
Python in the NERSC Exascale Science Applications Program for Data

Zahra Ronaghi∗, Rollin Thomas∗, Jack Deslippe∗,
Stephen Bailey†, Doga Gursoy‡§, Theodore Kisner¶‖, Reijo Keskitalo¶‖, and Julian Borrill¶‖

∗National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
†Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720
‡Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, 60439

§Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
¶Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720

‖Space Sciences Laboratory, University of California at Berkeley, Berkeley, California, 94720

Abstract—We describe a new effort at the National Energy Re-
search Scientific Computing Center (NERSC) in performance
analysis and optimization of scientific Python applications
targeting the Intel Xeon Phi (Knights Landing, KNL) many-
core architecture. The Python-centered work outlined here is
part of a larger effort called the NERSC Exascale Science
Applications Program (NESAP) for Data. NESAP for Data
focuses on applications that process and analyze high-volume,
high-velocity data sets from experimental/observational science
(EOS) facilities supported by the US Department of Energy
Office of Science. We present three case study applications
from NESAP for Data that use Python. These codes vary in
terms of “Python purity” from applications developed in pure
Python to ones that use Python mainly as a convenience layer
for scientists without expertise in lower level programming lan-
guages like C, C++ or Fortran. The science case, requirements,
constraints, algorithms, and initial performance optimizations
for each code are discussed. Our goal with this paper is
to contribute to the larger conversation around the role of
Python in high-performance computing today and tomorrow,
highlighting areas for future work and emerging best practices.

1. Introduction

The National Energy Research Scientific Computing
Center (NERSC)1 is the US Department of Energy (DOE)
Office of Science production facility for high-performance
and data-intensive scientific computing. NERSC serves over
6000 users on over 700 projects aligned with the Office of
Science’s unclassified research mission.

NERSC’s newest system for its users is “Cori,” a 28 PF
(theoretical peak) Cray XC40 system completed in 2016.
Cori is designed to handle the full spectrum of NERSC
users’ scientific computing needs in a single system. On
Cori, massively parallel capability simulations of complex
physical processes run alongside throughput-oriented capac-

1. http://www.nersc.gov/

ity analyses of data streams from experimental and obser-
vational science (EOS) facilities. Supported EOS facilities
include spectrographs, telescopes, genome sequencers, syn-
chrotron radiation sources, and high-energy particle physics
detectors.

Cori’s design and operations policies enable a number
of features especially friendly to data-intensive EOS work-
loads. These include
• The Burst Buffer [1], a layer of non-volatile storage

filling the performance gap between main memory and
the parallel file system used to accelerate I/O;

• Real-time, interactive, serial, and shared-node queues for
rapid turnaround, exploratory data analytics, and “embar-
rassingly parallel” data processing;

• Large memory nodes dedicated to workflow manage-
ment, data analytics platforms like Jupyter,2 and memory-
intensive jobs;

• Software-defined networking [2] for flexible network con-
figuration and large bandwidth to compute nodes to enable
streaming data analysis; and

• Shifter,3 a system that allows containerized environments
(e.g. using Docker) to run on a supercomputer [3].

High-performance and data-intensive computing can even
be combined in a single workflow on Cori if needed.

Cori consists of two architecture partitions: “Phase I”
with 2,388 nodes based on Intel Xeon “Haswell” processors,
and the larger “Phase II” with 9,688 nodes based on Intel
Xeon Phi “Knights Landing” (KNL) manycore processors.
While KNL can run many applications without modification,
most applications require code changes to achieve good
performance. To prepare codes, developers, and staff for
Cori and beyond, the NERSC Exascale Science Applications
Program (NESAP) was launched in the Fall of 2014. NESAP
fosters collaborative partnerships between application devel-
opers, NERSC staff, and vendor tools/library teams to adapt
codes for manycore and develop associated best practices.

2. http://jupyter.org/
3. http://www.nersc.gov/research-and-development/

user-defined-images/



The baseline goal for each code is that on a node-for-
node basis, running on Cori Phase II should meet or exceed
performance observed on Cori Phase I. In general, NESAP
efforts result in improved performance for both Haswell and
KNL [4]. Lessons learned through NESAP are disseminated
to the broader NERSC community at user meetings, training
events, and through documentation. NESAP also provides
valuable feedback and strategic guidance on optimization
tools and libraries directly to vendors. Focused, intensive,
multi-day work sessions involving application developers,
NERSC staff, and experts from Intel and Cray called “Dun-
geon sessions” scheduled several times a year have been
critical to the success of NESAP.

NESAP for Data, an extension to NESAP, explicitly
addresses data-intensive science applications that rely on
processing, simulation, and analysis of massive datasets ac-
quired from EOS sources. Rapid advances in detector tech-
nologies, instrumentation, embedded computing systems,
and networking are all driving the rate of data production
from EOS sources to the point where exascale computing
will be necessary to extract insight [5]. The objectives of this
program are to enable such applications to begin preparing
for exascale, to take full advantage of the KNL chipset
on Cori, and to find ways to exploit Cori’s data-friendly
features. As a secondary objective, NERSC also gains in-
sight into the needs and requirements of data-intensive EOS
applications through direct engagement.

It is through direct engagement that we have come to
appreciate fully the rapid pace at which Python has gained
ground among EOS software developers. These developers
especially value Python’s expressive syntax, shallow learn-
ing curve, extensive standard library, and burgeoning ecosys-
tem of open-source extension packages that are increasingly
easy to install and manage.

Python is, first and foremost, a high productivity lan-
guage largely designed and implemented to deliver good
enough but not necessarily high performance. It is inter-
preted, automatically memory managed, and dynamically
typed. CPython, the widely used reference implementation
of Python, uses a global interpreter lock (GIL) to manage
memory consistently. Such characteristics help make Python
easy to use but also present obstacles to performance.

The Python community has developed a variety of strate-
gies to work around Python’s performance blocks when
performance matters. Most common is the use of high-
performance libraries implemented in compiled languages
(like C, C++, and Fortran) that are exposed to Python
through any number of convenient wrapper interfaces.
Cython4 can be used to compile a superset of the Python
language to optimized static C extensions. The widespread
use of these tools makes scientific Python a textbook exam-
ple of Ousterhout’s two-language paradigm, with interpreted
Python “gluing” together compiled extensions that do heavy
numerical lifting [6]. Stretching that paradigm, tools like
Numba5 allow targeted just-in-time (JIT) or ahead-of-time

4. http://cython.org/
5. https://numba.pydata.org/

(AOT) generation of optimized machine code from deco-
rated Python source, even supporting GPUs. Alternatives
to the CPython implementation like PyPy6 address some
of its shortcomings including memory usage and speed. In
various cases, vendors like Continuum Analytics and Intel
have contributed performance optimizations to the scientific
Python ecosystem, given their interest in their products
performing well for users. In all, as the scientific Python
ecosystem has matured, users have found they can achieve
acceptable levels of performance while retaining Python’s
ease of use.

NERSC and similar facilities have a vested interest in
learning whether these strategies will continue work as we
move into the era of manycore architectures like KNL and
beyond. Power constraints for future exascale systems are
driving a transition in supercomputing to these more energy-
efficient architectures. Cori Phase II represents a step in
this direction for NERSC; exascale systems at facilities
like NERSC are now less than a decade away. Will it be
enough to identify and exploit parallelism in underlying
math libraries, or does the Python (in particular CPython)
interpreter’s single-thread execution become too dominant a
bottleneck, limited by lower clock frequencies and reduced
instructions retired per cycle? Can tools like Numba or al-
ternative interpreter implementations focused on parallelism
and performance seamlessly take over from CPython? Can
Python developers accept loss of abstraction in pursuit of
performance, or can they continue to develop schemes that
deliver performance without loss of abstraction? By studying
how real scientific Python developers confront manycore
architectures, we hope to find the answers.

Three Python-based applications were selected as part
of NESAP for Data in late 2016. These include TOAST7

(Time Ordered Astrophysics Scalable Tools), a framework
for simulating and analyzing Cosmic Microwave Back-
ground (CMB) radiation surveys; DESI (Dark Energy Spec-
troscopic Instrument) spectroscopic extraction8 and redshift
estimation9 codes; and TomoPy,10 an open-source Python
package for tomographic data processing and image re-
construction. The developers of these codes use Python to
balance productivity and performance in the face of higher
volume and higher velocity data sets from real scientific
instruments. These codes vary in terms of “Python purity”
from applications developed in pure Python to ones that use
Python mainly as a convenience layer for scientists without
expertise in lower level programming languages like C, C++
or Fortran. All of these applications expect to use Cori’s
successor system, and at least one of them will probably be
running on the system in place after that.

This paper introduces our three NESAP for Data Python
application case studies in progress, and represents our first
documentation of the effort. Future updates are planned as
the program progresses. This paper is laid out as follows.

6. https://pypy.org
7. https://github.com/hpc4cmb/toast
8. https://github.com/desihub/specter
9. https://github.com/desihub/redrock
10. https://github.com/tomopy/tomopy



Section 2 provides further technical background on Cori and
the KNL architecture to help readers understand our Python
application performance challenges. Sections 3 through 5
present the case study applications and work done so far
to improve performance on Cori. In Section 6 we reflect
on cross-cutting lessons learned and suggest best practices
for developers faced with porting Python applications to
systems like Cori that use KNL. We state our conclusions
in Section 7.

2. System Description and Issues for Python

Cori Phase I nodes have two Intel Xeon E5-2698v3
Haswell processors and 128 GB of DDR4 memory. Each
processor has 16 cores running at 2.3 GHz, each with two
hyper-threads, and two 256-bit wide vector units. A total of
64 threads are available per node. Each core has its own L1
and L2 caches, with capacities of 64 KB (32 KB instruction
cache, 32 KB data) and 256 KB, respectively; there is also
a 40-MB shared L3 cache per socket.

In contrast, each Phase II node has a single 1.4 GHz
68-core Intel Xeon Phi 7250 KNL processor; slower clock
cycle per core but more cores per node than Phase I. Each
core supports four hardware threads (272 threads available
per node) and includes two 512-bit wide vector processing
units and a 64 KB L1 cache. Cores on a node connect
through a two-dimensional mesh network with two cores
per “tile.” Within a tile, cores share a 1 MB cache-coherent
L2 cache. Notably, there is no L3 cache. Each node has
96 GB of DDR4 2400 MHz memory provided by six 16 GB
DIMMs (115.2 GB/s peak bandwidth). Each node also
includes 16 GB of on-package high-bandwidth memory with
bandwidth 5 times that of DDR4 DRAM (> 460 GB/sec).
This multi-channel DRAM (MCDRAM) memory has flex-
ible memory modes, including “cache mode” (making it
effectively like a very large L3 cache), “flat mode” (a unique
NUMA domain, separate from DDR4), and a hybrid of the
two.

Cori Phase II represents a shift in terms of architecture
but it is not as dramatic a change from previous Xeon-based
systems as a GPU-based system would be. At a high level
there are three key aspects to achieving code performance
on KNL: (1) Using fine-grained parallelism to exploit the 68
cores per node, (2) taking advantage of the 512-bit vector
units on KNL, and (3) structuring code to maximize memory
access from KNL’s 16 GB of onboard MCDRAM memory.

For Python applications this roughly translates to: (1)
Making use of optimized, threaded, and hopefully vectorized
math libraries like the Intel Math Kernel Library (MKL)
through Python extensions like NumPy, SciPy, Numexpr,
Scikit-Learn, etc.; (2) maximizing the amount of time spent
by an application exercising those libraries or otherwise
minimizing time in single-threaded interpreter execution; (3)
ensure that NumPy array syntax, slicing, and broadcasting
rules are used efficiently, and avoid allocation of large
temporary objects; and (4) use performance analysis tools
to identify, understand, and restructure hotspot kernels pos-
sibly replacing them with hand-optimized threaded C, C++,

Figure 1. Application start-up time when using Shifter to run a Docker
container using Python, compared with launching from a globally mounted
file system.

or Fortran code, or using JIT/AOT compilation tools like
Numba. For these strategies to work the Python community
(including vendors) needs to find ways to deliver high-
performance through lower-level extensions. Tools need to
be made available that provide deeper insight into Python
code performance that can cross the language barrier to
allow analysis of compiled extensions. Many of these issues
are being addressed by the Intel Distribution for Python and
the Anaconda Python distribution, and Intel’s performance
analysis tools have begun to support Python. We expect
other vendors to follow suit. Finally application developers
need to balance their need for productivity and even code
readability (a major draw for Python developers) against
performance. At some point they may be faced with code
they cannot optimize in Python that may only be accelerated
through hand-optimized, compiled C code. Addressing these
issues was the focus of a Python-centric Dungeon session
held earlier this year with the Intel Python team.

Thus far the discussion has mostly been about single-
node performance of Python, but all three selected case
study codes need to scale beyond a single node — indeed
the TOAST application needs to scale to use all Phase II
nodes. A well known problem with Python in large cluster or
supercomputing contexts is its start-up overhead, especially
when Python application stacks are hosted on shared file
systems. In fact this is a problem that afflicts applications
that dynamically load libraries at runtime, not just Python
applications. Python’s dynamic import mechanism is very
metadata intensive, and when a large number of Python
processes start importing libraries they bottleneck the file
system metadata server catastrophically; a large Python job
may never finish importing its libraries before exhausting
allocated wallclock time. Several solutions have been pro-
posed that cache or localize metadata to compute nodes like
DLFM [7], Spindle [8], and python-mpi-bcast [9]. Each
project at NERSC gets space on a GPFS file system that
is mounted read-only from compute nodes with client-side
DVS (Cray Data Virtualization Service) caching, which can
also help to this problem.

Shifter [3] was developed at NERSC in part to ad-
dress performance issues with applications that load libraries



dynamically, including ones written in Python. Users can
deploy Docker containers containing their entire application
stack and preferred Linux distribution to Cori using Shifter.
When Python is installed inside the Docker image, all
shared libraries and modules are effectively in each compute
node’s local RAM disk. This isolates metadata queries to
the compute node, and the application gets a performance
boost from using the RAM disk. Further, since at build
time the user has root privileges in the Docker container,
they can cache library symbol lookups using the “ldconfig”
tool. Figure 1 shows the improved startup time when using
this type of container based solution. For now the default
solution offered to NERSC Python users on any platform
including Cori Phase II is to use Shifter for maximum
cluster-level scalability.

3. Case Study I. TOAST

The TOAST package supports the simulation and re-
duction of the time-ordered data streams gathered by CMB
experiments. The CMB consists of the primordial photons
created in the Big Bang, propagated through (and impacted
by) the entire history of the Universe. Tiny fluctuations
in temperature and polarization of the CMB then encode
the fundamental parameters of cosmology and fundamental
physics, including the energy scale of early cosmic inflation
and the number of neutrino species and their mass. However,
CMB fluctuations are so faint that experiments have to
gather enormous datasets to separate the signal from the
noise and systematics (see Figure 2). Consequently CMB
datasets have been growing exponentially for the last 20
years and are projected to do so for the next 20 too. High-
performance computing (HPC) has therefore become an
integral part of CMB data analysis, and the DOE Particle
Physics Project Prioritization Panel (P5) has recommended
that DOE take the lead in HPC for future CMB experiments,
and in particular the proposed “Stage 4” experiment CMB-
S4 [10].

Although much of the development of TOAST was
for the Planck satellite mission, by design it supports the
simulation and reduction of data from any CMB experi-
ment. It is being used for analysis of the current Planck,11

POLARBEAR/Simons Array,12 EBEX,13 and BLAST14 ex-
periments, and for the design and development of many
next generation of experiments, including the Simons Ob-
servatory15 and CMB-S416 ground-based telescopes, and the
LiteBIRD,17 CORE,18 and CMBprobe19 satellite missions.

The long-term exponential growth of CMB datasets has
required CMB developers to track the leading edge of HPC,

11. http://www.rssd.esa.int/index.php?project=PLANCK
12. http://bolo.berkeley.edu/polarbear/
13. http://groups.physics.umn.edu/cosmology/ebex/
14. http://blastexperiment.info/projects/blast/index.php
15. http://simonsobservatory.org/
16. http://cmb-s4.org/
17. http://litebird.jp/eng/
18. http://www.core-mission.org/
19. https://zzz.physics.umn.edu/ipsig/start

Figure 2. The focal planes of 4 generations of CMB experiment, showing
the growth in the number of detectors required to meet the signal-to-noise
requirements of each generation’s science goals.

8	

10	

12	

14	

16	

18	

20	

6	

8	

10	

12	

14	

16	

18	

1980	 1990	 2000	 2010	 2020	 2030	 2040	

LO
G
	(	
PE
A
K	
FL
O
P/
S	
)	

LO
G
	(	
D
AT
A
		V

O
LU

M
E	
)	

EPOCH	

Ground	

Balloon	

Satellite	

Supercomputer	

Figure 3. Exponential growth of the volume of CMB data for ground-
based, balloon-borne, and satellite missions, and of the theoretical peak
performance of the flagship NERSC system, over a 40 year period. Note
that suborbital experiments perfectly track Moore’s Law.

while simultaneously maintaining computational efficiency,
simply to keep up with the data volume (Figure 3). Over
the last 20 years this has required porting and optimizing
our code base to 6 generations of NERSC hardware, from
MCurie to Edison. The same must now be done for Cori.
However, the KNL architecture is qualitatively different
from anything the developers have seen before, and they
expect that it will require a much more aggressive optimiza-
tion strategy to achieve the efficiency required to exploit its
capabilities. They hope to achieve this goal and be able to
generate and reduce the simulations that will be critical to
the validation and optimization of the design of the CMB-S4
experiment.

The TOAST software stack consists of parts written
in several different languages. It has compiled libraries



Figure 4. Performance improvements of a TOAST workflow on KNL after making changes identified at an Intel “Dungeon Session”.

written in C++ and Fortran that use both MPI and OpenMP
parallelism. TOAST also includes a workflow management
layer written in Python using mpi4py20 [11][12][13]. Data
formats are usually HDF5 or FITS. Internal math operations
include quaternion manipulation, streamed random number
generation, 1D FFTs, and MPI-parallel iterative (conjugate
gradient) solvers. The dominant cost of the current code for
typical runs is the calculation and MPI communication done
at each step of an iterative solver. The biggest challenge
is better vectorization of that calculation and determining
trade-offs between the number of MPI processes and threads
on each node.

As part of the NESAP for Data program, TOAST devel-
opers have worked to identify possible areas of improvement
for the code base. Some of these optimizations were realized
at the Python Dungeon session earlier this year, and others
implemented afterward based on lessons learned at the
Dungeon. One optimization was changing a sparse vector
indexing strategy to use more efficient NumPy unique()
calls instead of a Python set; this simple change resulted
in a 20% speed-up alone. A slightly more involved code
change was using an inverse error function call to Intel
MKL instead of a less efficient Box-Muller implementation
to generate Gaussian-distributed numbers; a 100% speed
up. In quaternion operations, a single vector/quaternion was
being copied in memory many times leading to excessive
memory consumption. The TOAST team highlighted that
the code needs to process a large number of independent
small matrices and explored with engineers the possibility
of vectorized batch processing of these matrices in a future
MKL release.

The above changes were made and tested on a typical
workflow at different configurations of MPI processes ver-
sus threads. Figure 3 shows the improvement of different
sections of the code before and after optimization. Working
with NERSC staff, the TOAST developers have been able
to use the entire Cori Phase II system to simulate and
reduce the data that would be gathered by a notional Simons

20. https://bitbucket.org/mpi4py/mpi4py

Observatory configuration, with 50,000 detectors observing
20% of the sky for 1 year from the Atacama Desert in
Chile.21 The simulated data included not only the sky signal
but also realistic instrumental noise and atmospheric fluc-
tuations. To achieve this, the optimized TOAST code was
deployed to Cori in a Docker container and the application
run with Shifter (Section 2). Thanks to Shifter, the full-
machine application start-up time was kept to less than
90 seconds.

4. Case Study II. TomoPy

Analysis of tomographic datasets at synchrotron light
sources has becoming challenging due to increasing acqui-
sition rates and resolution of the detectors. TomoPy22 [14]
is a framework for processing of synchrotron tomographic
data and written primarily in Python with some code (25%
by lines of code) in C/C++. The data format is usually HDF5
and the Scientific Data Exchange package23 [15] can be
used to import tomographic data from different synchrotron
facilities.

At the Advanced Photon Source (APS) Imaging Group,
dynamic tomography is routinely performed to provide 3D
imaging of evolving systems. Various high speed cameras
are used to optimize speed, dynamic range and sustained
data collection time. The current combined raw data rate,
at one beamline alone, 2-BM, is currently at 300 TB/year.
This figure will increase dramatically, potentially in excess
of 1 PB/year, once a new faster detector like the CoaXPress
CXP-6 Quad will be installed in production mode. In 2015,
Advanced Light Source (ALS) produced 14,399 data sets,
and in 2016 so far 8900. The size of tomography data sets
generally varies between 4 and 16 GB, on average 12 GB,
and as a result about 80 TB of raw data was produced in
2015.

21. https://crd.lbl.gov/departments/computational-science/c3/
c3-research/cosmic-microwave-background/cmb-simulations-at-scale/

22. https://tomopy.readthedocs.io/en/latest/
23. http://dxchange.readthedocs.io/en/latest/



Some of the application areas across the DOE com-
plex include: in-situ study of corrosion behavior of mate-
rials, dynamic geological systems, plant biology, ceramic
matrix composites, batteries, brain imaging. For example:
Micro-CT at a synchrotron facility is able to character-
ize structural metallic materials under fatigue-stress and
corrosive environment, it also allows monitoring complex
physiochemical modifications in rocks and their constituent
minerals. These measurements often involve fluid phases,
under high pressure and high temperature and are critical to
understand geological instabilities (mudslides, earthquakes),
energy extraction (hydrocarbon and geothermal heat), ore
formation and environmental concerns (CO2 sequestration
and contaminant pathways). Figure 5 includes examples of
three-dimensional tomographic reconstructions.

Figure 5. (a) Three-dimensional tomographic reconstruction showing mor-
phology of growing dendrites using X-ray synchrotron radiation [16].
(b) Detailed three-dimensional reconstruction showing the distribution of
Cu6Sn5 intermetallic compounds in the micropillar [17].

Figure 6. Illustration of the TomoPy Framework [14]. Tomographic analysis
pipeline consists of a series of tasks (such as for pre-processing, recon-
struction and post-processing tasks) which are implemented in a number
of modules in TomoPy.

The tomographic analysis pipeline consists of a series of
tasks (such as for pre-processing, reconstruction and post-
processing tasks) which are implemented in a number of
modules in TomoPy (Figure 6. Typically, the majority of the

time is spent on the reconstruction module (computation),
which contains functions that map data from data space into
image (or object) space. If the number of allocated nodes
for reconstruction is very large (i.e. the number of nodes is
larger than the number of sinograms), then communication
and I/O start to become the bottlenecks.

Inter-node parallelization is expressed using MPI by
distributing the sinograms among MPI processes and intra-
node parallelism currently uses Python’s multiprocessing
and concurrent futures modules. TomoPy can scale to the
number of projections on a single node, which is typically
more than 360; and can scale to the number of sinograms
on the cluster nodes. This has been implemented on 2K
nodes (32K cores) on Mira at Argonne National Laboratory
[18]. However, if the number of nodes exceeds the number
of sinograms, inter-node communication will significantly
introduce overhead and delay.

As part of the NESAP for Data project we ran TomoPy
on Cori Phase I and II. We have mainly focused on optimiz-
ing the Gridrec reconstruction algorithm, which is a direct
Fourier-based method similar to the filtered-backprojection
method. By design, Gridrec reconstructs two slices at the
same time, in the real and imaginary part of the FFT, to
speed-up the process.

Below are the major optimization steps applied to the re-
construction module for improving single-node performance
on Haswell and KNL:

1) Built Tomopy with icc targeting both Haswell and KNL
(common-avx512) architecture

2) Modules for fftw, pyfftw, dxchange, dxfile and olefile
are built locally

3) For process-level threading (multiprocessing) in Python
on KNL set environment variable: KMP_AFFINITY =
disabled

4) Replace lroundf(x) with (int)roundf(x), fabs(x) with
fabsf(x), ceil(x) with ceilf(x)

5) Apply vectorization pragmas, split a double loop to
enable vectorization and add data alignment to assist
vectorization, for example: H = malloc_matrix_c(pdim,
pdim); __assume_aligned(H, 64)

6) Apply omp simd collapse directive to enable the com-
piler to collapse and execute concurrently using SIMD
instructions

We generated an object (dataset) with size 1024×1024
pixels in the x and y directions, with 720 uniformly spaced
tilt angles, and a reconstructed output size of 10243. Fig-
ures 7 and 8 show total reconstruction time for TomoPy
using the conda-based installation (Conda), installing from
source (Source) and the optimized version (Optimized).

The next steps include investigating threaded matrix
multiplication and convolution as well as optimizing mem-
ory management and data layout for Gridrec reconstruction.
This will be challenging since there is random access pat-
terns in updating memory components when calculating the
1D convolvents in the X and Y directions to update the
2D complex array. Restructuring the code will also enable
vectorization.



Figure 7. Single Node Performance on Haswell.

Figure 8. Single Node Performance on KNL.

We are also modifying the data-exchange package to
enable parallel read and write for HDF5 file formats for
scaling and cluster level parallelism. More than 30% of
application runtime is spent in I/O and interactive recon-
struction observation is essential for researchers to monitor
data quality as well as planning the next experimental steps.
The NERSC Burst Buffer has also been used with the
SPOT suite (workflow coupled to experimental beamline at
ALS or APS) instead of the Lustre filesystem to improve
performance for reading input and writing output files [1].
We will continue investigating parallel I/O with the Burst
Buffer with different datasets and analyses.

5. Case Study III. DESI Spectroscopic Pipeline
Codes

The third NESAP for Data Python project is the DESI
spectroscopic pipeline. This pipeline will process the 50 mil-
lion spectra of galaxies, quasars, and stars observed by
DESI, converting raw telescope data into calibrated spec-
tra and redshift measurements. This constitutes the core
dataset to be used by the DESI science collaboration to
make Dark Energy cosmology measurements from 2019–

280 300
CCD column

1400

1420

1440

1460

1480

CC
D 

ro
w

raw data

1400 1450
CCD row

0

5000

Ex
tra

ct
ed

 p
ho

to
ns

 +
 o

ffs
et

8275 8300
Wavelength [Angstrom]

0

2

Ca
lib

ra
te

d 
flu

x

Figure 9. DESI simulated raw data (left); uncalibrated extracted spectra
(upper right); and wavelength-calibrated sky-subtracted spectra with best
fit [OII] doublet template for a redshift = 1.22 emission line galaxy.

2024. The codes are open source with the intent of sharing
the core algorithms with other multi-object spectrograph
experiments.

Compared to current generation experiments, DESI’s
new algorithms are more mathematically rigorous to maxi-
mize information extraction from low signal-to-noise data.
However they are also O(100) times more computationally
demanding than current generation algorithms and must
process O(10) times more data. A naive implementation
would involve eigen-decomposition of a sparse 16M × 16M
matrix, 500–1000 times per night just to keep up with the
data flow. Even so, the pipeline is highly data-parallel.

The existing DESI code has been optimized for multi-
core architectures like Haswell (Cori Phase I), but not for
manycore architectures like KNL (Phase II). Although this
meets DESI’s current computational needs, such machines
may simply not be available to DESI for the final data
processing in 2025. Shifting DESI compute to another site
entails costs that the project’s main funding agency (the
DOE Office of High Energy Physics) will not support. Thus
DESI must port its code to next generation architectures
such as KNL sooner rather than later. Doing so will allow
DESI to benefit from the power of Cori Phase II and
subsequent NERSC machines. It will also retire a technical
risk for the DESI project.

The pipeline itself includes a number of different codes.
Although the DESI team has written some pipeline steps in
pure C++, the majority of the code is Python thus DESI
has prioritized optimizing its Python usage and ensuring
effective interaction between Python and underlying com-
piled libraries. The choice of Python emphasizes developer
productivity over raw code performance; this is especially
important for the scientist-developers who are not HPC
experts. DESI developers have from the beginning adhered
to Python best practices of using NumPy vector operations



whenever possible instead of explicit Python for loops.
The two most computationally expensive algorithms im-

plemented in Python are spectral extraction and redshift
fitting. Spectral extraction forward models the DESI spec-
trographs to determine what set of 1D spectra (Figure 9
upper right) would generate the observed raw data (Figure 9
left). In this simulated example, the most visible features
are OH emission lines from the sky, which dominate the
signal of a slight excess of photons around rows 1445–1455
of the middle spectrum. Once the spectra are wavelength
calibrated, sky subtracted, and flux calibrated, redshift fitting
compares galaxy models vs. redshift to determine the galaxy
type and best fit redshift. Figure 9 lower right shows the best
fit [OII] doublet of a redshift 1.22 emission line galaxy. The
tiny signal compared to the large sky backgrounds drives the
need for algorithms that optimally model the data with fully
correct error propagation. Figure 9 represents 1/120000 of
the data obtained by a single 15-minute DESI exposure.

These algorithms are mostly implemented in Python,
using NumPy/SciPy to leverage Intel MKL and other com-
piled code for computationally intensive steps. The redshift
fitting step additionally uses Numba24 for JIT compilation
of a single rate-limiting function. These codes typically in-
volve matrix algebra (in particular, Hermitian matrix eigen-
decomposition), fast Fourier transforms, and fitting functions
to data. These and other data processing methods are obvi-
ously not unique to DESI.

The pipeline orchestration is custom written due to a
complex dependency tree that requires very different levels
of concurrency for different steps of the processing (sin-
gle core through thousands of parallel processes depending
upon the step). I/O is primarily file-based, though the fi-
nal catalogs are also loaded into a database for end-user
queries. C++ steps use a Python pipeline mpi4py wrapper
to run OpenMP parallelized C++ code. These aspects of
the pipeline are not explored in the present study, but we
observe they are quite common in existing EOS pipelines.

Prior to NESAP for Data, the DESI team profiled
its Python codes on Edison (NERSC’s Ivy Bridge-based
Cray XC30) so they could identify which algorithm steps
take the majority of the time. The most computationally
expensive step (spectral extraction) consisted of approxi-
mately 1/3 MKL matrix algebra, 1/3 non-MKL NumPy
vector operations, and 1/3 miscellaneous Python — i.e., with
no single dominant blocking step.

The redshift fitting Numba acceleration gained a factor
of 600× speedup on an Intel Core i7, though we have not yet
profiled the resulting Numba code to inspect how efficient it
is, in particular for vectorization on KNL or what the best-
practices are for writing Python code that allows the Numba
compiled code to benefit from vectorization. Understanding
this will be a key next step for this NESAP for Data case
study.

In preparing the DESI Python code base for Cori
Phase II, there are 3 key challenges. (1) Cluster-level scaling
of the DESI pipeline, like TOAST, is affected by Python’s

24. http://numba.pydata.org

poor package import performance on distributed file systems
but not at the same scale. (2) To date on-node parallelism
has been achieved through Python’s multiprocessing library,
and originally the developers had planned to continue using
process-based parallelism for on-node scaling coupled with
mpi4py for cluster-level scaling but this has proved unreli-
able. (3) Effective use of KNL threading and vectorization
where appropriate.

Running Python at high concurrency can incur a large
start-up cost if the software stack is installed on a distributed
filesystem. When used in production, the DESI pipeline is
installed inside a Docker image and that image is run on
the Cray systems using Shifter (see Section 2).

The original DESI pipeline design used mpi4py to
distribute independent pieces of data across compute
nodes and Python multiprocessing for on-node parallelism
of the algorithms, loosely anaolgous to MPI+OpenMP
for C++. This decouples the data-parallel scaling from
individual algorithms, allowing them to be developed
and used on developer machines such as laptops without
requiring MPI. The multiprocessing overhead is small
compared to the runtime of the parallel processes
and individually the multiprocessing-based algorithms
worked well. When wrapped with MPI, however, we
experienced multiple problems including outright crashes
(fixed with MPICH_GNI_FORK_MODE=FULLCOPY),
complete lack of KNL on-node scaling (fixed with
KMP_AFFINITY=disabled), and unpredictable memory
usage (fixed by using explicit shared memory instead of
relying upon Linux fork being copy-on-write, which worked
for multiprocessing-only but not MPI+multiprocessing).
The crashes were specific to Cray MPICH and did not
occur on a non-Cray system; the other problems were only
tested on Cray machines. For now we have a working
MPI+multiprocessing pipeline, but the number and severity
of the problems indicates that this is a fragile combination
which could break again in the future, so we are now
pursuing an MPI-only refactor.

1 2 4 8 16 32 64 128
Number of Processes

102

103

104

Ex
tra

ct
io

n 
Ra

te

25 spectra x 300 wavelengths
Haswell original
Haswell
KNL original
KNL
perfect scaling

Figure 10. Improvements to the DESI spectral extraction rate for Haswell
(blue squares) and KNL (orange diamonds).

The most computationally intensive steps are in MKL or



other compiled code as wrapped by NumPy and SciPy, thus
the codes already leverage vectorization that occurs in those
libraries. Our initial benchmarks showed that the spectral
extraction code was per-core 6.2× faster on Haswell than
KNL and per-node 1.8× faster, i.e., the increased number
of KNL cores did not outweigh their lower per-core perfor-
mance. Working with Intel Python engineers, we profiled the
spectral extraction code on both Haswell and KNL and did
not find any KNL-specific hotspots. Multiple improvements
were made, most significantly for better use of Numpy
vectorization and hoisting calculations out of for loops,
resulting in 1.2× speedup on Haswell and 1.6× speedup
on KNL. However, the per-node performance is still 1.35×
faster on Haswell than KNL. The before/after performance
vs. number of processes used are shown in Figure 10. The
redshift fitting code has not yet been optimized for KNL;
this is the topic of our next Dungeon session.

6. Discussion

We now highlight a few of our most important observa-
tions and issues common across all three Python case study
applications in NESAP for Data. At the very highest level
we suggest that there is much to be gained by building com-
munity around the use of Python in HPC contexts beyond
NESAP for Data. For Python to be a viable technology
at exascale and in HPC in general, a community of users,
developers, and vendors working together is our best hope.

Our initial expectation was that these relatively mature
codes, written by experienced scientific Python developers,
would be at the limit of what was possible with Python
and would only improve through the use of hand-written
compiled extensions. This was simply wrong, as we were
often able to identify code changes at the Python level that
resulted in speed-ups. In the case of TOAST, improved
performance came from changing Python data structures
or switching to more optimized algorithms in NumPy al-
ready in existence. With DESI, calling a NumPy function
with array arguments instead of once per loop resulted in
a respectable speed-up as well, at the cost of readability
and an increased memory footprint. The latter example is
a simple violation of NumPy best practices but it should
not be construed to be symptomatic of a wider problem
with the code-base, elsewhere array syntax and broadcasting
rules are observed rigorously. These examples suggest that
even experienced Python developers may be able to identify
“low-hanging Python fruit” in their applications even if they
think there is none. Performance profiling tools like cPro-
file/SnakeViz, VTune, or Advisor are essential to identify
these opportunities.

Partnership with our vendors was essential in ac-
celerating the pace of progress. A major initial block
was the lack of scaling on KNL for applications us-
ing multiprocessing, which was resolved by setting
KMP_AFFINITY=disabled. This was resolved quickly
through discussion with Intel engineers. Another example
was insight into interaction between multiprocessing and

Cray MPICH, which was clarified by interaction with en-
gineers from Cray. Furthermore we have found it rela-
tively easy to suggest changes or enhancements to libraries
and tools that the vendors understand and then implement.
Dungeon sessions and in-person events were also critical
for training developers in the use of powerful tools for
optimization and analysis of codes. This helps us achieve
our goals of helping KNL Python developers become self-
sufficient.

In approaching these Python applications we have
largely applied the same time-tested tools and techniques
of performance analysis and optimization from HPC. This
seems natural, but traditional HPC experts who have spent
most of their careers analyzing Fortran or C++ applications
may miss subtle differences about Python that are ultimately
consequential. This means that for instance, we found our-
selves having to explain the GIL to astonished colleagues
when they asked why threading Python applications was a
complex problem. Others approaching the problem of trying
to extract performance from Python applications in HPC in
general will find themselves educating the HPC community
about Python.

7. Conclusion

In this paper we have introduced NESAP for Data, a
collaboration of NERSC staff, code developers, and experts
from Intel and Cray focused on porting, evaluating, and
optimizing selected applications for the KNL architecture
on the Cori Cray XC40 at NERSC. We have outlined the
three NESAP for Data Python application case studies in
progress, and plan future updates on them as the program
continues.

The three applications discussed were selected for NE-
SAP for Data in part because they represent a spectrum of
“Python purity.” One uses Python mainly as an orchestration
and “glue” layer to combine massively parallel components
to process and analyze CMB data sets (TOAST). Another
consists of a mixture of scientific Python and hand-written C
code to achieve performance for tomographic reconstruction
(TomoPy). Developers of the third application, DESI, try to
extract as much performance as possible from Python with-
out resorting to hand-written C or C++ code as a last resort.
Selecting applications designed with differing philosophies
about using Python in HPC gives us insight into how their
developers view the challenges they face. The results so
far suggest that simply “diving in” and replacing Python
code with hand-optimized C code may be necessary, but it
is a best practice to first establish that other opportunities
for optimization in the Python layer are actually exhausted.
Even in mature code bases, there may be relatively easy to
identify low-hanging Python fruit.

On a practical level, NESAP for Data is about making
sure that real workloads scale on current and near-term
architectures. But the time is right to begin thinking about
how Python needs to evolve in the coming age of exascale.
Exascale computing represents a tremendous opportunity
for complex simulation workloads and big data for EOS.



There is a clear need for powerful programming models
and tools that are usable and elegant. New programming
models, and high-level languages like Python, might ad-
dress this exascale programmability gap. The challenge is
in figuring out how to keep the language expressive and
abstract but somehow achieve levels of performance usually
only available to programmers by discarding abstraction.
The NESAP for Data effort will lead to performance gains,
a better understanding of how Python applications perform
on manycore systems like Cori, and the development of
an overall optimization strategy. However we believe it is
essential that NESAP for Data move forward as part of a
larger community effort involving users, scientific Python
developers, and vendors.

In the near future we will be continuing with our per-
formance analysis and optimization efforts, while looking
forward and exploring new tools. As alternative interpreters
like PyPy become more mature it makes sense to consider
whether they can seamlessly take over for the CPython inter-
preter used exclusively by NESAP for Data Python applica-
tions. We would be remiss in failing to ask whether Python
itself is the right tool for filling the exascale programmability
gap, and future applications brought into NESAP for Data
that use Julia25 should help us address this question.

Acknowledgments

The authors thank their partners at Intel, the Intel Python
Team, Intel tools developers, performance engineers, and their
management. Mike Ringenberg and Krishna Kandalla at Cray are
thanked for helping us understand some issues with Cray MPICH,
mpi4py, and multiprocessing. This work used resources of the
National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov,
B. Friesen, M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia et al.,
“Accelerating science with the nersc burst buffer early user program,”
CUG2016 Proceedings, 2016.

[2] R. S. Canon, B. R. Draney, D. L. P. Jason R. Lee, D. E. Skinner, and
T. M. Declerck, “Enabling the super facility with software defined
networking,” in Cray User Group Meeting 2017, 2017.

[3] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker
for hpc,” in Cray User Group Meeting 2015, 2015.

[4] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He,
T. Kurth, T. Koskela, M. Lobet, T. Malas et al., “Evaluating and
optimizing the nersc workload on knights landing,” in Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), International Workshop on. IEEE, 2016, pp.
43–53.

[5] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson,
R. Mount, V. Sarkar, V. White, and D. Williams, Synergistic Chal-
lenges in Data-Intensive Science and Exascale Computing: DOE
ASCAC Data Subcommittee Report. Department of Energy Office
of Science, 3 2013, type: Report.

25. http://julialang.org

[6] J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” Computer, vol. 31, no. 3, pp. 23–30, 1998.

[7] Z. Zhao, M. Davis, K. Antypas, Y. Yao, R. Lee, and T. Butler, “Shared
Library Performance on Hopper,” in Cray User Group Meeting 2012,
2012.

[8] W. Frings, D. H. Ahn, M. LeGendre, T. Gamblin, B. R.
de Supinski, and F. Wolf, “Massively parallel loading,” in
Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ser. ICS ’13. New
York, NY, USA: ACM, 2013, pp. 389–398. [Online]. Available:
http://doi.acm.org/10.1145/2464996.2465020

[9] Yu Feng and Nick Hand, “Launching Python Applications on Peta-
scale Massively Parallel Systems,” in Proceedings of the 15th Python
in Science Conference, Sebastian Benthall and Scott Rostrup, Eds.,
2016, pp. 137 – 143.

[10] Particle Physics Project Prioritization Panel (P5), “Building for
Discovery: Strategic Plan for U.S. Particle Physics in the Global
Context,” 2014. [Online]. Available: https://science.energy.gov/~/
media/hep/hepap/pdf/May-2014/FINAL_P5_Report_053014.pdf

[11] L. Dalcín, R. Paz, and M. Storti, “MPI for Python,” Journal
of Parallel and Distributed Computing, vol. 65, no. 9, pp. 1108
– 1115, 2005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0743731505000560

[12] L. Dalcín, R. Paz, M. Storti, and J. D’Elá, “MPI for Python:
Performance improvements and MPI-2 extensions,” Journal of
Parallel and Distributed Computing, vol. 68, no. 5, pp. 655
– 662, 2008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0743731507001712

[13] L. D. Dalcín, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel
distributed computing using Python,” Advances in Water Resources,
vol. 34, no. 9, pp. 1124 – 1139, 2011, new Computational Methods
and Software Tools. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0309170811000777

[14] D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a
framework for the analysis of synchrotron tomographic data,” Journal
of Synchrotron Radiation, vol. 21, no. 5, pp. 1188–1193, Sep 2014.
[Online]. Available: https://doi.org/10.1107/S1600577514013939

[15] F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Y. Parkinson,
F. Khan, N. Schwarz, D. J. Vine, S. Vogt, S.-C. Gleber et al.,
“Scientific data exchange: a schema for hdf5-based storage of raw
and analyzed data,” Journal of synchrotron radiation, vol. 21, no. 6,
pp. 1224–1230, 2014.

[16] J. Gibbs, K. A. Mohan, E. Gulsoy, A. Shahani, X. Xiao, C. Bouman,
M. De Graef, and P. Voorhees, “The three-dimensional morphology
of growing dendrites,” Scientific reports, vol. 5, p. 11824, 2015.

[17] C. S. Kaira, C. R. Mayer, V. De Andrade, F. De Carlo, and N. Chawla,
“Nanoscale three-dimensional microstructural characterization of an
sn-rich solder alloy using high-resolution transmission x-ray mi-
croscopy (txm),” Microscopy and Microanalysis, vol. 22, no. 4, pp.
808–813, 2016.

[18] T. Bicer, D. Gürsoy, R. Kettimuthu, F. D. Carlo, G. Agrawal, and
I. Foster, “Rapid tomographic image reconstruction via large-scale
parallelization,” in Euro-Par 2015: Parallel Processing. Springer,
2015, pp. 289–302.


