

ID Table Header Description Literature Source for equation

1 Formula Alloy composition as entered n/a

2 Formula_pc Alloy composition in at.-% n/a

3 Price Alloy metal price based on rule of mixtures Nature Communications 6, Article number: 6529 (2015)

4 Density Alloy mass density based on rule of mixtures Nature Communications 6, Article number: 6529 (2015)

5 Ave_Melting_Point Alloy melting temperature based on rule of mixtures Materials Chemistry and Physics, 132 (2012) 233-238

6 Youngs_Modulus Young's modulus based on rule of mixtures Nature Communications 6, Article number: 6529 (2015)

7 Mol_Wt Molecular weight based on rule of mixtures n/a

8 VEC Valence electron concentration JOM, Vol. 66, No. 10, 2014, 2009-2020

9 VECD Valence electron concentration difference, calculated similar to ASD n/a

12 dH_Miedema Enthalpy of mixing based on binary, equi-atomic, Miedema enthalpy terms Materials Chemistry and Physics, 132 (2012) 233-238

13 Omega Disordered solid solution thermodynamic prediction parameter, Ω Materials Chemistry and Physics, 132 (2012) 233-238

15 Singh Disordered solid solution geometric prediction parameter, Λ Intermetallics, 53 (2014) 112-119

16 dS_excess_div_ideal Excess configurational entropy divided by ideal configurational entropy Intermetallics, 59 (2015) 750-80

17 e_over_a Itinerant electron concentration Acta Materialia, 75 (2014) 297–306

18 Eps_Sd e_over_a minus 1.5 Acta Materialia, 75 (2014) 297–306

19 VEC_div_CN12_AtRad VEC divided by average atomic radius (CN12 At. R.) based on rule of mixtures n/a

20 VEC_div_Guo_AtRad VEC divided by average atomic radius (GUO At. R.) based on rule of mixtures n/a

21 dH_IM_div_Mied Enthalpy for intermetallic compound formation divided by dH_Miedema Journal of Alloys and Compounds, 658 (2016) 603-607

22 Kappa_CR1 Disordered solid solution thermodynamic prediction parameter Journal of Alloys and Compounds, 658 (2016) 603-607

23 Kappa_CR1_div_dH_IM_div_Mied Kappa_CR1 divided by dH_IM_div_Mied Journal of Alloys and Compounds, 658 (2016) 603-607

24 N_Elements Number of elements in alloy n/a

10 ASD_GUO Atomic size difference based on GUO At. R. Materials Chemistry and Physics, 132 (2012) 233-238

25 ASD_CN12 Atomic size difference based on CN12 At. R. Materials Chemistry and Physics, 132 (2012) 233-238

26 ASD_Wiki Atomic size difference based on Wiki-E. At. R. Materials Chemistry and Physics, 132 (2012) 233-238

27 ASD_MEH Atomic size difference based on MEH At. R. Materials Chemistry and Physics, 132 (2012) 233-238

28 ASD_Zhang Atomic size difference based on Zhang At. R. Materials Chemistry and Physics, 132 (2012) 233-238

29 ISD_MEH Ionic size difference based on MEH Ion. R., calculated similar to atomic size difference Materials Chemistry and Physics, 132 (2012) 233-238

14 gamma_Guo Effective atomic size parameter based on GUO At. R. Scripta Materialia, 94 (2015) 28–31

30 gamma_CN12 Effective atomic size parameter based on CN12 At. R. Scripta Materialia, 94 (2015) 28–31

31 gamma_Zhang Effective atomic size parameter based on Zhang At. R. Scripta Materialia, 94 (2015) 28–31

32 gamma_Wiki Effective atomic size parameter based on Wiki-E. At. R. Scripta Materialia, 94 (2015) 28–31

11 END_Pauling Electronegativity difference based on Pauling scale Materials Chemistry and Physics, 132 (2012) 233-238

33 END_Allen Electronegativity difference based on Allen scale Materials Chemistry and Physics, 132 (2012) 233-238

34 END_AR Electronegativity difference based on Allred-Rochow scale Materials Chemistry and Physics, 132 (2012) 233-238

41 dS_ideal Ideal configurational entroy Materials Chemistry and Physics, 132 (2012) 233-238

42 dS_excess Excess configurational entroy Intermetallics, 59 (2015) 750-80

48 dH_chemical Chemical enthalpy contribution Intermetallics, 23 (2012) 148-157

49 dH_elastic Elastic enthalpy contribution Intermetallics, 23 (2012) 148-157

87 dG_M_I_1200 Simple Gibbs-free model based on dH_Miedema and dS_ideal at 1200K Materials Chemistry and Physics, 132 (2012) 233-238
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Computation time can vary from less than an hour to a few days per batch. These computations are 

described in the section “Computations for high-throughput material design”. 

 

 
Table 7. Examples of LDHEA design criteria related to elements of the periodic table, composition range per element, and 

composition resolution within composition range for LDHEA. 

 

3.3 High-throughput experimentation 

 

3.3.1 Combinatorial, sputtered, thin-film, compositional gradients 

 

Intermolecular’s high-throughput, combinatorial, thin-film, sputter platform was used for mapping the 

composition space within each alloy of interest. Films were deposited by co-sputtering from up to 5 

sputter guns to deposit up to 5 elements simultaneously. Compositional gradients of 100mm x 100mm 

with a thickness ranging from 100-250nm for basic characterization to >1,000nm for nano-indentation 

were deposited onto thermally-oxidized silicon wafers. 

Annealing of the compositional gradient films was performed for 10-60min under inert/reducing 

atmosphere. Anneal temperatures were selected either based on CALPHAD or rule of mixtures. 

Characterization and nano-indentation is mainly performed after annealing. 

The compositional gradient films were analyzed by X-ray diffraction, and tested for hardness by nano-

indentation. Composition was monitored by Energy Dispersive X-ray Spectroscopy (EDS), and X-ray 

Fluorescence (XRF), calibrated by Rutherford Back Scattering (RBS). This way, maps of composition (e.g. 

XRF), phases (e.g. XRD), and hardness (nano-indentation) can be created per compositional gradient 

(100mm x 100mm) coupon, typically with a grid of 5, 16, or 25 points per coupon. Multiple coupons are 

required to map the complete composition space (see Figure 2), yet most work was performed away 

from phase diagram corners and edges. 

ID Elements in LDHEA Elements from Periodic table Elements selected from Periodic Table Range Resolution

1 4 16 B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Ta, W 5-85at.-% 10at.-%

2 4 21 Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ta, W 5-85at.-% 10at.-%

3 4 26 Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Sn, Sb, Ta, W, Bi, Ce, Gd 5-85at.-% 10at.-%

4 4 31 Li, Be, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Cd, Sn, Sb, Hf, Ta, W, Pb, Bi, Ce, Gd 5-85at.-% 10at.-%

5 3 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-90at.-% 5at.-%

6 4 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-85at.-% 5at.-%

7 5 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-80at.-% 5at.-%

8 6 19 Li, B, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ta, W 5-75at.-% 5at.-%

9 3 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 10-60at.-% 2at.-%

10 4 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-45at.-% 2at.-%

11 5 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-35at.-% 2at.-%

12 6 16 Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Zr 5-35at.-% 2at.-%

13 3 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

14 4 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

15 5 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

16 6 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

17 7 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a

18 8 28 Li, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Sn, Sb, Ba, Ce, Ta, W, Bi Equiatomic n/a
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Figure 2. Sputtered, thin-film, compositional gradient (left), and example of distribution of coupons to map a ternary phase 

diagram (right). 

 

3.3.2 Bulk samples 

 

Bulk samples were manufactured by ball milling (mechanical alloying), arc, or induction melting. Powder 

consolidation (hot isostatic pressing, or HIP) was used to convert the ball-milled powders into cylinders 

for mechanical testing. 

Most ball milling was performed at room temperature for either 5 gram or 200 gram batch size, starting 

from -325mesh, 3N-purity atomized powders with a small amount of organic added to minimize cold 

welding. Most powders were elements, except for the use of Li50Al50, and Mn50Fe50 alloy powders. 

Arc and induction melting were used to manufacture 3N-purity bulk samples, typically either 0.75”-

diameter by 0.25”-thick pucks for basic characterization, or 0.5”-diameter by 0.75”-high cylinders for 

compressive or tensile stress-strain tests. 

Annealing of the 5 gram batches of ball-milled powder was performed for 1 hour under Ar-2%H2 

atmosphere with positive pressure up to 4-5 psi. Cooling was conducted to room temperature with 

average cooling rate of 3-5 °C/s. Arc and induction melted pucks were annealed for 18hrs. Anneal 

temperatures were selected either based on CALPHAD or rule of mixtures. Characterization and 

mechanical testing is mainly performed after annealing, except for ball milling, where powders are 

characterized prior to and after annealing. 

Bulk samples were analyzed by X-ray diffraction, and tested for Vickers hardness. Photos were taken on 

individual indents to investigate pile up as an indication for ductility (malleability). Composition was 

monitored by Energy Dispersive X-ray Spectroscopy (EDS), and Inductively Coupled Plasma Optical 
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Emission Spectrometry (ICP-OES). Toughness, and malleability were qualitatively monitored by both 

hammering pucks and drilling holes in pucks with carbide bits. Quantitative mechanical testing was 

performed by both compressive and tensile stress-strain setups. 

 

4 Project activities and accomplishments 
 

4.1 High-throughput material design 

 

4.1.1 Statistical analysis of phenomenological parameters for experimental HEA database 

 

As shown in Table 8, the electronegativity difference based on the Allred-Rochow scale (END_AR) ranks 

as the most significant phenomenological parameter for single-phase, disordered, solid solutions (SPSS) 

for the experimental HEA database, followed by a few other electronegativity parameters (not shown). 

Subsequently, the atomic size difference, based on coordination number equal to 12 (ASD_CN12), ranks 

as the second most significant (non-electronegativity) parameter. 

 

Both END_AR and ASD_CN12 are more significant than any of the thermodynamic parameters. The 

significance (p-value) of these two parameters is much higher than the significance of more recent 

parameters like “Singh”, or “Omega”, yet 80% of the investigated parameters are considered significant 

(p-value < 0.05). 

 

The analysis suggests a larger probability of SPSS for higher mass density (positive p-value), which is not 

in favor of LDHEA. In addition, a larger probability of SPSS for alloys is expected with fewer elements 

(negative p-value). 

 

The importance of the electronegativity difference for LDHEA has been addressed recently in literature 

(5). The weaker significance of “Omega” has been discussed (11, 16). Furthermore, it is known that cut-

off values of these parameters are often considered “necessary, but not sufficient” in guiding SPSS HEA 

design. 
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Table 8. Statistical analysis based on the experimental HEA database for the 91 parameters shows that the electronegativity 

difference and atom size difference are most significant for single-phase disordered solid solution (SPSS). 

 

4.1.2 Phenomenological selection rules and machine learning 

 

When relying on visual cut-off values in graphs, as often done in literature, trends can be recognized for 

the location of the largest population of SPSS. Graphs of ASD_CN12 vs END_Pauling, ASD_CN12 vs 

Omega, and ASD_CN12 vs gamma_CN12 for the experimental HEA database show that most SPSS are 

captured by ASD_CN12 < 7%, END_Pauling < 0.20, Omega > 1.1, and gamma_CN12 < 1.175, with similar 

values often used in literature. 

 

Figure 3 shows the reduction in number of alloy compositions for 2 to 6 element LDHEA based on 28 

elements of the periodic table when introducing a phenomenological filter combined with both a 

density and price filter. Less than 10 compositions are left from the initial 100,000’s of possibilities as 

potential equi-atomic SPSS LDHEA based on this filter. Less than 5,000 compositions are left from the 

initial 100’s of millions of off-equi-atomic possibilities. As previously mentioned, these 

phenomenological selection rules (cut-off values) are considered necessary, not sufficient, which means 

that the actual number of SPSS LDHEA candidates is likely smaller. 

 

Finally, when considering more strict phenomenological selection rules for LDHEA, e.g. ASD_Guo < 4.5%, 

END_Pauling < 0.175, and Omega > 10 (5) for 23 common elements in 5-element LDHEA in a range of 5-

45at.-% and step size of 5at.-%, the number of potential candidates gets further reduced drastically with 

only a handful of candidates, see Table 9. These are Al-Zn-based alloys. These alloys combine easy 

boilers (Li, Mg, Zn) with high melters (Cr, Cu, Fe). 

 

ID Parameter p-value t-statistic Comments

<5.E-02 Considered Significant

1 END_AR 8.E-36 -14.3 END based on Allred-Rochow scale

6 ASD_CN12 1.E-25 -11.5 ASD based on coordination number 12

10 dS_excess 5.E-22 10.2 Excess Configurational Entropy

11 gamma_CN12 8.E-22 -10.2 Effective atomic size parameter

12 dS_excess_div_ideal 2.E-20 9.7 Excess divided by ideal entropy

15 dH_elastic 4.E-15 -8.1 Elastic Enthalpy

18 VECD 1.E-13 -8.0 VEC difference

20 dG_M_I_1200 3.E-12 7.4 Simple Gibbs-free energy @ 1200K

22 Density 1.E-11 7.2 Mass Density

26 dH_miedema 7.E-11 6.8 Enthalpy of mixing based on Miedema

35 N_Elements 2.E-08 -5.9 Number of elements

46 Youngs_Modulus 7.E-07 5.1 Young's Modulus

50 dS_ideal 4.E-06 -4.7 Ideal configurational entropy

58 Singh 1.E-05 4.5 Geometric Singh parameter

67 VEC 2.E-04 3.9 Valence Electron Concentration

72 Omega 2.E-02 2.4 Thermodynamic Omega parameter

75 Eps_Sd 8.E-02 -1.8 e_over_a minus 1.5

76 e_over_a 8.E-02 -1.8 Itinerant electron concentration

77 Kappa_CR1_div_dH_IM_div_Mied 2.E-01 -1.3 Thermodynamic parameter

80 Price 3.E-01 1.2 Price

87 Kappa_CR1 7.E-01 0.4 Thermodynamic parameter
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Figure 3. Number of alloy compositions versus number of elements in the HEA when considering 28 elements of the periodic 

table for both equi-atomic and off-equi-atomic compositions, both with and without an HEA design filter. The applied filter is 

the following: END_Pauling < 0.20, ASD_CN12 < 7%, Omega > 1.1, gamma_CN12 < 1.175, Density < 5g/cc, and Price < 5$/kg. 

 

 
 
Table 9. Potential 5-element SPSS LDHEA candidates when filtering for ASD_Guo < 4.5%, END_Pauling < 0.175, Omega > 10, 

Density <5g/cc, and Price < 5$/kg for 23 elements of the periodic table in range of 5-45at.-% in steps of 5at.-%. e1 = element 

1, pc1 = at.-% e1. See Table 6 for other column headers. 

 

In an attempt to improve on the visual cutoffs based on a handful of phenomenological parameters, 

machine learning was introduced based on 91 parameters and the experimental HEA database to guide 

Equi-atomic

Equi-atomic + filter

Off-equi-atomic + filter

Off-equi-atomic

N-HEA Composition Step-size

2 25-75at.-% 5at.-%

3 10-60at.-% 5at.-%

4 5-45at.-% 5at.-%

5 5-35at.-% 5at.-%

6 5-35at.-% 10at.-%

e1 e2 e3 e4 e5 pc1 pc2 pc3 pc4 pc5 N_Elements Price Density ASD_GUO END_Pauling Omega

Li Mg Al Cr Zn 5 5 45 5 40 5 3.6 4.3 4.4 0.156 14

Li Mg Al Cr Zn 5 5 40 5 45 5 3.5 4.5 4.4 0.157 17

Li Mg Al Cu Zn 5 5 45 5 40 5 3.3 4.4 4.1 0.170 10

Li Al Cr Cu Zn 5 45 5 5 40 5 3.7 4.7 3.9 0.158 30

Li Al Cr Cu Zn 5 45 5 10 35 5 3.9 4.7 4.4 0.170 30

Li Al Cr Cu Zn 5 40 5 5 45 5 3.6 4.9 3.9 0.158 58

Li Al Cr Cu Zn 5 40 5 10 40 5 3.8 4.9 4.4 0.170 64

Li Al Fe Cu Zn 5 45 5 5 40 5 3.2 4.7 4.0 0.164 16

Li Al Fe Cu Zn 5 40 5 5 45 5 3.1 4.9 4.0 0.165 21

Li Al Cr Fe Zn 5 45 5 5 40 5 3.4 4.6 4.3 0.152 12

Li Al Cr Fe Zn 5 40 5 5 45 5 3.4 4.8 4.2 0.152 18
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SPSS LDHEA design. The main method for the machine learning was Recursive Partitioning, a method 

that constructs decision trees to classify data based on a set of input and output variables (also referred 

to as Classification and Regression Trees, CART).  The trained model provides a confidence level whether 

a composition will exist as an SPSS. Applying this to billions of compositions combined with mass density 

and price filters reduces the number of compositions to only a few thousand, see Figure 4. 

 

 
Figure 4. Left: Number of alloy compositions for sum of 4-element, 5-element-, and 6-element alloys based on 5at.-% steps 

per element for SPSS LDHEA design, for 48 (48e), 31 (31e), and 20 (20e) common elements of the periodic table. Filtering 

(Filter) based on a trained machine learning model for a confidence level >0.50, and both density <5g/cc and price <5$/kg 

reduces the potential SPSS LDHEA candidates from 150 billion to a few thousand. The number of experimental compositions 

(Exp.) evaluated in this project is of the same order of magnitude. Right: Overview of new experimental LDHEA data points 

generated during this project plotted versus calculated raw alloy price and mass density. 

 

A distribution plot of the confidence level for the existence of SPSS for quarternary LDHEA with each 

element in a range of 5-85at.-% in steps of 10at.-% and starting from 31 common elements of the 

periodic table is shown in Figure 5 (left graph). Roughly 3% of the population, without filtering for mass 

density and price, shows a confidence level >0.50. When filtering for mass density (<5g/cc), price 

(<5$/kg), confidence level (>0.50), and reducing the composition range per element from 5-85at.-% to 5-

45at.-% only about 350 compositions are left from the initial 2 million compositions, see Figure 5 (right 

graph). 
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Figure 5. Left: Distribution plot of the confidence level for the existence of SPSS for 4-element LDHEA starting from 31 

common elements in a range of 5-85at.-% in steps of 10at.-%. Right: Population of 4-element LDHEA when progressively 

adding more filters. All = 5-85at.-%, 10at.-% steps, 31 common elements, 4-element LDHEA. Subsequently, additional filters 

(CL > 0.5, Price < 5$/kg, range 5-45at.-%) are being added. 

 

As a result of these material design efforts, combined with initial experimental results showing only 

hard, brittle, BCC, SPSS LDHEA, the constraints were slightly relaxed for mass density, and price, now 

including mass densities slightly over 5g/cc, and prices slightly over 5$/kg. In addition, since there is no 

strong argument to only pursue SPSS LDHEA (11, 17), multinary-phase LDHEA containing 2 (or more) 

phases were pursued as well, provided that the majority phase is a simple, disordered, solid solution 

(e.g. FCC) to guarantee a reasonable level of ductility. 

 

4.1.3 Simple phase diagram (SPD) model 

 

Both phenomenological selection rules and CALPHAD are very powerful alloy design tools. However, 

they also have their weaknesses, see Table 2. Therefore, a 3rd tool has been developed to allow for 

temperature-aware, phase diagram construction for experimentally unassessed systems. This new tool, 

simple phase diagrams (SPD), allows for the calculation of a simple phase diagram by constructing the 

Gibbs-free energy convex hull. 

 

Formation enthalpies for ordered compounds are based on DFT calculations 

(https://materialsproject.org/) without entropy terms. Only fully ordered compounds are being 

considered, no ordered compounds with fractional occupancies are included. Disordered solid solutions 

are modeled based on either binary equi-atomic Miedema enthalpy terms (3), or the sum of chemical 

and elastic enthalpy terms (12) with either ideal or the sum of ideal and excess configurational entropy 

(13) terms. 
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Table 10 shows a steady increase from 0.68 to 0.81 in accuracy of the prediction of SPSS for a large 

experimental HEA database going from the simplest model for disordered solid solutions to the most 

advanced disordered solid solution model considered in this project. 

 

The simplest model relies on binary equi-atomic Miedema enthalpies and the ideal configurational 

entropy only. These are the most typical terms considered in literature in design of HEA. The most 

advanced model relies on the sum of binary chemical and elastic enthalpy terms with the sum of the 

ideal and excess configurational entropy. It should be noted that accuracy increased significantly by 

lowering the temperature below what would be considered a typical anneal temperature (e.g. 85% of 

melting temperature). Temperatures were 43% of melting temperature based on rule of mixtures, or 

35% of (melting) transition temperature based on CALPHAD when system fully assessed in CALPHAD. 

Furthermore, the high accuracy might be due to the concentration of experimental literature data 

around more ideally behaving HEA (11). 

 

 
Table 10. Accuracy (ACC) predicting SPSS for different simple phase diagram models. ΔH = enthalpy. ΔS = entropy. M = equi-

atomic Miedema enthalpy terms. CE = sum of chemical and elastic enthalpy terms. I = ideal configurational entropy. IE = sum 

of ideal and excess configurational entropy. TP = true positive. FP = false positive. FN = false negative. TN = true negative.  

 

4.1.4 CALPHAD 

 

CALPHAD was used to investigate the SPSS LDHEA design results from phenomenological selection rules, 

machine learning, simple phase diagrams, or used as a source for SPSS LDHEA design itself. However, 

CALPHAD was the main source of LDHEA design in the pursuit of multi-phase LDHEA with the majority 

phase being a simple disordered solid solution (e.g. FCC). 

 

The automated search within CALPHAD for multi-phase LDHEA was filtered for fraction of binary phase 

diagrams assessed in the CALPHAD database (16) being equal to 1.0 (all binaries assessed), FCC volume 

fraction >0.70, number of phases 2-3, mass density (<5g/cc), and price (<5$/kg). The most likely 

candidates based on CALPHAD were multi-phase LDHEA based on Ca-Mn-Fe, e.g. Ca-Mn-Fe-Ni, Ca-Mn-

Fe-La, Si-Ca-Mn-Fe, or Al-Zn-based alloys, e.g. Al-Mn-Cu-Zn, and Al-Si-Cu-Zn. Other automated searches, 

where the number of assessed binaries and volume fraction of FCC was monitored, yet with slightly 

Model

TP FP FN TN ACCΔH ΔS

SPSS

M I 43 103 59 294 0.68

M IE 41 89 61 308 0.70

CE I 35 32 67 365 0.80

CE IE 35 30 67 367 0.81
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relaxed filters, resulted in Mg-Mn-Fe-Co, and Li-Mg-Mn-Fe as potential multinary LDHEA candidates. 

These candidates combine easy boilers (Li, Mg) with high melters (Mn, Fe, Co). 

 

CALPHAD was compared to experimental results achieved during the project, see Figure 6. Typically, 

comparison of XRD results with CALPHAD results showed limited overlap. There can be multiple reasons 

for the discrepancies. First of all, experimental results are not necessarily fully equilibrated, where 

CALPHAD results assume full equilibrium. Secondly, CALPHAD historically has been designed to be 

accurate in the corners of phase diagrams, not around equi-atomic compositions for multinary alloys. 

Furthermore, often not all binary and ternary phase diagrams are assessed in CALPHAD, necessary to 

improve accuracy in the region around equi-atomic compositions for quarternary and quinary alloys. 

Finally, experimental results might include errors. 

 

 
Figure 6. Isothermal phase diagram for Al-Ti-Cr-Fe based on XRD on annealed, thin films (left) and CALPHAD (middle). 

Different colors represent different phase space. The right tetrahedron shows the comparison of the XRD and CALPHAD 

results. 

 

4.1.5 Comparison SPSS accuracy for different design methods 

 

When comparing the accuracy of machine learning, CALPHAD, and simple phase diagrams (SPD), the 

database used to train the machine learning model cannot be used, since this would bias the results of 

machine learning. Therefore, machine learning was trained on a smaller database, and all 3 methods 

were compared based on another database. 

 

Machine learning shows an accuracy of 82% in identifying which compositions are SPSS HEA, see Table 

11. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by 

the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. The 

accuracy for single phase diagrams was 78%. Recently, phenomenological selection rules and CALPHAD 

predictions were compared for a handful of systems (18). 

 

Experiment (XRD) CALPHAD (HEA) Comparison
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Table 11. Accuracy predicting SPSS for machine learning, simple phase diagrams (SPD), and two different CALPHAD 

databases. TP = true positive. FP = false positive. FN = false negative. TN = true negative.  

 

As mentioned previously, the high accuracy might be due to the concentration of experimental 

literature data around more ideally behaving HEA (11). 

 

4.2 High-throughput experimentation 

 

4.2.1 Combinatorial, sputtered, thin-film, compositional gradients 

 

High-throughput experimentation allowed us to triple the existing experimental HEA database as 

published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous 

methods. See Figure 4 for the population of new data expressed in mass density and alloy price. 

 

Figure 7. Left: Map of at.-% Al for AlxCrFeCoNi gradient film as measured by EDX. Middle: Hardness map for same 

AlxCrFeCoNi gradient film as measured by nano-indentation. Right: XRD graphs for AlxCrFeCoNi gradient film with varying x in 

AlxCrFeCoNi. Films are annealed at 800C for 10min in inert/reducing atmosphere. 

A typical example of a sputtered, thin-film, compositional gradient is shown in Figure 7. The left map 

shows the aluminum atomic concentration as a function of location in an AlxCrFeCoNi film with a 

thickness of 100nm. The accompanying nano-indentation hardness map is shown in the middle. An 

increase in hardness is observed with an increase in Al concentration. This might be explained by going 

from the softer FCC to the harder BCC with increasing Al concentration. The right graphs shows the XRD 

Model TP FN FP TN Accuracy

Machine Learning 0.33 0.02 0.16 0.49 0.82

Simple Phase Diagrams 0.31 0.04 0.18 0.47 0.78

CALPHAD-DB1 0.20 0.10 0.13 0.57 0.77

CALPHAD-DB2 0.21 0.10 0.19 0.50 0.71
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spectra for AlxCrFeCoNi thin films with a change in Al concentration. This thin-film XRD data is in good 

agreement with literature data on cast samples annealed at 1100C for 24hrs (19). 

We were able to show 100% agreement of crystal structures observed for 21 thin film and bulk samples 

that were compared with XRD, which includes AlxCrFeCoNi (see Figure 8), a common literature example 

(19), and other 3-element, 4-element, and 5-element alloys. It should be noted that attempts are made 

to anneal sputtered, thin-film samples and bulk samples under similar conditions. This means similar 

soak temperatures, yet not similar soak times or ramp and cooldown rates. This is largely dictated by the 

need for homogenization for bulk samples requiring longer soak times (typically 18hrs), and the more 

reactive nature (surface area) of the thin films requiring shorter soak times (typically 10-60min). Care 

needs to be taken to prevent reaction with the substrate and oxygen incorporation due to air exposure, 

especially, for anneals at high temperatures (>500C), or reactive elements (e.g. Ti, Mg, Cu, Fe). 

Therefore, it is recommended to include a diffusion barrier layer and anneal films prior to breaking 

vacuum. 

Summarizing, we showed that high-throughput thin-film combinatorial methods can be used to get 

insight in isothermal phase diagram slices provided proper care is taken to avoid film reaction. 

 

Figure 8. XRD comparison for sputtered, thin-films with ball-milled powders for AlxCrFeCoNi shows good agreement between 

thin-film and bulk spectra. 

Although it is straightforward to map hardness as a function of composition for sputtered, thin-film, 

compositional gradients by nano-indentation and compare the results to micro-indentation on bulk 

samples, the simultaneous impact of composition, roughness, film density, and microstructure (for 

sufficiently thick films to avoid substrate effects) on hardness requires monitoring all these properties as 

a function of location on the compositional gradient, including dissecting the impact of these 4 factors 

on the hardness map. These additional efforts impact throughput significantly. Nevertheless, we were 

able to show a reasonable correlation between thin-film and bulk samples when comparing thin films to 

bulk literature data for pure Ti (20), pure Al (21), and AlCrFe (22), or when considering a typical Hall-

Petch relation (21) for AlxCrFeCoNi for thin-film and bulk samples. 

4.2.2 Bulk samples 

 

Pursuing the LDHEA candidates from the SPSS LDHEA design efforts resulted mainly in LDHEA composed 

of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al. Most of these LDHEA did not contain high 
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concentrations of Li, Mg, or Zn due to the presence of high concentrations of high melters, and the 

elusive nature of Li-Mg-Al-Sc-Ti (see section 5). The combination of easy boilers (Li, Mg, Zn) at high 

concentrations with high concentrations of high melters are challenging to manufacture by arc or 

induction melting. As such, initial focus did not include high concentrations of Li, Mg, and/or Zn. 

The high concentration of Al in these SPSS LDHEA, necessary to bring the mass density below 5.0g/cc, 

makes these materials hard and brittle, body-centered-cubic (BCC) alloys. These include alloys made 

from Al-Ti-Cr-Fe, Al-Cr-Fe-Cu, and Al-Ti-Cr-Mn-Fe. A related, yet multi-phase BCC alloy, based on Al-Cr-

Fe-Ni (23), shows compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g 

(Figure 9), yet does not show ductility in tensile tests due to cleavage, the latter observed by SEM 

imaging. 

 

Figure 9. Compressive stress-strain curves at room temperature on 0.5”-dia x 0.75”-long cylinders manufactured by arc or 

induction melting followed by 18hrs anneal in inert/reducing environment. 

When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA with Mn, hardness drops 2x, from typically 

6GPa to 3GPa. Combined with compression test results, including those on the ternaries Al-Cr-Fe and Al-

Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. Al-Mn-Fe shows compressive strain 

of 10-15% and specific compressive yield strength of >100 MPa x cc/g, see Figure 10. These initial results 

only represent one compressive stress-strain curve per composition without any property optimization. 

As such, reproducibility needs to be followed by optimization to show their full potential. 
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Figure 10. Compressive stress-strain curves at room temperature on 0.310"-dia x 0.775"-long cylinders manufactured by arc 

or induction melting followed by 18hrs anneal in inert/reducing environment. 

The compressive stress-strain results on the family of Cu(Al) matrix with silicide precipitates (e.g. Al-Si-

Mn-Cu, Al-Si-Fe-Cu, Al-Si-Ti-Cu) shows poor malleability (see Figure 9). Compositional mapping by EDS 

suggests 40-60vol.-% of silicide (Mn-Si, Fe-Si, Ti-Si) precipitates in the Cu(Al) matrix to achieve a low 

enough mass density. 

When including Li, Mg, and Zn at high concentrations, introduced by ball milling, single-phase Li-Mg-Al-

Ti-Zn LDHEA has been found with a specific ultimate compressive strength of 289MPa x cc/g, see Table 

12. Al-Ti-Mn-Zn showed a specific ultimate compressive strength of 73MPa x cc/g. These initial results 

after hot isostatic pressing (HIP) of the ball-milled powders represent the lower end of what is possible, 

since no secondary processing (e.g. extrusion) has been performed to optimize strength and ductility. 

 

Table 12. Mechanical test results on consolidated ball-milled powder. Consolidation by HIP. MD = Mass Density. H = 

Hardness in GPa. CYS = Compressive Yield Strength from Hardness. SCYS = Specific Compressive Yield Strength. UCS = 

Ultimate Compressive Strength from compression test. SUCS = Specific Ultimate Compressive Strength. 

CALPHAD resulted in pursuit of various multinary LDHEA. Li-Mg-Al-Mn-Fe and Mg-Mn-Fe-Co ball-milled 

powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 45MPa x cc/g, 

respectively (Table 12). Several malleable quarternary Al-Zn-based alloys have been found upon 

arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial 

results are all without any optimization for strength and/or ductility. 
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Al32Mn31Fe31Cu6 Al40Mn30Fe30 Al40Mn20Fe40

100 ksi

100 ksi
100 ksi

0.15 0.15 0.15

ID Formula_pc MD (Exp) MD (Calc) Vicker's Hardness H (Vickers) CYS (=H/3) SCYS Ultimate Compressive Strength UCS SUCS

at.-% g/cc g/cc GPa GPa MPa cc/g psi GPa MPa cc/g

1 Mg24Mn31Fe31Co14 5.7 5.5 410 4.0 1.3 237 36,906 0.3 45.0

2 Li10Mg18Al26Ti36Zn10 3.5 3.2 468 4.6 1.5 441 145,657 1.0 289.4

3 Al22Ti31Mn31Zn16 5.3 5.2 843 8.3 2.8 523 55,648 0.4 72.8

4 Li3Mg22Al3Mn26Fe46 5.4 5.1 338 3.3 1.1 203 156,148 1.1 198.3
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5 Problems encountered, departure from planned methodology, and 

project impact 
 

The most significant issue we identified in the first months of the project was that neither ball-milling 

nor thin-film sputtering could reproduce the earlier ball-milling results reported in literature regarding 

Li20Mg10Al20Sc20Ti30 LDHEA (1). Furthermore, CALPHAD was unable to reproduce the results as well, yet 

this might have several causes. Similarly, more strict phenomenological selection rules did not support 

the formation of SPSS (5), nor did machine learning. 

 

This Li20Mg10Al20Sc20Ti30 SPSS LDHEA system was meant both as a benchmark to validate the approach, 

and as a starting point for LDHEA design to replace the costly Sc with a less costly element. The work-

around on the benchmarking issue was selecting a second, more well-known HEA system, AlxCrFeCoNi 

(19), and matching published results for that system. Regarding Li20Mg10Al20Sc20Ti30 being a starting point 

for SPSS LDHEA design. The elusive nature of Li20Mg10Al20Sc20Ti30 and the difficulty of finding promising 

Li-Mg-Al-based SPSS LDHEA by others (5) did raise the question whether the class of Li-Mg-Al-based 

SPSS LDHEA is a good starting point. As such, focus shifted towards SPSS LDHEA based on Mg, Al, and 

low concentrations of Si and Ti in the first year of the project. 

 

Another issue encountered in the first year of the project was extremely low thin-film sputter deposition 

rates for Fe, due to its ferromagnetic properties. The issue was resolved by both redesigning the 

magnets of the sputter gun, and by working with binary Fe-containing sputter targets. 

 

After meeting all the program targets of the first budget year, we encountered a major issue at the start 

of the second year. All LDHEA that met hardness targets in year 1 turned out to be hard and brittle 

(single-phase) BCC alloys showing no signs of malleability in compression testing. Therefore, a change of 

approach to expand alloy exploration with slightly relaxed mass density (<5.5g/cc) and price targets 

(<7$/kg) was proposed and implemented, including opening up the window to multinary LDHEA. 

 

Once a multinary LDHEA was identified that showed compressive strain >10% (malleability), plans were 

made for a scale-up to 25lbs, provided tensile testing would show encouraging results. Unfortunately, 

tensile testing showed no signs of ductility, and SEM imaging showed that this was due to cleavage. 

Therefore, alloy exploration continued, including more use of ball milling to allow the investigation of 

LDHEA with volatile elements at high concentrations combined with high melting elements at high 

concentrations. 

  



Intermolecular, Inc. - Award DE- EE0007213 

Final scientific/technical report – December 2017 
 
 

 28 | P a g e  
 

 

6 References 
 

1. Koch, et al. Raleigh, NC, USA : Materials Research Letters, 2015, Vol. 3. 95-99. 

2. Lou, A.A. Warren, MI, USA : JOM, 2002, Vol. 54. 42-48. 

3. Yang, et al. Beijing, China : Materials Chemistry and Physics, 2012, Vol. 132. 233– 238. 

4. Tian, et al. Stockholm, Sweden : Intermetallics, 2015, Vol. 58. 1-6. 

5. Yang, et al. Beijing, China : JOM, 2014, Vol. 66. 2009. 

6. Zhang, et al. Madison, WI, USA : JOM, 2012, Vol. 64. 839. 

7. Gebhardt, et al. Aachen, Germany : Thin Solid Films, 2012, Vol. 520. 5491–5499. 

8. Takeuchi, et al. Sendai, Japan : Materials Transactions, 2005, Vol. 46. 2817-2829. 

9. Niessen, et al. Eindhoven, The Netherlands : CALPHAD, 1983, Vol. 7. 51-70. 

10. Troparevsky, et al. Oak Ridge, TN, USA : JOM, 2015, Vol. 67. 2350-2362. 

11. Miracle, et al. Wright-Patterson AFB, OH, USA : Acta Materialia, 2017, Vol. 122. 448-511. 

12. Ghosh, et al. Kalpakkam, TN, India : Intermetallics, 2012, Vol. 23. 148-157. 

13. Ye, et al. Hong Kong, China : Intermetallics, 2015, Vol. 59. 75-80. 

14. King, et al. Lucas Heights, NSW, Australia : Acta materialia, 2016, Vol. 104. 172-179. 

15. Ye, et al. Hong Kong, China : Journal of Alloys and Compounds, 2016, Vol. 681. 167-174. 

16. Senkov, et al. Wright-Patterson AFB, OH, USA : Journal of Alloys and Compounds, 2016, Vol. 658. 

603-607. 

17. Raabe, et al. Dusseldorf, Germany : JOM, 2017, Vol. 69. 2099. 

18. Schmid-Fetzer, et al. Clausthal-Zellerfeld, Germany : J. Phase Equilib. Diffus., 2017, Vol. 38. 369–381. 

19. Yeh, et al. Hsinchu, Taiwan : Materials Science and Engineering: B, 2009, Vol. 163. 184-189. 

20. Dunstan, et al. London, England : Proceedings of the Royal Society A, 2016, Vol. 472. DOI: 

10.1098/rspa.2015.0890. 



Intermolecular, Inc. - Award DE- EE0007213 

Final scientific/technical report – December 2017 
 
 

 29 | P a g e  
 

21. Armstrong, R.W. College Park, MD, USA : Materials Transactions, 2014, Vol. 55. 2-12. 

22. Dunstan, et al. London, England : International Journal of Plasticity, 2014, Vol. 53. 56-65. 

23. Chen, et al. Xuzhou, Jiangsu, China : Materials Science & Engineering A, 2017, Vol. 681. 25-31. 

 

 


