A Unified Hardware/Software Co-Design
Framework for Neuromorphic Computing Devices
and Applications

James S. Plank, Garrett S. Rose, Mark E. Dean
EECS Department
University of Tennessee
Knoxville, TN 37996
[Jjplank, garose, markdean] @utk.edu

Abstract—With the death of Moore’s law, the computing
community is in a period of exploration, focusing on novel
computing devices, paradigms, and techniques for programming.
The TENN-Lab group has developed a hardware/software co-
design framework for this exploration, on which we perform
research with three thrusts:

1) Devices for computing, such as memristors and biomimetic

membranes.

2) Applications that employ spiking neural networks for

processing.

3) Machine learning techniques to program.

The design framework is unified, because it allows all three
thrusts to work in concert, so that, for example, new results
on device design can apply instantly to the current results of
applications and learning. In this paper, we detail the interweav-
ing components of the design framework. We then describe case
studies on each of the research thrusts above, highlighting how
the unified framework is enabling to each case study.

I. INTRODUCTION

The computing community is currently in a period of
exploration. Moore’s law has died, and as such, researchers
are exploring alternatives to the von Neumann computing
paradigm to achieve improved computational performance,
lower power consumption, and novel functionalities. Notable
products from this exploration are novel new architectures for
computation [1], [2], [3], [4], [5], theories on biologically
inspired computation [6], [7], and algorithmic approaches to
problems that are more successful at, for example, image
classification, than previous approaches [8], [9].

At the University of Tennessee and Oak Ridge National
Laboratory, we have developed a research group called TENN-

This research was supported in part by an Air Force Research Lab-
oraty Information Directorate grant (FA8750-16-1-0065). This manuscript
has been authored in part by UT-Battelle, LLC under Contract No. DE-
ACO05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Computational Data Analytics
Oak Ridge National Laboratory

schumancd@ornl.gov

Catherine D. Schuman Natheniel C. Cady
CNSE
SUNY Polytechnic Institute
Albany, NY 12203

ncady@sunypoly.edu

Oak Ridge, TN 37830

Lab (Laboratory of Tennesseans Exploring Neuromorphic Net-
works). We focus on Neuromorphic computing, specifically
spiking neural networks, as the basic vehicle for our research.
Our goal is to push the research boundaries of three impor-
tant areas in the search for novel computing paradigms and
implementations:

1) Designing new architectures for computing, based on
conventional and novel computing devices.

2) Developing new applications for these architectures.

3) Using machine learning techniques to program.

In this paper, we describe our approach, specifically the
hardware/software co-design framework that allows us to
explore these three areas simultaneously. Our framework is
based on a general model of spiking neural networks, so
that we may develop applications generally, without having
the applications concern themselves with the specifics of a
neural network or neuromorphic implementation. Our neural
network architectures export this general interface, but each
implements functionality specific to the devices on which it is
implemented. For example, our mrDANNA architecture (see
Section IV-A) has been designed to leverage implementation
by novel memristive devices, and it has been implemented
within our general model, so that our applications may execute
upon it without modification. We program the applications
with a combination of supervised learning (via genetic algo-
rithms) and unsupervised learning (via Spike Timing Depen-
dent Plasticity: STDP), and are performing active research in
these areas, so that we may widen the scope, applicability and
effectiveness of our architectures and applications.

In this paper, we present three case studies of our approach,
showcasing each of the three research thrusts. The first of
these is the development of mrDANNA as a neural net-
work architecture inspired by memristive computing devices
(Section IV-A). The second presents an application called
RoboNAV, a self-contained, self-navigating vehicle that uses
neuromorphic architectures to direct its exploration of spaces
while avoiding obstacles (Section IV-B). The third presents a
structure-based enhancement to learning, called Output Redun-

dancy, to improve the effectiveness of the genetic component
of learning (Section IV-C). These case studies highlight the
interoperability of our environment, and how each research
thrust improves the other.

II. RELATED WORK

An overview of the field of neuromorphic computing is
available in [10]. Design and software frameworks have
been developed for some fully fleshed out neuromorphic
systems, including SpiNNaker [1], IBM’s TrueNorth [2], and
FACETS/BrainScaleS [3], but beyond programming languages
such as PyNN [11], there is little that enables the general co-
design of hardware and software for neuromorphic systems.

In this work, we describe how we utilize our co-design
framework for device research, application research, and
learning research. For device research, we show how our
co-design framework has been used to develop a hardware
implementation based on hafnium-oxide memristors. Mem-
ristors have emerged in recent years as a common circuit
component included in neuromorphic systems [12], [13],
[14], [15]. Although metal-oxide based memristors have been
common, including those based on hafnium oxide as in our
implementation [16], titanium oxide [17], and tungsten oxide
[18], a variety of other types of materials are also being used
to implement memristors, including chalcogenide memristors
[19] and polymer and organic memristors [20]. Though we
limit ourselves to hafnium oxide memristors in this work, this
co-design framework can easily be applied to other memristive
implementations.

For our applications research example, we demonstrate the
use of our co-design framework to develop an application
in autonomous robot navigation with obstacle avoidance.
Robotics have been a common application area for neuro-
morphic systems, because they often require very small and
very power efficient controls systems. Navigation has been a
popular choice among other neuromorphic systems, including
autonomous driving [21], maze navigation [22], and obstacle-
avoidance [23], [24].

For our learning research example, we employ a genetic
algorithm to train neuromorphic systems, and we explore
approaches in which we can utilize a single simulation run
to perform a complex fitness evaluation by utilizing “Output
Redundancy.” Genetic algorithms and other evolutionary ap-
proaches have been utilized to train a variety of both neural
networks and neuromorphic systems [25]. The application
of genetic algorithms to neural networks (sometimes called
neuroevolution) has been used to determine parameters of
networks (such as the weight values of synapses) and/or
network topology [26], [27], [28], [29]. For neuromorphic
systems, genetic algorithms and other evolutionary approaches
are attractive because they can work within the constraints
of the neuromorphic system and train directly to a particular
implementation or device type. They have been employed
for a variety of neuromorphic implementations, including
programmable devices [30], [31], custom devices [32], and
memristor-based implementations [33].

III. DESCRIPTION OF THE CO-DESIGN FRAMEWORK

The basic components of our co-design framework are
in Figure 1. At the center is a software core, which de-
fines interfaces that allow the other three components to
interoperate, and implements functionalities common across
components. Examples of the interfaces are primitives for
neural network creation, modification and serialization. The
network creation primitive allows an application to express its
complexity, in terms of number of input/output neurons and
hidden neurons, and have each device/architecture implement
network creation in accordance with those parameters in a
manner that is consistent with the device and architecture. The
network modification primitives allow the genetic algorithms
to direct optimization by utilizing reproductive operators such
as mutation and crossover, each of which is implemented
by the device/architecture in a manner that makes sense to
the specifics of the device and architecture. The serialization
primitive allows the genetic algorithms to store populations of
networks, so that the applications may utilize the best ones
once the supervised learning phase is complete.

Applications: Learning:
Control, Genetic algorithms.
classification, Evolutionary optimization.

security, benchmarks. Unsupervised learning.

Software Core:
Network creation, modification, serialization.
Device instantiation and control.
Input-to-spikes; Spikes-to-output.

Devices and Architectures:
NIDA: 3D, analog, simulation-only.
DANNA: 2D, digital, FPGA, CMOS & simulation.
mrDANNA: 2D, digital/analog, memristors & simulation.

Fig. 1. The components of our hardware/software co-design framework.

A second set of interfaces governs the operation of the neu-
romorphic devices. For example, an application may allocate
an instance of a device and load a network from a serialization.
Then, the application drives the device, specifying input (see
the next paragraph for a description), running the device,
and then interpreting output. The same interface is used for
both device simulations and physical implementations of the
devices. The interface allows for multiple simultaneous device
instantiations, so that the genetic algorithms may evaluate large
populations of networks in parallel.

Finally, the core implements functionality to facilitate input
to and output from the neuromorphic devices. An application
may wish to express its input as a numeric value. The core
allows the application to define the range of its input values,
and how each input will be encoded for the device. For
example, the input may be rate coded so that large values
are converted to many pulses and small values are converted
to few pulses; or the input may be binned, so that specific

input neurons are associated with specific ranges of values;
or the input values may be converted to specific amounts of
charge, when applied to the device. Our core supports these
techniques and their combinations. After defining the input
coding, the application simply calls a core procedure when
it wants to apply input, and the proper encoding is applied.
Interpreting output is similar. The core implements voting,
counting and binning as techniques to extract boolean, integer
and set outputs from the neuromorphic device.

A. Devices and Architectures

We have developed three neuromorphic architectures within
this framework. They share the following inspirations from the
brain: Neurons that accumulate charge and fire upon reaching
a threshold, synapses that transmit charge temporally from
neuron to neuron, and plasticity that allows the strengths of
synapses to grow and shrink according to their influence on
neuron firing. They differ in how they store and transmit
charge, their connectivity, and how they are implemented.

The first of these is named NIDA (Neuroscience-Inspired
Dynamic Architecture) [25] and features analog neurons that
are laid out in three dimensions. Synapses may connect any
pair of neurons, and their delays are defined by the distance
between the neurons they connect. Multiple models of leak,
potentiation and depression are supported by NIDA [34]. It is
implemented in simulation with support for visualization.

The second architecture is called DANNA (Dynamic Adap-
tive Neural Network Array) [35] and is much more constrained
than NIDA. It is composed of a two-dimensional array of
programmable elements, where each element may be a neu-
ron or a synapse. Neuron thresholds, synaptic weights and
synaptic delays are all programmable, digital quantities, and
any element (a neuron or synapse) may only connect to its
16 nearest neighbors (in the 8 compass directions). DANNA
also supports multiple models of potentiation and depression
for unsupervised learning. We have implemented DANNA in
simulation and on FPGA’s. The largest DANNA FPGA grid
that we have tested is 75 X 75, which we have verified to be
cycle-accurate with the simulator. We have a CMOS design for
DANNA, and are fabricating a 5 X 5 test chip in late 2017.

The third architecture is mrDANNA, described in detail in
Section IV-A. We are currently performing the experiments to
develop a fourth architecture based on biomimetic membranes
for the computing fabric [36].

B. Applications

Our applications fall into four categories: Control, clas-
sification, security and benchmarks. We describe a control
application in Section IV-B. Other control applications are
a simulation of an inverted pendulum on a cart, the cell-
phone game “Flappy Bird,” and multiple navigation engines
similar to the one described in Section IV-B. Our classification
applications train on labeled data from multi-dimensional
data sets such as those found in the UCI Machine Learning
Repository. Their performance is as good as, or superior to
other machine learning projects on popular labeled data sets

such as Iris flower identification and Wisconsin Breast Cancer
diagnosis [37]. The security applications are in the domains
of packet rate determination and low-power sensors, and the
benchmark applications perform simple and composable tasks
such as digital operations, counting and voting.

C. Learning

Our machine learning methodology is a combination of
supervised and unsupervised learning. The supervised learning
relies on a genetic algorithm approach, where both parameters
(e.g., neuron thresholds, synapse weights) and neuron/synapse
structures are modified in evolutionary optimization. In par-
ticular, the crossover operation can take two parent networks,
split each in half, and combine the two sets of halves,
structurally, into two child networks.

When a network is generated from the genetic algorithm, the
plasticity of the architecture allows it to undergo unsupervised
learning. In this phase, repetition of input may be employed
to allow synapses to strengthen as they cause neurons to fire,
or to weaken when their firings are inconsequential. We have
demonstrated the effectiveness of unsupervised learning on a
benchmark application (XOR) on mrDANNA [38].

IV. CASE STUDIES

In this section, we detail three case studies of research
projects in each of the three areas of our co-design framework.

A. Device Research: Development of mrDANNA

Memristors are two-terminal devices whose resistance de-
pends the current/voltage operational history of the device.
Memristors encompass a broad category of devices, including
phase change memory and a variety of conductive filament
based devices which have also been termed resistive memory,
RRAM, or ReRAM. While the mechanism of switching varies
between the various types of memristors, the fundamental
properties of these devices include non-volatility and repeat-
able modulation of resistance state based on current and/or
voltage changes. The majority of memristors are based on
a metal-insulator-metal (MIM) structure, where the insulator
is a transition metal-oxide. Although many transition metal-
oxide MIM devices exhibit resistive switching behavior, their
manufacturability, endurance, data retention, and multi-level
programmability vary widely.

Our application of memristors is to emulate synaptic func-
tionality in neuromorphic circuits. For example, during the
learning phase of neural network generation, the relative
strength of connections (synapses) in the network must be
encoded in some form of memory. Memristors can encode
these synaptic weights with much higher density than conven-
tional SRAM or DRAM. Further, some memristive devices
have exhibited multi-level, analog switching behavior.

One major challenge is to integrate memristors seamlessly
with CMOS-based integrated circuits. To meet this need, we
have developed CMOS-integrated RRAM that can function
as memristors using a standard 65nm process technology.
RRAM elements are implemented at the interface between the

front-end transistor contacts and back-end metalization layers.
This creates RRAM in a 1-transistor/l1-memristor (1TIR)
configuration, where each memristor is connected in series to
a transistor. This transistor serves as a current limiting device,
as well as an addressing element.

These CMOS-integrated RRAM have displayed excellent
switching characteristics (2V and lower operation), high en-
durance (over 1 billion cycles), and multi-level operation (up
to 10 resistance levels per RRAM cell). By using short pulse-
based biasing (< 10 ns pulses), the resistance of these devices
can be incrementally increased or decreased, allowing for the
multi-level operation necessary for neuromorphic computa-
tion [39].

i
p
Rp —>
F,.—*| Synaptic / >
F,..—»| Control
CLK—» Block
<“—R
- n
’n

Fig. 2. Schematic of a twin-memristor structure for synapses with positive
and negative weights.

We are currently implementing CMOS/memristor hybrid
circuits to construct a memristive dynamic adaptive neural
network array, or mrDANNA [40]. MrDANNA traces its lin-
eage from NIDA and DANNA. A schematic of one of our
synapse structures is shown in Figure 2. This synapse exploits
two memristors for positive and negative weights. Using the
multi-level capability of our memristor-based RRAM cells, the
weights of synapses can be incrementally adjusted online and
in real-time, following learning rules for long term potentiation
and depression (LTP/LTP). More specifically, if a post-synaptic
firing event occurs just after a corresponding pre-synaptic
firing event, then LTP is triggered and the synaptic weight
increases. Similarly, if a post-synaptic firing event happens to
occur simultaneous to a pre-synaptic fire, then the synaptic
weight decreases due to LTD.

Figure 3 shows Cadence Spectre simulation results for LTP
and LTD events for an example 2-input mrDANNA network.
When the input synapses F}..1 and Fj,..o fire right before
causing the post-synaptic neuron (£,) to fire, their weights
(Gepr1 and Geypo) potentiate. When they fire simultaneously,
or just afterwards, they depress. There are two events in this
picture (roughly times 0.2 and 0.6) where multiple firings both
potentiate and depress the synapses’ weights.

Using electrical characteristics measured from the CMOS-
integrated RRAM, we have developed a memristor device
model for circuit-level SPICE simulations. This device-level
model and corresponding circuit designs were used to guide
the creation of a virtual model for simulating full mrDANNA
networks using memristive synapse structures. Like DANNA,
this model has a 2D grid of elements; however, in mrDANNA,
each major element is a core consisting of a single neuron

_ 06
2 0 F
0.6 prel

-0.6
501
»351-
EJ
15 G
250 L e——

I S/

4= I 1

o
o
o
=
-
@

Time(us)

Fig. 3. Cadence Spectre simulation results showing LTP and LTD events for
a 2-input mrDANNA network.

and eight memristive synapses. Connectivity follows that of
the DANNA system and is limited to nearest neighbor con-
nections. From the mrDANNA model, we have developed a
high-level simulator that fits within the structure described in
Section III. We have used the simulator to generate networks
that solve our various applications. We show further work with
mrDANNA in the two subsections below. Our first mrDANNA
test chip is scheduled for fabrication at SUNY-PI in late 2017.

B. Application Research: Development of RoboNav

RoboNav started as a senior design project in the EECS
department at the University of Tennessee. The goal was to
design and build a self-contained robot, under neuromorphic
control, that can avoid obstacles while exploring its environ-
ment. Once the robot was designed, the work split into two
sub-tasks: physically building the robot, and programming a
robot simulator that could be used to train a neuromorphic
network to drive it. When each of these tasks was finished, a
neuromorphic (DANNA) FPGA was loaded on the robot and
attached to the inputs, the FPGA was configured with both
the neuromorphic network and communication programming
so that the physical inputs were translated to DANNA inputs.
The final project was successful. RoboNav is pictured in the
left side of Figure 4, and can explore spaces, while avoiding
obstacles. We describe each of the tasks in RoboNav’s devel-
opment in greater detail below.

Communication at Periodic Intervals

5 LIDAR Inputs ——p»
2 Whisker Inputs ——p»
Random Number ———p
Clock >
«4—— Lefttrack F/R
-«—— Right track F/R

15x15
DANNA
FPGA

24 neurons
104 synapses

Fig. 4. Picture of RoboNav, with schematics on how it communicates with
the DANNA FPGA.

RoboNav uses a track-based Kuman Sm5 with 12V motors.
To sense obstacles, it employs a sweeping Garmin LIDAR-Lite
v3 sensor on a servo. It sweeps in a 120 degree field of vision,

providing 8-bit sampling input at five locations (i.e., a 30
degree separation between sampling). Additionally, it has two
“whiskers” on limit switches to detect drop-offs in the terrain
(e.g., stairs, curbs, holes, etc). The neuromorphic processor is
a Kintex-7 FPGA on a Digilent Genesys 2 development board.
The FPGA implements the DANNA neuromorphic model,
described briefly above in Section III. The information from
the LIDAR and whisker sensors is converted to neuromorphic
inputs, and the neuromorphic outputs are converted to track
inputs via a MicroBlaze core. The core and FPGA are battery
powered, and installed on the robot so that it is self-contained.

The simulator for RoboNav fits into the structure of our
neuromorphic co-design framework. The simulator is written
in C++ with a visualizer in Open-GL. The interaction between
the robot and the neuromorphic navigation application is
depicted in Figure 4. At regular intervals, the five LIDAR
inputs, two whisker inputs, a random number generator, and
a clock signal are all communicated as neuromorphic input,
using the input-to-spike functionality described in Section III.
The random numbers are intended to help explore random
spaces. There are four output synapses, one for each direction
of movement for each of the two tracks. At each interval, we
count the firings of each pair of synapses for each track, and
for each pair, the synapse that fires the most determines the
direction.

We chose DANNA for RoboNav because of its FPGA im-
plementation, which allows for self-contained operation. The
size of the DANNA array is 15 X 15. To generate a DANNA
network, we performed a parallel version of our genetic
algorithm [41], utilizing 18,000 processing nodes for 24 hours
on Oak Ridge National Laboratory’s Titan supercomputer. The
fitness function combines several goals of RoboNav: obstacle
avoidance is the highest priority, followed by coverage of a
simulated room, and the utilization of all track directions. The
last goal was added, because the first successful RoboNav
network only turned right! The best network achieves a fitness
score of 72%, and is able to avoid all obstacles, but not achieve
total room coverage from all starting positions. Since there
are obstacles in the space, it is impossible to achieve 100%
coverage.

The resulting network has 24 neurons and 104 synapses.
We have successfully demonstrated the self-contained, battery-
powered RoboNav exploring halls and offices at the University
of Tennessee, for which it has not been trained, while avoiding
all obstacles.

mrDANNA —*
DANNA D
NIDA ®

I T T T T 1
00 01 02 03 04 05

Fitness (out of 1.0)

Fig. 5. Fitness results of performing 100 independent optimizations of
RoboNav on each of three different models, for one hour each.

Because it was developed within our co-design framework,
RoboNav may be used for benchmarking neuromorphic archi-
tectures and machine learning. As a brief example, Figure 5
displays the results of performing a small evolutionary op-
timization experiment on Titan. In the experiment, for each
of the three models (NIDA, DANNA and mrDANNA), 100
independent optimizations were performed on 7 cores each,
for exactly one hour. The graph shows Tukey plots of the
100 fitness values for each model. The fitness values compare
poorly to the 72% network above, because each test is using
0.000016 of the computing power of the optimization that
produced the network with 72% fitness.

The results show that NIDA generates better networks on
the whole than DANNA, which generates better networks than
mrDANNA. Drawing conclusions about the models, however,
requires more care than simply comparing numbers, because
the recently-written mrDANNA simulator is much slower than
the more mature NIDA and DANNA simulators, and therefore
performed less optimization. We include this graph to demon-
strate that once an application like RoboNav is implemented
within the co-design framework, it may be used to perform
research on all of the models, and as we demonstrate in the
next subsection, on the learning methodology.

C. Learning Research: Output Redundancy

Like all heuristic search techniques, evolutionary optimiza-
tion (EO) suffers when the search space becomes too large.
One potential way to improve EO is to add diversity to the
population, to prevent the search from staying in local min-
ima [42], [27]. In this section, we present a brief technique that
we call Output Redundancy, to add diversity to populations.

We explain the technique with reference to one of our
benchmark applications: XOR. In this application, we present
a series of w-bit XOR problems to the neuromorphic device.
We show an example, where w = 1, in Figure 6(a). For each
problem, two bits, A and B, are pulsed into the neuromorphic
device. There are separate input neurons for 0 and 1, which
we label AO/A1/BO/B1. The device then runs for a set interval
of time. During that interval, we count output pulses on two
neurons, one for an output of 0 and one for an output of 1.
Whichever pulses more is the answer (ties go to zero). We
repeat the process for subsequent problems. When we train
networks using EO, we affix a seed and generate 200 random
XOR problems. The fitness of a network is the percentage (or
factor) of correct answers.

XS
AQ = A0 —] e XT
Al == Device/ |» 0 Al —| Device/ |» YS
B0 —=| Network [1 B0 —»| Network [YT
ZT

(a) (b)

Fig. 6. Structuring a one-bit XOR application without Output Redundancy
(a), and with Output Redundancy (b).

With Output Redundancy, we choose a number, R >= w
of outputs. In Figure 6(b), that number is three, and there are
three pairs of output neurons, which we label XS/XT, YS/YT
and ZS/ZY. This gives us a great deal of flexibility in how we
interpret output. We may select any of the pairs X, Y or Z,
and then we can assign O to either S or 7', and 1 to the other.
That yields 6 different ways to interpret output. When w > 1,
there are R!/(R — w)! ways to assign the output pairs to bits,
and 2" ways to assign each output in each pair to a value.
Therefore, the number of ways to interpret output is:

When we perform EO to train networks using Output Re-
dundancy, we can evaluate each of the N ways of interpreting
output with one execution of the neural network. The reason
is that the interpretation of the output in XOR does not affect
the input. This is not true for all applications. The control
applications (like RoboNav), for example, have the output
affect the state of the system, and therefore affect the input.
The classification and security applications are like XOR, and
the output does not affect the input.

At the end of an execution during EO, there are then NV
fitnesses from which to choose. We choose the best of these,
and report it as the overall fitness of a network. This adds
diversity. To give an example from Figure 6(b), the EO may
select a network whose (0/1) outputs are XS/XT, and a network
whose outputs are ZT/ZS, to reproduce. In Figure 6(a), all
networks have the same outputs.

Herein, we present a brief experiment with Output Redun-
dancy, one and two-bit XOR, and all three of our neuromor-
phic architectures. For each value of w, we performed over 100
EO runs without Output Redundancy, and then with Output
Redundancy for R = {w, w+1, w+2, w+3}. For each run, we
stopped either when the fitness was one, meaning the network
solved the problem, or we had run for 100 epochs. Each epoch
ran fitness calculations on a population of 1000 networks,
after which a round of genetic mutations and reproductions
generated the next epoch. We present the results in Figures 7
and 8.

NIDA DANNA mrDANNA
100
80
(2]
£ 60
S 40
i
20
0 ++ + -+ T T

I T T T 1
1C1 2 3 4 1C1 2 3 4 1C1 2 3 4
R (# Output Pairs) R R

Fig. 7. Output Redundancy experiment for one-bit XOR.

Figure 7 shows the number of epochs for each run,
when w = 1. We label the run without Output Redundancy
“1-C” to signify that there is one pair of outputs, and this is

the control. For each architecture and value of R, we show
a Tukey plot of all of the runs. The tukey plot has a line
from minimum to maximum, a box from first quartile to third
quartile, a circle for the mean and two hash marks for the
median. When a run reaches 100 epochs, that signifies that no
network with a fitness of one was found.

For this application, NIDA evolves quickly and effectively,
and the performance of EO also improves for R € {1,2}.
The larger values of R find networks faster on average than
when there is no Output Redundancy. However, they don’t
find them faster than when R € {1,2}. MrDANNA also
improves slightly when R € {1,2}, but then it performs
worse for higher values of R. DANNA, on the other hand,
does not exhibit any improvement from Output Redundancy.
It also takes the longest to find networks, failing in over 25%
of the runs in all cases. We surmise that this is a result of
DANNA’s constrained connectivity. Although mrDANNA is
also constrained to nearest neighbor connectivity, each element
in mrDANNA is richer, being composed of a neuron and
multiple synapses, rather than being constrained to a single
neuron or synapse as in DANNA.

NIDA DANNA mrDANNA

I

L L L L
22C2 3 4 5 3 -

T e

0.4
0.2 1
0.0-

100 —
80
60
40 -
20

04

Epochs

Fitness

T T 11 1
22C2 3 4 5

R (# Output Pairs) R R

Fig. 8. Output Redundancy experiment for two-bit XOR.

In Figure 8, we present the results for w = 2. The control
is now labeled “2-C.” In this figure, in addition to showing
the number of epochs, we show the fitnesses achieved. The
reason is that when a majority of runs reach 100 epochs, the
final fitness values measure of how well the EO performs.
When w = 2, Output Redundancy shows marked effectiveness
in NIDA. Without Output Redundancy, the majority of runs
reach 100 epochs; when R = 5, nearly all of the runs achieve
a fitness of 1, with more than half of the runs finding a
network in under 40 epochs. DANNA and mrDANNA also
show some effectiveness with Output Redundancy. This can
be seen in DANNA by the increasing average fitness values,
and in mrDANNA by the fact that maximum fitness networks
are found with fewer epochs as R increases. Once again, for

this problem, NIDA evolves the best, followed by mrDANNA
and DANNA.

Because this is a brief experiment, we do not draw wide
conclusions from it. Output Redundancy is clearly an effective
technique in some instances, but further study is warranted.
Moreover, the difficulty of DANNA to find fully fit networks
suggests that we should explore modifications to DANNA
(perhaps trading programmable synapse length for greater
connectivity), or strive to improve its reproduction operations.
The important feature of this case study is that the unified
environment allows us to explore a learning technique, and
how it applies to multiple neuromrophic architectures, which
are implemented on a variety of hardware devices.

V. FUTURE WORK AND CONCLUSION

In this work, we describe a hardware/software framework
for the co-design of neuromorphic computing devices, learn-
ing/training algorithms, and applications. We present case
studies on each of three factors to demonstrate how this
framework enables development on all three components and
that the development completed on any one of the three com-
ponents enables further research in the other two components.
We describe how this framework enables research on a par-
ticular device implementation based on memristive synapses,
on the development of an application for autonomous robot
navigation, and on the development of an enhancement to the
genetic algorithm based on Output Redundancy.

This framework will continue to enable exploration in
each of these three facets of neuromorphic computing co-
design. We are already actively pursuing the development
of new neuromorphic device implementations, including an
implementation utilizing biomimetic membranes. We intend
also to contribute to research on existing neuromorphic im-
plementations by developing the appropriate interfaces to
our software core. For application research, we are actively
developing applications in a variety of domains, including
scientific data classification, anomaly detection in network
traffic, and other autonomous vehicle navigation tasks (includ-
ing helicopters and drones). Through the inclusion of multi-
ple neuromorphic implementations with significantly varying
characteristics, and a wide variety of application types, we
can systematically explore learning and training methods for
neuromorphic systems. We intend to implement and test a
variety of unsupervised learning mechanisms based on spike-
timing dependent plasticity (STDP), and we intend to explore
other optimization methods beyond genetic algorithms and
evolutionary optimization.

As described in previous sections, we are actively de-
veloping and deploying real neuromorphic devices, in both
our FPGA implementation of DANNA and our test chips
for both DANNA and mrDANNA. The learning and training
paradigms in our framework provide us with networks for each
of these devices that can solve real problems, such as the
robotic navigation task described above. We are encouraged
by the results enabled from this software/hardware co-design
framework, and we intend to continue to utilize this framework

to demonstrate how neuromorphic systems can and will be
successfully deployed.

ACKNOWLEDGMENT

This research was supported in part by an Air Force
Research Laboraty Information Directorate grant (FA8750-16-
1-0065). It is also supported in part by the National Science
Foundation grant 1631472. This research used resources of
the Oak Ridge Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract
DE-AC05-000R22725. The allocation on OLCF’s Titan was
made possible through a Department of Energy Office of
Science’s ASCR Leadership Computing Challenge (ALCC)
award. Research sponsored in part by the Laboratory Directed
Research and Development Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the U. S.
Department of Energy.

REFERENCES

[1] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the SpiNNaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454-2467, 2013.

[2] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. Kusnitz, S. K. Esser,
A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza et al.,
“Cognitive computing programming paradigm: a corelet language for
composing networks of neurosynaptic cores,” in International Joint
Conference on Neural Networks (IJCNN). 1EEE, 2013, pp. 1-10.

[3] D. Briiderle, M. A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil,
S. Millner, A. Griibl, K. Wendt, E. Miiller, M.-O. Schwartz et al.,
“A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems,” Biological cyber-
netics, vol. 104, no. 4-5, pp. 263-296, 2011.

[4] E. Dauler, D. Rosenberg, J. Sage, J. Chiaverini, and W. Oliver, “3D
integration of trapped ion and superconducting qubit technologies,” in
42nd Annual GOMACTech Conference, Reno, NV, March 2017.

[5] E.D. Dahl, “An introduction to quantum computing using map coloring,”
in 42nd Annual GOMACTech Conference, Reno, NV, March 2017.

[6] J. Hawkins and S. Ahmad, “Why neurons have thousands of synapses, a
theory of sequence memory in neocortex,” Frontiers in Neural Circuits,
vol. 10, pp. 1-13, 2016.

[7]1 T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri,
and B. Linares-Barranco, “STDP and STDP variations with memristors
for spiking neuromorphic learning systems,” Frontiers in neuroscience,
vol. 7, p. 2, 2013.

[8] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54-66, 2015.

[9] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,

A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch

et al., “Convolutional networks for fast, energy-efficient neuromorphic

computing,” Proceedings of the National Academy of Sciences, p.

201604850, 2016.

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,

G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and

neural networks in hardware,” arXiv:1705.06963, May 2017. [Online].

Available: https://arxiv.org/abs/1705.06963

A. P. Davison, D. Briiderle, J. Eppler, J. Kremkow, E. Muller,

D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface for

neuronal network simulators,” Frontiers in neuroinformatics, vol. 2,

2008.

S. H. Jo, T. Chang, 1. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,

“Nanoscale memristor device as synapse in neuromorphic systems,”

Nano letters, vol. 10, no. 4, pp. 1297-1301, 2010.

K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,

N. Srinivasa, and W. Lu, “A functional hybrid memristor crossbar-

array/CMOS system for data storage and neuromorphic applications,”

Nano letters, vol. 12, no. 1, pp. 389-395, 2011.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

[32]

[33]

M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuromor-
phic network based on metal-oxide memristors,” Nature, vol. 521, no.
7550, pp. 61-64, 2015.

G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neuro-
morphic computing architectures,” Nanotechnology, vol. 24, no. 38, p.
384010, 2013.

E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, and S. Spiga,
“HfO2-based memristors for neuromorphic applications,” in Circuits and
Systems (ISCAS), 2016 IEEE International Symposium on. 1EEE, 2016,
pp. 393-396.

M. Hu, Y. Wang, Q. Qiu, Y. Chen, and H. Li, “The stochastic modeling
of TiO2 memristor and its usage in neuromorphic system design,” in
Design Automation Conference (ASP-DAC), 2014 19th Asia and South
Pacific. 1EEE, 2014, pp. 831-836.

T. Chang, P. Sheridan, and W. Lu, “Modeling and implementation of
oxide memristors for neuromorphic applications,” in 2012 13th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications,
2012.

Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, and X. Miao, “Ultrafast
synaptic events in a chalcogenide memristor,” Scientific reports, vol. 3,
2013.

V. Erokhin, “Organic memristive devices: Architecture, properties and
applications in neuromorphic networks,” in Electronics, Circuits, and
Systems (ICECS), 2013 IEEE 20th International Conference on. IEEE,
2013, pp. 305-308.

J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy,
S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin et al.,
“Building block of a programmable neuromorphic substrate: A digital
neurosynaptic core,” in Neural Networks (IJCNN), The 2012 Interna-
tional Joint Conference on. 1EEE, 2012, pp. 1-8.

H. Ames, M. Versace, A. Gorchetchnikov, B. Chandler, G. Livitz,
J. Léveillé, E. Mingolla, D. Carter, H. Abdalla, and G. Snider, “Persuad-
ing computers to act more like brains,” in Advances in Neuromorphic
Memristor Science and Applications. Springer, 2012, pp. 37-61.

M. Azhar and K. R. Dimond, “Design of an FPGA based adaptive neural
controller for intelligent robot navigation,” in Digital System Design,
2002. Proceedings. Euromicro Symposium on. 1EEE, 2002, pp. 283—
290.

S. Pande, F. Morgan, S. Cawley, T. Bruintjes, G. Smit, B. McGinley,
S. Carrillo, J. Harkin, and L. McDaid, “Modular neural tile architec-
ture for compact embedded hardware spiking neural network,” Neural
processing letters, vol. 38, no. 2, pp. 131-153, 2013.

C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in Neural Networks (IJCNN), 2016 International Joint
Conference on. 1EEE, 2016, pp. 145-154.

X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423-1447, 1999.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99-127, 2002.

D. B. D’Ambrosio, J. Gauci, and K. O. Stanley, “HyperNEAT: The
first five years,” in Growing adaptive machines. Springer, 2014, pp.
159-185.

D. Floreano, P. Diirr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47-62,
2008.

P. Rocke, B. McGinley, F. Morgan, and J. Maher, “Reconfigurable
hardware evolution platform for a spiking neural network robotics
controller,” in International Workshop on Applied Reconfigurable Com-
puting. Springer, 2007, pp. 373-378.

A. Zuppicich and S. Soltic, “FPGA implementation of an evolving
spiking neural network,” Advances in Neuro-Information Processing, pp.
1129-1136, 2009.

J. Schemmel, K. Meier, and F. Schiirmann, “A VLSI implementation of
an analog neural network suited for genetic algorithms,” in International
Conference on Evolvable Systems. Springer, 2001, pp. 50-61.

G. Howard, E. Gale, L. Bull, B. de Lacy Costello, and A. Adamatzky,
“Towards evolving spiking networks with memristive synapses,” in
Artificial Life (ALIFE), 2011 IEEE Symposium on. 1EEE, 2011, pp.
14-21.

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

C. D. Schuman, “The effect of biologically-inspired mechanisms in
spiking neural networks for neuromorphic implementation,” in IJCNN:
The International Joint Conference on Neural Networks, Anchorage,
May 2017.

M. E. Dean, J. Chan, C. Daffron, A. Disney, J. Reynolds, G. S.
Rose, J. S. Plank, J. Birdwell, and C. D. Schuman, “An application
development platform for neuromorphic computing,” in International
Joint Conference on Neural Networks, Vancouver, July 2016.

Y. Shen, P. O. Saboe, I. T. Sines, M. Erbakan, and M. Kumar,
“Biomimetic membranes: A review,” Journal of Membrane Science, vol.
454, pp. 359-381, March 2014.

C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in International Joint Conference on Neural Networks,
Vancouver, July 2016.

M. M. Adnan, S. Sayyaparaju, B. W. Ku, C. D. Schuman, S. K. Lim,
R. C. Pooser, and G. S. Rose, “A digital pulse width modulation
technique for spike-timing-dependent on-chip learning in memristive
neuromorphic systems,” Submitted for publication, 2017.

K. Beckmann, J. Holt, H. Manem, J. Van Nostrand, and N. C. Cady.,
“Nanoscale hafnium oxide RRAM devices exhibit pulse dependent
behavior and multi-level resistance capability,” MRS Advances, vol. 1,
no. 49, pp. 3355-3360, 2016.

G. Chakma, S. Sayyaparaju, R. Weiss, and G. S. R. and, “A mixed-
signal approach to memristive neuromorphic system design,” in Midwest
Symposium on Circuits and Systems (MWSCAS), Boston, MA, August
2017.

C. D. Schuman, A. Disney, S. P. Singh, G. Bruer, J. P. Mitchell,
A. Klibisz, and J. S. Plank, “Parallel evolutionary optimization for neuro-
morphic network training,” in Machine Learning in HPC Environments,
Supercomputing 2016, Salt Lake City, November 2016.

D. F. P. Durr and C. Mattiussi, “Neuroevolution: from architectures to
learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47-62, 2008.

