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An ongoing problem in modeling electromagnetic (EM) interations with the near-surface and related
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representation of the conducting artefact is restricted by the relatively coarse discretization mesh. The
former is overcome with the use of preconditioned bi-conjugate gradient methods instead of the
guasi-minimal-residual methods (QMR). Both are matrix-free iterative solvers— thus avoiding unnecessary
storage— and both exhibit generally good convergence for well-posed problems. The latter is more
difficult to overcome without either modifying the mesh (potentially degrading the condition number of
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corresponding X, y and z edges (for the x, y and z equations). If a cell (or row of cells) was assigned
a high conductivity in an attempt to represent a slender “wire”, the effect would be propagated to
the multiple finite difference stencils (in all three coordinate directions!) neighboring the high con-
ductivity cell(s). Hence, the thinness of the wire in the numerical simulation would be severley
compomised. The second step is to integrate the 4th equation, again assuming local linearity over
a staggered node centered volume a step which further accentuates the “bigness” of the thin wire.

Outstanding questions:

1. Cost/benefit analysis of including the higher order In(r) terms for problems of geo-significance.
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2. What is the effective “size” of the wire when discretized as we’ve done? One half of a mesh cell? Something else?
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3. What is the best way to represent wires that are non-conformal to the FD mesh? (e.g. skewed or in the middle of a cell)

Defining perfect conductor in staggered grid

To minimize the footprint of a thin, filamentary conductor (a “wire”) on the finite
difference discretization template, we start with the observatation that due to “skin
effects”, there is no electric field inside a perfect conductor. Hence, on edges of the
Cartesian grid where the wire resides, we replace the equations in x, y or z resulting
from volume integration with the auxiliarly condition:

§E=—iwé (A-VP) =0

where é is taken to be a unit vector in the direction along which the wire is oriented.
Additional accuracy could be achieved by further prescription of the In(r) fall-off in
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L The EM response of a geologic structure, particularly where the conductivity contrast is relatively low, is easily overprinted

i } by the reponse of anthropogenic metal clutter, especially when the sourcing fields (either natural or manmade) are polar
g j ized in the direction along which the clutter is oriented.
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I . l . im(B I . l . Im(B) However, geologic structure can be distinguished from metal clutter when the clutter is small in comparison. That is, the
m( ) mesoscale electromagnetic response of “large” geologic features (e.g. faults) is only locally disrupted by the response of the

electric field orthogonal to the wire, however we find the simple expression above to 2 _sxi0-10f E _4.0x10-10f clutter.
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