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Executive Summary

At the project’s inception, there was growing evidence that the time domain for in situ
observations of material evolution held great promise for allowing measurements to be made in
never previously contemplated regimes. Also, central to the development of the project was the
knowledge that phase transformations are of central importance to the development of materials
microstructure and hence properties. We addressed this opportunity by developing a transmission
electron microscope that could be operated in the pulsed mode (DTEM), with exposure times
down to 20 ns and interframe times down to 20 ns in the nine-frame movie mode, designed with
the intent of performing in sifu experiments. This unprecedented capability allowed us to
investigate structural phase transformations, intermetallic formation reactions, crystallization
from the amorphous phase, rapid solidification of liquid metals, transformations in phase change
materials, and catalyst nanoparticles. The ability of the electron microscope to create images
with high spatial resolution allows for the accurate measurement of position. Common to all of
the transformations mentioned above is the presence of a distinct interface between the old phase
and the growing new phase. Measuring the position of the interface as a function of time,
combined with the ability to count nucleation sites as a function of time, allowed for the
exceptionally accurate measure of transformation kinetics. These measurements were used to
guide and constrain the development of models and simulation methods for the classes of
transformations studied.



l. Narrative

Phase transformations are integral to the manipulation of materials and control of their
properties. The overarching hypothesis of this work was that in order to control materials
properties, the formation of its structure at the microscale (and nanoscale) must be understood,
meaning that the connections between processing conditions, driving forces, and microstructural
evolution must be understood. Typically, the structure of a material is determined after a process
step, such that evolution must be deduced indirectly. /n situ techniques provide opportunity to
observe structure formation while it occurs to reveal mechanistic details, though these
approaches are extremely challenging as many important materials processes are inherently fast.

In situ transmission electron microscopy (TEM) is a powerful characterization tool with
high spatial resolution for observations and measurements of structure formation and evolution
[1-7]. The ever-expanding role of in situ TEM as a materials characterization tool demonstrates
the need to identify through imaging the transient states of processes, which are often far more
important than just the starting and end states. In situ TEM has been largely constrained by
conventional video frame rates (30 Hz or ~33ms), though recent advances in CMOS-based and
direct detection cameras have in some cases reduced these frame rates to the sub-millisecond
regime. However, many dynamic processes occur across length and time scales that require
temporal resolutions of nanoseconds or higher—especially when driving forces are large and the
process is far from equilibrium.

These limitations were overcome by the development of the dynamic transmission
electron microscope (DTEM) [10-12], which increased the time resolution for in situ TEM
experiments by orders of magnitude to the nanosecond regime. The development of the DTEM
was a significant advancement over a standard TEM, providing the capability to capture transient
states in irreversible materials processes with nanosecond temporal resolution. This high time
resolution was achieved using laser-induced photoemission to produce a short burst of electrons
to acquire images with spatial resolution of the order of ~10 nm and sufficient signal and
coherence to image defect structures that control materials properties, as shown in Figure 1. A
second laser synchronized to the photoemission laser drives specific reactions in the specimen,
and a snapshot image or diffraction pattern of the reaction was acquired after a defined time
interval (e.g., 10 ns, 100 ns, etc.). By combining several of these snapshot images or diffraction
patterns from repeated experiments at different delay times, a time sequence of the on-average
evolution of the reaction could be acquired to provide the intrinsic details of the dynamic
reaction rather than merely inferring the complex reaction pathway from postmortem analysis.

The DTEM’s initial single-pump/single-probe, single-shot DTEM (SS-DTEM), mode of
operation was applied to, for example, phase transitions in nanocrystalline Ti [13,14], transient
structures and morphologies of moving reaction fronts in Ni/Al reactive multilayer foils
(RMLFs) [15,16], studies combining nanocalorimetry with DTEM [17], crystallization processes
in Ni-Ti metallic glass [18], GeTe [19,20] and Ge,Sb,Tes [21] phase-change materials, and
amorphous Ge [22,23] thin films, rapid solidification in pure Al [24] and Al-based alloys [25], in
situ heating of Al nanoparticle aggregates [26], and pulsed-laser-induced dewetting of Ni [27]
and Co-Cu [28]thin films. This work using SS-DTEM demonstrated the significant capability to
image transient states of strongly driven, highly non-equilibrium phase transformations with
measurements of the kinetics of these rapidly evolving processes. However, there is inherent
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variability associated with the
single-shot approach to irreversible
processes, as there may be small
differences in the evolution of the
, process from experiment to
e oy 2 experiment as well as variation in
' experimental parameters such as
' the laser energy used to drive the
process.

ity (CCD counts)

In order to alleviate these
issues, the DTEM was upgraded to
a single-pump/multi-probe mode of
operation, or Movie Mode DTEM
(MM-DTEM) [29-31]. Instead of
providing a single snapshot (time-
delay image) of an event, a multi-
frame movie can now be acquired.
Like SS-DTEM, MM-DTEM is
based on a TEM that incorporates
two pulsed lasers: the specimen

Figure 1. (a) Conventional continuous wave (CW) bright-field drive las.er and the cathode laser
TEM image of a Au-C multilayer foil with 10-nm-thick layers, (See Figure ~ 2). MM'I,)TEM
for comparison with (b) a 15-ns pulsed DTEM image of the corporates three  significant
same multilayer foil. The layers are clearly resolved in the upgrades in the DTEM hardware:
pulsed image. The inset line profile in (b) shows the pixel (1) A laser system based on an
intensity across the multilayer, with the intensity from the layers arbitrary =~ waveform  generator
visible above the background, indicating that the resolution is (AWG), capable of producing
~10 nm. (c) CW bright-field TEM image of a stainless-steel essentially any temporal pattern of
microstructure, including dislocations and stacking faults, for pyjses within a window of ~100 ps,
comparison with (d) a 15-ns pulsed image of the same
microstructure. Despite the difference in exposure times of
nearly eight orders of magnitude, most of the microstructural
features evident in the CW image are visible in the pulsed image.
These images were not processed apart from standard dark count
and flat-field corrections. Images adapted from references [8,9].

(2) a set of high-speed electrostatic
deflectors placed in the space
between the electron lenses and the
CCD camera, and (3) a fully
programmable electronic timing
and control system that orchestrates
the entire process.

The generation of a laser pulse train is essential for MM-DTEM to obtain a series of
time-resolved nanosecond images of a transient event in a material. For increased flexibility in
the laser system and to tailor the laser parameters for a given experiment, an AWG laser was
designed and constructed. The AWG laser system can generate temporally shaped laser pulses,
providing the capability to easily change the pulse duration and intensity and even to produce
pulse trains with independent control over each individual pulse. This is an important
breakthrough in the technology as it allows trade-offs to be made between temporal resolution,
signal, coherence, and spatial resolution based on experimental needs. The AWG laser system
allows for continuously variable and controlled electron pulse durations from ~1 ps down to 20
ns.



4

;
;
!
|
1
!

@High Speed Deflector Array
rapidly switches pulses to different
regions on the CCD

5 Single Electron Sensitive
D Camera

Figure 2. Schematic of the Movie Mode DTEM (MM-DTEM) technology, enabling single-pump/multi-
probe operation and true in situ microscopy capabilities in the DTEM in which multi-frame movies of
rapidly evolving materials dynamics can be acquired.

While the AWG laser can be programmed to create an arbitrary train of discrete electron
pulses each with enough intensity to produce a high-quality image, without additional
modification, all of the images would simply overlap at the camera, producing a multiply
exposed image. A new high-speed electrostatic deflection system was designed and installed to
direct each of the images to a separate region on the CCD camera. The camera itself does not
need high time resolution. Rather, it remains in a receptive state throughout the entire
experiment, so that all of the time resolution is in the electron pulse train and the electrostatic
deflector. Thus, the interfame times are governed by the deflection speed. The current limits to
the switching times range from ~20 ns to 10 ps between electron pulses. Typical MM-DTEM
acquisitions are comprised of 9 frames, but this could be increased to 16 or even 25 frames with
a higher-resolution CCD camera.

Examples of MM-DTEM experiments are provided in Figures 3 and 4 to illustrate the
types of studies that have been conducted. Figure 3 shows crystallization in an amorphous GeTe
film, where growth was captured following a single nucleation event [32]. Figure 4 shows the
rapid solidification of an Al-4at.%Cu alloy [33], with the associated measurements of the
kinetics of the transformation. Other applications of MM-DTEM include disorder-order
transitions in 2D copper-intercalated MoQO; [34], nanoscale condensed-phase reactions with Al
and CuO nanoparticles [35], propagating fronts in reacting Ti-B nanolaminate films [31],
crystallization kinetics of amorphous Ge [36-38] and GeSbsTe phase-change materials [39],
dewetting of nanoscale Ni thin films on SrTiOs substrates [40], and rapid solidification of pure
Al [41] and Al-based alloy [33,42] thin films.

In summary, the success of this project in developing an in situ dynamic TEM to study
strongly driven, far-from-equilibrium phase transformations has significantly advanced our
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Figure 3. Movie Mode DTEM acquisition showing growth of crystalline
regions (false-colored yellow) into amorphous GeTe (false-colored blue)
in a nine-image series of 17.5-ns electron pulses after a 4.7 pJ laser shot.
The time signature in each frame is relative to the time of the peak
specimen laser intensity with an uncertainty of £3 ns.

understanding  of  these

materials processes.
Measurements of  how
metastable structural

dynamics develop under
these far-from-equilibrium
conditions are critical to

controlling materials
properties and developing
predictive modeling
capabilities. The

development of the Movie
Mode DTEM represents a
major advance in
instrumentation

development to  enable
transformational science
and energy-related
technologies, addressing
identified needs to image
materials far from
equilibrium and to
understand the critical roles
of heterogeneities,
interfaces, and disorder in
materials. The imaging of
structural states in a
complex system with both
spatial and temporal

resolutions is a critical, existing challenge to understanding non-equilibrium materials evolution
and driven transformations. The work performed under this project using both SS-DTEM and
MM-DTEM demonstrated the potential of the technique to address this challenge. Many
opportunities still exist, particularly in areas such as nanoscale solid-liquid interfaces for energy
storage and materials synthesis, in sifu corrosion studies, geochemical reactions at fluid-solid
interfaces, and controlling microstructure as it develops under non-equilibrium conditions
present, for example, during additive manufacturing. The DTEM continues to be a unique
instrument, providing data that no other instrument in the world can produce.
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Figure 4. (a) Dynamic time-delay sequence of images recorded during rapid solidification in an Al-
4at.%Cu thin-film alloy. The indicated times below each image are the delays (in ps) between the peak of
the Gaussian laser pulse used to melt the film and the 50-ns electron pulse used to form the image. (b)
Time evolution of the (left) melt pool area, (middle) semi-major and semi-minor axes of the elliptical
melt pool, and (right) solidification front velocity. The gray areas bounded by the semi-major and semi-
minor axes represent the ranges of (middle) axis length and (right) velocity along the solid-liquid
interface.
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