
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

EMMA: a new paradigm in configurable software
To cite this article: J M Nogiec and K Trombly-Freytag 2017 J. Phys.: Conf. Ser. 898 072006

View the article online for updates and enhancements.

Related content
Birth pangs of new paradigms?
Arthur Ellison

-

Beyond XSPEC: Toward Highly
Configurable Astrophysical Analysis
M. S. Noble and M. A. Nowak

-

EMMA: A new underground cosmic-ray
experiment
T Enqvist, V Föhr, J Joutsenvaara et al.

-

This content was downloaded from IP address 131.225.23.169 on 08/12/2017 at 20:10

https://doi.org/10.1088/1742-6596/898/7/072006
http://iopscience.iop.org/article/10.1088/2058-7058/1/11/25
http://iopscience.iop.org/article/10.1086/590324
http://iopscience.iop.org/article/10.1086/590324
http://iopscience.iop.org/article/10.1088/1742-6596/39/1/125
http://iopscience.iop.org/article/10.1088/1742-6596/39/1/125

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

EMMA: a new paradigm in configurable software

J M Nogiec and K Trombly-Freytag

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

E-mail: nogiec@fnal.gov

Abstract. EMMA is a framework designed to create a family of configurable software systems,

with emphasis on extensibility and flexibility. It is based on a loosely coupled, event driven

architecture. The EMMA framework has been built upon the premise of composing software

systems from independent components. It opens up opportunities for reuse of components and

their functionality and composing them together in many different ways. It provides the

developer of test and measurement applications with a lightweight alternative to microservices,

while sharing their various advantages, including composability, loose coupling, encapsulation,

and reuse.

1. Introduction

The main objective of the EMMA framework was to define an architecture and provide common

functionality for a family of measurement systems, thereby ensuring unification of design and a high

level of software reuse. This approach results in standardization of many aspects of the developed

systems, including internal communication, configuration, error handling, logging, data archiving, and

user interface (UI) look and feel.

Measurement systems are developed in an iterative process, whereby algorithms are improved, and

various settings and parameters are adjusted and tuned until the system performs satisfactorily. This

process requires a software system that allows for quick and robust changes of hardware and the

accompanying software and also allows for experimentation with the data processing algorithms. A

mature measurement system, on the other hand, requires a high degree of automation to remove the

human factor from impacting the repeatability of measurements and ensuring the uniformity of the

measurement process.

Although EMMA is a universal framework, it has been created with test and measurement

applications in mind. The resultant system is extensible, allowing for new measurements, analyses, and

new DAQ instruments to be added, and configurable, allowing for quick customization of components.

The automation of measurements is accomplished by scripting, which provides the necessary flexibility

in changing measurement sequences.

2. Architecture

EMMA is a component-based system, where measurement applications are constructed by assembling

sets of components. Thus, many different applications can be built using the EMMA framework by

supplying new components and reusing the existing system and domain components.

EMMA’s architectural model requires a flexible communication mechanism that supports sending

messages using unicast, multicast and broadcast communication patterns. This message-oriented

architecture is implemented using a publish-subscribe software bus (figure 1), which provides both local

and remote communication.

FERMILAB-CONF-16-418-TD
ACCEPTED

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, Office of Science, Office of High Energy Physics.

mailto:nogiec@fnal.gov
http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

In the publish-subscribe software bus architectural pattern, components subscribe to specific topics

(types of data messages exchanged on the bus) and publish messages with specified topics. When a

message with a given topic is published on the bus, all the components that have subscribed to that topic

(subscribers) are notified. A publish-subscribe bus is similar to its hardware equivalent and, in addition

to inter-component communication, allows for installation, configuration, and removal of components.

This publish-subscribe inter-component communication model results in a system of loosely coupled

components, unaware of the presence of other components and their specifics. The inter-component

dependencies are thereby reduced to the connascence of event names and the data structures exchanged

as the associated message payloads.

Figure 1. Software bus with remote and local components.

Local components (components located in the same node) communicate via message queues, and

remote components (components residing in different nodes) communicate with the bus via sockets

(TCP/IP).

The bus implementation in EMMA is, unlike in an Enterprise Service Bus, relatively simple with no

routing or message translation functionality. A message is identified by a <topic, event> pair, which

also determines the format of the message’s data payload. Message topics are specified using the dot

notation, and form a hierarchical name space with four root names: control, data, exception and

property, denoting the following message categories:

 Control messages, which request specific actions or get statuses of hardware or software and

may also manipulate the state of the component (initialize, end, suspend and run component).

 Data messages, which send results of data acquisition, analysis, or comments entered by the

user.

 Property messages, which tailor components and modify their behaviour.

 Exception messages, which report problems or significant events (errors, warnings, or

significant action/state changes).

The EMMA framework provides real-time monitoring of messages published on the bus, and also

allows inspection of the topics a component is subscribed to.

3. Components

A component encapsulates the implementation of some functionality needed in an application.

Component developers are encouraged to design components to serve a single purpose - to do only one

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

thing, but do it right. This rule simplifies creation of the components that may be functionally equivalent

but implemented differently, or that are based on different hardware.

The generic EMMA component is designed following the classical object model, where objects are

separate entities with states and specified behavior and communicate via messages. Consequently, each

EMMA component has a defined communication interface consisting of input and output messages, a

set of properties that parametrize and tailor its functionality, and specific actions that define its behavior

in response to software or hardware events.

3.1. Component structure

EMMA components are built based on a template, which guarantees their similarity. Each standard

component contains:

 Universal Connector, a module that transparently interfaces the component to the software bus

and its dispatcher, using either the local or remote connection mode.

 The internal queues that provide buffering between the asynchronous component and the

connector.

 Controller, a module implementing the component’s state machine.

 The externally defined control logic.

 Executive, a module performing the actual processing.

Each EMMA component runs its controller and executive modules in a single thread and can have

one or more additional parallel threads for asynchronous monitoring and control.

Figure 2. Organization of a standard EMMA component.

3.2. Controls and data-driven processing

There is a common set of system control events (identified as commands or “cmd”) sent to the control

topics that all components respond to, which will manipulate that component’s state (table 1).

In addition to the standard control events, each component may have one or more specific control

commands it alone reacts to. Typically, after completing a requested command, the component sends an

acknowledgment, (ACK or NACK).

Components can also receive data events. Upon receipt of a data event, the component processes the

data contents (performs calculations, visualizes or persists the data) and, optionally, sends one or more

data messages.

Component

State Controller

Control Logic

queues

(local)
 TCP

(remote)

EMMA Software Bus Dispatcher

 Executive

Universal Connector

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

Table 1. Standard component control events (commands).

Command Action Reply

init.cmd Initialize the component by setting its properties to their initial

values (as specified in the configuration file) and perform

initialization of software and hardware in preparation for

performing its core functionality.

init.ack

pause.cmd Pause execution of the component pause.ack

run.cmd Resume previously paused execution run.ack

abort.cmd Abort current activity or function abort.ack

exit.cmd Clean up and terminate the component exit.ack

3.3. Component Dynamic Model

A component’s behaviour is specified by a state machine. EMMA state machine diagrams are defined

externally to the component’s controller as matrices, which allows for easy modification of the

component’s behaviour.

The state machine matrix specifies the action that will be taken, taking into consideration the received

message (topic and event), the component’s current state, and, optionally, a modifying condition.

The modifying conditions can be different for each component. An example of such a condition

could be the name of the sender component, which might result in only events from a specified

component being taken into account when processing a particular message. A standard dynamic model

of a component is shown in figure 3.

Figure 3. Component dynamic model (state diagram).

3.4. Component properties

Each component has a number of properties that can be both modified and inspected. Properties alter or

influence the execution of the component’s methods by specifying parameters for data acquisition,

motion, current control, etc.

The standard property events that are sent on the property topics are show in table 2.

 ready

running

run

abort
data.dat

pause

paused

abort

error

 init

 init

error
unknown

error

initializing

init

setProperty

5

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

Table 2. Standard EMMA property events.

Command Parameters Action Reply Parameters

set.cmd [property1= value]+

Set listed properties to given

values

set.ack None

get.cmd [property]+ Return values of listed

properties

get.dat [property1=

value]+

state.cmd None Return current state of the

component

state.dat State

[contents]+ denotes an array of one or more elements of specified contents.

4. Configuration

An EMMA configuration specifies the system to be executed and contains the following information:

 meta-data: information about the measurement, test type, etc.,

 the components that make up the system, both remote and local,

 component properties, which set the intended behavior of the component,

 initial control events for the components, which specifies their initial state, and

 UI components setup, which defines what to display in the viewports in the UI shell and what

as top-level windows. See User Interface section for details.

EMMA configurations are stored in INI files, which are simple text files with a basic structure

composed of sections that contain related parameters with their values.

5. System Components

The EMMA framework includes system components that provide the common and necessary

functionality used by all EMMA systems. Currently, they include the following components:

 Configuration, a component that allows selection of a configuration, a script and its parameter

set, and loads and prepares the configured components. It also allows inputting of measurement

metadata for data documentation.

 Script, a bridge component between the Python script and the bus. It both controls the script’s

execution and communicates with it.

 Log, a component that receives log messages and writes them to the log files.

 Starter, a component that starts the local and remote components once the configuration is

activated by the user via the configuration component.

 Persistent System Memory, a component that stores data, such as calibrations or partial results,

which can be accessed in subsequent runs of the system. Since any data structure can be

persisted and the components control which data to store, it creates a very powerful and flexible

mechanism to build sequences of measurements with shared data.

6. Component Coordination

EMMA allows for coordination of components via both orchestration (a script component or a mediator

component coordinates by sending control events) and via dataflow-based choreography (implementing

a functionality based on the data moving through the system of components). A typical organization of

the components for a measurement combines both the orchestration and dataflow–based choreography

as shown in the diagram below (figure 4).

6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

Figure 4. Simplified measurement collaboration diagram.

1. Script sets up components for the measurement by adjusting hardware settings on DAQ

components, selecting algorithms to be used for analysis and quality criteria.

2. Script triggers data producers (DAQ components)

3. The data produced by DAQ are aggregated inside the Data component, and then received

and processed by the Analysis and UI components

4. The data produced by Analysis are received by the UI and QC (quality control) components.

5. The QC component sends data to the UI and Archiver components.

7. Automation and scripting

7.1. Scripting Language

Python was selected as the scripting language for EMMA because of its high-level language constructs

(action sequencing, iteration, exception handling), its relatively high expressiveness, and its high

suitability for scripting. The development of a domain specific scripting language was dismissed due to

its implementation and maintenance costs.

Python measurement scripts are developed using the EMMA API, which provides the necessary

message-based communication primitives to communicate with the EMMA system. The API has a

layered design with primitives from each layer using the lower layer primitives for their implementation.

The layers of the scripting API are, in the order of increasing abstraction levels: the message layer, the

event layer, and the application layer.

Table 3. EMMA scripting API

Calling sequence Description

Message Layer

msgString = recvMsg (timeout) Receive a message string or timeout.

sendMsg (msgString) Send a message string

Event Layer

sendEvent (format, topic, event, data) Send event of specified format, topic, event, and data.

(f, t, e, c, d) = recvEvent (timeout) Receive event or timeout. The event contains format,

topic, event, sender component and data attributes.

(f, t, e, c, d) = awaitEvent (topic,

event, sender, timeout)

Await a specified event or timeout. An asterisk in a

field denotes that any value would be acceptable.

DAQ 3

Analysis

Script

Data QC

UI

Archiver

1 1 1

2
3

3 4

4

5

5

7

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

Application Layer

sendCmd (topic, event) Send command (a simple event)

setProperty (topic, event, property,

value)

Set property by sending an event with property name

and value to an intended recipient defined by topic and

event.

log (text)

Write a given entry (text) to the system log.

(f, t, e, c, d) = rpc (topic, event,

replyTopic, replyEvent, sender,

timeout)

Send an event to a given topic and await a reply event

from a specified sender component on a reply topic.

Time-out if there is no reply in a specified time.

7.2. Script parameters

An EMMA script is not intended to contain any measurement parameters; measurement parameters are

read from a separate parameter file. This design avoids the creation of multiple similar scripts with

different sets of values by separately specifying the measurement conditions (e.g., set of currents,

tensions, etc.) within a parameter set (or sets).

Figure 5. A measurement view inside the Shell module.

8. User interfaces

The Shell module is a basic user interface provided for each UI component (figure 5). It contains views

for metadata and logs, and viewports, which are empty panels in which the component can place its own

front panel with customized data visualizations. UI components have the option to show their output in

Shell viewports or to run as top-level windows.

Tabbed selection of views

Results - plots

Monitoring

 data

Results -

numerical

Metadata

System log

8

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072006 doi :10.1088/1742-6596/898/7/072006

9. Summary

The EMMA framework embraces a fine-grained, component-based architecture, which produces a

network of asynchronous communicating processes organized into components. Each component is

independent and can evolve internally without compromising system integration as long as its

functionality boundaries and external interface remain unchanged. Components are short lived, created

for the duration of running a particular system. A component has a set of properties that can be initialized

to system customized values and then dynamically modified to alter the behavior of the particular

component at run-time.

The functionality of each application created with the EMMA framework is orchestrated by scripts.

Several different scripts can execute on a given set of components providing different behaviors, with

each script parameterized to provide an easy way to tailor the application’s behavior.

The EMMA framework has been built upon the premise of composing test and measurement systems

from independent components. This opens up opportunities for reuse of components and their

functionality and composing them together in many different ways. It provides the measurement system

developer with a lightweight alternative to microservices, while sharing their various advantages,

including composability, loose coupling, encapsulation, and reuse.

The EMMA framework system builds on experiences gained from designing and using configurable

multi-measurement systems, including those developed by the authors - the CHISOX and EMS systems

[1] [2]. To date, it has been successfully used to build two measurement systems, and another system is

already in the inception phase.

10. References

[1] Sim J et al. 1995 Software for a Database-Controlled Measurement System at the Fermilab

Magnet Test Facility 16th Biennial Particle Accelerator Conf. (Dallas)

[2] Nogiec J, Sim J., Trombly-Freytag K, and Walbridge D 2000 EMS: A Framework For Data

Acquisition And Analysis VII Int. Workshop on Advanced Computing and Analysis

Techniques in Physics Research (Batavia)

Acknowledgments

This work has been conducted at Fermi National Acceleratory Laboratory operated by Fermi Research

Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

