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Outline
§ Motivation	&	challenge
§ Proposed	algorithm	for	multiscale UQ
§ Summary	of	engineering-scale	UQ
§ Mesostructural length	scale	focused	on	the	effects	of	

crystallographic	orientation
§ Yield	surfaces
§ Void	nucleation

§ Future	work:	bridging	length	scales
§ (time	permitting)	Our	Multiscale	DIC	developments
§ Summary	
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Why	do	multiscale?	Because	structural	reliability	is	dependent	on	
randommicrostructure	(among	other	sources	of	randomness)

Engineering	length	
scale	(meters)

3

randomly	distributed	brittle	particles	embedded	in	randomly	oriented,	anisotropic	matrix

Microstructural	length	scale	(µm)

Row	of	bolt	holes	
on	lower	wing	skin

100	µm

Structural	feature	(mm)	– stress	
concentration	or	“hot-spot”

EBSD	data	shows	
randomly	oriented	
grains

brittle	particle
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Onemultiscale	calculation	is	necessary	but	not	sufficient

But	you	set	out	to	compute	this:Onemultiscale	calculation	gives	you	this:

High	level	goal:	tractably	propagate	fine-scale	uncertainty	through	multiscale calculations
Why	does	Sandia	care?	Fracture	is	local	and	random,	e.g.,	microstructure,	and	
system/component	reliability	depends	on	phenomena	occurring	a	various	length	scales.	

One	point	for	conditional
probability	of	failure																		,	
conditioned	on	choice	of	
multiscale	subdomain.	

The	only	general	way	to	fill	this	
space	is	with	Monte	Carlo	(MC)	
simulation.		

x

Pµ (L | ai )
Capturing	the	tail	of	the	
cumulative failure

requires	many	MC	samples.

Our	LDRD	aims	to	make	this	
computationally	tractable.

99.5%	confidence

PF (L) = P(L | ai )P(ai )∑

Multiscale calculation
(XXLarge)

Microstucture scale
(≥10s	millions of	DOFs)

Engineering	scale
(millions of	DOFs)

OUR
CHALLENGE
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Hot-spot	selection	&	prioritization

MCS	of	engineering-scale	
response	via	SROM-surrogate
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*SROM

Let {✓̃
k

, �
k

}, k = 1, . . . , m, be the defining parameters of a SROM ⇥̃ for ⇥. Two surro-
gate models are developed for the weld response ⇧(u;⇥). For a fixed u, they approximate
the response surface of ⇧(u;⇥) with support equal to the range � of ⇥ by piecewise con-
stant and piecewise linear functions over the cells {�

k

} of the Voronoi tessellation in �. The
models are denoted by ⇧̃(u;⇥) and ⇧̃

L

(u;⇥), respectively, and have the expressions

⇧̃(u;⇥) =
mX

k=1

1(⇥ 2 �
k

) ⇡̃
k

(u) and (11a)

⇧̃
L

(u;⇥) =
mX

k=1

1(⇥ 2 �
k

) [⇡̃
k

(u) + r⇡̃
k

(u) · (⇥ � ✓⇤
k

)] , (11b)

where ⇡̃
k

(u) = ⇧(u;✓⇤
k

) and r⇡̃
k

(u) =
�
@⇧(u;⇥)/@⇥1, . . . , @⇧(u;⇥)/@⇥

d

�0 |(⇥=✓⇤
k)

are the
gradients of ⇧(u;⇥) at ⇥ = ✓⇤

k

, k = 1, . . . , m. Options for the choice of ✓⇤
k

include

✓⇤
k

= ✓̃
k

or (12a)

✓⇤
k

= ✓̄
k

= E[⇥|⇥ 2 �
k

]. (12b)

By Equation (11b), the piecewise linear surrogate ⇧̃
L

(u;⇥) approximates the weld re-
sponse ⇧(u;⇥) by hyperplanes tangent to it at

�
✓⇤
k

, ⇡̃
k

(u)
�

over the Voronoi cells {�
k

} for a
fixed u as illustrated in Figure 13. The error in this approximation grows as the sample point
moves further away from the expansion point. For Voronoi cells that are not equi-axed and
whose contents are not evenly distributed, the Voronoi seed ✓̃

k

may lie far away from other
points within the cell. As an alternative to minimize the distance between the expansion
point and the samples in a cell, the expansion could be performed about the local mean of
the data within a cell as in Equation 12b. It can be shown that ⇧̃

L

(u;⇥) converges almost
surely to ⇧(u;⇥) provided the diameters of the cells {�

k

} vanish as m increases indefinitely
and ⇧(u;⇥) is di↵erentiable with respect to the components of ⇥ [6]. Higher-order surro-
gates can be imagined and are limited only by the di↵erentiability of the quantity of interest
and the available compute power.

In summary, once an SROM ⇥̃ has been obtained for ⇥, the implementation of the
surrogate weld response ⇧̃

L

(u;⇥) requires m(d + 1) deterministic finite element (FE) calcu-
lations where d denotes the dimension of ⇥ and m denotes the size of ⇥̃, the SROM for ⇥.
The size m of ⇥̃ is chosen such that the number of required FE calculations is manageable.
Statistics of ⇧̃(u;⇥) are known by the partitioning {�

k

} and the statistics of ⇧̃
L

(u;⇥) can
be obtained e�ciently by Monte Carlo simulation since these models are available in closed
form. The algorithm for constructing the models in Equation (11), generating samples, and
calculating statistics involves the following three steps.

1. Construct an SROM ⇥̃ for ⇥. Denote by {✓̃
k

, �
k

}, k = 1, . . . , m, the defining param-
eters of the model.

2. Calculate the stress-strain curves {⇡̃
k

(u)} and the gradients {r⇡̃
k

(u)} for ⇧̃
L

(u;⇥).
3. Generate samples of ⇥, calculate corresponding samples of ⇧̃

L

(u;⇥), and estimate
properties of the surrogate for ⇧(u;⇥). Note that the Voronoi partition does not have
to be constructed explicitly. A sample of ⇥ is allocated to a particular cell depending
on its distance to cell centers.

20

prior	distribution
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Schematic	of	our	novel	hierarchical	approach

Low	
fidelity

update

Multiscale	calculationP 'µ (L | ai )

prior	distribution	of		
conditional	failure

posterior distribution	of	
conditional	failure

Higher 
fidelity 

prediction

L

P’’µ

L

PF

P ''µ (L | ai )

L

P’µ

PF (L) = P(L | ai )P(ai )
i

hotspots

∑
For	hotspot	i,	iterate.	
Repeat	for	all	hotspots.	

i++

Higher	
fidelity

**we	assume	hot-spots	are	independent	for	now 5
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Hot-spot	selection	&	prioritization
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*SROM

Let {✓̃
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}, k = 1, . . . , m, be the defining parameters of a SROM ⇥̃ for ⇥. Two surro-
gate models are developed for the weld response ⇧(u;⇥). For a fixed u, they approximate
the response surface of ⇧(u;⇥) with support equal to the range � of ⇥ by piecewise con-
stant and piecewise linear functions over the cells {�
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} of the Voronoi tessellation in �. The
models are denoted by ⇧̃(u;⇥) and ⇧̃
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By Equation (11b), the piecewise linear surrogate ⇧̃
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(u;⇥) approximates the weld re-
sponse ⇧(u;⇥) by hyperplanes tangent to it at
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over the Voronoi cells {�
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} for a
fixed u as illustrated in Figure 13. The error in this approximation grows as the sample point
moves further away from the expansion point. For Voronoi cells that are not equi-axed and
whose contents are not evenly distributed, the Voronoi seed ✓̃

k

may lie far away from other
points within the cell. As an alternative to minimize the distance between the expansion
point and the samples in a cell, the expansion could be performed about the local mean of
the data within a cell as in Equation 12b. It can be shown that ⇧̃

L

(u;⇥) converges almost
surely to ⇧(u;⇥) provided the diameters of the cells {�
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} vanish as m increases indefinitely
and ⇧(u;⇥) is di↵erentiable with respect to the components of ⇥ [6]. Higher-order surro-
gates can be imagined and are limited only by the di↵erentiability of the quantity of interest
and the available compute power.

In summary, once an SROM ⇥̃ has been obtained for ⇥, the implementation of the
surrogate weld response ⇧̃

L

(u;⇥) requires m(d + 1) deterministic finite element (FE) calcu-
lations where d denotes the dimension of ⇥ and m denotes the size of ⇥̃, the SROM for ⇥.
The size m of ⇥̃ is chosen such that the number of required FE calculations is manageable.
Statistics of ⇧̃(u;⇥) are known by the partitioning {�

k

} and the statistics of ⇧̃
L

(u;⇥) can
be obtained e�ciently by Monte Carlo simulation since these models are available in closed
form. The algorithm for constructing the models in Equation (11), generating samples, and
calculating statistics involves the following three steps.

1. Construct an SROM ⇥̃ for ⇥. Denote by {✓̃
k

, �
k

}, k = 1, . . . , m, the defining param-
eters of the model.

2. Calculate the stress-strain curves {⇡̃
k

(u)} and the gradients {r⇡̃
k

(u)} for ⇧̃
L

(u;⇥).
3. Generate samples of ⇥, calculate corresponding samples of ⇧̃

L

(u;⇥), and estimate
properties of the surrogate for ⇧(u;⇥). Note that the Voronoi partition does not have
to be constructed explicitly. A sample of ⇥ is allocated to a particular cell depending
on its distance to cell centers.

20

prior	distribution
update

Multiscale	calculation

prior	distribution	of		
conditional	failure

posterior distribution	of	
conditional	failure

Higher 
fidelity 

prediction

L

P’’µ

L

PF

L

P’µ

PF (L) = P(L | ai )P(ai )
i

hotspots

∑
For	hotspot	i,	iterate.	
Repeat	for	all	hotspots.	

Low-fidelity	Probability	of	Failure
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i++

Comments:	
1. Independent	of	the	multiscale	numerical	

method,	e.g.,	use	outcome	from	Foulk et	al.	
2. Could	be	applied	to	other	multiscale physics.	

Low	
fidelity

Higher	
fidelity

P 'µ (L | ai ) P ''µ (L | ai )

Schematic	of	our	novel	hierarchical	approach
MCS	of	engineering-scale	

response	via	SROM-surrogate

**we	assume	hot-spots	are	independent	for	now 6
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Low	
fidelity

Higher	
fidelity

Example	objectives	&	uncertainties	considered	

Engineering	scale	constitutive	model
• plasticity	parameters
• damage	parameters

Meso-scale	plastic	response
• texture	=	crystallographic	orientation

100	µm

Example:	build	a	probability	model	for	crystal	orientation	and	explore	the	effect	of	
texture	on	the	yield	surface	and	void	nucleation

Example:	low	fidelity	prediction	of	the	probability	of	crack	nucleation	in	an	
aluminum	6061-T6,	engineering	“component”
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Engineering-scale	model

8

isotropic	yield

Hill	anisotropic	yield

experiment	

Notched	Tensile	Data	– AA6061
(Ghahremaninezhad and	Ravi-Chandar IJF	2012)

§ We	use	Hill	anisotropic	plasticity	w/	damage	and	localization	elements	for	numerical	
regularization	on	3-planes	(see	figure).	We	use	SROMs	for	uncertainty.

§ Calibrate	plasticity	to	tension	data;	calibrate	damage	to	various	notched-tension	data.

FE	model	(strain	contour	plot)

localization	
planes

�2�1 �3

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

as a heat source term; for uncoupled calculations (TEMPERATURE OPTION = 1), temperature is
stored as a state variable (THETA), and temperature evolution due to adiabatic heating is calcu-
lated within the material model. The heat generated, AHEAT, is calculated as βσϵ̇p. For uncoupled
adiabatic heating, the temperature, THETA, evolves as

θ̇ =
β

ρcp

σϵ̇p (5.29)

where β is the fraction of plastic work that is dissipated as heat, ρ is the density, and cp is the
specific heat.

Isotropic damage: Isotropic damage is included in the BCJ_MEM through a void growth equation
proposed by Cocks and Ashby [14]:

φ̇ =

√

3

2
ϵ̇p

1 − (1 − φ)m+1

(1 − φ)m
sinh

[

2(2m − 1)

2m + 1

p

σvm

]

(5.30)

where σvm is the von Mises stress, p is the hydrostatic stress, and m is the DAMAGE EXPONENT.
When damage is included in the model, the yield stress decreases with damage according to

σy = (1 − φ)(Y + κ)

{

1 + sinh−1

[

(

ϵ̇ p

f

)1/n
]}

(5.31)

We assume Young’s modulus and the shear modulus decrease as damage increases, according to
E(θ, φ) = E(θ)(1 − φ) and µ(θ, φ) = µ(θ)(1 − φ). It then follows that the bulk modulus must vary in
the same way:

K(θ, φ) = k(θ)(1 − φ) (5.32)

Due to the effects of damage, the pressure evolution equation becomes:

ṗ =

[

k̇(θ)

k(θ)
−

φ̇

1 − φ

]

p + 3Davek(θ)(1 − φ) − k(θ)φ̇ (5.33)

In this equation, the last term is due to volumetric expansion of the material as voids grow. This
term can lead to some non-physical responses under certain loading conditions, so its inclusion is
optional in the BCJ_MEM material model and is controlled by the VOLUMETRIC EFFECTS OF

DAMAGE OPTION parameter. If this optional parameter is 0 (default), then the volumetric term is
not included; if the value is 1, then the volumetric term is active. The integration of the pressure
equation can be selected by setting the value of PRESSURE INTEGRATION OPTION to either 0
for implicit (Backward Euler) or 1 for implicit midpoint method.

The integration algorithm for damage solves the damage equation analytically using the mid-
point value for triaxiality. The default value for IMPLICIT DAMAGE SOLVER NUMBER OF

ITERATIONS is 50, but can be set to whatever value is desired. If the residual does not drop
below the tolerance specified by IMPLICIT DAMAGE SOLVER RESIDUAL TOLERANCE, then the
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Probability	of	nucleation	for	Low-fidelity	
predictions
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• We	construct	a	surrogate	model	for	damage.
• Then,	from	damage,	we	can	construct	a	CDF	for	failure	load	at	some	critical	

value	of	damage,	e.g.,	 =	10%.�2,c
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Things	we	need:		
§ Data	to	support	fine	scale	

uncertainty	– we	focus	on	crystallography	and	use	EBSD	measurements	of	
crystallographic	orientation

§ Computational	microstructure:	morphology;	mesh;	&	texture	models

Higher	fidelity	– focused	on	texture	

AA	6061-T6	– EBSD	measurements/images	at	a	notch	tip

Build	a	probability	model	for	crystal	orientation	and	explore	the	effect	of	texture	on	
the	yield	surface	and	embedded	second-phase	particles

**we	assume	hot-spots	are	independent	for	now 10
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AA6061-T6	EBSD	on	three	planes	shows	pancake-
shaped	grains	with	mild	texture

Plan

111

011
001

Plan

Transverse

R

T

N

Longitudinal

R

N

T

Transverse

T

N

R

From	Ghahremaninezhad &	Ravi-Chandar,	and	
confirmed	for	our	material,	mean	grain	size	of	the	
rolled	6061	microstructure:	
y-z	mean	15	um
x-z	mean	14	um
x-y	mean	39	um

T

R

N

x

y

11



10/4/16

“EulerRF”	Code
§ Code	to	generate	samples	of	Euler	angle	random	field	

model	for	FE	meshes,	implemented	in	MATLAB
§ Input:	

§ Finite	element	mesh	(grain	centroids)	
§ Texture	data	(EBSD	data	– AA6061	below)
§ User	options	

§ Output:	samples	of	no	texture,	macro- and	micro-texture

EulerRF
TEXT

SPCORR

FE Mesh Exp data

Samples for FE 
analysis

111

011001
Plan

Transverse

R
T

N Plan

500	µm

Ghahremaninezhad et	al.,	
mean	grain	size:	
y-z	mean	15	µm
x-z	mean	14	µm
x-y	mean	39	µm

Spatial	
correlations

12
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3D	Samples	for	AA	6061	T6	rolled	sheet
§ 2	samples	each	macro-texture	(left)	&	micro-texture	(right)

13

244	grains	
294,912	elements
l =	16	µm	(grains	39	x	39	x	14	µm)

“Micro”	texture

244	grains	
294,912	elements
no	correlation
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Inverse	pole	figure	(IPF)	comparing	EBSD	to	
eulerRF samples

14

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρx /ρu

max(ρx /ρu) = 1. 314
min(ρx /ρu) = 0. 81

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρz /ρu

max(ρz /ρu) = 2. 898
min(ρz /ρu) = 0. 763

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρy /ρu

max(ρy /ρu) = 1. 334
min(ρy /ρu) = 0. 794measured	

EBSD	data

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρx /ρu

max(ρx /ρu) = 1. 363
min(ρx /ρu) = 0. 839

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρy /ρu

max(ρy /ρu) = 1. 378
min(ρy /ρu) = 0. 833

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρz /ρu

max(ρz /ρu) = 2. 888
min(ρz /ρu) = 0. 778

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρx /ρu

max(ρx /ρu) = 1. 433
min(ρx /ρu) = 0. 825

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρy /ρu

max(ρy /ρu) = 1. 427
min(ρy /ρu) = 0. 759

100 101

111

0.5

1.0

1.5

2.0

2.5

3.0
ρz /ρu

max(ρz /ρu) = 2. 974
min(ρz /ρu) = 0. 769

micro-
texture

macro-
texture



10/4/16

Crystal	plasticity	formulation

§ Here	we	use	a	simple	crystal	
plasticity	formulation	following	
Matous and	Maniatty 2004	:

15

of the material is isotropic. The e↵ective mechanical properties of this material structure will be161

discussed in detail in Section 4162

3.2. Crystal-plasticity model163

The mechanical response of each FCC grain is modeled using an elasto-viscoplastic crystal-164

plasticity model developed by Maniatty et al. [15, 16, 2]. This model is partially reviewed here165

with relevant material parameters defined.166

For the elastic response, the austenite FCC crystal structure possesses cubic elastic symmetry167

with elastic constants C11 = 204.6 GPa, C12 = 137.7 GPa, and C44 = 126.2 GPa [37]. The168

anisotropy ratio A for this crystal is A = 2C44/(C11 � C12) = 3.77, which is relatively large. For169

an isotropic material, A = 1.170

The plastic velocity gradient L

p is given by171

L

p =

12X

↵=1

�̇↵ P

↵ , (1)

where �̇↵ is the rate of plastic shear on the ↵ slip system, and P

↵ is the Schmid tensor defined as172

P

↵ = m

↵ ⌦ n

↵ , (2)

where n

↵ and m

↵ are the slip plane normal and slip direction of the ↵ slip system, respectively.173

The summation in Eq. (1) is over each of the 12 FCC slip systems.174

The plastic shear rate �̇↵ on slip system ↵ is modeled as175

�̇↵ = �̇0
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1/m

sign(⌧↵) , (3)

where ⌧↵ is the resolved shear stress on slip system ↵, g

↵ is the slip system hardness, �̇0 is the176

reference plastic shear rate, and m is the material rate sensitivity. Smaller values of m result in a177

less rate-sensitive material response.178

Within the Voce-Kocks model of work hardening, all slip systems harden at the same rate179

and start with the same hardness. Under this assumption the superscript ↵ can be dropped from180

g

↵. The hardness evolution is modeled as181
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where G0 is the hardening rate, g0 is the initial resolved shear strength, and �̇ is the total plastic182

shear rate on all slip systems defined as183
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where g

s0 , �̇
s

, and ! are material parameters. In this work, we take ! = 0 so that g

s

= g

s0 . The185

remaining material parameters are given in Table 1. These parameter values result in a plastic186

response that is representative of 304L in the small strain regime. More sophisticated hardening187

models, both self and latent, are available in the literature but are not explored here [38, 39, 40].188
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Yield	surfaces	recovered	from	simulations	w/	various	textures

16

• Using	a	simple	crystal	plasticity	
constitutive	model	for	each	texture

• Plotting	yield	surface	at	0.2%	and	2.0%	
offset	assuming	small	strains

• We	observe	greater	heterogeneity	in	
micro	texture	(“super	grain”	– need	a	
larger	RVE?)

• There	are	subtle	differences	from	the	von	
Mises	yield	surface	for	all	forms	of	texture,	
may	be	amplified	at	higher	strains
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Void	nucleation	at	brittle	second	phase	
§ Embed	an	ellipsoidal	particle,	5	µm	

x	1.8	µm
§ Coherent	mesh	at	particle/matrix	

interface,	grains	by	overlay	method
§ 2	morphologies	w/	~27	grains,	s123	

&	s184
§ 200	samples	of	macro-texture	&			

55	samples	of	micro-texture
§ Assumed	elastic	mechanical	

properties	for	particle	(pure	iron)
§ E	=	211	GPa,	n =	0.29	
§ Strength	540	MPa	

§ Assumed	perfect	and	rigid	
particle/matrix	interface	bond	

17

s123

s184

Cross-sections	through	major-axis	of	ellipsoid
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Quantify	particle	fracture	with	mean,	first-
principal	stress

18

Assuming	elastic	and	brittle,	
monitor	the	mean	first-
principal	stress	in	the	particle.	

Maximum	principal	stress	contour	plot	for	s123	
(showing	two,	orthogonal	cross-sections)

RT
N

Pr(✏̄RV E 2 S)

S = {✏̄RV E 2 R : g(✏̄RV E)  0}

g(✏̄RV E) = �̄p,cr � �̄p(✏̄RV E)

�̄p,cr = 540 MPa
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Mean	max	principal	stress	in	particle

19

0.00 0.02 0.04 0.06 0.08 0.10
✏̄RV E

0

20

40

60

80

100

120

140

160

N
or

m
al

iz
ed

fr
eq

ue
nc

y

0.00 0.02 0.04 0.06 0.08 0.10
✏̄RV E

0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

fr
eq

ue
nc

y

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
✏̄RV E

0

200

400

600

800

1000

1200

�̄
1,

pa
rt

ic
le

(M
Pa

)

Micro-texture

29	samples	s123
26	samples	s184

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
✏̄RV E

0

200

400

600

800

1000

1200

�̄
1,

pa
rt

ic
le

(M
Pa

)

Macro-texture

100	samples	s123
100	samples	s184

540	MPa

540	MPa



10/4/16

Bridging	length	scales
§ We	are	pursuing	three	strategies	and	will	contrast	them:

§ Submodeling
§ Concurrent	coupling	with	a	Schwarz-based	algorithm	(Foulk,	Alleman,	&	Mota)	
§ Direct	numerical	simulation

20

Submodeling:
§ Mesh	through	region	where	submodel will	

exist
§ Run	engineering-scale	model
§ Map	displacements	from	engineering-scale	

model	onto	boundaries	of	meso-scale	model

Schwarz-based	solution	scheme:
§ Solve	PDE	by	any	method	on	Ω1 using	an	

initial	guess	for	Dirichlet BCs	on	Γ1.
§ Solve	PDE	by	any	method	(can	be	different	

than	for	Ω1)	on	Ω2 using	Dirichlet BCs	on	Γ2
that	are	the	values	just	obtained	for	Ω1.

§ Solve	PDE	using	Dirichlet BCs	on	Ω% that	are	
the	values	just	obtained	for	Ω2.

§ Mathematically	proved	to	converge	for	solid	
mechanics	problems.
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Multiscale	DIC	for	experimental	validation

21

7 m
m

23 mm

1.EBSD:	microstructure
2.Capture	reference	images	
3. Load	specimen
4.Capture	deformed	images
5.DIC	on	each	image	location.
6. Stitch	DIC	results	into	large	field	of	view
7.Overlay	Microstructure

100 μm

§ Low	magnification,	(HR-DIC)	strain	field	over	entire	specimen.
§ High	magnification,	(HR-DIC)	strain	field	near	notches.

Requires	a	multi-resolution	speckle	pattern
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DIC	near	each	notch	tip	and	throughout	
entire	specimen	using	HR-DIC

0%

1%

εxx

0%

1%

εxx

(a) Learning	to	correct	or	eliminate	
lens	distortion	for	low	
magnification	SEM images.

(b) Need	to	capture	more	images	
throughout	loading	because	the	
material	looks	so	different	near	
failure.

(c) Natural	speckles	lose	contrast	at	
high	load	levels	we	are	interested	
in.

(b) 
(a) 

(c) 

22
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Summary
§ Structural	reliability	is	a	function	of	randommicrostructure	and	

multiscale	numerical	methods	are	necessary	for	predictive	simulation	
but	they	are	not	sufficient. One	multiscale	simulation	is	insufficient	to	
predict	reliability.

§ We	summarized	our	hierarchical	approach	for	tractable	multiscale	UQ.
§ We	briefly	summarized	the	engineering-scale	calculations.	
§ We	demonstrated	calculations	for	meso-scale	void	nucleation	

prediction	with	various	models	for	texture.
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May	I	answer	your	questions?

24
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§ Intentionally	blank

25
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Details	needed	for	low	fidelity	simulation

Things	we	need:	
1. Engineering-scale	model
2. Method	for	uncertainty	propagation – we	use	stochastic	

reduced-order	models	(SROM)
3. Engineering-scale	failure	metric	(quantity	of	interest)	for	hot-

spot	selection

26

predict	nucleation	for	AA6061-T6	
“component”	in	monotonic	loading

Example:	low	fidelity	prediction	of	the	probability	of	crack	nucleation	in	an	
aluminum	6061-T6,	engineering	“component”



10/4/16

Localization	elements	to	regularize

27Yang,	Mota and	Ortiz (IJNME,	2005),	Armero and	Garikipati (IJSS,	1996)		

F = F kF?

l =	band	thickness (user	specified) Topologically	the	same	as	
“cohesive”	surface	element

Capture	localization	processes	with	mesh	convergence.	Localization	elements	
construct	a	deformation	gradient	(use	existing	constitutive	models).

27

l

coarse
esize ~	120	µm

medium
esize ~	60	µm

fine
esize ~	30	µm

l
l

l
l
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Stochastic	reduced-order	model	(SROM)

28

with	n <<	q and																		> 0 are	weights	and	subject	to	probabilities																and																						.↵, �, ⇣ p̃k � 0
P

k p̃k = 1

moments cumulative	distribution correlation
Estimates of sample statistics 

given q samples of Q
Estimates of SROM statistics given 

SROM sample size n

To	develop	a	model	that	optimally	represents	the	uncertainty	in	the	input	we	
choose	a	discrete	random	variable						.		The	SROM	is	then	defined	by	the	
collection																	k =	1,	…,	n that	minimizes	an	objective	function	of	the	form:

⇥̃⇣
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ĉ(s, t) =
qX

i=1

(1/q)✓i,s ✓i,t



10/4/16

– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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Construction	of	SROM-based	surrogate

29

§ A	response	surface	is	constructed	for	the	structural	response	of	the	component,	P(u;Q)
§ The	surface	is	a	series	of	hyper-planes	described	with	a	first-order	Taylor	approximate	of	

the	structural	response

§ The	SROM	samples	are	used	as	the	expansion	points	qk* and	the	domain	Gk are	
determined	by	the	Voronoi tessellation	of	the	uncertain	parameters	

§ Requires	n*(d+1)	FE	calculations

Example 2D	probability	density	 * SROM	points

Assumes	the	quantity	of	interest	is	differentiable.

Response	surface

⇧̃L(u;⇥) =
nX

k=1

1(⇥ 2 �k)[⇡̃k(u) +r⇡̃k(u) · (⇥� ✓⇤k)]

– Example of Voronoi tessellation for

Z = (Z1, Z2) = bivariate Beta variable with

– Γ = [1, 4]2 and shape parameters p = 1; q = 3

– Zk = F−1
Zk

◦ Φ(Gk), k = 1, 2

– {Gk} ∼ N(0, 1) with E[G1G2] = 0.2

Density of Z (left panel) and Voronoi cells with centers {z̃k}, m = 20, and
density contour lines (right panel)
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Calculations	demonstrating	progress	toward	the	goal

30

§ Plasticity	parameters,	y and	h,	calibrated	to	10	
smooth	tensile	tests	for	AA	6061-T6	sheet.	

§ Damage	exponent,	m,	calibrated	to	20	notched	
tensile	specimens	w/	two	notch	radii	for	a	range	
of	triaxialilty

§ We	use	available	data	and	previous	experience	
and	expert	judgment	to	approximate	model	
parameter	uncertainty.

DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

as a heat source term; for uncoupled calculations (TEMPERATURE OPTION = 1), temperature is
stored as a state variable (THETA), and temperature evolution due to adiabatic heating is calcu-
lated within the material model. The heat generated, AHEAT, is calculated as βσϵ̇p. For uncoupled
adiabatic heating, the temperature, THETA, evolves as

θ̇ =
β

ρcp

σϵ̇p (5.29)

where β is the fraction of plastic work that is dissipated as heat, ρ is the density, and cp is the
specific heat.

Isotropic damage: Isotropic damage is included in the BCJ_MEM through a void growth equation
proposed by Cocks and Ashby [14]:

φ̇ =

√

3

2
ϵ̇p

1 − (1 − φ)m+1

(1 − φ)m
sinh

[

2(2m − 1)

2m + 1

p

σvm

]

(5.30)

where σvm is the von Mises stress, p is the hydrostatic stress, and m is the DAMAGE EXPONENT.
When damage is included in the model, the yield stress decreases with damage according to

σy = (1 − φ)(Y + κ)

{

1 + sinh−1

[

(

ϵ̇ p

f

)1/n
]}

(5.31)

We assume Young’s modulus and the shear modulus decrease as damage increases, according to
E(θ, φ) = E(θ)(1 − φ) and µ(θ, φ) = µ(θ)(1 − φ). It then follows that the bulk modulus must vary in
the same way:

K(θ, φ) = k(θ)(1 − φ) (5.32)

Due to the effects of damage, the pressure evolution equation becomes:

ṗ =

[

k̇(θ)

k(θ)
−

φ̇

1 − φ

]

p + 3Davek(θ)(1 − φ) − k(θ)φ̇ (5.33)

In this equation, the last term is due to volumetric expansion of the material as voids grow. This
term can lead to some non-physical responses under certain loading conditions, so its inclusion is
optional in the BCJ_MEM material model and is controlled by the VOLUMETRIC EFFECTS OF

DAMAGE OPTION parameter. If this optional parameter is 0 (default), then the volumetric term is
not included; if the value is 1, then the volumetric term is active. The integration of the pressure
equation can be selected by setting the value of PRESSURE INTEGRATION OPTION to either 0
for implicit (Backward Euler) or 1 for implicit midpoint method.

The integration algorithm for damage solves the damage equation analytically using the mid-
point value for triaxiality. The default value for IMPLICIT DAMAGE SOLVER NUMBER OF

ITERATIONS is 50, but can be set to whatever value is desired. If the residual does not drop
below the tolerance specified by IMPLICIT DAMAGE SOLVER RESIDUAL TOLERANCE, then the

232

PREDICTING LASER WELD RELIABILITY 7

3. CALIBRATION

In this section, we outline the details for calibration of the constitutive model parameters to
the available data. Tensile data is used from 40 nominally identical tensile coupons that were
manufactured as described in [2] and shown in Figure 1b. The tensile coupons were cut from
butt welded plates resulting in a partial penetration laser weld at the specimen midplanes. We first
describe the three-dimensional finite element model used for calibration. Then, details are provided
on the optimization used to match the finite element model response to the experimental data.
The outcome of the calibration is 40 sets of material parameters that parameterize the observed
uncertainty in the laser welds of these experiments. In practice, the analyst should perform this
calibration for tensile specimens with the intended material form and welded with the appropriate
weld schedule suited for their application, as these strongly affect the performance of the resulting
welds.

3.1. Three-dimensional finite element model

The BCJ MEM material model [8] is used for both the weld region and the bulk material away from
the weld; however, only the parameters for the weld region were varied for calibration. Because the
BCJ MEM model is hypoelastic, we volume average the trace of the deformation gradient within the
element to yield a constant pressure formulation. Although the model is quite general and includes
rate dependence, temperature dependence, and recrystallization, we idealize the plastic flow to be
governed by a yield surface having the form

�
y

= y +  (1)

where y is the initial yield strength and  is the isotropic hardening. The evolution of  is expressed
as

 (✏
p

) =

h

r
[1 � exp (�r✏

p

)] (2)

with h the linear hardening term, r the recovery term and ✏
p

the equivalent plastic strain. As
illustrated in Equation 2, the isotropic hardening will asymptote to h

r

. The initial slope of the
hardening is h and the recovery term controls the character of the asymptote with increasing plastic
strain. Only the initial yield strength y, the recovery term r, and the hardening term h of the weld
region are included as design variables in the objective function during optimization. The plasticity
parameters for the base material were estimated through prior work [2] and held constant. We
assume the elastic properties are fixed with modulus of elasticity = 180 GPa and Poisson’s ratio
= 0.27.

The geometry of the finite element model replicates the nominal dimensions of the free-
span tensile coupons, 38.1 ⇥ 6.35 ⇥ 1.6 mm, accounting for planes of symmetry, and has the
nominal 0.76 mm weld penetration as shown in Figure 4. This finite element mesh contains 6,440
linear hexahedral elements. Appropriate kinematic boundary conditions are used for the planes of
symmetry and the loading is applied by axial displacement. The finite element calculations to fit
the design variables were completed with Adagio, Sandia’s SIERRA Solid Mechanics quasi-static
finite element code [15].

The 3-D mesh illustrated in Figure 4 was checked for numerical convergence with two uniform
mesh refinements by successively halving the element size. The computed force-displacement
response up to peak load remains unchanged with refinement, Figure 5a. Deviations in the force-
displacement curves after peak load stem from sharper gradients and mesh distortion. The boundary
value problem is well posed and regularization is not needed [16]. The far-field displacement shown
in Figure 5 and Figure 1b is collected from a 25.4 mm extensometer centered about the weld. This
is accomplished in the FE model by forcing the mesh to have a set of nodes centered about the weld
at the extensometer gage length of 25.4 mm. We note that the mesh refinement study was conducted
on the lower bound, median, and upper bound of the measured force-displacement curves. Because
the force-displacement curves are convergent for parameters that span the experimental data,

Copyright c� 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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BCJ MEM model is hypoelastic, we volume average the trace of the deformation gradient within the
element to yield a constant pressure formulation. Although the model is quite general and includes
rate dependence, temperature dependence, and recrystallization, we idealize the plastic flow to be
governed by a yield surface having the form

�
y

= y +  (1)

where y is the initial yield strength and  is the isotropic hardening. The evolution of  is expressed
as

 (✏
p

) =

h

r
[1 � exp (�r✏

p

)] (2)

with h the linear hardening term, r the recovery term and ✏
p

the equivalent plastic strain. As
illustrated in Equation 2, the isotropic hardening will asymptote to h

r

. The initial slope of the
hardening is h and the recovery term controls the character of the asymptote with increasing plastic
strain. Only the initial yield strength y, the recovery term r, and the hardening term h of the weld
region are included as design variables in the objective function during optimization. The plasticity
parameters for the base material were estimated through prior work [2] and held constant. We
assume the elastic properties are fixed with modulus of elasticity = 180 GPa and Poisson’s ratio
= 0.27.

The geometry of the finite element model replicates the nominal dimensions of the free-
span tensile coupons, 38.1 ⇥ 6.35 ⇥ 1.6 mm, accounting for planes of symmetry, and has the
nominal 0.76 mm weld penetration as shown in Figure 4. This finite element mesh contains 6,440
linear hexahedral elements. Appropriate kinematic boundary conditions are used for the planes of
symmetry and the loading is applied by axial displacement. The finite element calculations to fit
the design variables were completed with Adagio, Sandia’s SIERRA Solid Mechanics quasi-static
finite element code [15].

The 3-D mesh illustrated in Figure 4 was checked for numerical convergence with two uniform
mesh refinements by successively halving the element size. The computed force-displacement
response up to peak load remains unchanged with refinement, Figure 5a. Deviations in the force-
displacement curves after peak load stem from sharper gradients and mesh distortion. The boundary
value problem is well posed and regularization is not needed [16]. The far-field displacement shown
in Figure 5 and Figure 1b is collected from a 25.4 mm extensometer centered about the weld. This
is accomplished in the FE model by forcing the mesh to have a set of nodes centered about the weld
at the extensometer gage length of 25.4 mm. We note that the mesh refinement study was conducted
on the lower bound, median, and upper bound of the measured force-displacement curves. Because
the force-displacement curves are convergent for parameters that span the experimental data,

Copyright c� 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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SROM	for	Low-fidelity	probability	of	failure	

31

§ Examples	of	3	SROMs	for	the	uncertain	
parameters.

§ Force-displacement	curves	from	Monte	Carlo	
simulation	two	ways:	(blue)	with	the	SROM-based	
surrogate	and	(red)	brute	force	finite-element	
simulation.	

§ We	are	developing	tools	to	identify	&	prioritize	
hotspots	based	on	surrogate	results.

Monte	Carlo	
samples

SROM	samples:
n	=	5
n	=	10	
n	=	20	

MC	samples	(small	dots)	and	optimal	samples	for	SROM	(large	dots)

2500	Monte	Carlo	simulations	
comparing	the	10-sample	
SROM-based	surrogate	to	
brute	force	FE

20-sample	SROM-based
surrogate

Following	developments	by	Emery	et	al.	IJNME	(2015)
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Another	(well	ironed)	example:	A304L	laser	weld	failure

32

construct the surrogate. For the illustration in this paper, the cost of brute force MCS is
65 times greater than the surrogate model at 33,444,036 CPU seconds. For components of
practical interest, the cost of brute force MCS is intractable.

(a) (b)

Figure 18: The cumulative distribution of peak load ⇧
max

predicted by 100 sets of 40 samples
of FE-calculations (colored lines) and compared to 5,000 FE calculations (black line). (a)
Shows the full range of the cumulative distribution while (b) focuses on the lower tail of the
distribution with logarithmic scale.

Table 2: Computational expense in CPU seconds.

Construct FE Evaluate Total
SROM* calculations ** surrogate*

Brute force MCS n.a. 33,400,000 n.a. 33,400,000
(5,000 FE calculations)

10 SROM at mean 948 511,000 6.69 512,000
(40 FE calculations)

* Intel R� Xeon R� x5675 CPU @ 3.07 GHz w/ 48GiB RAM

** Intel R� Nehalem R� x5570 CPU @ 2.93 GHz w/ 1.5GiB RAM

7. Discussion

With a set of 40 tensile test data available that characterized the behavior and variability
of the coupon, the first step in the methodology calibrated a carefully designed finite element
model to the data. Under the controlled environment in the laboratory, we made the safe
assumption that all variability was the consequence of fine scale geometric uncertainty and
material heterogeneity. We thus accounted for the various sub-scale variability by lumping it
all into the constitutive model chosen in the finite element model. In this sense, we account

26

construct the surrogate. For the illustration in this paper, the cost of brute force MCS is
65 times greater than the surrogate model at 33,444,036 CPU seconds. For components of
practical interest, the cost of brute force MCS is intractable.

(a) (b)

Figure 18: The cumulative distribution of peak load ⇧
max

predicted by 100 sets of 40 samples
of FE-calculations (colored lines) and compared to 5,000 FE calculations (black line). (a)
Shows the full range of the cumulative distribution while (b) focuses on the lower tail of the
distribution with logarithmic scale.

Table 2: Computational expense in CPU seconds.

Construct FE Evaluate Total
SROM* calculations ** surrogate*

Brute force MCS n.a. 33,400,000 n.a. 33,400,000
(5,000 FE calculations)

10 SROM at mean 948 511,000 6.69 512,000
(40 FE calculations)

* Intel R� Xeon R� x5675 CPU @ 3.07 GHz w/ 48GiB RAM

** Intel R� Nehalem R� x5570 CPU @ 2.93 GHz w/ 1.5GiB RAM

7. Discussion

With a set of 40 tensile test data available that characterized the behavior and variability
of the coupon, the first step in the methodology calibrated a carefully designed finite element
model to the data. Under the controlled environment in the laboratory, we made the safe
assumption that all variability was the consequence of fine scale geometric uncertainty and
material heterogeneity. We thus accounted for the various sub-scale variability by lumping it
all into the constitutive model chosen in the finite element model. In this sense, we account

26

~65x	faster

CPU seconds

nonlinear	
structural	
response

18 J. M. EMERY ET AL.

between ✓⇤
k

and a sample ✓
i

of ⇥ becomes large, which is the dominant source of error in the
surrogate. Further exploration of the impact of this is outlined below, e.g., see Equation (18a) and
the discussion surrounding it.

(a) ✓⇤
k

= ✓̃
k

(b) ✓⇤
k

= ✓̄
k

Figure 13. The force-displacement response computed by finite element calculation (red) and by the 10-
sample, SROM-based surrogate (blue) for the 5,000 samples of ⇥, using the two choices for ✓⇤

k

defined by
Equation (12).

Figure 14 illustrates the cumulative distribution function (cdf) of peak force ⇧

max

=

max

u

⇧(u;⇥) predicted by MCS with FE calculations and by MCS with the SROM-based surrogate
models for m = 10, 20, 40 and 80 and both options for ✓⇤

k

from Equation (12). For lack of an
analytical solution for the cdf of peak load for the welded coupon, the brute force estimate is
assumed to be the “truth” solution. In Figure 14a, the full range of the cumulative distribution
is plotted. The surrogate model performs well with small but noticeable differences from the
FE calculations above 3,330 N. However, these are acceptable because the focus here is on the
prediction of failure, which corresponds with the distribution’s lower tail. These differences are
caused by the false peaks in the data and investigated further below. There is very little observable
difference between the various surrogate model predictions. Figure 14b focuses on the lower tail
of the distribution where below-average behavior leads to failure at lower loads. From this plot,
the FE-computed critical load for a probability of failure of 0.025 was 3,014 N. With the surrogate
models, the critical load can be estimated between 3,016 to 3,025 N, a relative difference of 0.06%
and 0.3%, respectively.
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Figure 14. The cumulative distribution of peak load ⇧
max

predicted by MCS with FE-calculations and with
the SROM-based surrogate models. (a) Shows the full range of the cumulative distribution while (b) focuses

on the lower tail of the distribution with logarithmic scale.
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�y = Y +  ̇ = [H �R] ✏̇p

 (✏p) =
H

R
[1� exp (�R✏p)]

initial	yield	stress
hardening	(linear)
recovery	coefficientR

Q =

uncertain	parameters

A	little	different	problem…	predict	plastic	
instability,	no	damage	

Emery,	Field,	Foulk,	Karlson,	Grigoriu,	IJNME,	2015,	103:914-936
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Random	Field	Model	– Definition

§ Let																																																									,														,	be	a	vector-
valued	random	field	model	for	the	3	Euler	angles

§ Model	form

§ µk and	sk are	the	mean	and	standard	deviations	of	Rk

§ Fk is	related	to	the	marginal	CDF	of	Rk

§ G =	(G1,	G2,	G3)’	is	a	vector-valued	Gaussian	random	field	with	zero	
mean,	unit	variance,	and	correlation	functions	{	rkl }

33

R(x) = ( 1(x),�(x), 2(x))
0

Yk(x) = hk(Gk(x)) = F�1
k � �(Gk(x)), k = 1, 2, 3

E[Gk(u)Gl(v)] = ⇢kl(u,v)

R(x) = µ(x) + a(x)Y(x) =

0

@
µ1(x)
µ2(x)
µ3(x)

1

A+

0

@
�1(x) 0 0
0 �2(x) 0
0 0 �3(x)

1

A

0

@
Y1(x)
Y2(x)
Y3(x)

1

A

x 2 D
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Random	Field	Model	– Calibration	
1. Estimate	mean	and	standard	deviation	functions,	µ and	a
2. Define	spatial	correlation	functions

§ Can	map	correlation	of	G to	correlation	of	R
§ Functional	form:	exponential	or	linear	decay

§ Homogeneous,	isotropic
§ Parameter	estimates	using	least-squares,	or	user-specified

3. Select	marginal	distribution	functions
§ Choose	a	functional	form

§ Consistent	with	physics
§ Beta	distribution	is	a	good	choice
§ Parameter	estimates	using	Method	of	Maximum	Likelihood

§ Empirically-based
§ Requires	a	medium	sized	data	set

34
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Capturing	spatial	correlation

§ A	measure	of	the	(average)	linear	
dependence	between	two	points	in	the	field
§ Auto	correlation	function	of	y1

§ Cross	correlation	between	y1 and	f

§ Special	cases
§ Statistically	homogeneous

§ Statistically	isotropic

§ Provides	one	way	to	model	“micro”	texture

35
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Experimental	Data
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Zero	texture,	zero	spatial	
correlation

With	macro-texture	based	on	
data	file,	zero	spatial	
correlation

With	micro-texture,	i.e,	
including	spatial	correlation
§ Texture	based	on	data	file
§ Isotropic	(exponential)	

spatial	correlation	with	
correlation	length	=	200	µm
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Comparing	histograms –
data	vs.	texture	samples

§ Histograms	drawn	for	the	individual	Euler	angles

38

 1

 2

✓

measured	EBSD	data model	data
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Multiscale DIC	overlays	low	and	high	resolution	
measurements

§ Low	magnification,	HR-DIC	gives	
good	mesoscale resolution	over	
large	regions	(centimeters).

§ High	magnification,	HR-DIC	gives	
sub-grain	level	resolution	over	
hundreds	of	microns.
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Carroll	et	al.,	Rev.	Sci Inst.,	v.	81	(2010)
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Carroll	et	al.,	Int.	J.	Fatigue,	(2013)



10/4/16

Consider	variability	in	material	properties	through	
uniaxial	tension	tests	and	2-notch	specimens

Notch Geometry Variability

Gradual RD

Gradual TD Sharp TD

Sharp RD



10/4/16

Fracture	of	first	specimen	initiated	at	a	center	
notch	with	significant	plasticity	in	all	notches.

§ Unstable	crack	growth	occurred	after	this	substantial	crack	was	observed.
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Multiscale	digital	image	correlation
Currently	pursuing	3	avenues	for	multiscale	speckling:

§ Bi-color	pattern	with	conductive	paint	for	coarse	and	Cu	powder	
for	fine.

§ Microstamping	a	fractal	speckle	pattern	through	external	
company.

§ Inherent	precipitates	and	inclusions	will	probably	work,	but	only	
for	small-scale	plasticity	(~1%	strain).	

Inclusions 
(Low mag)

Resolution down to ~150 um Resolution down to ~4 um

Precipitates 
(High mag)

Precipitates

Inclusions
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Various	instantiations	of	a	multiscale
speckle	pattern	by	sputtering	gold	
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Multiscale	imaging Low Resolution Single 
ImageLow Resolution Montage

High Resolution Montage

High Resolution Single Image
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