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Abstract

Problem Statement & Approach

Digging Deeper: Impedance Tensors

Defining perfect conductor in staggered grid

Modeling Near-Surface Metallic Clutter Without the Excruciating Pain

Finite difference stencil for discrete 
grad and div operators.  Electric 

Finite difference stencil for discrete 

defined on cell edges.
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Following Weiss (Computers & Geosciences, 2013) the governing Maxwell 
ω domain and further decomposed in 

A and electric scalar φ
distributed on a staggered Cartesian Yee (1966) grid.  Choosing the Lorenz 

use of a linear solver that exploits this property (e.g. QMR).  However,  imposing the “thin wire approximation” ad hoc, as we show-

Ω centered on the 

-

a staggered node centered volume a step which further accentuates the “bigness” of the thin wire.

To minimize the footprint of a thin, filamentary conductor (a “wire”) on the finite 

effects”, there is no electric field inside a perfect conductor.  Hence, on edges of the 

where   

electric field orthogonal to the wire, however we find the simple expression above to 

solver tolerant of non-symmetric systems, such as BiCGstab (van der Vorst, 1992).   
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Visualizing the Physics

 1. Cost/benefit analysis of including the higher order ln(r) terms for problems of geo-significance.

 3. What is the best way to represent wires that are non-conformal to the FD mesh?  (e.g. skewed or in the middle of a cell)
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Summary and Conclusions

Streamlines and magnitude of the out-of-phase com-

air-earth interface is shown by the white arrows. 
Figure is shown for scale. 

Rebar is located along the outer edges of the void 

-

-

into connected rebar segments orthogonal to the 
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below, results in non-symmetric system of equations.

• 100 m x 100 m x 50 m

• Relative conductor (0.01 S/m, green) 
over a resistor (0.001 S/m, tan)

• X-directed, 25 kHz plane wave source

Horizontal layers without metallic clutter.

Vertical fault with metallic clutterVertical fault without metallic clutter.

Horizontal layers with metallic clutter.

• 100 m x 100 m x 50 m
• Relative conductor (0.01 S/m, green) 
over a resistor (0.001 S/m, tan)
• Metallic clutter is an air-filled, 
rectangular wire mesh (cellar)
• cellar is 3 m x 5 m x 1.5 m
• X-directed, 25 kHz plane wave

• 100 m x 100 m x 50 m

• Relative conductor (0.01 S/m, green) 
adjacent to a resistor (0.001 S/m, tan)

• X-directed, 25 kHz plane wave source 
(perpendicular to fault strike)

• 100 m x 100 m x 50 m
• Relative conductor (0.01 S/m, green) 
adjacent to a resistor (0.001 S/m, tan)
• Metallic clutter is an air-filled, 
rectangular wire mesh (cellar)
• Cellar is 3 m x 5 m x 1.5 m
• X-directed, 25 kHz plane wave 
(perpendicular to fault strike)

An ongoing problem in modeling electromagnetic (EM) interations with the near-surface and related 
anthropogenic metal clutter is the large difference in length scale between the clutter dimensions and 
their resulting EM response. For example, observations evidence shows that cables, pipes, and rail lines 
can have a strong influence far from where they are located, even in situations where these artefacts are 
volumetrically insignificant over the scale of the model. This poses a significant modeling problem for 
understanding geohazards in urban environments because of the very fine numerical discretization 
required for accurate representation of an artefact embedded in a larger computational domain. We adopt 
a sub-grid approximation and impose a boundary condition along grid edges to capture the vanishing 
fields of a perfect electric conductor.
We work in a Cartesian system where the EM fields are solved via finite volumes in the frequency domain 
in terms of the Lorenz gauged magnetic vector (A) and electric scalar (φ) potentials. The electric field is 
given simply by A-grad(φ), and set identically to zero along edges of the mesh that coincide with the 
center of long, slender, metallic conductors. A simple extension to bulky artefacts, like blocks or slabs, 
involves endowing all such edges in their interior with the same “internal” boundary condition. In essence, 
we apply the “perfect electric conductor” boundary condition to select edges interior to the modeling 
domain. We note a few minor numerical consequences of this approach, namely: the zero-E field internal 
boundary condition destroys the symmetry of the finite volume coefficient matrix; and, the accuracy of 
representation of the conducting artefact is restricted by the relatively coarse discretization mesh. The 
former is overcome with the use of preconditioned bi-conjugate gradient methods instead of the 
quasi-minimal-residual methods (QMR). Both are matrix-free iterative solvers― thus avoiding unnecessary 
storage― and both exhibit generally good convergence for well-posed problems. The latter is more 
difficult to overcome without either modifying the mesh (potentially degrading the condition number of 
the conefficient matrix) or with novel mesh sub-gridding. Initial results show qualitative agreement with 
the expected physics.
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