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Outline Y

= Motivation & challenge

= Proposed algorithm for multiscale UQ

= Summary of engineering-scale UQ

= Mesostructural length scale focused on the effects of
crystallographic orientation
= Yield surfaces
= Void nucleation

= Future work: bridging length scales
= (time permitting) Our Multiscale DIC developments
= Summary
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Why do multiscale? Because structural reliability is dependent on i) aora

Laboratories

random microstructure (among other sources of randomness) ey

Engineering length '
scale (meters) Row of bolt holes

on lower wing skin

Structural feature (mm) - stress
concentration or “hot-spot”

Mag = 5.00 K X
5 mm

WD =

brittle particle

Microstructural length scale (um)

randomly distributed brittle particles embedded in randomly oriented, anisotropic matrix
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. . . L. Sandia
One multiscale calculation is necessary but not sufficient i) e

Engineering scale P P
Multiscale calculation Microstucture scale

(millions of DOFs)
(XXLarge) (>10s millions of DOFs)
One multiscale calculation gives you this: But you set out to compute this:
1. 1. e

Capturing the tail of the
cumulative failure

P.(L)= EP(L la,)P(a,)
requires many MC samples.

One point for co#ﬂ?tional
0.8 probability of failure P, (Lla,), |
conditioned on choice of

0.8}

>
OUR z
|\CHALLENGE

" multiscale subdomain.
4 | ==

The only general way to fill this
0.2} space is with Monte Carlo (MC) |

0.6f

Our LDRD aims to make this
2! computationally tractable.

Conditional Probability

simulation. -/ —— 99.5% confidence
0.0——>800 3000 3200 3400 3600 3800 4000 02%00@ﬁ 000~ 3200 3400 3600 3800 4000
Failure Load (N) Failure Load (N)

High level goal: tractably propagate fine-scale uncertainty through multiscale calculations
Why does Sandia care? Fracture is local and random, e.g., microstructure, and
system/component reliability depends on phenomena occurring a various length scales.

-~ ...
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Schematic of our novel hierarchical approach "‘/%
LDR

Low-fidelity Probability of Failure

MCS of engineering-scale

uncertain data response via SROM-surrogate o ,
200 & 200 E 0.6
1OOE J ~ ~ ¥ Z 2000 s
05115 2 25 M(w; ©)] T (u) + Vit (u) - (© — 67) g ém
Low % _atilin, | ‘ I A
0200 400 600 800 ‘ ‘ "»Dil(p]:t-"mvm'(';‘m'. ., 038 L0 2300 s[l'ygak(;ﬁ[o";d?I#))(,'H,'j??“ 3800 4000
| : Hot-spot selection & prioritization

fidelity “~—

*SROM m
f2(;©) = > 1O € Iy) [7a(u) + Vire(w) - (© - 67)]

prior distribution

For hotspot i, iterate.
Repeat for all hotspots.

P.(L)= OtSEMP(L la,)P(a,)

1

= | - \J

P

Higher”

prior di posterior distribution of Higher
conditi ideli

conditiona! failure fidelit

P' (Lla)
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Schematic of our novel hierarchical approach

uncertain data

200
100

05115 2 25

200
100

Low

0.1

MCS of engineering-scale
response via SROM-surrogate

H(U‘ ®)| ﬁ'k(’u) + Vfrk(u) . (@ — 0;;)

0200 400 600 800
fidel e —
0
idelity s
0 X 2 02

*SRO

prior distribution

HigherP

P' (Lla)
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Comments:
1. Independent of the multiscale num

method, e.g., use outcome from Foulk et al.
2. Could be applied to other multiscale physics.
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National

m Laboratories

Low-fidelity Probability of Failure

Surrogate

1000, -
3500 FE —
3000/
= 2500
2000
1500
0

Force (N),

1 1.0,

Cumulative Probability
2 &

)

0.2 1
Dis p] ement (mm

2800 00 3800
P kL d(N) H

Hot—spot selectlon & pr/or/t/zatlon

erical .

hotspots

,‘g‘r P <mmm = .
‘74' 'gﬁ’;'g;:ﬁu“ posterior
gﬂ"‘%" conditi

P(L)= Y P(Lla)P(a)
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Example objectives & uncertainties considered o

Example: low fidelity prediction of the probability of crack nucleation in an
aluminum 6061-T6, engineering “component”

uncertain data

200

Low Engineering scale constitutive model " il |
. . e plasticity parameters 20
fldehty e damage parameters -

|

1 2 3

i S

01 02 03

Example: build a probability model for crystal orientation and explore the effect of
texture on the yield surface and void nucleation

Higher Meso-scale plastic response
. . e texture = crystallographic orientation
fidelity

10/4/16 7



" 1 ﬁaa{'igﬁal
Engineering-scale model ) .

= We use Hill anisotropic plasticity w/ damage and localization elements for numerical
regularization on 3-planes (see figure). We use SROMs for uncertainty.

= Calibrate plasticity to tension data; calibrate damage to various notched-tension data.

damage:
_ m+1 _
b= \/2 ,,1 (1 D" h [2(2m D p ]

FE model (strain contour plot)

— o) 2m+1 o localization
_ N planes
=i H 7|
450 : : ‘ :
400! isotropic yield o
T 350/ o —
= Hill anisotropic yiel o
(7)) 300’ - —— GN-T5
¢ l S
b 250’ H —— GN-T8
7 experiment % o
g 200} i o "
0%) : ; AA6061 T6
_GE) 150r — Ghahremaninezhad et al. Fig 23 (experiment) | %0 NOtChed TenSIOn -
8’ 100} — Ghahremaninezhad et al. Fig 23 (isotropic) variable strain-to-
L — Ghahremaninezhad et al. Fig 23 (anisotropic) .
50 — Adagio (iso) nucleation (J CarroII)
— Adagio (Hill) swar
$00 001 002 003 004 005 006 | | -
Nominal engineering strain e eantr
Notched Tensile Data — AA6061 o irontsnis MM
(Ghahremaninezhad and Ravi-Chandar IJF 2012) Swain )
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Probability of nucleation for Low-fidelity m:\n
predictions .oy

* We construct a surrogate model for damage.
 Then, from damage, we can construct a CDF for failure load at some critical

value of damage, e.g., @2 .= 10%.
1.0

| Pr (P2 < @2,¢)

2500

2000

m ’
-}
oo

Cumulative probability

1500

g
(@)
T

Force (N)

1000

00 — surrogate
— FE )
2 0.8

?).() 0.2 0.4 0.6 1.0
¢2 ,C

_CD
W~
T

Damage on plane 2

0.2
— FE
—— surrogate
0.0 : . .
1 b9 b3 0 500 1000 1500 2000 2500 3000

Force (N) at critical damage, o= 0.1
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Higher fidelity — focused on texture "‘A@}

Build a probability model for crystal orientation and explore the effect of texture on
the yield surface and embedded second-phase particles

update For hotspot 1, iterate. [,
Repeat for all hotspots. P(L)= h‘"imp(L la)P(a)
HigherP " PF[ :
Things we need: fidelit L = L
prior disttibution of 1 ribution of Higher
. conditional failure conditiona! failure fidelit
= Data to support fine scale PLla) PrL1a)  prediction

uncertainty — we focus on crystallography and use EBSD measurements of
crystallographic orientation

=  Computational microstructure: morphology; mesh; & texture models

EHT=2000kV WD =182mm Sgnad A = SE2 Wigtt

AA 6061-T6 — EBSD measurements/images at a notch tip
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AA6061-T6 EBSD on three planes shows pancake- ) i,

shaped grains with mild texture
N
6\0 ‘ "', P, .;' ' 3 ) ' i g €« :
Q"\\‘\’ X R R USH ond BN A
Plan K9 AV o .
y ST 0 5
Transverse T 4 LN o
' SN ¥ R
From Ghahremaninezhad & Ravi-Chandar, and
. ) L N .
confirmed for our material, mean grain size of the =
rolled 6061 microstructure: g
y-Z mean 15 um 111 T i
X-z mean 14 um R |k ki

X-y mean 39 um

001
011

6 L¥3GZPY Wil 7§/ 7
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“EulerRF” Code .

= Code to generate samples of Euler angle random field FE Mesh  Exp data
model for FE meshes, implemented in MATLAB \/
= |nput: TEXT N
= Finite element mesh (grain centroids) SPCORR e
= Texture data (EBSD data — AA6061 below)
= User options Samples for FE
analysis

= Qutput: samples of no texture, macro- and micro-texture

—1)

—
08+ —ly
Spatial
correlations

06+

04

Transverse

Ghahremaninezhad et al.,
mean grain size:
y-z mean 15 um
X-z mean 14 um
X-y mean 39 um 1

02+
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3D Samples for AA 6061 T6 rolled sheet "lg?;b'

= 2 samples each macro-texture (left) & micro-texture (right)

“Macro” texture “Micro” texture

244 grains : 244 grains
294,912 elements E 294,912 elements
no correlation N ¢=16 um (grains 39 x 39 x 14 um)
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Inverse pole figure (IPF) comparing EBSD to ) 5.
eulerRF samples

Px!pu pzlpu Py pu

111 3.0 111 3.0 111 3.0
25 25 25
max(px/pu) = 1.314 max(pz/pu) = 2.898 max(py/pu) = 1.334
measu red min(ox/py) = 0.81 ”o min(oz/py) = 0.763 oo min(py/pu) = 0.794 v
EBSD data

100 101 05 100 101 05 100 101 05
Px!pu pzlpu Py/pu
11 3.0 11 3.0 111 3.0
2.5 25 25

max(px/pu) = 1.363 max(pz/pu) = 2.888 max(py/pu) = 1.378

min(px/pu) = 0.839 min(pz/pu) = 0.778 min(py/pu) = 0.833
macrO' 2.0 2.0 2.0
textu re 1.5 1.5 1.5
1.0 1.0 1.0
100 101 05 100 101 05 100 101 0.5
Px! pu Pzl pu Pyl pu

2.5

max(ox/pu) = 1.433
min(ox/pu) = 0.825

max(pz/pu) = 2.974
min(pz/pu) = 0.769

max(py/pu) = 1.427

min(oy/pu) = 0.759
v 2.0

micro-
texture

10/4/16
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Crystal plasticity formulation

. no texture micro texture Mmacro texture
= Here we use a simple crystal

plasticity formulation following 50 110.6 114.0 115.2
Matous and Maniatty 2004 : &0 169.4 172.8 174.7
. Gy 116.6 116.6 116.6
L’ = 7P m 0.01 0.01 0.01
a=1 350
PY = m® ®n“ 300} B :
- /
o (1/m S 250} :
¥ =7y|—| sign(t?) ‘%’
5 £ 200f
. gs0 — &\ . 2 0l
g = G (—30 ) A £ 150
8so — 80 2 — Average measured data
2R — micro texture
12 =
3 = Z 5] s0f | — macro texture
a=1 — no texture

000002 0.04 006 008 010 012 014 016 0.18
Engineering strain

10/4/16 15




National

Sandia
Yield surfaces recovered from simulations w/ various textures i) e

400+ — von Mises | | | | 1 400+ ; von Mises |
® notexl ® @ macrotex1
+ no tex 2 ] + macro tex 2
B notex 3 H E macro tex 3
200} 200}
5 5
s 0 S 0
S S
—200} —200}
_a00} no texture | I macro texture |
—100 200 0 200 100 ~100 200 0 200 100
o1 (MPa) o, (MPa)
e Using a simple crystal plasticity 400y = von Mises.
constitutive model for each texture + % micro tex 2
® ® micro tex 3

Plotting yield surface at 0.2% and 2.0% 200}
offset assuming small strains

* We observe greater heterogeneity in g 0
micro texture (“super grain” — need a ¢
larger RVE?) ool
* There are subtle differences from the von
Mises yield surface for all forms of texture, | | micro texture .
may be amplified at higher strains —i00 00 i 500 00

o1 (MPa)
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Void nucleation at brittle second phase ey

= Embed an ellipsoidal particle, 5 um
X 1.8 um

=  Coherent mesh at particle/matrix
interface, grains by overlay method

1

3.499e+02
E262.45
51 23 —2174.97

E87.484
0.000e+00

= 2 morphologies w/ ~27 grains, s123
& s184

= 200 samples of macro-texture &
55 samples of micro-texture

= Assumed elastic mechanical
properties for particle (pure iron)

= E=211GPa, v=0.29
= Strength 540 MPa

= Assumed perfect and rigid
particle/matrix interface bond .

1

3.499e+02
E262.45

S 1 8 4 £174.97
E87.484
0.000e+00

Cross-sections through major-axis of ellipsoid

10/4/16 17



Quantify particle fracture with mean, first- 'l‘ji'
principal stress AHORE

Assuming elastic and brittle, Maximum principal stress contour plot for s123
monitor the mean first- (showing two, orthogonal cross-sections)

principal stress in the particle.
Pr(égyvg € 9)
N
5
S ={érve € R:g(érvE) <0}

g(ERVE) — 5p,cr — 5p(€RVE)

max_principal stress 1

1.506e+03
E1022.8

Op,cr = 940 MPa

25396

E56.363
-4.269e+02
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Mean max principal stress in particle &

Macro-texture

1200 160
140}
1000}
> 120 F
[=]
5] s00F %1%—
=] &
< 600} 9 80}
E N
: 2 ol
400} £ 60
100 samples s123 S ol
200 100 samples s184 2l
§00 002 001 006 008 010 012 0.1 doo 0.02 001 006 0.08 0.10
€RVE €ERVE
1900 Mipro-texture | 140
1000} 120}
>
g 100}
2 800} s
S g sof
ey 540 MPa | 3
: S o)
3 g
<) 400 L
29 samples s123 5 wf
200 26 samples s184 | 20l
0 : : : : : ‘ ‘ 0 : : L
0.00 002 004 006 008 010 012 0.14 0.00 0.02 0.04 0.06 0.08 0.10
€ERVE €ERVE
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Bridging length scales e

ORI CFELTED FESELFOH & CEALOPVENT

= We are pursuing three strategies and will contrast them:
= Submodeling
= Concurrent coupling with a Schwarz-based algorithm (Foulk, Alleman, & Mota)
= Direct numerical simulation

Submodeling: Schwarz-based solution scheme:

= Mesh through region where submodel will -
exist

= Run engineering-scale model

=  Map displacements from engineering-scale
model onto boundaries of meso-scale model

Solve PDE by any method on ()4 using an
initial guess for Dirichlet BCs on I7;.

= Solve PDE by any method (can be different
than for 1) on (2, using Dirichlet BCs on I,
that are the values just obtained for ().

=  Solve PDE using Dirichlet BCs on ()4 that are
the values just obtained for (5.

= Mathematically proved to converge for solid
mechanics problems.

f Von Mises Stress

o
p Z 1409 36277 58468 80660 10285
7o “HHHH“HHHH“
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Multiscale DIC for experimental validation g
.LDRD
Aﬁ i - __
-« 3 . TR

3 S
Vo | o m | ~~

= Low magnification, (HR-DIC) strain field over entire specimen. |&
= High magnification, (HR-DIC) strain field near notches.

1. EBSD: microstructure

2. Capture reference images

3. Load specimen

4. Capture deformed images

5.DIC on each image location.

6. Stitch DIC results into large field of view
7.0verlay Microstructure

| Requires a multi-resolution speckle pattern |

10/4/16



DIC near each notch tip and throughout ) i,
entire specimen using HR-DIC

. i 0/ |
0% s
(a) Learning to correct or eliminate
lens distortion for low
1% magnification SEM images.
) Need to capture more images
throughout loading because the
0% material looks so different near
failure.
) Natural speckles lose contrast at

high load levels we are interested
in.

10/4/16




Sandia
m National

Summary )&

.BORD

Structural reliability is a function of random microstructure and
multiscale numerical methods are necessary for predictive simulation
but they are not sufficient. One multiscale simulation is insufficient to
predict reliability.

We summarized our hierarchical approach for tractable multiscale UQ.
We briefly summarized the engineering-scale calculations.

We demonstrated calculations for meso-scale void nucleation
prediction with various models for texture.

Macro-texture

100 samples s123 |
100 samples s184

(?.00 0.02 004 006 008 010 012 0.14

€RVE
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May | answer your questions?
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BRSO CRECTED FESELFON 5 CEALOPMENT

= [ntentionally blank

-~ ...
10/4/16




Sandia
fh National

Laboratories

Details needed for low fidelity simulation

Example: low fidelity prediction of the probability of crack nucleation in an
aluminum 6061-T6, engineering “component”

of Failure

. . Low-fidelity Probabili
MLCS of engineering-scale :

uncertain data response via SROM-surrogate . r 2
200 =
‘Ugm Fx(u) + Vi (u) - (© = 607) S
05115 2 25 3

)|
. LOW %8§m | ‘ ’ o g
Th I n gS We n e e d : Ke“t!! mg - - -Hotspot selection & prioritization
r(e)A%
1. Engineering-scale model B _

prior distribution

2. Method for uncertainty propagation — we use stochastic
reduced-order models (SROM)

3. Engineering-scale failure metric (quantity of interest) for hot-
spot selection

predict nucleation for AA6061-T6
“component” in monotonic loading

10/4/16



Localization elements to regularize "',.\

Capture localization processes with mesh convergence. Localization elements
construct a deformation gradient (use existing constitutive models).

F=Flpt
Fl=g,0G FL=I+[[?—]]®N ,
F:F”+[[lﬂ®N 3 ;l

I = band thickness (user specified) ~ 'opologically the same as
“cohesive” surface element

fine

(7
A2

ZX2
é..

%
000:'

SERORALALAL
SE2RKLAL
SR
0%

%5

55

A
050.%
520202

ety ttingy
sty
Z
damage |1 damage 1
1.0e-001 04 1.0e-001
7.4¢-002 A

4.9¢-002
2.4¢-002

2 2.4¢-002 4 s » 2.4¢-002
Time = 0.670 0.0e+000 Time = 0.666 0.0e+000 [1me = 0.671 0.0e+000

damage 1
1.0e-001
7.4¢-002 7.4¢-002

y L 4.9¢-002 - 4.9¢-002

10/4/16 Yang, Mota and Ortiz (IINME, 2005), Armero and Garikipati (1JSS, 1996)



Stochastic reduced-order model (SROM) m,.h

To develop a model that optimally represents the uncertainty in the input we
choose a discrete random variable ®. The SROM is then defined by the
collection (Ok,ﬁk) k=1, .., nthat minimizes an objective function of the form:

max max ag.,|fis(r) — fis(r)| + max max SB|Fy(z) — Fy(z)|+ Cou m%x\é(s,t) — ¢(s, 1)

1<r<r1<s<d r 1<s<d ’ ,
— I A /
moments cumulative distribution correlation
Estimates of SROM statistics given Estimates of sample statistics
SROM sample size n given g samples of ®
n q
fis(r) =E[O7] = > pr (Or,s)" fis(r) = > (1/q)(0i)"
k=1 i=1
~ _ n ~ R q
Fy(x) =Pr(0, <z) =) prpl(fps <) Fy(x) =) (1/9)1(6;s < z)
k=1 =1
6(87t) — E[(:)s (:)t] — Zpk: ék,s ék,t Z 1/q ezsezt
k=1 i=1

withn<<gand a, B, (>0 are weights and subject to probabilities p, > 0and ), pr = 1.

10/4/16
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Construction of SROM-based surrogate &

Example 2D probability density * SROM points Response surface

Te(u) + Vg (u) - (© — 6)

0.2

0.15

(01,05)

0.1

o
o
a

1
= Aresponse surface is constructed for the structural response of the component, I'1(#;0)

= The surface is a series of hyper-planes described with a first-order Taylor approximate of
the structural response

I (u;©) = > " 1(O© € Ty)[Fr(u) + Viy(u) - (© — 6;)]
k=1
= The SROM samples are used as the expansion points 6, and the domain I'; are
determined by the Voronoi tessellation of the uncertain parameters

= Requires n*(d+1) FE calculations
Assumes the quantity of interest is differentiable.

10/4/16
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Calculations demonstrating progress toward the goal @)=,

(O~
= Plasticity parameters, y and A, calibrated to 10 LoRoD,
smooth tensile tests for AA 6061-T6 sheet. o
_ 2000}
= Damage exponent, m, calibrated to 20 notched ” _/il(e ) T~
tensile specimens w/ two notch radii for a range P P = 1.0
viali Z 1500} '
of triaxialilty % T20.8
¢ = §é 1-a- ¢ﬁ+1 sinh [2(@_ D_p } r_OU
277 (1 - ¢ W+1 o 9 1000¢
5 SECTION BELOW :
Oy Z@—i- K k(ep) :@[1 —exp (—rep)] <% — Hill
. " _ ) (refined)
= \We use available data and previous experience 200 Isotropic| |
and expert judgment to approximate model (refined)
parameter uncertainty. 0 ‘
PDF of Y «10® PDF of H PDF of M1 0.00 0.04

0.01 1.5 25

1
0.006 1.5

0.5
0.002 0.5

300 400 500 600 o 1000 2000 3000 3 4 5
y [MPa] h [MPa] m1 [-]

PDF of M2 PDF of M3

25 25 Y
l2 l2 H

m3 [-]

10/4/16

Nominal engineering strain (mm/mm)

triaxiality
9.195e-01
l 07

0.3

=0
I 0.4
-7.266e-01

30




SROM for Low-fidelity probability of failure ™ R

= Examples of 3 SROMs for the uncertain 3000
parameters.

= Force-displacement curves from Monte Carlo
simulation two ways: (blue) with the SROM-based

2000 f

Z ——
surrogate and (red) brute force finite-element 3 1500 i , ,
. Igt' (red) 5 2500 Monte Carlo simulations
simulation. 10001 comparing the 10-sample
= We are developing tools to identify & prioritize /' SROM-based surrogate to
hotspots based on surrogate results. Wi/ brute force FE — surrogate |
— FE
4.2 4.2 0 f " L N L N L
1500 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
4 irk 4 drli Normalized Displacement (mm/mm)
38|, e S8 A 3000
< 1000 - E 36 (T £ 36 ,. ‘
Monte Carlo 34 L >4 L 2500|
K, 3.2 3.2 (¥
samples - i :
300 y400 500 2000 |
SROM samples: z
42 . 4.2 g 1500
. n = 5 4l ..‘,..‘.. . : ." 4 é
e N=10 =5 ' 38 ool 20-sample SROM-based
n=20 = Bael” / surrogate
3.4 34} .
32 a2 % 001 — surrogate |
B % U584 o * e e — FE
500 1000 1500 500 1000 1500 3.2 3.6 4 0 / . . . . . .
h . h m1 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
MC samples (small dots) and optimal samples for SROM (large dots) Normalized Displacement (mm/mm)

10/4/16 31




Another (well ironed) example: A304L laser weld failure rh) b

! — 10 SROM at mean |
] — 20 SROM at mean
| — 40 SROM at mean

! — 80 SROM at mean

2300 3000 3200 3400 3600 3300 4000 2700 2800 2900 3000 3100 3200 3300

Peak Load (N), I1,,.. Peak Load (N), I1,,..
e

=
DO
—_
3
w

A little different problem... predict plastic 1000
H HH ——  Surrogate
instability, no damage 35000 — pp
oy =Y +r k=[H-RkK|é Y | initial yield stress 3000
H ® =| H | hardening (linear) T; 2500 :
K (Ep) — E [1 — €xXp (_Rep)] IR | recovery coefficient 2 2000 gt(zzl(:'lrf]ueraarll
uncertain parameters S 1500 E—
CPU seconds = 100l P
Brute force MCS 33,400,000 500
(5,000 FE calculations) .
10 SROM at mean 511,000 ~ 0.2 0.4 0.6 0.8 1.0
( 10 FE calculations) 65x faster Displacement (mm), u
1.0 , , , ,
— FEM 10—1
-- 10 SROM
Eo_g» -- 20 SROM E
= -- 40 SROM 3
= -- 80 SROM =
© 0.6f — 10 SROM at mean o 10-2 — FEM
A — 20 SROM at mean a¥ -- 10 SROM
e — 40 SROM at mean o -- 20 SROM
= 0.4f — 80 SROM at mean < o -- 40 SROM
-El 'B' -- 80 SROM
§ §
@) @)

S
o

10/4/16 Emery, Field, Foulk, Karlson, Grigoriu, JINME, 2015, 103:914-936



. oL rh) e
Random Field Model — Definition S

.BORD

= Let R(x) = (11(x), $(x), 12(x))", x € D, be a vector-
valued random field model for the 3 Euler angles

= Model form

1 (x) o1 (x) 0 0 Y7 (x)
R(x) = u(x) +a@) Y(x) = (1) | + [ 0 o 0 | [%E
13 (x) 0 0 o3(x) Y3 (x)

Yk(X) = hk(Gk(X)) = Fk_l 0 @(Gk(x)), k=1,2,3
E|Gr(u) Gi(v)] = pri(u, v)

" 1, and g, are the mean and standard deviations of R,
= F.isrelated to the marginal CDF of R,

" G=(G,, G,, G;) is avector-valued Gaussian random field with zero
mean, unit variance, and correlation functions { p, }

33
10/4/16
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Random Field Model — Calibration &

1. Estimate mean and standard deviation functions, gand a

Define spatial correlation functions
= Can map correlation of G to correlation of R
= Functional form: exponential or linear decay

= Homogeneous, isotropic
= Parameter estimates using least-squares, or user-specified

3. Select marginal distribution functions

= Choose a functional form
= Consistent with physics
= Beta distribution is a good choice
= Parameter estimates using Method of Maximum Likelihood

= Empirically-based

= Requires a medium sized data set

34
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Capturing spatial correlation B

= A measure of the (average) linear
dependence between two points in the field
= Auto correlation function of y;
Eft)1(u) ¢1(v)]
= Cross correlation between y; and ¢
El1(u) o(v)]
= Special cases
= Statistically homogeneous
Depends on (u — v)

= Statistically isotropic
Depends on |ju — v||

200 300 400 500 600
micro” texture x1

Ill

= Provides one way to mode
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Experimental Data

14(x,,X,) [deg]

Angle 1: ¢ .7

Xy

200 300 400 500 600 700 800 900
X;, pm

$(x,x,) [deg]

200 300 400 500 600 700 800 900
Xy, pm

WX, x,) [deg]

Angle 3: 19 :

200 300 400 500 600 700 800 900
Xy [um]
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Spatial correlations
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2D example from EulerRF

One sample of ¢1(x1,x2) [deg]
350

Zero texture, zero spatial
correlation

300
250
200
150
100
50

160
140
120
100
80
60
40
20

With macro-texture based on
data file, zero spatial
correlation

With micro-texture, i.e,

. . . . 160
including spatial correlation 0
120
100
80
60
40
20

= Texture based on data file _

= |sotropic (exponential)
spatial correlation with
correlation length = 200 um
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Margsinal histograrh ’of'y/1
x10"
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Marginal histogram of y;
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Comparing histograms — o

data vs. texture samples

measured EBSD data model data
0 50 100 150 200 250 300 350
euler 1

~NWAUIONI0O
OOOOCOOOOOO

euler 2 euler 2

RPRNNWWS
ouiouIoUIoUIO

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
euler 3 euler 3

= Histograms drawn for the individual Euler angles

-~ ...
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Multiscale DIC overlays low and high resolution h) i,

=  Low magnification, HR-DIC gives
good mesoscale resolution over
large regions (centimeters).

= High magnification, HR-DIC gives
sub-grain level resolution over
hundreds of microns. —

Carroll et al., Rev. Sci Inst., v. 81 (2010)
Carroll et al., Int J. Fracture, v. 180 (2012)
Carroll et al., Int. J. Fatigue, (2013)
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Consider variability in material properties through
uniaxial tension tests and 2-notch specimens

Notch Geometry Variability

Gradual RD

GN-R1
GN-R2
GN-R3
GN-R4
GN-RS
GN-RE
GN-R7
GN-R3
GN-R3

100
380
360
340
320
300
—. 280
© 260
Q- 230
= 220
& 200
@ 180
L 160
& 140
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LNt

SNR1

SN-R3

SNR4

SN-RS5

SN-R6

SNR7

SN-R8

SN-R9

SN-R10

Modulus 68.9 GPa

............... Yield 0.20%
Strain (%)
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Fracture of first specimen initiated at a center rh) i
notch with significant plasticity in all notches.

= Unstable crack growth occurred after this substantial crack was observed.
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Multiscale digital image correlation &=

Currently pursuing 3 avenues for multiscale speckling:
= Bi-color pattern with conductive paint for coarse and Cu powder
for fine.
= Microstamping a fractal speckle pattern through external
company.
= |nherent precipitates and inclusions will probably work, but only
for small-scale plasticity (~1% strain).

Inclusions |
(Lowmag) =

b ' i Precipitates
- BB |nclusions .

Resolution down to ~150 um Resolution down to ~4 um
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m Il%:aé:ﬁ%tl)ries
Various instantiations of a multiscale 5.

speckle pattern by sputtering gold

Specimen 1 Specimen 1
Specimen 3 Specimen 5 Specimen 7 Specimen 9
A o 3""3:“{‘“%,%}@*;;"
AT N ,‘; "ﬁb&mu &a‘
s, zt,.*"-«},. 4 53.3;3;. !
o e R
Specumen 2 Specumen 2 Speclmen 4 Speclmen 6 Specnmen 8 Spectmen 10

60 min 90 min
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Multiscale imaging =Y

Low Resolution Single
Low Resolution Montage hd _ J

High Resolution Sinl Image

High Resolution Montage
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