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Executive Summary 
At the project’s inception, there was growing evidence that the time domain for in situ 
observations of material evolution held great promise for allowing measurements to be made in 
never previously contemplated regimes. Also, central to the development of the project was the 
knowledge that phase transformations are of central importance to the development of materials 
microstructure and hence properties. We addressed this opportunity by developing a transmission 
electron microscope that could be operated in the pulsed mode (DTEM), with exposure times 
down to 20 ns and interframe times down to 20 ns in the nine-frame movie mode, designed with 
the intent of performing in situ experiments. This unprecedented capability allowed us to 
investigate structural phase transformations, intermetallic formation reactions, crystallization 
from the amorphous phase, rapid solidification of liquid metals, transformations in phase change 
materials, and catalyst nanoparticles. The ability of the electron microscope to create images 
with high spatial resolution allows for the accurate measurement of position. Common to all of 
the transformations mentioned above is the presence of a distinct interface between the old phase 
and the growing new phase. Measuring the position of the interface as a function of time, 
combined with the ability to count nucleation sites as a function of time, allowed for the 
exceptionally accurate measure of transformation kinetics. These measurements were used to 
guide and constrain the development of models and simulation methods for the classes of 
transformations studied. 



 - 2 -   

I. Narrative  
Phase transformations are integral to the manipulation of materials and control of their 

properties. The overarching hypothesis of this work was that in order to control materials 
properties, the formation of its structure at the microscale (and nanoscale) must be understood, 
meaning that the connections between processing conditions, driving forces, and microstructural 
evolution must be understood. Typically, the structure of a material is determined after a process 
step, such that evolution must be deduced indirectly. In situ techniques provide opportunity to 
observe structure formation while it occurs to reveal mechanistic details, though these 
approaches are extremely challenging as many important materials processes are inherently fast. 

In situ transmission electron microscopy (TEM) is a powerful characterization tool with 
high spatial resolution for observations and measurements of structure formation and evolution 
[1-7]. The ever-expanding role of in situ TEM as a materials characterization tool demonstrates 
the need to identify through imaging the transient states of processes, which are often far more 
important than just the starting and end states. In situ TEM has been largely constrained by 
conventional video frame rates (30 Hz or ~33ms), though recent advances in CMOS-based and 
direct detection cameras have in some cases reduced these frame rates to the sub-millisecond 
regime. However, many dynamic processes occur across length and time scales that require 
temporal resolutions of nanoseconds or higher—especially when driving forces are large and the 
process is far from equilibrium. 

These limitations were overcome by the development of the dynamic transmission 
electron microscope (DTEM) [10-12], which increased the time resolution for in situ TEM 
experiments by orders of magnitude to the nanosecond regime. The development of the DTEM 
was a significant advancement over a standard TEM, providing the capability to capture transient 
states in irreversible materials processes with nanosecond temporal resolution. This high time 
resolution was achieved using laser-induced photoemission to produce a short burst of electrons 
to acquire images with spatial resolution of the order of ~10 nm and sufficient signal and 
coherence to image defect structures that control materials properties, as shown in Figure 1. A 
second laser synchronized to the photoemission laser drives specific reactions in the specimen, 
and a snapshot image or diffraction pattern of the reaction was acquired after a defined time 
interval (e.g., 10 ns, 100 ns, etc.). By combining several of these snapshot images or diffraction 
patterns from repeated experiments at different delay times, a time sequence of the on-average 
evolution of the reaction could be acquired to provide the intrinsic details of the dynamic 
reaction rather than merely inferring the complex reaction pathway from postmortem analysis. 

The DTEM’s initial single-pump/single-probe, single-shot DTEM (SS-DTEM), mode of 
operation was applied to, for example, phase transitions in nanocrystalline Ti [13,14], transient 
structures and morphologies of moving reaction fronts in Ni/Al reactive multilayer foils 
(RMLFs) [15,16], studies combining nanocalorimetry with DTEM [17], crystallization processes 
in Ni-Ti metallic glass [18], GeTe [19,20] and Ge2Sb2Te5 [21] phase-change materials, and 
amorphous Ge [22,23] thin films, rapid solidification in pure Al [24] and Al-based alloys [25], in 
situ heating of Al nanoparticle aggregates [26], and pulsed-laser-induced dewetting of Ni [27] 
and Co-Cu [28]thin films. This work using SS-DTEM demonstrated the significant capability to 
image transient states of strongly driven, highly non-equilibrium phase transformations with 
measurements of the kinetics of these rapidly evolving processes. However, there is inherent 
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variability associated with the 
single-shot approach to irreversible 
processes, as there may be small 
differences in the evolution of the 
process from experiment to 
experiment as well as variation in 
experimental parameters such as 
the laser energy used to drive the 
process. 

In order to alleviate these 
issues, the DTEM was upgraded to 
a single-pump/multi-probe mode of 
operation, or Movie Mode DTEM 
(MM-DTEM) [29-31]. Instead of 
providing a single snapshot (time-
delay image) of an event, a multi-
frame movie can now be acquired. 
Like SS-DTEM, MM-DTEM is 
based on a TEM that incorporates 
two pulsed lasers: the specimen 
drive laser and the cathode laser 
(see Figure 2). MM-DTEM 
incorporates three significant 
upgrades in the DTEM hardware: 
(1) A laser system based on an 
arbitrary waveform generator 
(AWG), capable of producing 
essentially any temporal pattern of 
pulses within a window of ~100 µs, 
(2) a set of high-speed electrostatic 
deflectors placed in the space 
between the electron lenses and the 
CCD camera, and (3) a fully 
programmable electronic timing 
and control system that orchestrates 

the entire process. 

The generation of a laser pulse train is essential for MM-DTEM to obtain a series of 
time-resolved nanosecond images of a transient event in a material. For increased flexibility in 
the laser system and to tailor the laser parameters for a given experiment, an AWG laser was 
designed and constructed. The AWG laser system can generate temporally shaped laser pulses, 
providing the capability to easily change the pulse duration and intensity and even to produce 
pulse trains with independent control over each individual pulse. This is an important 
breakthrough in the technology as it allows trade-offs to be made between temporal resolution, 
signal, coherence, and spatial resolution based on experimental needs. The AWG laser system 
allows for continuously variable and controlled electron pulse durations from ~1 µs down to 20 
ns. 

Figure 1. (a) Conventional continuous wave (CW) bright-field 
TEM image of a Au-C multilayer foil with 10-nm-thick layers, 
for comparison with (b) a 15-ns pulsed DTEM image of the 
same multilayer foil. The layers are clearly resolved in the 
pulsed image. The inset line profile in (b) shows the pixel 
intensity across the multilayer, with the intensity from the layers 
visible above the background, indicating that the resolution is 
~10 nm. (c) CW bright-field TEM image of a stainless-steel 
microstructure, including dislocations and stacking faults, for 
comparison with (d) a 15-ns pulsed image of the same 
microstructure. Despite the difference in exposure times of 
nearly eight orders of magnitude, most of the microstructural 
features evident in the CW image are visible in the pulsed image. 
These images were not processed apart from standard dark count 
and flat-field corrections. Images adapted from references [8,9]. 
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While the AWG laser can be programmed to create an arbitrary train of discrete electron 
pulses each with enough intensity to produce a high-quality image, without additional 
modification, all of the images would simply overlap at the camera, producing a multiply 
exposed image. A new high-speed electrostatic deflection system was designed and installed to 
direct each of the images to a separate region on the CCD camera. The camera itself does not 
need high time resolution. Rather, it remains in a receptive state throughout the entire 
experiment, so that all of the time resolution is in the electron pulse train and the electrostatic 
deflector. Thus, the interfame times are governed by the deflection speed. The current limits to 
the switching times range from ~20 ns to 10 µs between electron pulses. Typical MM-DTEM 
acquisitions are comprised of 9 frames, but this could be increased to 16 or even 25 frames with 
a higher-resolution CCD camera. 

Examples of MM-DTEM experiments are provided in Figures 3 and 4 to illustrate the 
types of studies that have been conducted. Figure 3 shows crystallization in an amorphous GeTe 
film, where growth was captured following a single nucleation event [32]. Figure 4 shows the 
rapid solidification of an Al-4at.%Cu alloy [33], with the associated measurements of the 
kinetics of the transformation. Other applications of MM-DTEM include disorder-order 
transitions in 2D copper-intercalated MoO3 [34], nanoscale condensed-phase reactions with Al 
and CuO nanoparticles [35], propagating fronts in reacting Ti-B nanolaminate films [31], 
crystallization kinetics of amorphous Ge [36-38] and GeSb6Te phase-change materials [39], 
dewetting of nanoscale Ni thin films on SrTiO3 substrates [40], and rapid solidification of pure 
Al [41] and Al-based alloy [33,42] thin films. 

In summary, the success of this project in developing an in situ dynamic TEM to study 
strongly driven, far-from-equilibrium phase transformations has significantly advanced our 

Figure 2. Schematic of the Movie Mode DTEM (MM-DTEM) technology, enabling single-pump/multi-
probe operation and true in situ microscopy capabilities in the DTEM in which multi-frame movies of 
rapidly evolving materials dynamics can be acquired.	
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understanding of these 
materials processes. 
Measurements of how 
metastable structural 
dynamics develop under 
these far-from-equilibrium 
conditions are critical to 
controlling materials 
properties and developing 
predictive modeling 
capabilities. The 
development of the Movie 
Mode DTEM represents a 
major advance in 
instrumentation 
development to enable 
transformational science 
and energy-related 
technologies, addressing 
identified needs to image 
materials far from 
equilibrium and to 
understand the critical roles 
of heterogeneities, 
interfaces, and disorder in 
materials. The imaging of 
structural states in a 
complex system with both 
spatial and temporal 

resolutions is a critical, existing challenge to understanding non-equilibrium materials evolution 
and driven transformations. The work performed under this project using both SS-DTEM and 
MM-DTEM demonstrated the potential of the technique to address this challenge. Many 
opportunities still exist, particularly in areas such as nanoscale solid-liquid interfaces for energy 
storage and materials synthesis, in situ corrosion studies, geochemical reactions at fluid-solid 
interfaces, and controlling microstructure as it develops under non-equilibrium conditions 
present, for example, during additive manufacturing. The DTEM continues to be a unique 
instrument, providing data that no other instrument in the world can produce. 

  

Figure 3. Movie Mode DTEM acquisition showing growth of crystalline 
regions (false-colored yellow) into amorphous GeTe (false-colored blue) 
in a nine-image series of 17.5-ns electron pulses after a 4.7 μJ laser shot. 
The time signature in each frame is relative to the time of the peak 
specimen laser intensity with an uncertainty of ±3 ns.  
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Figure 4. (a) Dynamic time-delay sequence of images recorded during rapid solidification in an Al-
4at.%Cu thin-film alloy. The indicated times below each image are the delays (in μs) between the peak of 
the Gaussian laser pulse used to melt the film and the 50-ns electron pulse used to form the image. (b) 
Time evolution of the (left) melt pool area, (middle) semi-major and semi-minor axes of the elliptical 
melt pool, and (right) solidification front velocity. The gray areas bounded by the semi-major and semi-
minor axes represent the ranges of (middle) axis length and (right) velocity along the solid-liquid 
interface. 
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