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V. Gyrya, K. Lipnikov

July 14, 2017

Abstract

We present the arbitrary order mimetic finite difference (MFD) discretization for
the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed
formulation on general polygonal meshes. The diffusion tensor is assumed to be positive
definite. The asymmetry of the diffusion tensor requires changes to the standard MFD
construction. We present new approach for the construction that guarantees positive
definiteness of the non-symmetric mass matrix in the space of discrete velocities. The
numerically observed convergence rate for the scalar quantity matches the predicted
one in the case of the lowest order mimetic scheme. For higher orders schemes, we
observed super-convergence by one order for the scalar variable which is consistent
with the previously published result for a symmetric diffusion tensor. The new scheme
was also tested on a time-dependent problem modeling the Hall effect in the resistive
magnetohydrodynamics.

1 Introduction

The last decade has seen a development of a large number of discretization methods that
work on unstructured polytopal (polygonal or polyhedral) meshes. Such meshes are in
high demand in various engineering applications due to a critical flexibility they provide
for working with complex geometries (e.g. subsurface flows). They appear as a result
of mesh refinement, de-refinement, reconnection and other optimizations. They may also
appear in multi-physics applications as dual to simpler meshes (e.g. Voronoi mesh as dual to
a triangular mesh). In this time period, many discretization methods on polytopal meshes
were extended to higher order. Higher-order schemes reduce significantly numerical diffusion
which is critical for a number of multi-physics applications, e.g. for problems with dominated
vorticity.

In this paper we present a new arbitrary order mimetic finite difference (MFD) method
for diffusion problems with non-symmetric tensorial coefficients written in a mixed form.
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This work revisits and extends the ideas developed in [14] for diffusion problems with sym-
metric tensors. The derivations are limited to polygonal meshes, although the underlying
construction can be readily adjusted to polyhedral meshes.

The MFD method mimics important properties of the mathematical and physical sys-
tems such as conservation laws, symmetries, and duality of first-order differential operators.
We refer readers to [14] for the discussion on the relationship between the MFD and other
recently developed methods that can also work on polygonal meshes, such as the polyg-
onal finite element (FE) methods [23, 20], hybrid high-order methods [5, 6], discontinuous
Galerkin methods [7, 4], weak Galerkin method [17, 24], virtual element method [1, 3], mixed
finite volume (FV) method [9, 8], hybrid FV method [11], discrete duality FV method [16],
and gradient schemes [10]. We also refer interested readers to a review article [18] for a com-
prehensive historical overview of the development of mimetic schemes from classical finite
differences to their present form.

Symmetry played a crucial role in the construction of the high-order mimetic schemes in
our previous work [14], as well as in all prior mimetic schemes [18]. However, no extension
to the case of a non-symmetric diffusion tensor has yet been done. This work addresses this
shortcoming by analyzing various strategies for including asymmetry in a discrete scheme.

Although in most diffusion problems the diffusion tensor is symmetric (even isotropic),
there exist a number of important applications that give rise to a non-symmetric diffusion
tensor, e.g. in magnetohydrodynamics [21, 22, 25] and in ocean modeling for representing
eddy-induced transport phenomena [12, 13]. In Section 5, we consider a mathematical model
of plasma with the Hall effect which could be cast as the diffusion problem with a non-
symmetric diffusion tensor. The asymmetry may also appear as the result of incorporating
an advection term into a diffusion one, see Section 2.3. In our numerical experiments, we
will consider elliptic and parabolic problems with a non-symmetric positive definite diffusion
tensor that is either independent from solution or has the anti-symmetric component that is
proportional to the solution.

The standard recipe for building mimetic schemes requires the mass matrix (in the space
of discrete velocities) to satisfy two conditions: (i) the polynomial consistency and (ii) the
spectral stability. Typically, one can write the cell-based mass matrix as a sum of two
terms. The first term satisfies the consistency condition, but is a generate matrix for a
general polytopal cell. The second term restores positive definiteness without breaking the
consistency condition. Moreover, it guarantees uniform spectral bounds on shape regular
meshes. This decomposition of the mass matrix can be viewed analogous to how a solution
of an under-determined system can be written as a sum of a particular solution plus a general
solution of the homogeneous system. The general solution is then selected in such a way to
satisfy additional conditions, the spectral stability on our case.

In the case of a non-symmetric diffusion tensor, one can write two (left and right) con-
sistency conditions, whereas in the symmetric case these conditions are identical. The right
consistency condition is related to scheme accuracy, or its ability to satisfy the patch test,
i.e. the scheme reproduces exactly polynomial solutions that belong to the approximation
space. The left consistency condition becomes important when we want to solve efficiently
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both the primary and dual diffusion problems. In this paper, we compare schemes with one
and two consistence conditions. It appears that additional (the left) consistency condition
can further improve (sometimes significantly) accuracy of the higher order schemes.

Efficient numerical solution of a diffusion problem is based on the hybridization of the
mixed formulation. The hybridization procedure requires only inverse of the local mass
matrix. Regardless of the number of employed consistency conditions, we can directly build
the inverse of the mass matrix. The inverse matrix satisfies its own consistency conditions
that are similar to that for the mass matrix; hence, it is built as the sum of the respected
consistency and stability terms.

If for some reasons one needs a cell-based mass matrix, it can be easily build in a scheme
based on only one (the right) consistency condition. For the schemes with two consistency
conditions, we were unable to find a simple form for the stability term; hence, the construc-
tion of the inverse matrix has to be done first followed by its inversion.

The magnetohydrodynamics problem considered in Section 5 is the example of a problem
with non-standard boundary conditions. In this problem, value of the normal derivative is
specified on the boundary instead of a more conventional value of the flux which depends
on the diffusion tensor. We extended the mimetic discretization technology to support such
boundary conditions.

The rest of the paper is organized as follows. In Section 2 we present the elliptic and
parabolic problems and write them in the mixed form. In Section 3 we present basic steps in
the construction of mimetic schemes leaving details of the inner product matrix construction
to Section 4. In Section 5 we present several numerical results that verify important proper-
ties of the mimetic schemes such as convergence rates and robustness on polygonal meshes.
In Section 6 we make several concluding remarks. In the Appendix we present additional
details that could help a reader with better understanding of some construction steps.

2 Problem statement

First, we consider a general elliptic problem and develop its mimetic discretization, since
it contains major discretization challenges. Then, we extend the construction to parabolic
problems by discretizing the accumulation term.

2.1 Elliptic problem

Consider a steady state diffusion problem in Ω ⊂ Rd for a scalar variable p, referred to as
the potential, with a scalar forcing term f and a diffusion tensor K:

− div(K∇p) = f in Ω,

subject to the boundary conditions on ∂Ω = ΓD ∪ ΓN :{
p = gD on ΓD,

n · (K∇p) = gN on ΓN ,
(1)
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where n is a unit outward normal. We will also consider a variant of the Neumann boundary
condition of the form

n · ∇p = gN on ΓN . (2)

The Neumann boundary condition in (1) is the most natural choice, while condition (2)
appears less often in physical systems and requires a more detailed discussion.

The diffusion coefficient K may not be symmetric, yet it is assumed to be strongly elliptic,
i.e. there exists positive constants α∗ and α∗ such that

α∗‖x‖2 ≤ xTKx ≤ α∗‖x‖2 for any x ∈ Rd.

For the rest of the paper we will assume that d = 2; yet, the construction can be readily
adjusted to d = 3 like it is done in [14] for the case of a symmetric tensor.

We rewrite the original equation in a mixed form using an auxiliary variable u = −K∇p,
referred to as the velocity or flux:{

K−1u = −∇p
div(u) = f

in Ω. (3)

The boundary conditions (1) are naturally written as boundary conditions for p and u:

p = gD on ΓD, and n · u = gN on ΓN .

The non-standard Neumann boundary condition (2) takes the following form:

n ·K−1u = gN on ΓN .

2.2 Parabolic problem

Discretization for a parabolic problem is the natural extension of that of an elliptic problem.
Let

pt − div(K∇p) = f in Ω,

subject to boundary conditions (1) and the initial condition

p(0,x) = g0(x) in Ω.

The mixed formulation of the parabolic problem is written as{
K−1u = −∇p

pt + div(u) = f
in Ω.

The boundary conditions for this formulation have the same form as in the elliptic case.
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2.2.1 Time discretization of the parabolic system

Let us define velocity un+θ for an integer n and a parameter θ ∈ [0, 1] as the linear interpo-
lation of two adjacent (in time) velocities un and un+1:

un+θ = θun+1 + (1− θ)un.

The time discretization takes the following form:⎧⎨⎩
K−1un+θ = −∇pn+θ,

pn+1 − pn

�t
+ div(un+θ) = fn+θ.

(4)

The value of θ = 1 corresponds to the implicit Euler discretization; θ = 1
2
corresponds to the

Crank-Nicolson discretization; θ = 0 corresponds to the explicit discretization.

2.3 Antisymmetric diffusion as advection

In this section we establish a link between the antisymmetric part of the diffusion tensor and
the advection operator. Let Ka denote the antisymmetric part of K:

Ka :=
1

2

(
K−KT

)
=

[
0 κa

−κa 0

]
,

where κa may be spatially dependent. Consider the term

div(Ka∇p) = κa,xpy − κa,ypx = curl(κa) · ∇p.

When κa is curl-free, the antisymmetric part of the diffusion tensor has no contribution to
the elliptic operator. In particular this is true for constant κa. For κa that is not curl-free
the antisymmetric part Ka leads to a term that can be interpreted as the advection operator.
In this case curl(κa) can be interpreted as a velocity.

Remark 1. A converse of the above is also true. Any advection term that can be written in
the form curl(κa) · ∇p can be rewritten as an antisymmetric part of the diffusion term and
discretized using the approach of this paper.

3 Mimetic finite difference method

Let us consider a sequence of shape-regular mesh partitions Ωh characterized by the mesh
size parameter h. On a mesh Ωh, we define discrete analogs ph, qh and fh of scalar functions
p, q and f , and discrete analogs uh, vh of vector functions u, v. They will be introduced
formally in Section 3.2. We assume that ph and qh belong to the linear approximation space
Qh which is referred to as the space of scalar grid functions, and that uh and vh belong to
the linear approximation space Xh, which is referred to as the space of flux grid functions.
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We equip Qh with the mimetic inner product [·, ·]Qh
, see Section 3.4 for more details, and

Xh with the bilinear form [·, ·]Xh
, see Section 3.6. Due to asymmetry of K, the bilinear form

[·, ·]Xh
is not an inner product. Instead, we will refer to it as the extended inner product,

since all conditions other than symmetry are satisfied by it. The construction of the extended
inner product is one of the main goals of this paper.

Let DIV : Xh → Qh be a discrete divergence operator which is introduced formally in

Section 3.5. It approximates the continuous operator div. Furthermore, let G̃RAD : Qh →
Xh be a discrete gradient operator, see Section 3.8 for its construction. It approximates the
combined operator K∇. In the mimetic framework, the discrete divergence and gradient
operators satisfy a discrete analogue of the Green formula.

Let X̃h be a subspace of Xh of functions that satisfy the Neumann boundary conditions.
The mixed MFD formulation for the elliptic system (3) reads: Find ph ∈ Qh and uh ∈ X̃h

such that {
uh = −G̃RAD ph,

DIV uh = fh.

3.1 Preliminary notations

We define Pl(E) as the space of polynomials on mesh polygon E of degree at most l. The
dimension of the space Pl(E) is equal to nE

l = (l+1)(l+2)/2. Here l is a generic integer and
in the formulation of the method it may take different values. Let Ml(E) := {mE,i}i=1,...,nE

l

be a set of nE
l scaled monomials forming a basis in Pl(E),

mE,i =

(
x− xc,E

hE

)αi,x
(
y − yc,E

hE

)αi,y

, (5)

where hE = |E|12 scales like the diameter of cell E, (xc,E, yc,E) is its center of mass, and
(αi,x, αi,y) is a multi-index such that αi,x+αi,y ≤ l. We assume ascending alphabetic ordering
of the multi-index so that mE,0 = 1. The scaling in (5) simplifies enforcement of the spectral
stability conditions. It leads to a simple scaling relation between matrices built on elements
that can be obtained from one another by scaling, see Appendix B.

We define the projection operator ΠE
l : L2(E)→ Pl(E) by the following conditions:∫

E

ΠE
l (u)p dE =

∫
E

u p dE for all p ∈ Pl(E).

With a slight abuse of notation, we use the same symbol for the vector projection operator,
ΠE

l : (L2(E))d → (Pl(E))d, which is defined component-wise using the above formula.
For the mesh edge e and a non-negative integer number l, we take Pl(e) to be the space

of polynomials on e of degree up to l. The dimension of the space Pl(e) is n
e
l = l + 1. Let

Ml(e) := {me,i}i=1,...,ne
l
be a set of scaled monomials forming a basis in P l(e):

me,i = si−1, (6)
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where s defines the local variable for edge e. It is equal to zero at the edge center and ±1
at the edge end points

We define the projection operator Πe
l : L

2(e)→ Pl(e) by the following conditions:∫
e

Πe
l (u)p dE =

∫
e

u p dE for all p ∈ Pl(e).

When working with square matrices we will often find a need to extract their symmetric
part. It will be convenient to introduce a shorthand notation for this

MS :=
1

2

(
M+MT

)
,

where MT is the transpose of M.

3.2 Degrees of freedom and local interpolation operators

Let k > 0 be an integer associated with the polynomial order of our scheme. For a cell E,
the local approximation space QE consists of nE

k−1 DoF that are associated with the interior
of the cell, see Fig. 1. The local interpolation operator I : L2(E) → QE is defined using
monomials (5) as follows

pIE =
{
pIE,i

}
i=1,...,nE

k−1

, pIE,i =
1

|E|
∫
E

pmE,i dE.

There is a one-to-one correspondence between QE and the space of polynomials Pk−1(E).
The global approximation space Qh is defined in terms of the local ones as

Qh = {ph : ph|E ∈ QE} , (7)

where ph|E is a restriction of ph to cell E. Note that this definition does not include any
boundary conditions.

For a cell E, the local approximation spaceXE consists of two groups of DoFs (see Fig. 1):

• (nE
k−1 − 1) degrees of freedom, vIE,i, associated with the interior of the cell;

• ne
k degrees of freedom, vIe,i, associated with each edge e of the cell.

The local interpolation operator I : L2(E) → XE is defined separately for each group. For
the internal DoFs, we use scaled monomials (5) except for mE,0 = 1:

vIE,i =
hE

|E|
∫
E

v · ∇mE,i dE. (8)

For the edge DoF, we use monomials (6) and the fixed edge normal vector ne:

vIe,i =
1

|e|
∫
e

(v · ne)me,i de. (9)

The global approximation space Xh collects all unique DoF introduced above. The space
X̃h is the subspace of Xh that satisfies the Neumann boundary conditions discussed in
Section 3.7.
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Figure 1: Degrees of freedom for approximation spaces QE and XE for k=1,2,3,4.

3.3 Mesh regularity assumptions

A number of assumptions on the shape of mesh cells needs to be made for the numerical and
theoretical analysis of the proposed schemes.

(MRA1) There exists a mesh independent number ρ∗, such that every cell E is star-shaped
(i.e. visible from) with respect to every point of a circle of radius ρ∗hE.

(MRA2) There exists a mesh independent number N∗, such that every cell E can be
conformally partitioned into at most N∗ shape-regular triangles T , i.e.

ρ∗hT ≤ rT , (10)

where rT is the radius of the inscribed sphere in T and hT is the diameter of T .

3.4 Inner product on Qh

We start by defining the global inner product [·, ·]Qh
as a sum of local contributions:

[ph, qh]Qh
=

∑
E

[ph, qh]QE
.

The local inner products [·, ·]QE
satisfy the consistency condition

[pIE, q
I
E]QE

=

∫
E

p q dE for all p, q ∈ Pk−1(E). (11)

Due to the one-to-one correspondence between QE and Pk−1(E), the local and, hence, the
global inner products are well defined by (11). In the matrix form, the local inner product
[·, ·]QE

is represented by a symmetric positive definite matrix MQE
. The global inner product

is represented by the block-diagonal matrix MQh
with as many blocks as there are mesh cells.
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3.5 DIV operator

Hereafter, we consider mostly a single cell E. For each edge e of this E, we assume that
ne is the exterior normal. Orientation of the edge normals is important for the assembly of
global operators and global matrices.

Let DIVE denote the discrete divergence operator restricted to cell E. This operator is
defined in such a way that it commutes with the interpolation operator, i.e. for any function
u and its interpolant uI

E ∈ XE, we have

DIVEu
I
E = (div u)IE.

For any polynomial p ∈ Pk−1(E) and its interpolation pIE ∈ QE we have

[DIVE uI
E, p

I
E]QE

=

∫
E

(div u) p dE = −
∫
E

u · ∇p dE +
∑
e∈∂E

∫
e

(u · ne)p de. (12)

Since p is a polynomial, the right-hand side of (12) can be written in terms of the DoF of
uI
E. Thus, (12) defines the local (and hence the global) divergence operator uniquely.

3.6 Extended inner product on Xh

We define the global extended inner product [·, ·]Xh
as a sum of local extended inner products:

[vh, uh]Xh
=

∑
E

[vh|E, uh|E]XE
.

A key to the construction of an accurate local extended inner product lies in the consistency
conditions. Due to asymmetry of the tensor K, the extended inner products are no longer
symmetric. As a consequence, instead of a single consistency condition, like in the previous
mimetic schemes, we have two consistency conditions.

Consistency conditions: For all p ∈ Pk+1(E) and for all v such that div v ∈ Pk−1(E) and
v · n ∈ Pk(e) for all edges e ∈ ∂E we have

[(ΠE
k (K

T∇p))I , vI
E]XE

=

∫
E

∇p · v dE, (13)

[vI
E, (Π

E
k (K ∇p))I ]XE

=

∫
E

∇p · v dE. (14)

Hereafter (13) is referred to as the left and (14) as the right consistency conditions. Note
that the space of functions v above is sufficiently rich so that vI

E covers all of XE. Also
note that the right-hand side in both conditions is the same and can be computed without
explicit knowledge of v inside cell E using only its DoF:∫

E

∇p · v dE = −
∫
E

p (div v) dE +
∑
e∈∂E

∫
e

pv · n ds. (15)
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Thus, the right-hand side can be written as the dot products rE(p)
T vE with computable

vector rE depending on polynomial p.
The right consistency condition is necessary and sufficient for scheme convergence. The

left consistency condition is necessary when the primal and dual problems have to be solved
simultaneously. Our numerical experiments indicate that it also improves significantly ac-
curacy of the primal problem. We also observed a slightly higher convergence rate. The
construction of the extended inner product is done in Section 4.

In addition to the consistency conditions, we require the stability conditions, which is
formulated in terms of the matrix ME corresponding to the local extended inner product
[uI

E, v
I
E]XE

.
Stability conditions: There exists two positive constants α0 and α1 such that for any cell

E and any vector V ∈ XE these two conditions are satisfied [19]:

α0|E|‖V ‖2 ≤ V TMEV, (16)

‖MEV ‖ ≤ α1|E|‖V ‖, (17)

where ‖V ‖ indicates the Euclidean norm of V .

Remark 2. Note that condition (17) implies

|V TMEV | ≤ α1|E|‖V ‖2 (18)

but not the other way around, i.e. (17) is stronger than (18). The conditions (16) and (18)
are both conditions on the symmetric part of the generalized inner product matrix ME, while
(17) also bounds the asymmetric part of ME.

3.7 Neumann boundary conditions

Typically, the Neumann boundary condition specifies the flux on the domain boundary. How-
ever, in some applications (e.g., see the resistive MHD problem in Section 5.2), the normal
gradient of the solution may be specified. On the discrete level, in all cases the Neumann
boundary conditions prescribe values to some DoF of uh, hence effecting the definition of
the approximation space. For the conventional Neumann conditions, we prescribe the given
flux values directly to the DoF:

X̃h =
{
uh : uh|E ∈ XE and for e ∈ ΓN ue,α =

∫
e

gN mα ds, α = 0, . . . , k
}
. (19)

To approximate the non-standard Neumann boundary conditions, we need a local ap-
proximation of the gradient, i.e. −K−1u. This approximation will be defined on each near-
boundary cell as a linear map

LE : XE → XE,

such that for any uE,vE ∈ XE we have

[uE, vE]XE
= [[uE, LEvE]]XE

. (20)
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Here [[·, ·]]XE
is the inner product built the same way as the extended inner product [·, ·]XE

,
but the tensor K is replaced with the identity tensor. Thus, [[uI

E, v
I
E]]XE

approximates∫
E
u · v dE. Let M̃XE

be the matrix of the new inner product. Then, the linear map LE is
defined uniquely by (20) as

LE = M̃−1
XE

MXE
.

For each e ∈ ΓN and the attached cell E, the non-standard Neumann boundary condition is
written as

(LEuE)e,α =

∫
e

gN mα ds, α = 0, . . . , k.

This equation can be used to eliminate the DoF corresponding to boundary edges from the
final system. Formally, the global approximation space for the flux is defined as

X̃h =
{
uh : uh|E ∈ XE, for e ∈ ΓN , e ∈ ∂E (LEuE)e,α =

∫
e

gN mα ds, α = 0, . . . , k
}
. (21)

Remark 3. Definition (21) reduces to definition (19) when we replace LE with the identity
matrix. This framework can be generalized to any boundary conditions of the form T∇p ·n =
gN where T is a positive definite tensor.

3.8 G̃RAD operator and Dirichlet boundary conditions

We define operator G̃RAD : Qh → Xh via a discrete version of the Green formula. This
operator is the dual to operator DIV when the homogeneous Dirichlet boundary conditions
are imposed on ΓD. Recall that for a function v with zero normal component on ΓN , we
have ∫

Ω

v ·K−1(K∇p) dΩ = −
∫
Ω

(div v)p dΩ +

∫
ΓD

(v · n) p ds.

Consider the interpolant vI
h ∈ Xh. Then for any ph ∈ Qh, we consider the following discrete

Green formula:

[vI
h, G̃RAD ph]Xh

= −[DIV vI
h, ph]Qh

+
∑
e∈ΓD

∫
e

(v · n) Πe
k(gD) ds. (22)

The projection operator in the integrals over edges corresponding to the Dirichlet boundary
conditions allows us to express them in terms of DoF of vI

h, see (9).

3.9 The forcing term fh

The forcing term fh is approximated on each cell E by taking its orthogonal projection onto
polynomials of order k−1. For any piecewise polynomial function q such that q|E ∈ Pk−1(E),
we have the following identity

[fh, q
I
h]Qh

=
∑
E

∫
E

ΠE
k−1(f) q dE =

∑
E

∫
E

f q dE.
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4 Extended inner product on space XE

Recall that the extended inner product [·, ·]XE
is represented by matrix MXE

. To simplify
the notations, we shorten or drop completely the subscript, i.e. we write either ME or M.

Let us first rewrite the left-hand sides of (13) and (14) as vector-matrix-vector products
and the right-hands sides as dot products of two vectors using (15). Since vE is the arbitrary
vector, we can cancel it to obtain the following matrix equations:

NT
l M = RT , (23)

MNr = R. (24)

The columns of rectangular matrices Nl and Nr consist of DoF of L2-projections ΠE
k (K

T∇pi)
and ΠE

k (K∇pi), respectively, where pi = hE mE,i, i > 1:

Nl =
[
Nl,1, . . . , Nl,nE

k+1−1
]

and Nr =
[
Nr,1, . . . , Nr,nE

k+1−1
]
,

The scaling coefficient hE makes matrices Nl and Nr scale-invariant, see the Appendix for
more details. The columns of R are vectors Ri = rE(pi+1):

R =
[
R1, . . . , RnE

k+1−1
]
. (25)

It is important for subsequent derivations that matrix R does not depend on the diffusion
tensor K.

Lemma 1. The matrices in the left and right consistency conditions (23) and (24) satisfy

NT
l R = RTNr =: K. (26)

Moreover, K is the positive definite matrix.

Proof. Let p, q ∈ Pk+1(E). Using the matrix form of the consistency conditions and defini-
tions (13)-(14), we have

NT
l,iRj =

∫
E

ΠE
k (K

T∇pi+1)∇qj+1 dE =

∫
E

(KT∇pi+1) · ∇qj+1 dE,

RT
i Nr,j =

∫
E

∇pi+1 · ΠE
k (K∇qj+1) dE =

∫
E

∇pi+1 · (K∇qj+1) dE,

where we used properties of the L2(E)-projector in the last steps. The last integrals in both
formulas are identical. Recall that the tensor K is positive definite, the basis functions pi
are linearly independent and their span does not contain a constant function. Using the
argument by contradiction, we can easily show that the matrix K is positive definite. This
concludes the proof.
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Next we present two approaches to the construction of the inner product matrix M.
In the first approach, see Section 4.1, the inner product matrix satisfies only the right
consistency condition (24) and in general does not satisfy the left consistency condition (23).
In the second approach, see Section 4.2, the inner product matrix satisfies both consistency
conditions. In Appendix A, we show that in the intuitive extension of the construction
procedure from a symmetric tensor K to a non-symmetric one, it is difficult to enforce
positive definiteness of M. Instead, we will show how to construct a positive definite matrix
W := M−1. Recall that positive definiteness of W implies that of M.

4.1 Satisfying right consistency condition only

Following closely to the conventional construction procedure [14], we build the inner product
matrix M as the sum of the consistency, Mcons, and stability, Mstab, terms:

M = Mcons +Mstab, Mcons = R K
−1
RT . (27)

Using Lemma 1, it is straightforward to verify that the consistency term satisfies the right
consistency condition:

MconsNr = R K
−1
RTNr = R K

−1
K = R.

The same lemma helps us to verify that Mcons also satisfies the left consistency condition.
The consistent term is only semi-positive definite, even for a triangular cell E. Its null

space consists of vectors orthogonal to columns of R. The stability term Mstab fixes this
problem without breaking the consistency condition. The later means that

MstabNr = 0. (28)

This orthogonality condition can be satisfied by writing the stability term as

Mstab = DrS DT
r , Dr = I− Nr(N

T
r Nr)

−1NT
r , (29)

where S is a positive definite matrix and Dr is the orthogonal compliment to Nr, i.e. D
T
r Nr =

0 and square matrix [Dr, Nr] has full rank.
Let us show that the resulting matrix M is positive definite. Using expressions (27) and

(29) and orthogonality condition (28), we obtain

V TMV = V TMconsV + V TMstabV = V TRK
−1
RTV + V TDr SD

T
r V.

Both terms are semi-positive definite due to properties of matrices K and S. The stability
term is zero only when DT

r V = 0; hence, V = Nr V1. The consistency term is zero only when
RT V = 0; hence, RT Nr V1 = 0. Lemma 1 implies that V1 = 0 and positive definiteness of
the inner product matrix follows.

13



4.2 Satisfying both consistency conditions

Although matrix Mcons constructed in the previous section satisfies both consistency con-
ditions the resulting matrix M in (27) is guarantied to satisfy only the right consistency
condition due to the form of the stability term Mstab. In the Appendix A we demonstrate
that using the general form of the stability term Mstab that preserves both consistency condi-
tions, it is not clear how to guaranty positive definiteness of the resulting matrix M. Hence,
there is a need for an alternative approach presented in this section.

We will perform the construction on an element with unit area. To obtain the matrix on
a general element E one can first rescale the element, build the mass matrix on the rescaled
element and multiply it by |E|. This construction is similar to the FE construction on a
reference element and immediately implies independence of the condition number from the
size of the element.

Let us rewrite consistency conditions (23)-(24) as the conditions for the inverse of the
inner product matrix W = M−1:

RT W = NT
l , (30)

WR = Nr. (31)

As before, we build matrix W as the sum of the consistency and stability terms:

W = Wcons +Wstab, Wcons = Nr K
−1

NT
l and Wstab = R⊥ ZRT

⊥, (32)

where Z is a positive definite matrix, and R⊥ is the orthonormal compliment to R, i.e.
RTR⊥ = 0, square matrix [R,R⊥] has full rank, and RT

⊥R⊥ = I. Note that the consistency
term may not be positive definite in general. However, it is positive definite on the range of
matrix R, since RT WconsR = K.

Using Lemma 1, it is straightforward to verify that matrix W satisfies both consistency
conditions (30) and (31). Indeed, by the construction, the columns on R form the null space
of the stability term:

RT W = RT Wcons = RT Nr K
−1

NT
l = NT

l ,

WR = Wcons R = Nr K
−1

NT
l R = Nr.

Remark 4. The advantage of (32) versus a similar construction done for matrix M in
Appendix A lies in the form of the stability term. In the construction for M, it is difficult to
enforce positive semi-definiteness of stability term (52) because Dl 
= Dr in general, whereas
in (32) positive semi-definiteness of Wstab is easy to control.

Next, we will focus on satisfying the spectral stability conditions (and, in particular,
positive definiteness) through a proper choice of the parameter matrix Z. Consider a generic
vector V and its decomposition into two orthogonal components:

V = RVR + R⊥ VR⊥ .

14



Then, we have

V TWV = V T
R (RTWconsR)VR + V T

R⊥(R
T
⊥Wstab R⊥)VR⊥+

+ V T
R (RTWconsR⊥)VR⊥ + V T

R⊥(R
T
⊥WconsR)VR + V T

R⊥(R
T
⊥WconsR⊥)VR⊥ .

(33)

The first two terms in (33) are non-negative by construction:

V T
R (RTWconsR)VR = V T

R KVR ≥ 0 and V T
R⊥(R⊥WstabR⊥)VR⊥ = V T

R⊥ZVR⊥ ≥ 0. (34)

The last three terms could be developed as follows

V T
R (RTWconsR⊥)VR⊥ = V T

R (NT
l R⊥)VR⊥ ,

V T
R⊥(R

T
⊥WconsR)VR = V T

R⊥(R
T
⊥Nr)VR, (35)

V T
R⊥(R

T
⊥WconsR⊥)VR⊥ = V T

R⊥(R
T
⊥Nr)K

−1
(NT

l R⊥)VR⊥ .

Note that only the term (34) depends on the choice of the parameter matrix Z, while three
terms in (35) do not depend on the choice of Z. Yet, the later three terms could be negative.
In order to make the whole expression (33) positive, we should offset possible negative values
using a stronger (in the spectral sense) matrix Z.

We can rewrite (33) using (34) and (35) as

V T WV =

[
VR

VR⊥

]T [
K NT

l R⊥
RT
⊥Nr Z̃

] [
VR

VR⊥

]
, (36)

where
Z̃ = Z+ (RT

⊥Nr)K
−1

(NT
l R⊥). (37)

Thus, positivity of (33) is equivalent to showing that the square matrix in the right-hand
side of (36) is positive definite. Positive definiteness of potentially non-symmetric matrix
(36) is equivalent to positive definiteness of its symmetric part (we will choose Z in such a

way that Z̃ is symmetric):[
Ks B

BT Z̃

]
,

Ks =
1
2
(K+K

T
),

B = NT
s R⊥, Ns :=

1
2
(Nl + Nr).

(38)

Recall the following linear algebra result for the Schur complement, see e.g. [2]. The
symmetric matrix (38) is positive definite if and only if the first block Ks and its Schur
complement

H := Z̃− BT K
−1
s B (39)

are both positive definite matrices. The matrix Ks is positive definite by Lemma 1. The
Schur complementH can be made positive definite by choosing Z̃ and, hence, Z appropriately.

15



In fact we can choose H, which will imply the choice of the parameter matrix Z through
formulas (39) and (37):

Z = H+ BTK
−1
s B− (RT

⊥Nr)K
−1
(NT

l R⊥) =

= H+ (RT
⊥Ns)K

−1
s (NT

s R⊥)− (RT
⊥Nr)K

−1
(NT

l R⊥).
(40)

The simplest choice forH is a scalar matrix, H = a I, with the appropriate value for parameter
a. On one hand, a should be large enough so that Z is positive definite. On the other hand,
the spectrum of W should be comparable to the spectrum of Wcons. Taking

a = (1 + β)
∥∥WS

cons

∥∥, where β > 0 (41)

guaranties positive definiteness of W. In Lemma 2 we will show uniform lower and upper
bounds for this matrix which in turn lead to stability conditions (see Theorem 1). In fact, in
our experiments taking β = 0 in (41) proved to be sufficient which could be also seen from
Fig. 2.

Note that from (32), the expression (40) for Z with H = aI, and the orthonormality of
columns of Z⊥, we can rewrite Wstab as follows

Wstab = R⊥ ZRT
⊥ = (R⊥RT

⊥)
(
aI+ (Ns K

−1
s NT

s )− (Nr K
−1
NT

l )
)
(R⊥RT

⊥). (42)

Note that (R⊥RT
⊥) here is a projection operator that can be defined entirely in terms of R as

(R⊥RT
⊥) = I− R(RTR)−1RT . (43)

Lemma 2. There exist two constants β1 > β0 > 0 such that for any element with unit area

UT WU ≥ β0‖U‖2, (44)

β1‖U‖ ≥ ‖WU‖. (45)

We present a non-constructive proof that simply demonstrates existence of such constants
β1 > β0 > 0 without giving an estimate of their values. Some estimate of these values could
be obtained from Fig. 2 and the result of Theorem 1.

Proof. Consider the set En of elements E centered at the origin, with n vertices ordered
counter clockwise and unit area. Any such element can be identified with a vector in R2n.
Abusing notations we will consider En to be a subset of R2n. Define the distance between
any two elements as the distance between the corresponding vectors in R2n.

The mesh regularity assumptions (MRA1) and (MRA2) of section 3.3 imply that all
corresponding vectors belong to a finite ball. Moreover, the set En is closed, i.e. any limit
point of En is in En. Indeed, within any sequence Ei convergent to E there is a sub-sequence
that in order to satisfy the mesh regularity assumptions uses (i) disks with convergent
centers to satisfy star-shape regularity assumption (MRA1) and (ii) topologically the same
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Figure 2: Estimates of the stability constants α0 and α1 in (16) and (17) on various perturbed
quadrilaterals in the example of Section 5.1. The constant α0 is estimated by taking the
smallest eigenvalues (shown in red) of the symmetric part of the scaled matrix |E|−1 ME for
all cells E. The constant α1 is estimated by taking the norm of the scaled matrix |E|−1 ME

for all cells E. For each k = 1, . . . , 4, the plots show the two extreme observed values, the
median and the standard deviation over 400 mesh cells.

triangular partition to satisfy (MRA2). Since both mesh regularity assumptions use non-
strict inequalities, the limiting cell E naturally satisfies these assumptions with the limiting
disk and partitions from (i) and (ii) above.

Since En is closed and bounded subset of R2n, it is compact, i.e. any infinite sequence
contains a convergent sub-sequence.

Consider two functions as functions of E:

β0(E) := min
‖U‖=1

{
UT WE U

}
, (46)

β1(E) := ‖WE‖. (47)

Both functions are defined on En and are positive as was shown in the construction of WE

above. Also note that β0(E) and β1(E) are continuous functions of E. This can be verified
by following the construction of WE to see that all matrices involved in the construction
depend continuously on the coordinates of the cell vertices. Indeed, these matrices are R,
Nl, Nr, K, and H. The later one is a scalar matrix dependent on a defined in (41) and hence
is continuous. Note that we were able to eliminate dependence of Wstab on R⊥ by using
expressions (42) and (43).

Let us take βn
0 and βn

1 to be the lower and and upper bounds, respectively, for all cells
in En:

βn
0 := inf

E∈En
{β0(E)} and βn

1 := sup
E∈En

{β0(E)}. (48)
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From the compactness of En, continuity of β0(·) and β1(·), and positivity of β0(E) for a
general element E satisfying the mesh regularity assumptions, we conclude that 0 < βn

0 and
βn
1 <∞.
Let us take the minimum of βn

0 and the maximum of βn
1 over n ≤ N , where N depends

only on N∗ introduced in assumption (MRA2):

β1 := max
n=3,...,N

{βn
1 } and β0 := min

n=3,...,N
{βn

0 } .

Since N is finite, we conclude that β1 <∞ and β0 > 0. This completes the proof.

Theorem 1. Consider element with the unit area and set M = W−1. This matrix satisfies
the stability conditions (16)-(17) with

α0 =
β0

β2
1

and α1 =
1

β0

.

Proof. Take U = MV , hence, V = WU and rewrite conditions (16)-(17) in terms of W and
U . The condition (17) states

‖U‖ ≤ α1‖WU‖.
The next inequality follows immediately from (44):

β0‖U‖2 ≤ UT WU ≤ ‖U‖ ‖WU‖.

Hence, α1 = 1/β0.
The condition (16) states

α0‖WU‖2 ≤ UT WU.

The next inequality follows from consecutive application of (45) and (44):

‖WU‖2 ≤ β2
1‖U‖2 ≤

β2
1

β0

UT WU.

Hence α0 = β0/β
2
1 . This proves the theorem.

5 Numerical results

We consider two types of problems in this section. First, in Section 5.1, we consider the
Poisson equation and estimate the convergence rates for various orders of approximation
k = 1, . . . , 4. Then, in Section 5.2, we consider a nonlinear parabolic problem discretized with
a second-order time integration scheme and the lowest order (k = 1) spatial discretization.

18



5.1 Poisson equation and convergence rates

Consider the stationary elliptic problem

div(K∇p) = f in Ω =
[−1

2
, 1
2

]× [−1
2
, 1
2

]
subject to the Dirichlet boundary conditions p = g on ∂Ω. The non-symmetric diffusion
tensor and the exact solution (see Fig. 3) are given by

K(x, y) =

[
K11 K12

K21 K22

]
=

[
1 + x2 sin(πx)y

− sin(πx)y 1 + 1
2
y2

]
, p(x, y) = sin(πx)y2.

exact solution p(x, y) K12(x, y)

Figure 3: Illustration of the exact solution and diffusion tensor component K12(x, y).

Figure 4: Sample mesh.

We ran simulations on perturbed square meshes, see Fig. 4.
Each internal vertex is shifted along x- and y-axis by a uniform
random variable taking values in the interval [−h

4
, h
4
]. To re-

duce impact of the random variable on the calculated error, we
perform ten simulations for each value of k = 1, 2, 3, 4 and each
value of the mesh resolution parameter h. The calculated error
is averaged and plotted on Fig. 5 and 6. The error values and
standard deviations as well as the averaged values are shown
in Tables 1 and 2.

Note that the standard deviation values do not indicate
uncertainty in our calculations, but rather variations in the
error as a function of the mesh variability. As can be seen from
Tables 1 and 2, the standard deviation values are typically less than 10% of the calculated
error, although at times could be as large as 20%− 25%, e.g. for k = 4 and h = 2−2, 2−3.

The convergence rate for the flux exhibits small variations and closely follows hk+1 for-
mula. The convergence rate for the scalar variable, on the other hand, looks more interesting.
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Figure 5: The L2-error and convergence rates for the scalar variable p. Left panel: both
consistency conditions are satisfied. Right panel: only the right consistency condition is
satisfied.
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Figure 6: The discrete error and convergence rates for the flux variable u. Left panel: both
consistency conditions are satisfied. Right panel: only the right consistency condition is
satisfied.

On one hand, it exhibits ultra-convergence for k ≥ 2, with error of hk+2. On the other hand,
fluctuations in the error for scalar variable as a function of mesh are about 2-2.5 times larger
than for the flux.

Finally, we observe that schemes with two consistency conditions lead to much more
accurate solution, especially for the flux variable, for k ≥ 2.
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Table 1: The L2 error, ‖ph − pIexact‖Qh
, for the scalar variable ph and the convergence rates

estimated based on the first and last simulation for a particular value of k = 1, 2, 3, 4.

h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate
k = 1 3.08× 10−3 1.28× 10−3 3.13× 10−4 8.04× 10−5 1.98× 10−5 5.02× 10−6 1.85

±6.65× 10−4 ±2.72× 10−4 ±3.95× 10−5 ±1.38× 10−6 ±1.55× 10−7 ±2.15× 10−8

k = 2 3.12× 10−3 1.27× 10−4 7.53× 10−6 4.97× 10−7 3.13× 10−8 2.00× 10−9 4.11
±1.46× 10−4 ±1.69× 10−5 ±7.68× 10−7 ±3.81× 10−8 ±1.02× 10−9 ±2.46× 10−11

k = 3 3.57× 10−4 9.35× 10−6 2.90× 10−7 8.72× 10−9 2.83× 10−10 − 5.07
±3.67× 10−5 ±1.36× 10−6 ±2.51× 10−8 ±3.12× 10−10 ±3.97× 10−12 −

k = 4 3.56× 10−5 5.63× 10−7 8.49× 10−9 1.37× 10−10 − − 6
±3.39× 10−6 ±4.75× 10−8 ±5.19× 10−10 ±6.82× 10−12 − −

Table 2: Error ‖vh − vI
exact‖Xh

for the flux variable and the convergence rates estimated
based on the first and last simulation for a particular value of k = 1, 2, 3, 4.

h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6 rate
k = 1 8.57× 10−2 2.45× 10−2 6.22× 10−3 1.56× 10−3 3.85× 10−4 9.58× 10−5 1.96

±1.50× 10−3 ±1.84× 10−3 ±1.61× 10−4 ±1.36× 10−5 ±2.74× 10−6 ±3.13× 10−7

k = 2 4.25× 10−2 5.00× 10−3 6.36× 10−4 8.00× 10−5 9.79× 10−6 1.22× 10−6 3.02
±1.24× 10−3 ±4.15× 10−4 ±2.95× 10−5 ±1.39× 10−6 ±6.38× 10−8 ±3.04× 10−9

k = 3 6.25× 10−3 3.93× 10−4 2.48× 10−5 1.52× 10−6 9.70× 10−8 − 3.99
±4.79× 10−4 ±2.69× 10−5 ±1.20× 10−6 ±3.39× 10−8 ±1.35× 10−9 −

k = 4 1.00× 10−3 3.08× 10−5 1.06× 10−6 3.45× 10−8 − − 4.94
±1.42× 10−4 ±2.09× 10−6 ±6.34× 10−8 ±1.13× 10−9 − −

5.2 Hall effect

In this section we consider the resistive magnetohydrodynamics problem with the Hall effect
presented in [15]. For completeness of the presentation, we repeat the problem formulation.
Let B be the z-component of the magnetic field that satisfies the following equation:

Bt − 1

μ0

div

(
1

σ
∇B

)
− 1

|qe|μ0

curl

(
1

n
B∇B

)
= 0 in Ω,

subject to the initial and boundary conditions:

B(0) = B0 in Ω = [−.5, .5]2,
B = Btop on Γtop,

n · ∇B = 0 on Γleft ∪ Γbottom ∪ Γright,

where Γleft, Γbottom, Γright and Γtop indicate the left, bottom, right and top sides of the square
domain Ω. After the following non-dimensionalization,

λr = ctr,

tr = ω−1p =

(
nr|qe|2
ε0me

)−1/2
, where ωp is the plasma frequency,

Br =
me

|qe|tr ,
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and change of variables, p := B/Br, the original equation reduces to

pt − div(K(p)∇p) = 0 in (0, T )× Ω, Ω =
[−1

2
, 1
2

]× [−1
2
, 1
2

]
, (49)

with the solution-dependent diffusion tensor

K(p) =

[
α βp
−βp α

]
, α =

ε0ωp

σ
, β =

nr

n
.

We chose to consider the time interval from 0 to T = 0.5tr. The initial condition is

p(t = 0) = p0 =

{
0 y < 0

−1 y > 0
(50)

and the boundary conditions are

p = −1 on Γtop,

∇p · n = 0 on Γleft ∪ Γright ∪ Γbottom.

The spatially dependent material parameters are taken to be

α(x) =

{
10−2 for x < 0,
10−3 for x > 0,

β(x) =

{
10−1 for x < 0,
10−5 for x > 0.

(51)

The material parameter α indicates stronger diffusion in the left half of the computational
domain. The jump in the antisymmetry parameter β is ultimately responsible for the for-
mation of the spike along the material interface in the solution, see Fig. 7. This spike would
form even if the parameter α was constant throughout the whole domain and did not expe-
rience discontinuity at the interface x = 0. The formation of the spike is known as the Hall
effect.

The time discretization was done using both the Crank-Nicolson (θ = 1
2
) and the back-

ward Euler (θ = 1) schemes (see formula (4)) with no visible effect on the final discrete
solution. In all cases, the value of the diffusion coefficient K(p) was computed using so-
lution p at the last known time step. The spatial discretization step was taken to be
�x = �y = 2−6 = 1/64. The temporal discretization step was taken to be �t = 0.01tr.

In the left (x < 0) and right (x > 0) parts of the computational domain, we observe
diffusion of the initial step-function profile (50), with the diffusion being faster in the left
part (see values of α(x)). At the material interface (x = 0) we observe the Hall effect, i.e.
advance of the high gradient values along the interface. The numerical solution captures this
effect and is visually identical to the reference solution obtained in [15].

We also performed the same numerical experiment on the unstructured Voronoi mesh
adapted to the solution, see Fig. 8. The polygonal mesh contains 8196 vertices, 12292 edges
and 4097 polygonal cells. More precisely, the mesh contains 1 triangle, 22 quadrilaterals,
379 pentagons, 3475 hexagons, 204 heptagons, and 16 octagons. Note that the number of
mesh cells in this experiment is close to that in the previous experiment.
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Figure 7: The side and top views of the numerical solution to problem (49)-(51) at time
T = 0.5tr on a 64× 64 mesh.
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Figure 8: The adaptive unstructured Voronoi mesh (left panel) and the numerical solution
(right panel).

6 Conclusions

We extended the mimetic finite difference method to elliptic problems with non-symmetric
diffusion tensors. More specifically, we developed arbitrary order mimetic schemes that
enforce one or two consistency conditions. For the case of two consistency conditions, we
developed the new algorithm for building positive definite inner product matrices.

The numerical experiments demonstrated that enforcing only one consistency condition

23



was sufficient for convergence of the mimetic schemes. However, comparison with the schemes
that enforce two consistency conditions had shown interesting phenomena. There was no
difference in convergence rates for the lowest order discretizations. For higher order dis-
cretizations, the scheme with both consistency conditions resulted in a much smaller error.
An extensive theoretical analysis is required to explain this behavior.

We tested the new schemes on both elliptic and parabolic problems. The parabolic
problem was taken from the resistive magnetohydrodynamics with the Hall effect. We were
able to capture this effect using the lowest-order spatial discretization (k = 1) and both the
backward Euler and Crank-Nicolson time integration schemes.
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A Conventional approach to constructing the inner

product matrix

In this section, we discuss problems with the conventional approach (see Section 4.1) to the
construction of the extended inner product matrix that satisfy the left and right consistency
conditions. Let us try to build this matrix as the sum of the consistency and stability
terms, like in formula (27). Ultimately, this approach does not work due to difficulties with
enforcing positive definiteness of the matrix, which is the valuable insight in our opinion.

The consistency term Mcons is built the same way as in (27) and satisfies both consistency
conditions (23) and (24). To ensure non-interference with both consistency conditions, the
stability term must be both the right-orthogonal to Nr and the left-orthogonal to Nl, i.e.

NT
l Mstab = 0 and MstabNr = 0.

Hence, the general form of this term is (compare with (29))

Mstab = Dl S DT
r , (52)

where Dl and Dr are orthogonal compliments to Nl and Nr, respectively, i.e. DT
l Nl = 0 =

DT
r Nr and square matrices [Dl,Nl] and [Dr,Nr] have full ranks. The square matrix S must

be chosen wisely to guarantee positive definiteness of the inner product matrix M. Take an
arbitrary vector V and consider its decomposition of the form

V = RVR + R⊥ VR⊥ . (53)
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Using the expressions for Mcons and Mstab, we have

V T MV = V T
R K

−1
VR + V T

R (RT Dl) S (D
T
r R)VR

+ V T
R (RT Dl) S (D

T
r R⊥)VR⊥ + V T

R⊥(R
T
⊥Dl) S (D

T
r R)VR + V T

R⊥(R
T
⊥Dl) S (D

T
r R⊥)VR⊥ .

The first term is always non-negative. Unfortunately, it is not clear how to enforce positivity
of the remaining terms.

Remark 5. Although the consistency conditions (30)-(31) for W = M−1 look similar to the
consistency conditions (23)-(24) for M, the difference in the structure of the stability terms
is critical:

Mstab = Dl SD
T
r , Wstab = R⊥ ZRT

⊥.

The stability term Wstab is semi-positive definite by design when Z is positive definite.

B Scaling considerations

Consider two polygonal cells E and E1, where |E| = h2, |E1| = 1 and E1 is obtained by
isotropic scaling of E. Let p1 and v1 be a scalar and a vector functions, respectively, defined
on E1. Define function p and v on E by

p(x, y) = p1

(x
h
,
y

h

)
v(x, y) = v1

(x
h
,
y

h

)
. (54)

That is, if one was to plot these functions, the plots for p and v would look like plots for p1
and v1 scaled in x- and y-directions by a factor of h.

Let us study how the local interpolants of these functions as well as various integrals are
related to one another. We start with the following observations:

1

h2

∫
E

p(x)
(x
h

)αx
(y
h

)αy

dxdy =

∫
E1

p1(x)x
αxyαy dxdy (55)

and ∫ 1

−1
p(x(s)) sαs ds =

∫ 1

−1
p1(x(s)) s

αs ds. (56)

We also have

1

h

∫
E

p(x)∇
(x
h

)αx
(y
h

)αy

dxdy =

∫
E1

p1(x)∇ (xαx) yαy dxdy. (57)

Formulas (55)–(57) imply that the DoF for spaces Qh and Xh do not depend on the rescaling
operator E1 → E.

Now let us consider the following integrals:∫
E

p(x, y)q(x, y) dxdy = h2

∫
E1

p1(x, y)q1(x, y) dxdy
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and ∫
E

v(x, y) · u(x, y) dxdy = h2

∫
E1

v1(x, y) · u1(x, y) dxdy.

Thus, we have MQE
= h2 MQE1

and MXE
= h2 MXE1

. Since

1

h2

∫
E

div(v(x, y))
(x
h

)αx
(y
h

)αy

dxdy =
1

h3

∫
E1

div(v(x, y)) xαxyαy dxdy,

we have MQE
DIVE = 1

h
MQE1

DIVE1 . This operator appears in the discrete formulation of
both elliptic and parabolic problems (3) and (4).
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