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A. Overall Technical Summary 

 
With advances in DNA sequencing and genome annotation techniques, the breadth of metabolic knowledge 
across all kingdoms of life is increasing. The construction of genome-scale models (GSMs) facilitates this 
distillation of knowledge by systematically accounting for reaction stoichiometry and directionality, gene 
to protein to reaction relationships, reaction localization among cellular organelles, metabolite transport 
costs and routes, transcriptional regulation, and biomass composition. Genome-scale reconstructions 
available now span across all kingdoms of life, from microbes to whole-plant models, and have become 
indispensable for driving informed metabolic designs and interventions. A key barrier to the pace of this 
development is our inability to utilize metabolite/reaction information from databases such as BRENDA 
[1], KEGG [2], MetaCyc [3], etc. due to incompatibilities of representation, duplications, and errors. 
Duplicate entries constitute a major impediment, where the same metabolite is found with multiple names 
across databases and models, which significantly slows downs the collating of information from multiple 
data sources. This can also lead to serious modeling errors such as charge/mass imbalances [4,5] which can 
thwart model predictive abilities such as identifying synthetic lethal gene pairs and quantifying metabolic 
flows. Hence, we created the MetRxn database [6] that takes the next step in integrating data from multiple 
sources and formats to automatically create a standardized knowledgebase. We subsequently deployed this 
resource to bring about new paradigms in genome-scale metabolic model reconstruction, metabolic flux 
elucidation through MFA, modeling of microbial communities, and pathway prospecting. This research has 
enabled the PI’s group to continue building upon research milestones and reach new ones (see list of MetRxn-
related publications below). We elucidate this using the six aims listed below: 
 
Aim 1: Reaction/Metabolite Data Standardization, Correction, and Congruency (MetRxn) 
Aim 2: Development of Novel Database Designs for MetRxn 
Aim 3: Incorporation of Atom Mapping Information for all Reaction Entries in MetRxn 
Aim 4: Creating Models using MetRxn: Metabolic Model Reconstruction of Plants   
Aim 5: Curating Metabolic Models using MetRxn 
Aim 6: MetRxn-driven metabolic reconstruction and analysis of microbial communities 
Aim 7: Extracting Knowledge using MetRxn: Pathway Prospecting and Synthetic Biology 
 
We have promptly posted on the PI’s webpage (http://www.maranasgroup.com/ ) and broadly disseminated 
all data as well as the obtained models and computational tools in accordance with DOE’s policy. Progress 
has been made on all fronts since the time of receiving the award and we have met and hopefully surpassed 
all milestones put forth in the proposal. The work has yielded a number of successful developments both in 
the area of extension of the MetRxn database and computational platforms to support all of our modeling 



aims, and in the area of scientific/technical advances. Below is further information on the results related to 
the specific individual aims as outlined in the proposal. 
 
The following sections detail the research outcomes of the entire project towards the project aims along a 
multitude of fronts in the development of MetRxn database and computational tools to analyze, elucidate 
and redesign biological pathways. The ultimate outcome of the work is a suite of computational aids for 
analyzing and optimizing the behavior of biological networks built upon the MetRxn database. Below are 
listed publications of research carried out (partially or completely) based on this research grant support in 
the last three years. 
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B. Specific Aim 1: Reaction/Metabolite Data Standardization, Correction, and Congruency 

(MetRxn) 
B.1. Background 
MetRxn [1] is a knowledgebase that includes standardized metabolite and reaction descriptions by 
integrating information from 8 highly accessed databases including BRENDA [2], KEGG [3], MetaCyc 
[4], Reactome.org [5] and recently published metabolic models into a single unified data set. All metabolite 
entries have matched synonyms, resolved protonation states, and are linked to unique structures. All 
reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow 
of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of 



standardized versions of existing genome-
scale metabolic models and the use of 
metabolic information for the rapid 
reconstruction of new ones.  
In this work, we describe the development 
and highlight applications of the web-based 
resource MetRxn that integrates, using 
internally consistent descriptions, 
metabolite and reaction information from 
eight databases and 112 metabolic models. 
Since its creation, the MetRxn 
knowledgebase (as of March 2014) has 
increased its data set to contain over 
120,000 metabolites and 55,000 reactions 
(including unresolved entries) that are 
charge and elementally balanced. By 
conforming to standardized metabolite and 
reaction descriptions, MetRxn enables users 
to efficiently perform queries and 
comparisons across models and/or 
databases. For example, common 
metabolites and/or reactions between 
models and databases can rapidly be 
generated along with connected paths that 
link source to target metabolites. The 
workflow followed in the creation of the 
MetRxn knowledgebase (see Figure B.1) 
identified a number of naming and structure 
inconsistencies in metabolites and reactions. 
For instance, the same metabolite name may 
map to molecules with different numbers of repeat units (e.g., lecithin) or completely different structures 
(e.g., AMP could refer to either adenosine monosphate or ampicillin). Notably, even for the most well-
curated metabolic model, E. coli iAF1260 [6] , we found minor errors or omissions (a total of 17) arising 
from inconsistencies or incompleteness of representation in the data culled from other sources. For example, 
the metabolite abbreviation arbtn-fe3 was mistakenly associated with the KEGG ID and structure of 
aerobactin instead of ferric-aerobactin. In the Corynebacterium glutamicum model [7], 7,8-
aminopelargonic acid (DAPA) has no associated structural information. Reaction matching found the same 
reaction in the E. coli iAF1260 model: 

 

C. glutamicum: DAPA + ATP + CO2 < = > DTBIOTIN + ADP + PI 
iAF1260 [c] : atp + co2 + dann → adp + dtbt + (3) h + pi 
 

which, implies that 7,8-aminopelargonic acid (DAPA) is identical to 7,8-Diaminononanoate (dann). 
Examination of pelargonic acid and nonanoate reveals that they were indeed known synonyms. In many 
cases, we were also able to assign stereo-specific information to metabolite entries in models (e.g., stipulate 
the L-lysine isomer for lysine). We made use of an iterative approach that allowed us to map structures from 
models with explicit links to structures (e.g. to KEGG or CAS numbers) to models that only provided 
metabolite names. Furthermore, by using a phonetic algorithm along with Jaro Winkler similarity that uses 
tokens for equivalent strings in metabolite names (e.g., ‘-ic acid’ and ‘-ate’ are equivalent) we were able to 
resolve an additional 159 metabolites. For example, phonetic searches flagged cis-4-coumarate and 
COUMARATE in the Acinetobacter baylyi model [8] as potentially identical compounds. Additional 

Figure B.1. Outline of the workflow of MetRxn curation procedure:
After download of primary sources of data from databases and models,
we integrated metabolite and reaction data, followed by calculation and
reconciliation of structural information. By identifying overlaps
between metabolite and reaction information, we generated elemental
and charge balancing of reactions. The procedure for developing
MetRxn was iterative with subsequent passes making use of previous
associations to resolve remaining ambiguities. 



checks revealed that 
indeed both 
metabolites should 
map to the same 
structure. A more 
complex matching 
example involved 1-
(5’-Phosphoribosyl)-4-
(N-
succinocarboxamide)- 
5-aminoimidazole 
from the Bacillus 
subtilis model [9] and 
1-(5’-Phosphoribosyl)-
5-amino-4-(N-
succinocarboxamide)- 
imidazole from the 
Aspergillus nidulans 
model [10]. We note 
that the phonetic 
algorithm only makes 
suggestions and orders 
the possible matches for the curator. 
B.2. Results 
The number of inconsistencies is significantly higher for less curated metabolic models. We used a variety 
of procedures to disambiguate the identity of metabolites lacking structural information ranging from 
reaction matching to phonetic searches. We applied the standardization procedure on 22 newly published 
metabolic models and latest versions of 7 metabolic databases since March 2013. Twelve of the metabolic 
models published since the last update belong to the bacteria taxon, 2 to Eudicots, 2 to Archaea and the 

Figure B.2. Reaction comparison: We compare two reactions directly here. The numbers above show the 
equivalent substructures between both the reactions and not the reaction atom transitions. Common substructures 
are highlighted in cyan for visual clarity. Subfigure A shows the reaction L-phenylalanine:NAD+ oxidoreductase 
and subfigure B shows the reaction L-Tyrosine:NAD+ oxidoreductase. The common reaction center is also 
highlighted in pink. The Jaccard similarity calculated for the number of atoms in the common substructures was 
0.96. 

Figure B.3. Pathway comparison: We compare the two branched chain amino acid degradation pathways for Valine (A) and
Isoleucine (B) degradation. Common subgraphs between the two pathways are in boxes and highlighted in cyan while the common
reaction centers are identified by the oval. The first three reactions have a common enzyme, branched-chain amino acid
aminotransferase, branched-chain α-keto acid dehydrogenase and acyl-CoA dehydrogenase. Valine degradation continues with
enoyl-CoA hydratase and β-hydroxyisobutyryl-CoA while isoleucine degradation continues with enoyl-CoA hydratase and β-
hydroxyacyl-CoA dehydrogenase. Both Valine and Isoleucine finally end up as the Citric Acid Cycle intermediate Succinyl-CoA.
Co-factors such as NAD and FADH2 have been omitted for visual clarity 



remaining ones to Fungi. Data from the 8 metabolic databases are kept up to date as when the latest versions 
are made available. The latest versions of the 7 databases are KEGG 70.0,  MetaCyc 18, BRENDA 2014.1, 
RHEA 50, ChEBI 114, Reactome 48 and HMDB 3.5. However, many metabolites downloaded from the 
aforementioned datasets contain incomplete atomistic details. Details about some of the atoms of the 
molecules are suppressed by representing them as part of generic sides (-R group). Currently in MetRxn, 
102,336 out of 115,512 metabolites and 38,132 out of 42,965 reactions have complete atomistic details. 
MetRxn’s primary dataset aggregates information from various metabolic resources. A major drawback we 
faced was in the quality of annotations provided from the primary datasets. A high quality metabolic model 
provides additional reaction annotations such as EC number, subsystem/pathway classification, deltaG and 
reaction direction. Such annotations are invaluable since they assist development of metabolic models of 
newly sequenced organisms from phylogenetically related metabolic models. Large numbers of reactions 
from metabolic models as well as databases lack the aforementioned annotations making reconstruction of 
quality genome-scale metabolic models a challenging task. Better annotations lead to a compilation of 
reactions encompassing the entire chemistry repertoire of a specific organism. It must be noted that these 
models are not necessarily predictive but instead have a scoping nature by allowing us to assess what is 
metabolically feasible.  
We automate reaction annotation using a novel maximum substructure algorithm called CLCA (Canonical 
Labelling for Clique Approximation). CLCA is polynomial runtime algorithm capable of identifying 
common subgraph isomorphs between two graphs. We utilize atom connectivity information available for 
all reacting substrates to produce input graphs for CLCA. EC number classification is a semantic 
classification of the underlying reaction mechanism. Reaction mechanism can be identified by the reaction 
center i.e. the atoms and bonds involved in electron transfer between/within each reacting substrate. EC 
numbers also at times indicate the cofactors involved in a reaction. We transfer EC number annotation by 
comparing a EC annotated reaction graph with an unannotated reaction graph for common subgraph 
isomorphs. If isomorph preserves both the reaction center as well as the co-factors, we safely transfer the 
EC annotation. Each unannotated reaction is compared with the entire graph and only the best match is 
considered for annotation transfer as illustrated in Figure B.2. A similar approach of comparing unannotated 
pathways is presented in Figure B.3 wherein we compare two pathways. Subsystem classifications can be 
suggested or transferred using similarity scores. Furthermore, we annotate reactions with atom mapping 
information using CLCA. Atom mapping is further discussed in Aim 3. 
 
C. Specific Aim 2: Development of Novel Database Designs for MetRxn 

C.1. Background 
One of the biggest challenges with maintaining a heterogeneous dataset is in the way the database has to be 
designed in order to accommodate all the possible queries that users post. Our experience with MetRxn has 
shown that maintenance can become a big bottleneck in performance and execution as well as adding strain 
on hardware if the design is not implemented carefully. We have modified the schema several times so that 
queries can execute fast and the hardware resource utilization is optimal. The next challenge would arise 
when we start including massive datasets such as whole genomes and proteomes. One of the ways 
heterogeneous data management is handled is by moving away from structured schemas towards 
unstructured schemas. In the IT infrastructure domain, this would be called the NoSql [11] database 
technology. Kbase (www.kbase.us) has done this using the MongoDb [12] architecture while the 
Bio4j(http://www.bio4j.com/) project using a graph database approach.  
One of the goals related to database architecture with respect to MetRxn is to provide a design that allows 
for real-time execution of pathway prediction algorithms [13-15]. The first step in this direction will start 
with the inclusion of proteomic data. We plan to include proteomic data from UniProt [16] and this would 
again lead to some changes in the underlying schema of MetRxn. With the recent availability of the Kbase 
infrastructure we believe this effort will be easier than before. Since the overhead of hardware management 
is offloaded and also that we do not need to bother about any underlying design changes.  



C.2. Results 
Movement into Kbase:  
We have been in conversation with members of the Kbase design team (i.e., Tom Brettin) in order to plan 
a path forward for converting the MetRxn schema as shown in Figure C.3 into the Kbase schema as shown 
in Figure C.1 and C.2. Kbase already incorporates pipelines from SEED and RAST allowing for rapid 
annotation of organisms. With the integration of MetRxn into Kbase, we will enhance their biochemistry 
database thereby augmenting and enhancing the quality of annotation in the SEED pipeline. Integration of 
MetRxn within the KBase resource will be a priority for this year. To have a smooth transition between the 
existing database and application, we modified our technology from two-tier architecture to three-tier 
architecture. In two-tier architecture, individual server is dedicated to a database and a web service. Such 
architecture will not allow programmatic access to the underlying data, since security considerations will 
prevent direct access to the database server. In contrast, a three-tier architecture provides a dedicated server 
called the application server to allow users to programmatically access and query data using REST or SOAP 
based http services in remote locations. Due to this change, developing REST/ SOAP based API’s to access 
MetRxn data from KBASE remotely is possible.  

 

Figure C.1: Kbase schema snapshot Figure C.2: Kbase Chemistry dataset spec 1 



 

Figure C.3:  MetRxn schema: The tables along with their column names are shown in blue and the views are shown in yellow. 

 



D. Specific Aim 3: Incorporation of Atom Mapping Information for all Reaction Entries in 
MetRxn 

D.1. Background 
The cellular phenotype of an organism cannot be fully understood without gaining meaningful insight of 
the distribution of fluxes in its metabolic network [17, 18]. Metabolic Flux Analysis (MFA) [19] has 
emerged as the most powerful tool in quantifying in vivo fluxes in cells [20] leading towards varied 
applications in the fields of metabolic engineering, biotechnology and medicine [21-23]. Using stable radio 
isotopes (such as 13C, 15N etc.), labeled substrates are allowed to be ingrained in the backbone of cellular 
metabolites with distinct labeling patterns (i.e. isotopomers). The isotopomers are detected by mass 
spectroscopy (MS) or nuclear magnetic resonance (NMR). From the relative isotopic abundance in each 
metabolite, an indirect estimate on the flux patterns in the metabolic network could be made. Several 
mathematical models have been developed to correlate the flux distribution to isotopomer abundances [24-
27]. Nevertheless, at the heart of each model lies an (usually non-linear) optimization protocol to estimate 
the flux distribution which minimizes the sum of squared residuals (SSR) in isotopomer abundances. 
Sensitivity analysis is usually performed to verify whether the measured flux distribution is within 
allowable statistical error, and confidence intervals of each flux are also calculated [28].  
An important feature of the mathematical models for flux analysis is the high redundancy in isotopomer 
labeling measurements as compared to the number of free fluxes in the model that are required to be 
estimated.  This redundancy is however dependent on the choice of labels used for the experiments [29]. 
Another potential cause for such redundancy is the relative small size of the metabolic networks used for 
the mathematical models. An opportunity thus arises in utilizing this data redundancy for expanding the 
scope of MFA to estimate fluxes for entire genome-scale models. With rationale driven optimization in 
choosing the correct combination of complementary labels, fluxes in genome-scale networks can measured 
with high fidelity. Using the Openflux algorithm [30] which uses the Elementary Mode Analysis approach 
[24], we will use our genome-scale metabolic model to the estimate reaction fluxes, and calculate their 
confidence intervals. Subsequently, we will develop an optimization framework to determine 
complementary labeling and/or, specific isotopomer measurement strategies to improve on the confidence 
scores of the metabolite fluxes.    
Atom mapping of metabolic reactions finds its application in finding new biotransformation routes, 
synthesis of new pathways through engineering, providing the isotopomer-mapping matrix for use in MFA 
as well as in numerous other applications in systems biology. Atom mapping information also helps avoid 
the traversal of biologically infeasible and meaningless routes during identification of novel 
biotransformation routes through pathfinding [31, 32]. Finding correct atom maps for the whole metabolic 
network using automated techniques becomes the primary challenge needs to be addressed prior to 
performing MFA. A number of efforts have addressed this challenge [33-37] with the most recent effort 
being from the MetaCyc group [38] wherein they formulated this problem as a Mixed Integer Linear 
Problem (MILP) to calculate the minimum number of edits needed in the transformation of one graph (i.e., 
the reactant graph) into another (i.e., the product graph). They demonstrated this methodology on 7501 
reactions of the MetaCyc database with a very low error rate of just 0.9% (22 reactions) when compared to 
the manually vetted 2446 reaction atom mappings from Kyoto Encyclopedia of Genes and Genomes 
(KEGG) RPAIR database [3]. The authors claim that their approach is extremely efficient and that 87% of 
the models were solved in less than 10 s. They call this formulation as the minimum weighted edit-distance 
(MWED) metric. This formulation is very much similar to the formulation presented by [33] where they 
try to maximize the number of common edges between to graphs. This formulation is called the maximum 
common edge subgraph (MCES) problem and has the same computational complexity as the most common 
subgraph (MCS) problem. We develop a novel subgraph isomorphism algorithm with is tractable in 
polynomial time. Our algorithm outperforms previous efforts in all aspects of accuracy, time and resource 
utilization. The manuscript detailing the effort mentioned in Aim 3 is under preparation and the results are 
available online at http://metrxn.che.psu.edu. 



D.2. Results 
Research was initiated towards developing complete atom-mapping information for all entries in the 
MetRxn database. Since MetRxn currently includes 112 metabolic models and 8 databases, such an effort 
would provide atom 
mapping information 
for each of the 
metabolic model 
completely, thereby 
allowing us to perform 
MFA on each of the 
metabolic model. To 
this end we developed a 
novel polynomial run-
time algorithm with 
complexity θ(ŋ3). Our 
algorithm is based on 
two conjectures 
wherein the first states 
that that if two given 
graphs are identical 
when reordered, then 
the given graphs are 
identical(Köbler, 
Schöning, & Torán, 
1994). The second 
conjecture is of Integer 
factorization wherein 
we use prime numbers 
to uniquely identify 
and label each node in a 
graph. The Algorithm 
proceeds as follows: (i) 
Identify canonical 
labels for each atom in all metabolites, (ii) Rank order with prime numbers only for labels common to all 
compared metabolites (unique labels are assigned 
assign ‘1’), (iii) Reassign labels based on product of 
neighboring atom labels, (iv) Repeat until atom ranks 
do not change (assign final integer labels), (v) Identify 
all non-maximal (disconnected) subgraphs by 
common labels, (vi) Identify and keep the largest 
subgraph or fragment, (vi) Extend largest subgraph to 
maximum common subgraph using the A* search 
algorithm (Heinonen, Lappalainen, Mielikäinen, & 
Rousu, 2011). This procedure is illustrated in Figure 
D.1  
To improve accuracy, we also combine the Floyd–
Warshall algorithm with a complexity of O(n3) with 
the above mentioned steps. Using CLCA we identified 
and validated atom mappings for over 27,000 reactions 
in MetRxn. The average run time was around 14 
milliseconds per reaction. CLCA always generates 

Figure D.1: Most common substructure using canonical labelling: The two subgraphs identified
between L-tyrosine and Hydroxyphenylpyruvate, the larger subgraph is colored in blue. In the final
step, we extend the subgraph size using the A* search methodology. The extended section is
colored in green. The traversal and subgraph extension always starts from the largest fragment, and 
in this case, it starts from the vertex with index = 5. The numbers shown represent ranks generated
from the labelling algorithm. The two non-equivalent atoms are stamped with different numbers 1
and 13. 

Figure D.2: Preliminary result of the mapping between two
large molecules: The Figure shows the KEGG compound
C06138  (Neu5Ac-alpha2->8Neu5Ac-alpha2->3Gal-beta1-
>3GalNAc-beta1->4(Neu5Ac-alpha2->3)LacCer) which
will be mapped with C06139 in the reaction R05113. 



homotopic mappings and avoids the computational 
overheads of identifying alternate solutions due to symmetric 
groups. Preliminary implementation on two extremely large 
molecules is shown below with the common substructures as 
shown in Figure D.2 and D.3, where the common 
vertices(atoms) and edges(bonds) between the graphs are 
colored green. 
We plan to accelerate this effort by making atom-mapping 
information readily available on MetRxn. We validate the 
atom mappings in a two-prong effort. Firstly, we compare 
our results to DREAM, MetaCyc and KEGG. Secondly we 
incorporate atom maps into C13 metabolic flux analysis 
(MFA) models. Work on Metabolic flux analysis (MFA) has 
been limited in scale by the availability of atom mapping 
information since the non-linear equations [39] are 
constructed using mapping matrices [40] that trace the path 
of each atom and subsequently each isotopomer (isotope 
isomer) in a metabolic reaction. Initially the impact of scale-
up of MFA models from their typical sizes of 70 reactions to 
200 reactions was investigated. The generated atom mapping 
data was used to decompose the network into sub-networks using the EMU algorithm (Antoniewicz, 2007). 
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Fluxes were estimated by solving the following NLP problem: Where, ௜݂ሺݒሻ is the predicted MDV of 
measured fragments, ݔ௜

௠ is the measured MDV of fragments, ݁௜ is the associated experimental error, MDV 
balances are steady state balances on the different mass fractions of every metabolite in the network. On 
scaling the network up from 70 to 205 reactions we found that the flux ranges of glycolytic fluxes increased 
as a result of coexistence of both glycolysis and gluconeogenesis, the pentose phosphate pathway showed 
little change, both lower and upper bound of the TCA cycle increased, and the arginine degradation pathway, 
which was assumed to be inactive in the simplified model was found to have a non-zero lower bound, 
indicating definite activity. 
 

E. Specific Aim 4: Creating Models using MetRxn: Metabolic Model Reconstruction 
of Plants 
E.1. Background 
Zea mays, commonly known as maize or corn, is an essential plant as a food crop, biofuel energy source, 
and model for studying plant genetics. Maize production is increasing at the greatest rate among all cereals 
[41] with a record 877 million tons produced in the 2011-2012 fiscal year [42]. Maize is a major C4 plant 
that overcomes the inefficiencies of RuBisCO, to capture oxygen over the preferred carbon dioxide, by 
separating the carbon fixation process into two cell types: the bundle sheath and mesophyll cell. This 
separation allows for C4 plants to have lower photorespiration rates [43], higher photosynthetic nitrogen 

Figure D.3. Preliminary result of the mapping between two
large molecules: The Figure depicts the mapped portion in
green for the molecule C06139 (Neu5Ac-alpha2-
>8Neu5Ac-alpha2->3Gal-beta1->3GalNAc-beta1-
>4(Neu5Ac-alpha2->8Neu5Ac-alpha2->3)LacCer). 



use efficiency [44], and higher net photosynthesis at high light intensities [45] than plants that do not 
separate the carbon fixation process. A thorough evaluation of the metabolic capabilities of maize will 
address challenges associated with its dual role as a food (e.g., starch storage) and biofuel crop (e.g., cell 
wall deconstruction), in addition to provide cues for improving nitrogen use efficiency. Integration of the 
recently completed maize genome [46], maize specific databases (i.e. MaizeCyc [47], MaizeGDB [48], and 
MetaCrop [49]), and the previous maize model (i.e iRS1563) [50] will allow for a high quality second 
generation genome-scale in silico model.  
The development of a genome-scale model for maize is significantly challenging due to its genome size, 
which is approximately 14 times larger [51] than that of Arabidopsis thaliana [52]. The iRS1563 model 
contains 1,563 genes and 1,825 metabolites participating in 1,985 reactions from both primary and 
secondary metabolism of maize [53]. Due to the scarcity of information available during the first 
reconstruction effort, the previous model (iRS1563) suffers from: incomplete pathways (e.g., sterol 
biosynthesis, sphingolipid biosynthesis, ubiquinone biosynthesis and starch degradation), limited enzyme 
localization information, and approximate representation of photosynthesis reactions and electron transport 
chain. Finally, the iRS1563 model was developed as a generic maize model including all reactions known 
to occur in any cell or tissue within maize.  The second-generation model has been developed for the leaf 
tissue including the distinction between the two cell types as displayed in Figure E.1.  The bundle sheath 
cell contains seven compartments: the cytosol, mitochondrion, peroxisome, plastid, plasma membrane, 
thylakoid membrane, and vacuole. The mesophyll cell contains six compartments: the cytosol, 
mitochondrion, plastid, plasma membrane, thylakoid membrane, and vacuole.  Compartmentalization for 
the second-generation model is based on maize specific experimental and proteomic data [54-57]. 

 
Figure E.1: Second-generation model schematic 

E.2. Results 
Under this aim we are collaborating with Dr. Bertrand Hirel’s group from INRA Centre de Versailles-
Grignon, France to reconstruct a second-generation model of maize, by creating five tissue specific tissues, 
namely the leaf, root, stalk, tassel, and seed. By utilizing available transcriptomic, proteomic and 
metabolomics data from literature and experimentally measured biomass components by Dr. Hirel’s group, 
our goal is to reconstruct high quality tissue specific models that can be used to answer important biological 
questions on nitrogen and energy efficiency. 
The second-generation maize leaf model was developed using gene, protein and reaction information from 
the iRS1563 model and databases, such as KEGG [58], MaizeCyc [47] and Metacrop [49].  Reactions and 
metabolites from different databases were compiled using MetRxn and compartmentalization was based on 
literature evidence [54-57]. The second-generation maize model includes 5,824 genes and 8,408 reactions, 
which is approximately 4 times the size of the iRS1563 model. The light reactions [59] and mitochondrial 
electron transport chain reactions [60] were updated to include the proton exchange of ATP synthase 
between compartments.  Specific reactions were added to model glycerolipid synthesis [61-67], which to 
our knowledge is the first plant model to include specific glycerolipid synthesis. Thermodynamically 
infeasible cycles, generated due to the permissive inclusion of reactions in the model, were subsequently 



identified and eliminated by first restricting directionality of reactions and then removing duplicate or 
generic reactions. 
In order to improve the nitrogen use efficiency in maize, a comprehensive understanding of nitrogen 
metabolism within the organism is required.  In order to simulate nitrogen conditions more accurately, gene-
protein-reaction relationships are used to map the gene transcripts to proteins that are statistically expressed 
at a low level [68] to reactions that are turned-off in the model.  The model was simulated at a wild-type, 
limited nitrogen, gln1-3 mutant, and gln1-4 mutant condition in the vegetative stage. Reaction fluxes were 
restricted for 90 reactions in the wild-type condition, 33 reactions in the limited nitrogen condition, 106 
reactions in the gln1-3 mutant, and 8 reactions in the gln1-4 mutant. Reactions that are restricted in the 
wild-type condition mainly correspond to reactions known to occur under stress conditions.  Biomass 
components were measured by the Hirel group to apply condition-specific biomass equations to the model. 

 
Figure E.2: Comparison between the directional concentration change and simulated flux-sum change for metabolites in the: A.) 
limited nitrogen condition, B.) limited nitrogen condition with no transcriptomic or proteomic data included, C.) gln1-3 mutant 
condition, and D.) gln1-4 mutant condition. 

The metabolomics data [68] was compared to the flux predictions within the model in each of the nitrogen 
conditions. The increasing or decreasing trend of the metabolite concentration was qualitatively compared 
to the flux-sum changes determined by the model. The flux-sum of a metabolite is a measure of the amount 
of flux through the metabolite.  Overall, the model accuracy in correctly predicting the directional change 
in concentration levels is approximately 84% in the limited nitrogen condition, 68% in the gln1-3 mutant 
condition, and 73% in the gln1-4 mutant condition as displayed in Figure E.2.  In comparison to the limited 
nitrogen condition when transcriptomic and proteomic data was not included, the accuracy of the model to 
predict the directional change of the metabolite concentration was reduced to 46%. 
 
F. Specific Aim 5: Curating Metabolic Models using MetRxn 
 
F.1 Background 
New models are being added to MetRxn as they are published or made available to us. It is available as a 
web-based resource at http://metrxn.che.psu.edu. Increasingly, metabolite and reaction information is 
organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, 
directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction 
of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction 
information from biological databases or other models due to incompatibilities in content representation 
(i.e., metabolites with multiple names across databases and models), stoichiometric errors such as elemental 
or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit 
specification of stereo-specificity).  



There have already been a number of efforts aimed at addressing some of these limitations. The Rhea 
database, hosted by the European Bioinformatics Institute, aggregates reaction data primarily from IntEnz 
[69] and ENZYME [70], whereas Reactome.org is a collection of reactions primarily focused on human 
metabolism [5, 71]. Even though they crosslink their data to one or more popular databases such as KEGG, 
ChEBI, NCBI, Ensembl, Uniprot, etc., both retain their own representation formats. More recently, the 
BKM-react database is a non-redundant biochemical reaction database containing known enzyme-catalyzed 
reactions compiled from BRENDA, KEGG, and MetaCyc. The BKM-react database currently contains 
20,358 reactions. In addition, the contents of five frequently used human metabolic pathway databases have 
been compared [72]. An important step forward for models was the BiGG database, which includes seven 
genome-scale models from the Palsson group in a consistent nomenclature and exportable in SBML format 
[73-75]. Research towards integrating genome-scale metabolic models with large databases has so far been 
even more limited. Notable exceptions include the partial reconciliation of the latest E. coli genome scale 
model iAF1260 with EcoCyc [76] and the aggregation of data from the Arabidopsis thaliana database and 
KEGG for generating genome-scale models [77] in a semi-automated fashion. Additionally, ReMatch 
integrates some metabolic models, although its primary focus is on carbon mappings for metabolic flux 
analysis [78]. Also, many metabolic models retain the KEGG identifiers of metabolites and reactions 
extracted during their construction [79]. An important recent development is the web resource Model SEED 
that can generate draft genome-scale metabolic models drawing from an internal database that integrates 
KEGG with 13 genome scale models (including six of the models in the BiGG database) [80]. All of the 
reactions in Model SEED and BiGG are charge and elementally balanced. 
F.2. Results 
Using Gene Essentiality and Synthetic Lethality Information to Curate Existing Metabolic Reconstructions 
Essentiality (ES) and Synthetic Lethality (SL) information identify combination of genes whose deletion 
inhibits cell growth. Essentiality and SL analyses refer to identifying sets of gene deletions (single, double 
and higher order thereof) that render the strain nonviable. Essentiality analysis identifies the list of genes, 
each of which when deleted in silico, limits the biomass flux to lower than 10% of its theoretical maximum. 
SL analysis identifies the list of in silico gene pairs (and higher order) whose removal constrains the 
biomass flux to lower than the aforesaid 
essentiality criterion. These analyses serve the 
dual purpose of model refinement (by 
comparing with available in vivo knockout 
information) and prediction for identifying 
genes (or combination of genes) whose 
knockouts could potentially be lethal. This 
information is important for both identifying 
drug targets for tumor and pathogenic bacteria 
suppression and for flagging and avoiding 
gene deletions that are non-viable in 
biotechnology, such as during strain design. In 
this study, we performed a comprehensive ES 
and SL analysis of two important eukaryotic 
models: S. cerevisiae and CHO cells so as to 
propose model changes that remedy 
inconsistencies with data model predictions 
[81]. ES and SL analyses are supplemented by 
auxotrophy information to help elucidate the 
cause (i.e., nutrient or biomass precursor 
deficiency) for lethality.  
For CHO 1.2, we identified eight instances where model and experimental data do not match. Upon 
supplementing this mismatched set with another 11 cases of model and experiment discrepancies from the 
mouse model [82], we suggested 14 additional (single, double and higher) gene deletion experiments for 

Figure F.1: Schematic showing the non-metabolic lethal interaction 
between Cdc73 and Hem13 gene in yeast. The red crosses represent 
the loss of function upon deletion of Hem13 and Cdc73 genes. 



maximally resolving mutant growth phenotypes in CHO cell lines. The absence of a comprehensive single-
gene knockout database for Chinese Hamster Ovary (CHO) cells (unlike yeast) makes the assessment CHO 
1.2 genome-scale model [83] more difficult. Therefore, we supplemented limited experimental data with 
predicted lethal gene deletions based on the most recent mouse model [83] and gene knockout studies in 
mouse embryonic stem cells [84] that exhibited high degree of sequence similarity (functionality of the 
encoded protein is at least 70% conserved across all mammalian systems [84]) with the CHO cell genome. 
Any inconsistencies between mouse and CHO cell lethality was used as an opportunity to correct the CHO 
model. Eight GPR modifications were proposed for CHO 1.2 in order to address and reconcile five ESG 
cases to GG, three GES cases to ESES, three SL2ES cases to ESES and one ESSL2 case to SL2SL2. In 
addition, we proposed a number of gene deletion experiments to verify non-intuitive synthetic lethal gene 
combinations. Reaction level essentiality analysis in silico revealed 90 essential reactions. Utilizing the 
GPR associations for these reactions, 57 essential genes were identified for growth under aerobic minimal 
essential media.  
The proposed model modifications on Yeast 7.11 involve 50 literature-supported changes that improve the 
sensitivity and specificity of Yeast 7.11 by 2.66% and 20.4% respectively and decrease the false viable rate 
(FVR) by 8.42%. Overall, we reconciled 50 growth discrepancies between model and experiment. Twelve 
ESG cases were identified that form ESSL2 inconsistencies in combination with other non-metabolic genes. 
For example, gene HEM13 whose deletion causes an ESG discrepancy has a non-metabolic function in 
chromatin assembly and interacts with RNA-polymerase II in transcription. It forms a synthetic lethal 
with CDC73 [85] (cell division cycle gene) due to the inability to form the pre-rRNA transcript upon 
simultaneous deletion of the two. We propose a possible interaction schematic (see Figure F.1) explaining 
the cause for the lethal interaction based on information from existing experimental studies [86-88].  
 
Metabolic flux analysis for genome-scale reconstructions 
Metabolic flux analysis (MFA) helps estimate intracellular fluxes, 
thereby elucidating flux divisions at key metabolic branch points, 
such as that between glycolysis and the pentose phosphate pathway 
or that between fermentation and respiration. Usually metabolic 
models used in 13C MFA employ a limited number of reactions 
primarily from central carbon metabolism, choosing to omit 
degradation pathways, complete cofactor balances, and atom 
transition contributions for reactions outside central metabolism. 
We sought to assess the impact of scaling up 13C MFA mapping 
models to a genome-scale model, using the yeast iAF 1260 model 
as a chassis. Labeling data for 17 amino acid fragments obtained 
from cells fed with glucose labeled at the second carbon was used 
to obtain fluxes and ranges. Metabolic fluxes and confidence 
intervals are estimated by minimizing the sum of square of 
differences between predicted and experimentally measured 
labeling patterns using the EMU decomposition algorithm. 
We find that both topology and estimated values of the metabolic 
fluxes remain largely consistent between core and GSM model. 
Stepping up to a genome-scale mapping model leads to wider flux 
inference ranges for 20 key reactions present in the core model. 
The glycolysis flux range doubles due to the possibility of active 
gluconeogenesis, the TCA flux range expanded by 80% due to the 
availability of a bypass through arginine consistent with labeling 
data, and the transhydrogenase reaction flux was essentially 
unresolved due to the presence of as many as five routes for the 
inter-conversion of NADPH to NADH afforded by the genome-
scale model. A non-zero flux for the arginine degradation pathway 

Figure F.2: Flux distribution comparison 
for core model and GSM model. (a) 
Schematic representation of all reactions
and metabolites involved in central
metabolism of E. coli. Comparison of flux 
ranges (in mmol/dmol-glucose) using (■) 
core model and (Fig. 2) GSM model for (b)
glycolysis and gluconeogenesis, (c) 
anaplerotic reactions and glyoxylate shunt,
(d) TCA cycle, (e) PPP and ED pathway. 



was identified to meet biomass precursor demands as detailed in the iAF1260 model. Inferred ranges for 
81% of the reactions in the genome-scale metabolic (GSM) model varied less than one-tenth of the basis 
glucose uptake rate (95% confidence test). This is because as many as 411 reactions in the GSM are growth 
coupled meaning that the single measurement of biomass formation rate locks the reaction flux values. This 
implies that accurate biomass formation rate and composition are critical for resolving metabolic fluxes 
away from central metabolism and suggests the importance of biomass composition (re)assessment under 
different genetic and environmental backgrounds. In addition, the loss of information associated with 
mapping fluxes from MFA on a core model to a GSM model manifested in the TCA cycle and associated 
fluxes, due to the presence of alternate pathways between metabolites. For instance, the lower bound of 
AKGDH decreased to zero due to the presence of multiple alternate pathways between glutamate and 
succinate. The conversion of glutamate to succinate via γ-aminobutyrate and γ-glutamylsuccinate showed 
similar flux ranges as AKGDH indicating the inability of 13C MFA to resolve between these alternative 
pathways. Thus, this study proved that the application of GSM models to 13C MFA will allow the use of 
closed cofactor balances without the risk of altering the actual flux distribution predicted using the flux 
estimation procedure. This will enable identifying metabolic bottlenecks leading to more informed 
metabolic engineering interventions that improve the yield of target products. 
 
Elucidation of Photoautotrophic Carbon Flux Topology using Genome-scale Carbon Mapping Models 
We have also applied genome-scale genome-scale isotopic instationary 13C-Metabolic Flux Analysis 
(INST-MFA) to elucidate photoautotrophic metabolism in Synechocystis. Reactions capable of carrying 
flux in iSyn731 [89] are identified via FVA using extracellular flux measurement data [90]. The 
corresponding GSMM model imSyn617 includes all carbon-balanced reactions Atom mapping for reactions 
shared with E. coli is derived from imEco726 [91] and the remaining reactions are mapped using the CLCA 
algorithm or based on reaction mechanism when available. A customized algorithm is developed with 
improved scalability and memory efficiency leading to a 48% reduction per iteration in the computational 
time required to simulate of metabolite labeling dynamics in larger 
networks. INST-MFA is performed to identify a suitable flux distribution 
accurately recapitulating the labeling distribution and dynamics of 15 
central metabolites obtained during photoautotrophic growth of 
Synechocystis with 50% 13C-labeled bicarbonate as the tracer [90]. In 
response to degeneracy in the metabolic network and experimental errors, 
95% confidence intervals were also determined using the established 
procedure [91, 92] to identify flux ranges for all reactions.  
Upon evaluating the significance of the improved recapitulation afforded 
by imSyn617 using the F-test, the F-statistic is 1.335 (p = 0.012). In 
comparison, the corresponding F-statistic for scale-up in E. coli was 0.152 
(p = 0.999) indicating that the core model accounts for the carbon paths 
necessary to recapitulate the labeling data used in that study [91]. The 
increased uncertainty of flux estimation was attributed to the inclusion of 
alternate paths with identical atom mapping information. In contrast, the 
statistical significance associated with model scale-up in this study implies 
that unique and often surprising insights into the carbon flows under 
phototrophic growth are obtained by the re-analysis of an existing dataset 
using a detailed description of the entirety of metabolism in Synechocystis. 
Flux elucidation of photoautotrophic growth of Synechocystis using 
imSyn617 reveals that Synechocystis deploys a carbon efficient metabolism 
enabling maximal conversion of fixed carbons to biomass precursors with 
minimal production of organic acids and glycogen. This is in contrast to 
heterotrophic bacteria such as E. coli where 35% of the taken-up glucose is 
secreted as acetate [93] resulting in a 30% biomass yield loss from the 
theoretical maximum biomass yield [94]. The flux ranges estimated in this 

Figure F.3: Recycling of conserved
moieties within central
metabolism. The conserved E4P
moiety generated due to the
interaction between TAL from the
non-oxidative PP pathway and SBA
and SBPase from the regeneration
phase of the CBB cycle is indicated
in red whereas the conserved triose
phosphate moiety recycled
between the serine biosynthetic
pathway, photorespiration, and
lower glycolysis is indicated in
blue. 



study provide a comprehensive set of essential and dispensable metabolic reactions in Synechocystis under 
photoautotrophic growth conditions to serve as a guideline for editing photosynthetic prokaryotic genomes. 
The estimated flux ranges reveal that net carbon fixation accounts for only 88% of the assimilated 
bicarbonate. The remaining 12% is fixed by PPC, but is subsequently oxidized to CO2 via malic enzyme, 
TCA cycle, and peripheral metabolic reactions. These carbons are not recycled by the CBB cycle and are 
therefore off-gassed. This inability to recycle these carbons via the CBB cycle is identified as a target to 
improve upon in photosynthetic carbon fixation. It is unclear from this analysis whether this is caused by a 
rate-limiting enzyme in the CBB cycle or a paucity of available NADPH and ATP as the fluxes through the 
photosynthetic light reactions and oxidative phosphorylation are poorly resolved by INST-MFA. 
 
Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models 
In flux balance analysis (FBA), one of the fundamental constraints is the steady-state mass balance 
equation, which quantifies the conservation of component balance. As a prerequisite for quantitative 
predictions, all reactions must be component and charge balanced. This principle of mass balance also 

applies to the biomass reaction, which expresses 
biomass as a defined ratio of macromolecules 
synthesized from metabolites [95]. A GSM model 
describes in quantitative terms the substrate-to-
biomass conversion, from mmol of substrates to 
gram dry cell weight of cells. By definition the 
biomass produced must have a molecular weight 
(MW) of 1 g mmol−1 in order to quantitatively 
compare biomass formation with the observed 
growth yields or specific growth rates. FBA 
identifies optimal solutions that strike a balance 
between biomass formation and ATP production, 
thus any discrepancy in biomass weight may tilt 
the balance to have a disproportionate influence on 
FBA derived flux predictions.  However, the 

standard is rarely verified in the current practice 
and the chemical formulae of biomass components 
such as proteins, nucleic acids and lipids are often 
represented by undefined side groups (e.g. X, R). 
We developed a systematic MILP-based procedure 
called ‘minimum inconsistency under parsimony 
(MIP)’ for checking the biomass weight and 
ensuring complete mass balance of a model [96]. 

MIP formulates the elemental balance as an optimization problem that solves for the chemical formulae of 
generic metabolites by minimizing the inconsistencies using the information of known metabolites. The 
MIP solution provides guidelines for resolving all imbalances in a model. We identified significant 
departures after examining 64 published models. The biomass weights of 34 models differed by 5–50%, 
while 8 models have discrepancies >50%. In total 20 models were manually curated. By maximizing the 
original versus corrected biomass reactions, flux balance analysis revealed >10% differences in growth 
yields for 12 of the curated models. We identified three primary sources leading to inaccuracies in the 
biomass MW (see Figure F.4). First, a subset of models uses biomass reactions that were made by automated 
platforms or adapted from other models (e.g. the models 
for Bacteroidesthetaiotaomicron, Faecalibacteriumprausnitzii, and Yeast 7). In the absence of 
experimental data, the mass fractions for the biomass reaction were simply obtained by uniformly 
normalizing over all biomass components. Second, for some models we found inconsistent stoichiometric 
coefficients in the biomass reaction because the MWs of macromolecules used for calculating the 
coefficients were not the same as the actual MWs implied by their elemental balance. For example, in 

Figure F.4: Three sources of errors in the biomass reactions: (i)
biomass reactions generated by automated platforms or adapted
from other models with biomass components deleted (‘Bio5’) or
newly added; (ii) inaccurate stoichiometric coefficients in the
biomass reaction (‘Bio3’, ‘Bio4’) partially due to the existence
of undefined side-groups (e.g., ‘R’ and ‘X’); and (iii) missing
cofactors in macromolecular synthetic reactions, such as proton
in GAM (‘H+’), water in protein synthesis and pyrophosphate in
DNA and RNA syntheses. 



the Yarrowialipolytica model, our MIP procedure calculated MWs for phospholipids that were ∼100× larger 
than the MWs used in the original model construction (Pan and Hua, 2012) yielding a biomass MW of 30 g 
mmol−1. The reason for this was that the model lipid building blocks such as 1-acyl-sn-glycerol 3-phosphate 
were synthesized as polymers with 100-mers (e.g. in the reaction for glycerol 3-phosphate acyltransferase), 
instead of monomers as in other models. Inconsistent stoichiometric coefficients were also found in the 
models for Corynebacteriumglutamicum, Clostridiumacetobutylicum, and Eubacteriumrectale. A probable 
reason for the errors is the lack of the application of a procedure to ensure complete mass balance and verify 
the biomass MW. Some GSM models included metabolites with undefined side-groups (e.g. acyl groups in 
lipids) that complicate the estimation of the MWs of macromolecules. Finally, small molecules in 
macromolecular synthesis reactions were sometimes missing, (e.g. missing proton in the growth-associated 
maintenance (GAM), H2O in protein synthesis, and pyrophosphate in DNA or RNA synthesis). This was 
observed in the models for B. subtilis, C. acetobutylicum, C. glutamicum, E. 
rectale and Pichiapastoris. Figure F.4 pictorially illustrates the sources of error in the calculation of 
biomass composition.  
 
G. Specific Aim 2: MetRxn-driven metabolic reconstruction and analysis of microbial 
communities 
G.1. Background  
Most microorganisms exist in nature as integrative and interactive communities, and are responsible for 
driving biochemical cycles of nitrogen and carbon [97], and playing central roles in human health and 
disease [98, 99]. Members of such microbial communities can interact by unidirectional or bidirectional 
exchange of metabolites, giving rise to interactions such as mutualism, commensalism, parasitism, or 
competition [100, 101]. A classic example of these examples would be day-night or seasonal variations, 
where inter-species interactions and their temporal changes play pivotal roles in shaping community 
composition and function [102, 103]. However, the nature of these interactions and the dynamic variations 
therein are not well understood, necessitating model frameworks that help describe the lesser understood 
aspects of metabolism in microbial communities. Existing frameworks employ optimization frameworks 
that maximize a single objective function related to an individual species, which cannot always capture the 
multi-level nature of decision making. Furthermore, simply adapting dynamic single-species modeling 
frameworks such as d-FBA [104] is not trivial owing to the increased complexities and missing information 
about interspecies interactions in a changing environment.  
G.2. Results 
We developed the SteadyCom [105] optimization framework 
for predicting metabolic flux distributions consistent with the 
steady-state requirement.  As opposed to earlier developed 
community modeling algorithms such as joint FBA, 
OptCom, d-OptCom and CASINO, SteadyCom directly 
imposes time-averaged equality of growth rates and 
apportions ATP maintenance (ATPM) requirements across 
different microbes in accordance with specific growth. The 
potential of SteadyCom to predict species abundance and 
perform constraint-based analysis in community models 
with community steady-state implemented is demonstrated 
here using the hypothetical case of the co-growth of 
four E. coli triple mutants using the genome-scale metabolic 
reconstruction E. coli iAF1260 [106]. The community 
consists of four E. coli mutants (Ec1, Ec2, Ec3 and Ec4), 
each auxotrophic for two amino acids and devoid of the 
exporter of one amino acid (see Figure G.1). Each mutant 
competes with another for the amino acids produced by the 

Figure G.1: A hypothetical microbial community of 
four E. coli mutants. Each E. coli mutant is 
auxotrophic to two amino acids and produces one 
amino acid that is essential to the community. The 
genotype and ability to synthesize and export the 
focus amino acids are displayed. 



other two mutants. Thus, co-growth is theoretically possible and every mutant is essential for community 
survival and growth. The maximum growth rate predicted by joint FBA was 0.572 h-1 while the prediction 
by SteadyCom was 0.736 h-1. This significant deviation was found to be a result of the non-growth-
associated ATPM requirement in the model. In joint FBA, the predicted flux distribution needed to fulfill 
the ATPM requirement for four units of biomass, leading to the underestimation of the maximum growth 
rate. In contrast, the flux distribution predicted by SteadyCom satisfied the ATPM requirement for one unit 
of biomass in total. The allowable ranges of the relative abundance of the mutants at ≥ 90% of the maximum 
community growth rate computed by flux variability analysis (FVA) indicate the essentiality of each mutant 
for growth using SteadyCom. The ranges converge to a unique community composition as the community 
growth rate increases to its maximum. In contrast, joint FBA optimizing for an unweighted sum of biomass 
predicts that each of the mutants can have abundances ranging from 0 to 100% for ≤ 99% maximum 
community growth and only the growth of Ec2 and Ec3 are necessary at 100% maximum community 
growth 
 
SteadyCom was also applied to a gut microbiota model 
consisting of nine species to predict the composition of gut 
microbiota given the dietary information. A community 
model consisting of nine microbes present in the human gut 
with available genome-scale metabolic reconstructions was 
compiled. The organisms include one species in the phylum 
Bacteroidetes, five species in Firmicutes (two Clostridia and 
three lactic acid bacteria), two species in Proteobacteria and 
one species in Actinobacteria (B. adolescentis). In the 
assembled community 
model, B. thetaiotaomicron and F. prausnitziiare the only 
organisms able to digest dietary fiber. Using the nine proxy 
models, SteadyCom was able to predict the universal 
dominance of Bacteroidetes and Firmicutes with non-zero 
abundances for Actinobacteria and Proteobacteria given a 
typical diet [27]. With randomizing the uptake rates of 
microbes, an abundance profile of the phylum proxies 
similar to the experimental phylum distribution was 
predicted. A recent study comparing vegans and omnivores 
from an urban USA area found surprisingly similar gut 
microbiota compositions between the two groups [28]. Both 
the community growth rates predicted by SteadyCom (see 
Figure G.1) and the maximum growth rates for each species 
predicted by joint FBA (see Figure G.2) given community 
uptake rates based on the consumption and chemical 
composition of the average American diet, lie in the range of 
the intestinal microbial growth rates reported (i.e. 0.02–0.25 
h-1) [29]. This consistency supports the validity of constraint-
based modeling frameworks based on the mass balance of 
biochemical conversion and the potential for qualitative and quantitative predictions of gut microbiota 
metabolism.  
 
d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities [107]  
To capture the multi-level nature of decision making in microbial communities, we had previously 
developed OptCom [108] that uses a multi-level and multi-objective optimization formulation capable of 
capturing both species- and community-level fitness criteria. Recently we developed d-OptCom (dynamic 
OptCom) for the multi-objective dynamic analysis of the microbial communities. To this end, new time-

Figure G.2: Simulation of the gut microbiota model
subject to the estimated average American diet. (A)
The maximum possible growth rates were predicted
for each species using joint FBA by maximizing the
biomass reaction of each species individually. (B)
The maximum community growth rate (the black
curve) and species composition (filled area) were
predicted by SteadyCom at varying maximum
specific fiber uptake rate (FUR)
of B. thetaiotaomicron. (C) Aggregate fiber uptake
and fiber-derived substrate (FDS) export
by B. thetaiotaomicron that are required for
maximum community growth were calculated using
FVA. 



dependent constraints representing the conservation of mass for the biomass of each species and shared 
metabolites with available uptake kinetics are added to the outer problem (see Figure G.3). The upper bound 
on the uptake rate of each shared metabolite is determined by using the uptake kinetic expressions 
incorporated as additional constraints in the outer problem. The inter-organism flow constraint (from the 
original OptCom procedure) [108] is used instead of conservation of mass equations for the shared 
metabolite without any uptake kinetics. The uptake/export rates of the shared metabolites are determined 
by the outer objective function, however, they act as parameters for the inner problems of the respective 
community members.  This multi-level optimization problem can be recast as a nonlinear problem or a 
mixed-integer nonlinear problem by using the strong duality or KKT conditions for the inner problems, 
respectively. In both cases the problem is, in general, nonconvex due to the presence of uptake kinetic 
expressions and conservation of mass equations.  
d-OptCom incorporates the dynamic mass balance equations and substrate uptake kinetics and enables the 
direct assessment of the shared metabolites and biomass concentrations in a given community. For example, 
it is possible to maximize the total biomass concentration of the community instead of maximizing the 
combined biomass flux of the community as in the original OptCom procedure [108]. Alternatively, one 
can maximize (minimize) the concentration of a desired (undesired) shared metabolite, or minimize 
deviation from a target time-dependent concentration pattern as the engineering objective. Furthermore, 
this extends the concept of Descriptive OptCom [108] to a dynamic context  (i.e., Descriptive d-OptCom) 
where constraints on actual extracellular concentrations (e.g., the biomass composition of the community) 
can be added to the outer problem in order to determine the dynamic changes in optimality levels of each 
community member.  
 

 
Figure G.3. Optimization structure of d-OptCom. Dynamic equations representing the conservation of mass for each shared 
metabolite with available uptake kinetics are added as new constraints to the outer problem. The upper bounds on the uptake rates 
are determined by using the uptake kinetic expressions.[107] 
 
We model the competition between Rhodoferax ferrireducens and Geobacter sulfurreducens in subsurface 
anaerobic environments [109]. In particular, given the time course G. sulfurreducens biomass fractions data 
under different conditions, we are using Descriptive OptCom within each time interval to gain insights into 
how the optimality levels for the participating community members change over time. Now we have 
examined the impact of the addition of an acetate producer[110-112] (Shewanella oneidensis) to the G. 
sulfurreducens-R. ferrireducens community by using the d-OptCom procedure. The combined uranium 
reduction capability of S. oneidensis [113], and G. sulfurreducens promise a more effective bioremediation 
strategy. The dynamic analysis of the uranium-reducing communities in the Rifle site with an additional 
member showed that the incorporation of kinetic information can significantly sharpen the inference of 
inter-organism metabolite trafficking due to the concentration limits of the shared metabolite and/or the 
relative differences in the uptake efficiencies of community members. In addition, this analysis revealed 



that addition of a new member to an existing community can significantly affect the behavior and 
composition of the community exemplified by the dominance of S. oneidensis in the long run. 
 
We also used d-OptCom to model and analyze the dynamics of a synthetic mutualistic relationship between 
pairs of auxotrophic E. coli mutants. Wintermute and Silver[114] previously examined the co-growth of 
several combinations of 46 mutant strains, where the deletion(s) in each strain blocks the biosynthesis of a 
biomass precursor such as an amino acids, nucleotides or co-factors, thereby making them unable to grow 
in minimal medium. We examined whether d-OptCom is capable of recapitulating the co-growth of 
cooperating partners. To this end, we selected three such mutant pairs comprised of four genes involved in 
the production of different amino acids with available uptake kinetics. These pairs include (ΔargH, ΔlysA), 
(ΔlysA, ΔtrpC) and (ΔmetA, ΔilvE) where the deletion of argH, lysA, trpC, metA and ilvE block the 
production of L-arginine, L-lysine, L-tryptophan, L-methionine and L-isoleucine, respectively. The selected 
mutant pairs expand their own pool of required amino acids by aiding the growth of their conjugate partners, 
thereby enhances the co-growth. This cooperative behavior was captured by d-OptCom as it simultaneously 
takes into account species and community-level fitness functions enabling it to identify the impact of inter-
species interactions on the shared metabolite and biomass concentrations.  
 
 
H. Specific Aim 3: Extracting Knowledge using MetRxn: Pathway Prospecting and 
Synthetic Biology 
 
H.1. Kinetic Modeling 
H.1.1. Background 
The primary attraction behind constraint-based models is the minimal amount of biochemical knowledge 
required to make quantitatively predictive inferences about network behavior. Despite their many successes 
in metabolic system characterization and biological applications, their major limitation is the inability to 
comment on the metabolite/enzyme concentrations and interactions, and to describe the transient nature of 
metabolism. These caveats can be addresses by using kinetic metabolic models, which use ordinary 
differential equations to obtain time-dependent metabolite concentrations and reaction fluxes. These models 
require knowledge of stoichiometry, enzyme kinetics and efficient parameter estimation. The major 
challenge in their construction lies in 
deducing reaction mechanisms and 
elucidating kinetic enzyme 
parameters. Current methods use 
lumped kinetic expressions to 
describe the relationship between 
metabolite concentrations, enzyme 
activities and reaction fluxes, and to 
estimate the kinetic parameters (those 
not been measured experimentally) by 
minimizing the error between model 
prediction and experimental 
measurements (usually of metabolite 
concentrations and/or steady-state 
metabolic fluxes) [115, 116]. 
Furthermore, as these models are 
usually constructed using data taken 
from a single strain, they do not 
accurately capture the behavior of 
perturbed strains.  

 
Figure H.1.1: A schematic representation of the optimization-driven 
parameter identification method. 



 
H.1.2. Results 
Optimization-driven parameter estimation  
In the context of this aim, we introduced a stepwise optimization procedure for kinetic parameter estimation 
of a given metabolic network by making use of multiple fluxomic data. The main limitation in the 
construction of kinetic models is the absence of available kinetic parameter values with reliable rate 
expressions. The recently developed Ensemble Modeling (EM) [117] approach holds promise to address 
some of these challenges by decomposing metabolic reactions into elementary reaction steps thus bypassing 
the need for identifying the lumped form of kinetic rate laws. To this end, recently the EM approach has 
been combined with an optimization-driven parameter identification method [118] to elucidate kinetic 
parameters upon integration of multiple omic (i.e., fluxomic and metabolomic) data, describing metabolic 
fluxes as a function of metabolite concentration and enzyme activity, as shown in Figure H.1.1.1. First, a 
steady-state flux distribution is obtained by imposing the available fluxomic data and refining the flux 
ranges for a reference strain (Figure H.1.1.1a). Next, in accordance with EM procedure, each reaction is 
decomposed into its elementary mechanistic steps and the model parameters (i.e., reactions reversibilities 
and enzyme fractions) are uniformly sampled within identified feasible ranges. Sampling of model 
parameters provides an ensemble of models all of which are able to predict the same reference steady-state 
flux distribution (Figure H.1.1.1b). For a given set of kinetic parameters from the sampled models in the 
ensemble, the ODEs representing the conservation of mass are integrated until reaching steady-state (Figure 
H.1.1.1c). The model integration allows for the evaluation of the objective function of the optimization 
problem which is deviation from experimental flux measurements (Figure H.1.1.1d). The model predictions 
are validated by a comparison between the available metabolomics, kinetic constants and performing cross-
validation tests (Figure H.1.1.1e). In order to improve model fitness, the optimization procedure provides 
a new set of model parameters, based on the feedback receiving from predictive performance of the model 
(Figure H.1.1.1f). Ultimately, a set of kinetic models that is tested and validated along different fluxomics 
and metabolomics is identified (Figure H.1.1.1g). This procedure is implemented in a metabolic model of 
E. coli core metabolism [118] that consists of 138 reactions, 93 metabolites and 60 substrate-level regulatory 
interactions [119, 120] by making use of the fluxomic data for wild-type and seven mutant strains [121]. 
The predicted fluxes by the model are within the uncertainty range of experimental flux data for 78% of the 
reactions (with measured fluxes) for both the reference (wild-type) and seven mutant strains. The predicted 
metabolite concentrations by the model are also within uncertainty ranges of metabolomic data for 68% of 
the metabolites. In addition, 80% of Km and kcat parameters are within one order of magnitude of literature 
available values.  
H.2. k-OptForce: Integrating kinetics with FBA for strain design 
H.2.1. Background 
There has been rapid progress in recent years in the development of computational strain design protocols 
for system-wide identification of 
intervention strategies for the 
overproduction of biochemicals in 
microorganisms [122-129]. However, 
existing approaches relying solely on 
stoichiometry and rudimentary on-off 
regulation overlook the effects of 
metabolite concentrations and substrate-
level enzyme regulation while identifying 
metabolic interventions. The k-OptForce 
protocol [130] was developed to extend 
the previously developed OptForce 
procedure [131] by bridging this gap 

 

Figure H.2.1: Incorporation of kinetic information within the 
stoichiometry matrix in k-OptForce and bilevel formulation for 
identification of minimal set of interventions 



between stoichiometry-only and kinetics-based descriptions of metabolism. 
H.2.2. Results  
k-OptForce protocol [130] seamlessly 
integrates the mechanistic detail 
afforded by kinetic models within a 
constraint-based optimization 
framework tractable for genome-scale 
models. Instead of relying on 
surrogate fitness functions such as 
biomass maximization or worst-case 
simulation for predicting flux re-
directions, k-OptForce uses kinetic 
rate expressions to (re)apportion 
fluxes in the metabolic network. 
Using mechanistic models available 
in literature the allowable phenotype 
of both the reference and the engineered strain are characterized to be consistent with the allowable kinetic 
space. Subsequently, alternative genetic intervention strategies consistent with the restrictions imposed by 
maximum enzyme activity and kinetic regulations, as well as with the worst-case scenario of production of 
the desired chemical are identified using a bilevel optimization framework (Figure H.2.1).  
Application of the k-OptForce for the microbial overproduction of TAL in S. cerevisiae revealed the impact 
of additional kinetic constraints in alleviating a severe worst-case simulation of regular OptForce, resulting 
in a higher prediction of TAL yield (90% vs 35% of theoretical maximum) from fewer interventions (2 vs 
4) as compared to regular OptForce predictions (Figure H.2.2). In general, both procedures suggest 
strategies that increase the availability of precursors accoa and malonyl-CoA (malcoa), up-regulating 
glycolysis, down-regulating Pentose Phosphate pathway, and reducing nadph production. However, while 
regular OptForce suggests a number of knockouts to prevent leaking flux away from acetyl-coA 
carboxylase, k-OptForce identifies that the kinetic expressions work in concert with the overproduction 
goal (given the imposed concentration ranges) without the need for any direct enzymatic interventions. In 
addition, the incorporation of kinetic information pushes metabolic flux in the direction that is needed for 
overproduction and away from the “worst-case” behavior, 
resulting in higher predicted TAL yield.  
H.3. Integration of computational strain design and 
synthetic biology techniques for metabolic engineering 
applications 
H.3.1. Background 
OptForce procedure [131] has been employed to identify 
metabolic intervention strategies to increase Neurosporene 
production in E. coli. Neurosporene is produced through 1-
deoxy-D-xylulose 5-phosphate pathway (DXP pathway). 
The DXP pathway is also used for the biosynthesis of 
isoprenoid, a class of organic compounds that are potentially 
useful as biofuels, pharmaceuticals, nutraceuticals, flavors 
and cosmetics products [132-134]. The DXP pathway 
requires the cofactor NADPH [135]. Here, we proposed a 
synthetic pathway for efficient NADPH regeneration and 
developed a systematic approach to rationally control 
NADPH regeneration from the synthetic pathway.  
H.3.2. Results 
Five enzymes from Zymomonas mobilis Entner-Doudoroff (ED) pathway were selected for overexpression 
(See Figure H.3.1). Amino acid sequences of all five enzymes are back-translated using Operon Calculator 

Figure H.2.2: Comparison of intervention strategies predicted by regular 
OptForce and k-OptForce for overproduction of TAL in S. cerevisiae  

Figure H.3.1: Glucose metabolism in E. coli. 
The genes selected for overexpression are 
highlighted in yellow boxes. 



developed in the previous year. The resulting plasmid, R6K-LacI-ED-tetAR, containing all five enzymes is 
assembled using Gibson Assembly method [136]. ED-tetAR cassette is amplified from the plasmid and 
integrated into the genome of EcNR2 (E. coli MG1655) strain [137] to produce ED 1.0 strain. We then 
designed ribosome binding site (RBS) libraries for each enzyme using 
RBS Library Calculator (https://salis.psu.edu/software). Each library 
contains 16 different RBS sequences that span a large range of translation 
initiation rates. 40 cycles of multiplex automated genome engineering 
(MAGE) [137] was performed with oligonucleotides mixture containing 
all these RBS libraries. We then transformed the resulting pool of 
combinatorial variants with pMG3-mBFP plasmid harboring a NADPH-
dependent metagenomic blue fluorescent protein[138]. Wild-type EcNR2 
strain and ED 1.0 strain, both transformed with pMG3-mBFP, were used 
as reference strains. Screening was performed by characterizing specific 
blue fluorescence production rate of the variants using microplate reader. 
In each round of screening, the variants were found to span a large range 
specific blue fluorescence (See Figure H.3.2). The wild-type EcNR2 
strain harboring the mBFP plasmid exhibited a relatively lower specific 
blue fluorescent when compared with ED 1.0 and other ED variants. The 
variants within the highest range and lowest range of specific blue 
fluorescence were then sent for sequencing. 
 
ED-tetAR cassette from two of the variants, 1-D4 and 1-G3, were 
amplified and integrated into the chromosome of EcHW2 DXS-15 strain. 
The strains were then transformed with pBad-crtEBI plasmid. Expression 
of crtEBI operon allows the cells to produce Neurosporene. EcHW2 
DXS-15 crtEBI strain without the synthetic ED operons was used as 
reference. Neurosporene titer of all the strains were characterized in M9 
minimal media supplemented with 0.4% w/v of glucose. The control 
strain accumulated 2212.1 μg/g DCW of Neurosporene. Expression of 1-D4’s ED pathway significantly 
improved the production titer up to 3802.5 μg/g DCW (71.9% higher than reference strain). Another ED 
pathway variant 1-G3 produced 53.2% more Neurosporene than the reference strain (3389.0 μg/g DCW of 
Neurosporene). The DXP pathway required glyceraldehyde-3-phosphate and pyruvate as the pre-cursor 
molecules and also NADPH as the source of reducing equivalents. Synthetic ED pathway is able to supply 
both the pre-cursors and NADPH. This result demonstrates that the synthetic ED pathway is a promising 
approach for enhancing production titer of isoprenoid. 
 
 

 

 

 
Figure H.3.2: Rank-ordered 
specific blue fluorescence in 
three different rounds of 
screening. 



We used kinetic model approaches for strain design  by applying the k-OptForce [139] procedure for the 
recently published large-scale kinetic model of E. 
coli core metabolism [140]. The kinetic model 
includes 138 reactions, 93 metabolites, and 60 
substrate-level regulatory interactions and accounts 
for glycolysis/gluconeogenesis, pentose phosphate 
(PP) pathway, TCA cycle, major pyruvate 
metabolism, anaplerotic reactions, glyoxylate 
shunt, Entner–Doudoroff (ED) pathway, and a 
number of reactions in other parts of the 
metabolism. The model was parameterized using 
the ensemble modeling (EM) formalism [141] by 
simultaneously satisfying normalized flux data per 
100 mmol of glucose uptake (for approximately 25 
reactions per mutant) for the wild-type and seven 
single gene deletion mutants, under aerobic 
condition [121]. The EM approach decomposes all 
reactions into elementary steps bypassing the need 
of detail kinetic expressions. First, an ensemble of 
kinetic models is generated by uniformly sampling 
reaction reversibilities and enzyme fractions 
following different time trajectories but all reaching 
the same steady-state flux values. Next, a Genetic 
Algorithm (GA) implementation is used to “swap” 
kinetic parameterizations between models in the 
ensemble so as to minimize the deviations from all 
set of mutant network fluxes. Models constructed 
using flux data for a single strain do not always 
perform well in predicting deletion strain metabolic 
phenotypes [142].  
The k-OptForce procedure [143] was used to 
identify the minimal interventions that maximize 
the yield of succinate production using a hybrid 
kinetic [140] and stoichiometric iAF1260 [118] 
description of E. coli metabolism. Succinate was 
chosen as the target bioproduct as there exists 
numerous experimental strain-engineering studies 
to compare the suggestions of k-OptForce 
procedure [144-146]. This study was carried out 
under both aerobic and anaerobic conditions to 

assess the fidelity of the kinetic model when used to make predictions for a different environmental 
condition (i.e., anaerobic) than the one parameterized for (i.e., aerobic). The goal was to quantify the 
reduction in prediction quality moving from aerobic to anaerobic under glucose minimal condition and 
suggest model modifications that remedy these shortcomings. k-OptForce recapitulated existing strategies 
while also pointing at promising but currently unexplored interventions. In addition, results under anaerobic 
condition indicate that the kinetic model needs to be re-parameterized with mutant flux information 
involving a reversed TCA cycle routing flux towards succinate. A number of regulatory modifications of 
the kinetic model are also found to be necessary to better reflect metabolic fluxes associated with anaerobic 
succinate production. These include activation of fermentation pathways and pyruvate formate lyase (PFL) 
by key regulatory proteins FNR (fumarate and nitrate reductase regulation) and ArcA (aerobic respiratory 
control). 

Figure H.3.3: A schematic representation of the framework. (A)
The reactions with kinetic descriptions are shown in blue. (B)
The reactions are first decomposed into their elementary steps.
(C) Elementary kinetic parameters are expressed as a function
of reaction reversibilities and enzyme fractions. Reaction
reversibilities and enzyme fractions are sampled to construct an
ensemble of models, for any given reaction. (D) A genetic
algorithm (GA) implementation identifies the optimal
combination of the sampled parameters by minimizing the
deviation from experimentally measured flux data for multiple
mutant strains. (E) The k-OptForce procedure identifies a
minimal set of interventions that maximizes the yield of targeted
product 



H.4. Synthetic Pathway Design  
 
H.4.1. Background 
 
The introduction of the concept of ‘total synthesis’ by Wöhler [147] was one of the milestones in 
chemistry [148]. The possibility to create synthetic compounds from simple chemical building 
blocks has been a driving force of our modern world. Hence, it has been one of the ultimate goals 
in biology to achieve the same conceptual and synthetic level as reached in chemistry, ever since 
the principle of ‘metabolic engineering’ was developed in the early 1990s. Yet, cells are still far 
from being ‘little chemical factories’ and metabolic engineering has so-far been limited in its 
synthetic capabilities, relying mainly on the transplanting known pathways to a new host followed 
by optimization. Nevertheless, in silico pathway design has been realized  for the biosynthesis of 
the value-added chemical 2,4-Dihydroxybutyric acid (DHB) [149], for producing 
therapeutics[150], and for designing synthetic carbon fixation pathways so as to increase the net 
carbon assimilation [151].  
 
H.4.2. Results 
 
Synthetic Entner-Doudoroff Pathway Design 
Neurosporene in E. coli is produced through the 1-deoxy-D-xylulose 5-phosphate pathway (DXP pathway). 
The DXP pathway is also used for the biosynthesis of isoprenoid, a class of organic compounds that are 
potentially useful as biofuels, pharmaceuticals, nutraceuticals, flavors and cosmetics products [152-154]. 
The DXP pathway requires the cofactor NADPH [155]. We rationally engineered a synthetic version of the 
Entner–Doudoroff pathway from Zymomonas mobilis that increased the NADPH regeneration rate in 
Escherichia coli MG1655 by 25-fold. We combined systematic design rules, biophysical models, and 
computational optimization to design synthetic bacterial operons expressing the 5-enzyme pathway as a 
drop-in module, while eliminating undesired genetic elements for maximum expression control. Starting 
from the first version of the pathway, we carried out systematic optimization of the enzymes’ expression 
levels to improve the pathway’s activity, first employing a NADPH-dependent fluorescent protein reporter 
to measure NADPH regeneration rates, followed by measuring the ED pathway’s effect on an NADPH-
dependent terpenoid biosynthesis pathway. By combining MAGE genome mutagenesis with our RBS 
Library Calculator algorithm, we introduced targeted genome modifications to greatly vary the ED 
pathway’s individual enzyme expression levels and to efficiently search its 5-dimensional expression space. 
We screened 624 ED pathway-genome variants for high NADPH regeneration rates, and then extensively 
characterized 22 re-integrated pathways by measuring in vivo NADPH regeneration rates and NADPH-
dependent biosynthesis rates. The best variant exhibited 25-fold higher normalized mBFP levels when 
compared to wild-type strain. Combining the synthetic Entner–Doudoroff pathway with an optimized 
terpenoid pathway further increased the terpenoid titer by 97% 
 
 



 Computational strain design and hence the 
ability to catalyze any tailor-made 
stoichiometry-balanced metabolic conversion 
with high specificity and control lies at the very 
heart of metabolic engineering. Existing 
computational procedures for the de 
novo pathway design rely on either 
optimization techniques or graph-search 
approaches. Linear Programming (LP) and 
Mixed Integer Linear Programming (MILP) 
approaches for pathway design, in general, 
extract a minimal stoichiometry-balanced sub-
network that converts a source metabolite to a 
target chemical with high yield [156]. However, 
these procedures do not necessarily conform to 
a previously identified optimal conversion 
stoichiometry thereby missing the opportunity 
to optimally recycle intermediates to reach a 
maximum yield. Hence, we developed optStoic 
[157] which is a two-step algorithm that first 
identifies the optimal overall stoichiometry by 
exploring exhaustively co-reactant/co-product 
combinations, then adds intervening reactions 
from a database to link the chosen reactants to 
the selected products. We demonstrated the 
effectiveness of the two-step procedure for 
three separate case studies of increasing 
complexity. The first one exhaustively 
identifies networks that convert glucose to 
acetate while conserving all carbon atoms with 

no provision for any additional co-reactants or co-products in the spirit of the study by Bogorad et al. [158]. 
The second study explores the reverse problem of identifying new ways of forming carbon-carbon bonds 
from the combined use of methanol and CO2 to stoichiometry-feasible C2+ products such as acetate. Finally, 
the third study identifies suitable co-reactant and co-product pairs to drive forward the thermodynamically 
unfavorable methane to acetate conversion. We compared the optimal pathways identified here with two 
existing pathway design tools (Chou et al. [159] and Bar-Even et al. [151]) for all three case studies. The 
results showed that the depth-first graph search algorithm for Chou et al. [159] identified only linear paths 
connecting the primary substrate to the primary product for all the case studies, while failing to identify any 
of the carbon-conserving cyclic networks. The Bar-Even et al. [151] approach successfully recapitulated 
the NOG cycle (Case Study 1), however, cofactor imbalances were introduced for the last two studies.  
 
de novo Pathway Design 
We have developed two novel procedures rePrime and novoStoic for the de novo pathway design. rePrime 
is a reaction rule based algorithm that encodes reaction centers as elementally balanced operators. These 
reaction rules capture moiety changes in the reaction centers by using the changes in the counts of prime 
numbers (i.e., canonical label for moieties) between substrates and products. Other than metabolites 
currently present in the database, our approach can be extended to novel metabolites as long as the structure 
can be codified as counts of moieties (i.e., molecular signature). rePrime allows for different moiety sizes. 
In the current implementation of rePrime, we trace moieties of up to a size of λ=3. In principle, one could 
expand the size of moieties traced or customize the size of the moiety traced based on the underlying 
reaction chemistry. By combining metabolite balance and moiety balance constraints, novoStoic 

Figure H.4.1: Network designs for the co-utilization of methanol and
carbon dioxide towards acetate. 



simultaneously integrates reaction rules with known reactions.  It thus enables homing in first to the most 
desirable designs avoiding costly enumeration of alternatives that either include too many novel steps, are 
redox imbalanced, or fail to meet cost/yield requirements. The MILP based computational framework 
allows for straightforward control of cofactor regeneration, the number of novel reactions and the 
imposition of carbon yield or profit margin requirements. 
novoStoic allows us to exploit enzyme plasticity by suggesting homologs to perform the hypothesized 
conversion when natural options are not available. In typical industrial bioprocesses, the number of novel 
reactions must be carefully controlled (or minimized) as each novel reaction implies an additional enzyme-
substrate engineering challenge. In the event that the homolog is not promiscuous, protein engineering steps 
have to be recruited to enhance non-natural substrate binding (e.g., by tuning the binding pocket structure 
to accommodate the non-natural substrate [160]) and subsequently to increase catalytic rate [161]. For 
example, Cargill, Inc. engineered a multi-step 3-hydroxypropionic acid biosynthesis pathway, which 
employed a single non-natural enzyme (i.e. alanine 2,3-aminomutase), to bypass an ATP consuming step. 
The team had to engineer a homolog lysine 2,3-aminomutase to confer it the desirable activity and at the 
same time select a variant with the least negative effect on the host cell [162]. With the capability to blend 
known reactions and non-natural ones, novoStoic could invoke novel steps only when necessary. 
A number of chemical manufacturing processes are increasingly exploiting the chemoselectivity and 
catalytic rate boost potential of enzymes [163] for the synthesis of pharmaceuticals and precursors. Studies 
have demonstrated that multi-enzyme cascades of non-natural enzymes can be implemented in both in vivo 
and in vitro fashion as well as in combination [164]. rePrime/novoStoic address the timely challenge of 
integrating recent advancements for the rapid identification of complete pathways for bio-based 
chemosynthesis and the elucidation of intermediates of ill-defined xenobiotic degradative pathways. The 
detailed degradation map can therefore assist in evaluating the toxicity and potential side effects of new 
drugs, and even enable the assessment of synergistic, antagonist or toxic drug interactions. 
novoStoic sometimes predicts pathways where the rules invoked to fill in intermediate steps could map to 
multiple possible reactions. The degree of specificity of the reaction rules can be controlled by preferentially 
using moieties of size 3 or 2 and only size 1 if no solutions were recovered. Note that novoStoic does not 
allow for mixing of moieties of different size during the pathway design phase. As anticipated, larger moiety 
sizes generally yield novel steps “closer” to a known reaction and thus more likely to involve an existing 
(promiscuous) enzyme with some level of this activity. However, larger moiety sizes (distance of 2 or 3) 
severely restrict the number of possibilities for novel steps. Generally, we start the pathway design using 
moieties of distance 3 and then reduce to 2 or even 1 depending on the efficacy of the search so far. In 
addition, the requirement of elementally balanced reaction rules with proper cofactor utilization and stereo-
chemical changes necessitate a high quality biochemical database as an input for rePrime/novoStoic. 
Incomplete or incorrect reaction annotation (e.g., molecular structure, stereochemistry, stoichiometry, 
cofactor and reaction mechanism) could significantly affect the quality of the rules identified and the 
reliability of a pathway. A number of automated algorithms [165] and procedures [166] have been 
developed to reduce annotation inconsistencies and unify discrepancies across different databases. 
However, expert curation is often necessary to include updated discoveries (e.g., fixing cofactor utilization 
of a stoichiometrically balanced reaction) as well as to evaluate and resolve contradicting information [167]. 
Furthermore, we generally treat all rules as reversible. Therefore, additional scrutiny may be needed to 
ensure that the reaction rule ultimately maps to a reaction that is thermodynamically feasible. 
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