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A. Overall Technical Summary

With advances in DNA sequencing and genome annotation techniques, the breadth of metabolic knowledge
across all kingdoms of life is increasing. The construction of genome-scale models (GSMs) facilitates this
distillation of knowledge by systematically accounting for reaction stoichiometry and directionality, gene
to protein to reaction relationships, reaction localization among cellular organelles, metabolite transport
costs and routes, transcriptional regulation, and biomass composition. Genome-scale reconstructions
available now span across all kingdoms of life, from microbes to whole-plant models, and have become
indispensable for driving informed metabolic designs and interventions. A key barrier to the pace of this
development is our inability to utilize metabolite/reaction information from databases such as BRENDA
[1], KEGG [2], MetaCyc [3], etc. due to incompatibilities of representation, duplications, and errors.
Duplicate entries constitute a major impediment, where the same metabolite is found with multiple names
across databases and models, which significantly slows downs the collating of information from multiple
data sources. This can also lead to serious modeling errors such as charge/mass imbalances [4,5] which can
thwart model predictive abilities such as identifying synthetic lethal gene pairs and quantifying metabolic
flows. Hence, we created the MetRxn database [6] that takes the next step in integrating data from multiple
sources and formats to automatically create a standardized knowledgebase. We subsequently deployed this
resource to bring about new paradigms in genome-scale metabolic model reconstruction, metabolic flux
elucidation through MFA, modeling of microbial communities, and pathway prospecting. This research has
enabled the PI’s group to continue building upon research milestones and reach new ones (see list of MetRxn-
related publications below). We elucidate this using the six aims listed below:

Aim 1: Reaction/Metabolite Data Standardization, Correction, and Congruency (MetRxn)
Aim 2: Development of Novel Database Designs for MetRxn

Aim 3: Incorporation of Atom Mapping Information for all Reaction Entries in MetRxn
Aim 4: Creating Models using MetRxn: Metabolic Model Reconstruction of Plants

Aim 5: Curating Metabolic Models using MetRxn

Aim 6: MetRxn-driven metabolic reconstruction and analysis of microbial communities
Aim 7: Extracting Knowledge using MetRxn: Pathway Prospecting and Synthetic Biology

We have promptly posted on the PI’s webpage (http://www.maranasgroup.com/ ) and broadly disseminated
all data as well as the obtained models and computational tools in accordance with DOE’s policy. Progress
has been made on all fronts since the time of receiving the award and we have met and hopefully surpassed
all milestones put forth in the proposal. The work has yielded a number of successful developments both in
the area of extension of the MetRxn database and computational platforms to support all of our modeling



aims, and in the area of scientific/technical advances. Below is further information on the results related to
the specific individual aims as outlined in the proposal.

The following sections detail the research outcomes of the entire project towards the project aims along a
multitude of fronts in the development of MetRxn database and computational tools to analyze, elucidate
and redesign biological pathways. The ultimate outcome of the work is a suite of computational aids for
analyzing and optimizing the behavior of biological networks built upon the MetRxn database. Below are
listed publications of research carried out (partially or completely) based on this research grant support in
the last three years.
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B. Specific Aim 1: Reaction/Metabolite Data Standardization, Correction, and Congruency

(MetRxn)

B.1. Background

MetRxn [1] is a knowledgebase that includes standardized metabolite and reaction descriptions by
integrating information from 8 highly accessed databases including BRENDA [2], KEGG [3], MetaCyc
[4], Reactome.org [ 5] and recently published metabolic models into a single unified data set. All metabolite
entries have matched synonyms, resolved protonation states, and are linked to unique structures. All
reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow
of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of
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Figure B.1. Outline of the workflow of MetRxn curation procedure:

generated along with connected paths that After download of primary sources of data from databases and models,
link source to target metabohtes' The we integrated metabolite and reaction data, followed by calculation and
workflow followed in the creation of the reconciliation of structural information. By identifying overlaps
MetRxn knowledgebase (see Figure B. 1) between metabolite and reaction information, we generated elemental

identified a number of naming and structure and charge balanging Qf reactions. The procedgre for developing
. : P . : MetRxn was iterative with subsequent passes making use of previous
inconsistencies in metabolites and reactions. o . L

. ) associations to resolve remaining ambiguities.
For instance, the same metabolite name may

map to molecules with different numbers of repeat units (e.g., lecithin) or completely different structures
(e.g., AMP could refer to either adenosine monosphate or ampicillin). Notably, even for the most well-
curated metabolic model, E. coli iAF1260 [6] , we found minor errors or omissions (a total of 17) arising
from inconsistencies or incompleteness of representation in the data culled from other sources. For example,
the metabolite abbreviation arbtn-fe3 was mistakenly associated with the KEGG ID and structure of
aerobactin instead of ferric-aerobactin. In the Corynebacterium glutamicum model [7], 7,8-
aminopelargonic acid (DAPA) has no associated structural information. Reaction matching found the same
reaction in the E. coli iAF1260 model:

C. glutamicum: DAPA + ATP + CO2 <=> DTBIOTIN + ADP + PI
iAF1260 [c] : atp + co2 + dann — adp + dtbt + (3) h + pi

which, implies that 7,8-aminopelargonic acid (DAPA) is identical to 7,8-Diaminononanoate (dann).
Examination of pelargonic acid and nonanoate reveals that they were indeed known synonyms. In many
cases, we were also able to assign stereo-specific information to metabolite entries in models (e.g., stipulate
the L-lysine isomer for lysine). We made use of an iterative approach that allowed us to map structures from
models with explicit links to structures (e.g. to KEGG or CAS numbers) to models that only provided
metabolite names. Furthermore, by using a phonetic algorithm along with Jaro Winkler similarity that uses
tokens for equivalent strings in metabolite names (e.g., ‘-ic acid’ and ‘-ate’ are equivalent) we were able to
resolve an additional 159 metabolites. For example, phonetic searches flagged cis-4-coumarate and
COUMARATE in the Acinetobacter baylyi model [8] as potentially identical compounds. Additional
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B.2. Results

The number of inconsistencies is significantly higher for less curated metabolic models. We used a variety
of procedures to disambiguate the identity of metabolites lacking structural information ranging from
reaction matching to phonetic searches. We applied the standardization procedure on 22 newly published
metabolic models and latest versions of 7 metabolic databases since March 2013. Twelve of the metabolic
models published since the last update belong to the bacteria taxon, 2 to Eudicots, 2 to Archaea and the
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Figure B.3. Pathway comparison: We compare the two branched chain amino acid degradation pathways for Valine (A) and
Isoleucine (B) degradation. Common subgraphs between the two pathways are in boxes and highlighted in cyan while the common
reaction centers are identified by the oval. The first three reactions have a common enzyme, branched-chain amino acid
aminotransferase, branched-chain a-keto acid dehydrogenase and acyl-CoA dehydrogenase. Valine degradation continues with
enoyl-CoA hydratase and B-hydroxyisobutyryl-CoA while isoleucine degradation continues with enoyl-CoA hydratase and B-
hydroxyacyl-CoA dehydrogenase. Both Valine and Isoleucine finally end up as the Citric Acid Cycle intermediate Succinyl-CoA.
Co-factors such as NAD and FADH2 have been omitted for visual clarity



remaining ones to Fungi. Data from the 8 metabolic databases are kept up to date as when the latest versions
are made available. The latest versions of the 7 databases are KEGG 70.0, MetaCyc 18, BRENDA 2014.1,
RHEA 50, ChEBI 114, Reactome 48 and HMDB 3.5. However, many metabolites downloaded from the
aforementioned datasets contain incomplete atomistic details. Details about some of the atoms of the
molecules are suppressed by representing them as part of generic sides (-R group). Currently in MetRxn,
102,336 out of 115,512 metabolites and 38,132 out of 42,965 reactions have complete atomistic details.
MetRxn’s primary dataset aggregates information from various metabolic resources. A major drawback we
faced was in the quality of annotations provided from the primary datasets. A high quality metabolic model
provides additional reaction annotations such as EC number, subsystem/pathway classification, deltaG and
reaction direction. Such annotations are invaluable since they assist development of metabolic models of
newly sequenced organisms from phylogenetically related metabolic models. Large numbers of reactions
from metabolic models as well as databases lack the aforementioned annotations making reconstruction of
quality genome-scale metabolic models a challenging task. Better annotations lead to a compilation of
reactions encompassing the entire chemistry repertoire of a specific organism. It must be noted that these
models are not necessarily predictive but instead have a scoping nature by allowing us to assess what is
metabolically feasible.

We automate reaction annotation using a novel maximum substructure algorithm called CLCA (Canonical
Labelling for Clique Approximation). CLCA is polynomial runtime algorithm capable of identifying
common subgraph isomorphs between two graphs. We utilize atom connectivity information available for
all reacting substrates to produce input graphs for CLCA. EC number classification is a semantic
classification of the underlying reaction mechanism. Reaction mechanism can be identified by the reaction
center i.e. the atoms and bonds involved in electron transfer between/within each reacting substrate. EC
numbers also at times indicate the cofactors involved in a reaction. We transfer EC number annotation by
comparing a EC annotated reaction graph with an unannotated reaction graph for common subgraph
isomorphs. If isomorph preserves both the reaction center as well as the co-factors, we safely transfer the
EC annotation. Each unannotated reaction is compared with the entire graph and only the best match is
considered for annotation transfer as illustrated in Figure B.2. A similar approach of comparing unannotated
pathways is presented in Figure B.3 wherein we compare two pathways. Subsystem classifications can be
suggested or transferred using similarity scores. Furthermore, we annotate reactions with atom mapping
information using CLCA. Atom mapping is further discussed in Aim 3.

C. Specific Aim 2: Development of Novel Database Designs for MetRxn

C.1. Background

One of the biggest challenges with maintaining a heterogeneous dataset is in the way the database has to be
designed in order to accommodate all the possible queries that users post. Our experience with MetRxn has
shown that maintenance can become a big bottleneck in performance and execution as well as adding strain
on hardware if the design is not implemented carefully. We have modified the schema several times so that
queries can execute fast and the hardware resource utilization is optimal. The next challenge would arise
when we start including massive datasets such as whole genomes and proteomes. One of the ways
heterogeneous data management is handled is by moving away from structured schemas towards
unstructured schemas. In the IT infrastructure domain, this would be called the NoSql [11] database
technology. Kbase (www.kbase.us) has done this using the MongoDb [12] architecture while the
Bio4j(http://www.bio4j.com/) project using a graph database approach.

One of the goals related to database architecture with respect to MetRxn is to provide a design that allows
for real-time execution of pathway prediction algorithms [13-15]. The first step in this direction will start
with the inclusion of proteomic data. We plan to include proteomic data from UniProt [16] and this would
again lead to some changes in the underlying schema of MetRxn. With the recent availability of the Kbase
infrastructure we believe this effort will be easier than before. Since the overhead of hardware management
is offloaded and also that we do not need to bother about any underlying design changes.



C.2. Results

Movement into Kbase:

We have been in conversation with members of the Kbase design team (i.e., Tom Brettin) in order to plan
a path forward for converting the MetRxn schema as shown in Figure C.3 into the Kbase schema as shown
in Figure C.1 and C.2. Kbase already incorporates pipelines from SEED and RAST allowing for rapid
annotation of organisms. With the integration of MetRxn into Kbase, we will enhance their biochemistry
database thereby augmenting and enhancing the quality of annotation in the SEED pipeline. Integration of
MetRxn within the KBase resource will be a priority for this year. To have a smooth transition between the
existing database and application, we modified our technology from two-tier architecture to three-tier
architecture. In two-tier architecture, individual server is dedicated to a database and a web service. Such
architecture will not allow programmatic access to the underlying data, since security considerations will
prevent direct access to the database server. In contrast, a three-tier architecture provides a dedicated server
called the application server to allow users to programmatically access and query data using REST or SOAP
based http services in remote locations. Due to this change, developing REST/ SOAP based API’s to access
MetRxn data from KBASE remotely is possible.

Is
Collection
of

Figure C.1: Kbase schema snapshot Figure C.2: Kbase Chemistry dataset spec 1
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Figure C.3: MetRxn schema: The tables along with their column names are shown in blue and the views are shown in yellow.
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D. Specific Aim 3: Incorporation of Atom Mapping Information for all Reaction Entries in
MetRxn

D.1. Background

The cellular phenotype of an organism cannot be fully understood without gaining meaningful insight of
the distribution of fluxes in its metabolic network [17, 18]. Metabolic Flux Analysis (MFA) [19] has
emerged as the most powerful tool in quantifying in vivo fluxes in cells [20] leading towards varied
applications in the fields of metabolic engineering, biotechnology and medicine [21-23]. Using stable radio
isotopes (such as *C, °N etc.), labeled substrates are allowed to be ingrained in the backbone of cellular
metabolites with distinct labeling patterns (i.e. isotopomers). The isotopomers are detected by mass
spectroscopy (MS) or nuclear magnetic resonance (NMR). From the relative isotopic abundance in each
metabolite, an indirect estimate on the flux patterns in the metabolic network could be made. Several
mathematical models have been developed to correlate the flux distribution to isotopomer abundances [24-
27]. Nevertheless, at the heart of each model lies an (usually non-linear) optimization protocol to estimate
the flux distribution which minimizes the sum of squared residuals (SSR) in isotopomer abundances.
Sensitivity analysis is usually performed to verify whether the measured flux distribution is within
allowable statistical error, and confidence intervals of each flux are also calculated [28].

An important feature of the mathematical models for flux analysis is the high redundancy in isotopomer
labeling measurements as compared to the number of free fluxes in the model that are required to be
estimated. This redundancy is however dependent on the choice of labels used for the experiments [29].
Another potential cause for such redundancy is the relative small size of the metabolic networks used for
the mathematical models. An opportunity thus arises in utilizing this data redundancy for expanding the
scope of MFA to estimate fluxes for entire genome-scale models. With rationale driven optimization in
choosing the correct combination of complementary labels, fluxes in genome-scale networks can measured
with high fidelity. Using the Openflux algorithm [30] which uses the Elementary Mode Analysis approach
[24], we will use our genome-scale metabolic model to the estimate reaction fluxes, and calculate their
confidence intervals. Subsequently, we will develop an optimization framework to determine
complementary labeling and/or, specific isotopomer measurement strategies to improve on the confidence
scores of the metabolite fluxes.

Atom mapping of metabolic reactions finds its application in finding new biotransformation routes,
synthesis of new pathways through engineering, providing the isotopomer-mapping matrix for use in MFA
as well as in numerous other applications in systems biology. Atom mapping information also helps avoid
the traversal of biologically infeasible and meaningless routes during identification of novel
biotransformation routes through pathfinding [31, 32]. Finding correct atom maps for the whole metabolic
network using automated techniques becomes the primary challenge needs to be addressed prior to
performing MFA. A number of efforts have addressed this challenge [33-37] with the most recent effort
being from the MetaCyc group [38] wherein they formulated this problem as a Mixed Integer Linear
Problem (MILP) to calculate the minimum number of edits needed in the transformation of one graph (i.e.,
the reactant graph) into another (i.e., the product graph). They demonstrated this methodology on 7501
reactions of the MetaCyc database with a very low error rate of just 0.9% (22 reactions) when compared to
the manually vetted 2446 reaction atom mappings from Kyoto Encyclopedia of Genes and Genomes
(KEGG) RPAIR database [3]. The authors claim that their approach is extremely efficient and that 87% of
the models were solved in less than 10 s. They call this formulation as the minimum weighted edit-distance
(MWED) metric. This formulation is very much similar to the formulation presented by [33] where they
try to maximize the number of common edges between to graphs. This formulation is called the maximum
common edge subgraph (MCES) problem and has the same computational complexity as the most common
subgraph (MCS) problem. We develop a novel subgraph isomorphism algorithm with is tractable in
polynomial time. Our algorithm outperforms previous efforts in all aspects of accuracy, time and resource
utilization. The manuscript detailing the effort mentioned in Aim 3 is under preparation and the results are
available online at http://metrxn.che.psu.edu.




D.2. Results

Research was initiated towards developing complete atom-mapping information for all entries in the
MetRxn database. Since MetRxn currently includes 112 metabolic models and 8 databases, such an effort

would provide atom
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metabolic model
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Figure D.1: Most common substructure using canonical labelling: The two subgraphs identified
between L-tyrosine and Hydroxyphenylpyruvate, the larger subgraph is colored in blue. In the final
step, we extend the subgraph size using the A* search methodology. The extended section is
colored in green. The traversal and subgraph extension always starts from the largest fragment, and
in this case, it starts from the vertex with index = 5. The numbers shown represent ranks generated
from the labelling algorithm. The two non-equivalent atoms are stamped with different numbers 1
and 13.

Identify canonical

labels for each atom in all metabolites, (ii) Rank order with prime numbers only for labels common to all

compared metabolites (unique labels are assigned
assign ‘1”), (iii) Reassign labels based on product of
neighboring atom labels, (iv) Repeat until atom ranks
do not change (assign final integer labels), (v) Identify
all non-maximal (disconnected) subgraphs by
common labels, (vi) Identify and keep the largest
subgraph or fragment, (vi) Extend largest subgraph to
maximum common subgraph using the A* search
algorithm (Heinonen, Lappalainen, Mielikdinen, &
Rousu, 2011). This procedure is illustrated in Figure
D.1

To improve accuracy, we also combine the Floyd-
Warshall algorithm with a complexity of O(n®) with
the above mentioned steps. Using CLCA we identified
and validated atom mappings for over 27,000 reactions
in MetRxn. The average run time was around 14
milliseconds per reaction. CLCA always generates
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Figure D.2: Preliminary result of the mapping between two
large molecules: The Figure shows the KEGG compound
C06138 (NeuS5Ac-alpha2->8NeuSAc-alpha2->3Gal-betal-
>3GalNAc-betal->4(NeuSAc-alpha2->3)LacCer)  which
will be mapped with C06139 in the reaction R05113.



homotopic mappings and avoids the computational
overheads of identifying alternate solutions due to symmetric
groups. Preliminary implementation on two extremely large
molecules is shown below with the common substructures as
shown in Figure D.2 and D.3, where the common
vertices(atoms) and edges(bonds) between the graphs are
colored green.

We plan to accelerate this effort by making atom-mapping
information readily available on MetRxn. We validate the
atom mappings in a two-prong effort. Firstly, we compare
our results to DREAM, MetaCyc and KEGG. Secondly we
incorporate atom maps into C'" metabolic flux analysis
(MFA) models. Work on Metabolic flux analysis (MFA) has
been limited in scale by the availability of atom mapping
information since the non-linear equations [39] are
constructed using mapping matrices [40] that trace the path
of each atom and subsequently each isotopomer (isotope
isomer) in a metabolic reaction. Initially the impact of scale-
up of MFA models from their typical sizes of 70 reactions to
200 reactions was investigated. The generated atom mapping
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Figure D.3. Preliminary result of the mapping between two
large molecules: The Figure depicts the mapped portion in
green for the molecule CO06139 (NeuSAc-alpha2-
>8Neu5Ac-alpha2->3Gal-betal->3GalNAc-betal-
>4(Neu5Ac-alpha2->8NeuSAc-alpha2->3)LacCer).

data was used to decompose the network into sub-networks using the EMU algorithm (Antoniewicz, 2007).
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Fluxes were estimated by solving the following NLP problem: Where, f;(v) is the predicted MDV of
measured fragments, x;" is the measured MDYV of fragments, e; is the associated experimental error, MDV
balances are steady state balances on the different mass fractions of every metabolite in the network. On
scaling the network up from 70 to 205 reactions we found that the flux ranges of glycolytic fluxes increased
as a result of coexistence of both glycolysis and gluconeogenesis, the pentose phosphate pathway showed
little change, both lower and upper bound of the TCA cycle increased, and the arginine degradation pathway,
which was assumed to be inactive in the simplified model was found to have a non-zero lower bound,
indicating definite activity.

E. Specific Aim 4: Creating Models using MetRxn: Metabolic Model Reconstruction
of Plants

E.1. Background

Zea mays, commonly known as maize or corn, is an essential plant as a food crop, biofuel energy source,
and model for studying plant genetics. Maize production is increasing at the greatest rate among all cereals
[41] with a record 877 million tons produced in the 2011-2012 fiscal year [42]. Maize is a major C4 plant
that overcomes the inefficiencies of RuBisCO, to capture oxygen over the preferred carbon dioxide, by
separating the carbon fixation process into two cell types: the bundle sheath and mesophyll cell. This
separation allows for C4 plants to have lower photorespiration rates [43], higher photosynthetic nitrogen




use efficiency [44], and higher net photosynthesis at high light intensities [45] than plants that do not
separate the carbon fixation process. A thorough evaluation of the metabolic capabilities of maize will
address challenges associated with its dual role as a food (e.g., starch storage) and biofuel crop (e.g., cell
wall deconstruction), in addition to provide cues for improving nitrogen use efficiency. Integration of the
recently completed maize genome [46], maize specific databases (i.e. MaizeCyc [47], MaizeGDB [48], and
MetaCrop [49]), and the previous maize model (i.e iRS1563) [50] will allow for a high quality second
generation genome-scale in silico model.

The development of a genome-scale model for maize is significantly challenging due to its genome size,
which is approximately 14 times larger [51] than that of Arabidopsis thaliana [52]. The iRS1563 model
contains 1,563 genes and 1,825 metabolites participating in 1,985 reactions from both primary and
secondary metabolism of maize [53]. Due to the scarcity of information available during the first
reconstruction effort, the previous model (iRS1563) suffers from: incomplete pathways (e.g., sterol
biosynthesis, sphingolipid biosynthesis, ubiquinone biosynthesis and starch degradation), limited enzyme
localization information, and approximate representation of photosynthesis reactions and electron transport
chain. Finally, the iRS1563 model was developed as a generic maize model including all reactions known
to occur in any cell or tissue within maize. The second-generation model has been developed for the leaf
tissue including the distinction between the two cell types as displayed in Figure E.1. The bundle sheath
cell contains seven compartments: the cytosol, mitochondrion, peroxisome, plastid, plasma membrane,
thylakoid membrane, and vacuole. The mesophyll cell contains six compartments: the cytosol,
mitochondrion, plastid, plasma membrane, thylakoid membrane, and vacuole. Compartmentalization for
the second-generation model is based on maize specific experimental and proteomic data [54-57].
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Figure E.1: Second-generation model schematic

E.2. Results

Under this aim we are collaborating with Dr. Bertrand Hirel’s group from INRA Centre de Versailles-
Grignon, France to reconstruct a second-generation model of maize, by creating five tissue specific tissues,
namely the leaf, root, stalk, tassel, and seed. By utilizing available transcriptomic, proteomic and
metabolomics data from literature and experimentally measured biomass components by Dr. Hirel’s group,
our goal is to reconstruct high quality tissue specific models that can be used to answer important biological
questions on nitrogen and energy efficiency.

The second-generation maize leaf model was developed using gene, protein and reaction information from
the IRS1563 model and databases, such as KEGG [58], MaizeCyc [47] and Metacrop [49]. Reactions and
metabolites from different databases were compiled using MetRxn and compartmentalization was based on
literature evidence [54-57]. The second-generation maize model includes 5,824 genes and 8,408 reactions,
which is approximately 4 times the size of the iRS1563 model. The light reactions [59] and mitochondrial
electron transport chain reactions [60] were updated to include the proton exchange of ATP synthase
between compartments. Specific reactions were added to model glycerolipid synthesis [61-67], which to
our knowledge is the first plant model to include specific glycerolipid synthesis. Thermodynamically
infeasible cycles, generated due to the permissive inclusion of reactions in the model, were subsequently



identified and eliminated by first restricting directionality of reactions and then removing duplicate or
generic reactions.

In order to improve the nitrogen use efficiency in maize, a comprehensive understanding of nitrogen
metabolism within the organism is required. In order to simulate nitrogen conditions more accurately, gene-
protein-reaction relationships are used to map the gene transcripts to proteins that are statistically expressed
at a low level [68] to reactions that are turned-off in the model. The model was simulated at a wild-type,
limited nitrogen, g/n/-3 mutant, and g/n/-4 mutant condition in the vegetative stage. Reaction fluxes were
restricted for 90 reactions in the wild-type condition, 33 reactions in the limited nitrogen condition, 106
reactions in the g/n/-3 mutant, and 8 reactions in the g/n/-4 mutant. Reactions that are restricted in the
wild-type condition mainly correspond to reactions known to occur under stress conditions. Biomass
components were measured by the Hirel group to apply condition-specific biomass equations to the model.
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Figure E.2: Comparison between the directional concentration change and simulated flux-sum change for metabolites in the: A.)
limited nitrogen condition, B.) limited nitrogen condition with no transcriptomic or proteomic data included, C.) gln1-3 mutant
condition, and D.) gln1-4 mutant condition.

The metabolomics data [68] was compared to the flux predictions within the model in each of the nitrogen
conditions. The increasing or decreasing trend of the metabolite concentration was qualitatively compared
to the flux-sum changes determined by the model. The flux-sum of a metabolite is a measure of the amount
of flux through the metabolite. Overall, the model accuracy in correctly predicting the directional change
in concentration levels is approximately 84% in the limited nitrogen condition, 68% in the g/n/-3 mutant
condition, and 73% in the g/n /-4 mutant condition as displayed in Figure E.2. In comparison to the limited
nitrogen condition when transcriptomic and proteomic data was not included, the accuracy of the model to
predict the directional change of the metabolite concentration was reduced to 46%.

F. Specific Aim 5: Curating Metabolic Models using MetRxn

F.1 Background

New models are being added to MetRxn as they are published or made available to us. It is available as a
web-based resource at http://metrxn.che.psu.edu. Increasingly, metabolite and reaction information is
organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry,
directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction
of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction
information from biological databases or other models due to incompatibilities in content representation
(i.e., metabolites with multiple names across databases and models), stoichiometric errors such as elemental
or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit
specification of stereo-specificity).



There have already been a number of efforts aimed at addressing some of these limitations. The Rhea
database, hosted by the European Bioinformatics Institute, aggregates reaction data primarily from IntEnz
[69] and ENZYME [70], whereas Reactome.org is a collection of reactions primarily focused on human
metabolism [5, 71]. Even though they crosslink their data to one or more popular databases such as KEGG,
ChEBI, NCBI, Ensembl, Uniprot, etc., both retain their own representation formats. More recently, the
BKM-react database is a non-redundant biochemical reaction database containing known enzyme-catalyzed
reactions compiled from BRENDA, KEGG, and MetaCyc. The BKM-react database currently contains
20,358 reactions. In addition, the contents of five frequently used human metabolic pathway databases have
been compared [72]. An important step forward for models was the BiGG database, which includes seven
genome-scale models from the Palsson group in a consistent nomenclature and exportable in SBML format
[73-75]. Research towards integrating genome-scale metabolic models with large databases has so far been
even more limited. Notable exceptions include the partial reconciliation of the latest E. coli genome scale
model iAF1260 with EcoCyc [76] and the aggregation of data from the Arabidopsis thaliana database and
KEGG for generating genome-scale models [77] in a semi-automated fashion. Additionally, ReMatch
integrates some metabolic models, although its primary focus is on carbon mappings for metabolic flux
analysis [78]. Also, many metabolic models retain the KEGG identifiers of metabolites and reactions
extracted during their construction [79]. An important recent development is the web resource Model SEED
that can generate draft genome-scale metabolic models drawing from an internal database that integrates
KEGG with 13 genome scale models (including six of the models in the BiGG database) [80]. All of the
reactions in Model SEED and BiGG are charge and elementally balanced.

F.2. Results

Using Gene Essentiality and Synthetic Lethality Information to Curate Existing Metabolic Reconstructions
Essentiality (ES) and Synthetic Lethality (SL) information identify combination of genes whose deletion
inhibits cell growth. Essentiality and SL analyses refer to identifying sets of gene deletions (single, double
and higher order thereof) that render the strain nonviable. Essentiality analysis identifies the list of genes,
each of which when deleted in silico, limits the biomass flux to lower than 10% of its theoretical maximum.
SL analysis identifies the list of in silico gene pairs (and higher order) whose removal constrains the
biomass flux to lower than the aforesaid Sin3 > HAP1 > HEM13

essentiality criterion. These analyses serve the \ X

dual purpose of model refinement (by heme

comparing with available in vivo knockout
information) and prediction for identifying
genes (or combination of genes) whose

binds to

RNA-Pol I

unexplained synthetic lethal interaction

knockouts could potentially be lethal. This

information is important for both identifying Comekes

drug targets for tumor and pathogenic bacteria (Cdcra and Rif)

suppression and for flagging and avoiding G Pait and G0 and Leo1) ‘B“”-k*"ase

gene deletions that are non-viable in

biotechnology, such as during strain design. In M ca E,’;’:QZSL',:

this study, we performed a comprehensive ES . Paft

and SL analysis of two important eukaryotic = - ‘ Viability
)

models: S. cerevisiae and CHO cells so as to Z = Pre-rRNA / ;

propose model changes that remedy E ;fa"“f_‘ﬂ* Hlorass formation

inconsistencies with data model predictions & Lot ormaten
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cause (i.e., nutrient or biomass precursor the loss of function upon deletion of Hem 13 and Cdc73 genes.
deficiency) for lethality.

For CHO 1.2, we identified eight instances where model and experimental data do not match. Upon
supplementing this mismatched set with another 11 cases of model and experiment discrepancies from the
mouse model [82], we suggested 14 additional (single, double and higher) gene deletion experiments for



maximally resolving mutant growth phenotypes in CHO cell lines. The absence of a comprehensive single-
gene knockout database for Chinese Hamster Ovary (CHO) cells (unlike yeast) makes the assessment CHO
1.2 genome-scale model [83] more difficult. Therefore, we supplemented limited experimental data with
predicted lethal gene deletions based on the most recent mouse model [83] and gene knockout studies in
mouse embryonic stem cells [84] that exhibited high degree of sequence similarity (functionality of the
encoded protein is at least 70% conserved across all mammalian systems [84]) with the CHO cell genome.
Any inconsistencies between mouse and CHO cell lethality was used as an opportunity to correct the CHO
model. Eight GPR modifications were proposed for CHO 1.2 in order to address and reconcile five ESG
cases to GG, three GES cases to ESES, three SL2ES cases to ESES and one ESSL2 case to SL2SL2. In
addition, we proposed a number of gene deletion experiments to verify non-intuitive synthetic lethal gene
combinations. Reaction level essentiality analysis in silico revealed 90 essential reactions. Utilizing the
GPR associations for these reactions, 57 essential genes were identified for growth under aerobic minimal
essential media.

The proposed model modifications on Yeast 7.11 involve 50 literature-supported changes that improve the
sensitivity and specificity of Yeast 7.11 by 2.66% and 20.4% respectively and decrease the false viable rate
(FVR) by 8.42%. Overall, we reconciled 50 growth discrepancies between model and experiment. Twelve
ESG cases were identified that form ESSL2 inconsistencies in combination with other non-metabolic genes.
For example, gene HEM13 whose deletion causes an ESG discrepancy has a non-metabolic function in
chromatin assembly and interacts with RNA-polymerase II in transcription. It forms a synthetic lethal
with CDC?73 [85] (cell division cycle gene) due to the inability to form the pre-rRNA transcript upon
simultaneous deletion of the two. We propose a possible interaction schematic (see Figure F.1) explaining
the cause for the lethal interaction based on information from existing experimental studies [86-88].

Metabolic flux analysis for genome-scale reconstructions

Metabolic flux analysis (MFA) helps estimate intracellular fluxes, ° o
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Figure F.2: Flux distribution comparison

inference ranges for 20 key reactions present in the core model.
The glycolysis flux range doubles due to the possibility of active
gluconeogenesis, the TCA flux range expanded by 80% due to the
availability of a bypass through arginine consistent with labeling
data, and the transhydrogenase reaction flux was essentially
unresolved due to the presence of as many as five routes for the
inter-conversion of NADPH to NADH afforded by the genome-
scale model. A non-zero flux for the arginine degradation pathway

for core model and GSM model. (a)
Schematic representation of all reactions
and metabolites involved in central
metabolism of E. coli. Comparison of flux
ranges (in mmol/dmol-glucose) using (m)
core model and (Fig. 2) GSM model for (b)
glycolysis and gluconeogenesis, (c)
anaplerotic reactions and glyoxylate shunt,
(d) TCA cycle, (e) PPP and ED pathway.



was identified to meet biomass precursor demands as detailed in the iAF1260 model. Inferred ranges for
81% of the reactions in the genome-scale metabolic (GSM) model varied less than one-tenth of the basis
glucose uptake rate (95% confidence test). This is because as many as 411 reactions in the GSM are growth
coupled meaning that the single measurement of biomass formation rate locks the reaction flux values. This
implies that accurate biomass formation rate and composition are critical for resolving metabolic fluxes
away from central metabolism and suggests the importance of biomass composition (re)assessment under
different genetic and environmental backgrounds. In addition, the loss of information associated with
mapping fluxes from MFA on a core model to a GSM model manifested in the TCA cycle and associated
fluxes, due to the presence of alternate pathways between metabolites. For instance, the lower bound of
AKGDH decreased to zero due to the presence of multiple alternate pathways between glutamate and
succinate. The conversion of glutamate to succinate via y-aminobutyrate and y-glutamylsuccinate showed
similar flux ranges as AKGDH indicating the inability of 13C MFA to resolve between these alternative
pathways. Thus, this study proved that the application of GSM models to 13C MFA will allow the use of
closed cofactor balances without the risk of altering the actual flux distribution predicted using the flux
estimation procedure. This will enable identifying metabolic bottlenecks leading to more informed
metabolic engineering interventions that improve the yield of target products.

Elucidation of Photoautotrophic Carbon Flux Topology using Genome-scale Carbon Mapping Models
We have also applied genome-scale genome-scale isotopic instationary '*C-Metabolic Flux Analysis
(INST-MFA) to elucidate photoautotrophic metabolism in Synechocystis. Reactions capable of carrying
flux in iSyn731 [89] are identified via FVA using extracellular flux measurement data [90]. The
corresponding GSMM model imSyn617 includes all carbon-balanced reactions Atom mapping for reactions
shared with E. coli is derived from imEco726 [91] and the remaining reactions are mapped using the CLCA
algorithm or based on reaction mechanism when available. A customized algorithm is developed with
improved scalability and memory efficiency leading to a 48% reduction per iteration in the computational
time required to simulate of metabolite labeling dynamics in larger 2
networks. INST-MFA is performed to identify a suitable flux distribution .,
accurately recapitulating the labeling distribution and dynamics of 15
central metabolites obtained during photoautotrophic growth of
Synechocystis with 50% '*C-labeled bicarbonate as the tracer [90]. In Wmv
response to degeneracy in the metabolic network and experimental errors,
95% confidence intervals were also determined using the established
procedure [91, 92] to identify flux ranges for all reactions. o
Upon evaluating the significance of the improved recapitulation afforded °"°"T
by imSyn617 using the F-test, the F-statistic is 1.335 (p = 0.012). In
comparison, the corresponding F-statistic for scale-up in E. coli was 0.152
(p = 0.999) indicating that the core model accounts for the carbon paths ,,GMT lpmmw.m
necessary to recapitulate the labeling data used in that study [91]. The
increased uncertainty of flux estimation was attributed to the inclusion of =~ ¢ &= ———" s
altemgte pé?.thS. with identicgl atom .mapping informati.on. 1n contrast, the Figure F.3: Recycling of conserved
statistical significance associated with model scale-up in this study implies moicties within central
that unique and often surprising insights into the carbon flows under metabolism. The conserved E4P
phototrophic growth are obtained by the re-analysis of an existing dataset moiety generated due to the
using a detailed description of the entirety of metabolism in Synechocystis. nteraction between TAL from the
cq . . . . non-oxidative PP pathway and SBA
Flux elucidation of photoautotrophic growth of Synechocystis using .4 SBpase from the regencration
imSyn617 reveals that Synechocystis deploys a carbon efficient metabolism  phase of the CBB cycle is indicated
enabling maximal conversion of fixed carbons to biomass precursors with in red whereas the conserved triose
minimal production of organic acids and glycogen. This is in contrast to Phosphate ~ moiety ~ recycled
heterotrophic bacteria such as E. coli where 35% of the taken-up glucose is cWeen the serine biosynthetic
p X . . . pg pathway, photorespiration, and
secreted as acetate [93] resulting in a 30% biomass yield loss from the jower glycolysis is indicated in
theoretical maximum biomass yield [94]. The flux ranges estimated in this blue.
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study provide a comprehensive set of essential and dispensable metabolic reactions in Synechocystis under
photoautotrophic growth conditions to serve as a guideline for editing photosynthetic prokaryotic genomes.
The estimated flux ranges reveal that net carbon fixation accounts for only 88% of the assimilated
bicarbonate. The remaining 12% is fixed by PPC, but is subsequently oxidized to CO; via malic enzyme,
TCA cycle, and peripheral metabolic reactions. These carbons are not recycled by the CBB cycle and are
therefore off-gassed. This inability to recycle these carbons via the CBB cycle is identified as a target to
improve upon in photosynthetic carbon fixation. It is unclear from this analysis whether this is caused by a
rate-limiting enzyme in the CBB cycle or a paucity of available NADPH and ATP as the fluxes through the
photosynthetic light reactions and oxidative phosphorylation are poorly resolved by INST-MFA.

Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models
In flux balance analysis (FBA), one of the fundamental constraints is the steady-state mass balance
equation, which quantifies the conservation of component balance. As a prerequisite for quantitative
predictions, all reactions must be component and charge balanced. This principle of mass balance also
- ~ applies to the biomass reaction, which expresses

/L biomass as a defined ratio of macromolecules
T synthesized from metabolites [95]. A GSM model
describes in quantitative terms the substrate-to-
N biomass conversion, from mmol of substrates to
7> 4 gram dry cell weight of cells. By definition the
N - biomass produced must have a molecular weight
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the balance to have a disproportionate influence on
FBA derived flux predictions. However, the
standard is rarely verified in the current practice
and the chemical formulae of biomass components
such as proteins, nucleic acids and lipids are often
represented by undefined side groups (e.g. X, R).
We developed a systematic MILP-based procedure
called ‘minimum inconsistency under parsimony
(MIP)’ for checking the biomass weight and
ensuring complete mass balance of a model [96].
MIP formulates the elemental balance as an optimization problem that solves for the chemical formulae of
generic metabolites by minimizing the inconsistencies using the information of known metabolites. The
MIP solution provides guidelines for resolving all imbalances in a model. We identified significant
departures after examining 64 published models. The biomass weights of 34 models differed by 5-50%,
while 8 models have discrepancies >50%. In total 20 models were manually curated. By maximizing the
original versus corrected biomass reactions, flux balance analysis revealed >10% differences in growth
yields for 12 of the curated models. We identified three primary sources leading to inaccuracies in the
biomass MW (see Figure F.4). First, a subset of models uses biomass reactions that were made by automated
platforms or adapted from other models (e.g. the models
for Bacteroidesthetaiotaomicron, Faecalibacteriumprausnitzii, and Yeast 7). In the absence of
experimental data, the mass fractions for the biomass reaction were simply obtained by uniformly
normalizing over all biomass components. Second, for some models we found inconsistent stoichiometric
coefficients in the biomass reaction because the MWs of macromolecules used for calculating the
coefficients were not the same as the actual MWs implied by their elemental balance. For example, in

Figure F.4: Three sources of errors in the biomass reactions: (i)
biomass reactions generated by automated platforms or adapted
from other models with biomass components deleted (‘Bio5”) or
newly added; (ii) inaccurate stoichiometric coefficients in the
biomass reaction (‘Bio3’, ‘Bio4’) partially due to the existence
of undefined side-groups (e.g., ‘R’ and ‘X’); and (iii) missing
cofactors in macromolecular synthetic reactions, such as proton
in GAM (‘H+’), water in protein synthesis and pyrophosphate in
DNA and RNA syntheses.



the Yarrowialipolytica model, our MIP procedure calculated MWs for phospholipids that were ~100x larger
than the MWs used in the original model construction (Pan and Hua, 2012) yielding a biomass MW of 30 g
mmol . The reason for this was that the model lipid building blocks such as 1-acyl-sn-glycerol 3-phosphate
were synthesized as polymers with 100-mers (e.g. in the reaction for glycerol 3-phosphate acyltransferase),
instead of monomers as in other models. Inconsistent stoichiometric coefficients were also found in the
models for Corynebacteriumglutamicum, Clostridiumacetobutylicum, and Eubacteriumrectale. A probable
reason for the errors is the lack of the application of a procedure to ensure complete mass balance and verify
the biomass MW. Some GSM models included metabolites with undefined side-groups (e.g. acyl groups in
lipids) that complicate the estimation of the MWs of macromolecules. Finally, small molecules in
macromolecular synthesis reactions were sometimes missing, (e.g. missing proton in the growth-associated
maintenance (GAM), H,O in protein synthesis, and pyrophosphate in DNA or RNA synthesis). This was
observed in the models for B. subtilis, C. acetobutylicum, C. glutamicum, E.
rectale and Pichiapastoris. Figure F.4 pictorially illustrates the sources of error in the calculation of
biomass composition.

G. Specific Aim 2: MetRxn-driven metabolic reconstruction and analysis of microbial
communities

G.1. Background

Most microorganisms exist in nature as integrative and interactive communities, and are responsible for
driving biochemical cycles of nitrogen and carbon [97], and playing central roles in human health and
disease [98, 99]. Members of such microbial communities can interact by unidirectional or bidirectional
exchange of metabolites, giving rise to interactions such as mutualism, commensalism, parasitism, or
competition [100, 101]. A classic example of these examples would be day-night or seasonal variations,
where inter-species interactions and their temporal changes play pivotal roles in shaping community
composition and function [102, 103]. However, the nature of these interactions and the dynamic variations
therein are not well understood, necessitating model frameworks that help describe the lesser understood
aspects of metabolism in microbial communities. Existing frameworks employ optimization frameworks
that maximize a single objective function related to an individual species, which cannot always capture the
multi-level nature of decision making. Furthermore, simply adapting dynamic single-species modeling
frameworks such as d-FBA [104] is not trivial owing to the increased complexities and missing information
about interspecies interactions in a changing environment. Ecl

G.2. Results

We developed the SteadyCom [105] optimization framework

for predicting metabolic flux distributions consistent with the Ecd L -
steady-state requirement. As opposed to earlier developed Met ys ©
community modeling algorithms such as joint FBA, Arg
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consists of four E. coli mutants (Ecl, Ec2, Ec3 and Ec4), four E. colimutants. Each E. coli mutant is
each auxotrophic for two amino acids and devoid of the 2UXtrophic fo two amino acids and produces one

. . . amino acid that is essential to the community. The
exporter of one amino acid (see Figure G.1). Each mutant

. ; ] genotype and ability to synthesize and export the
competes with another for the amino acids produced by the focus amino acids are displayed.




other two mutants. Thus, co-growth is theoretically possible and every mutant is essential for community
survival and growth. The maximum growth rate predicted by joint FBA was 0.572 h™! while the prediction
by SteadyCom was 0.736 h™'. This significant deviation was found to be a result of the non-growth-
associated ATPM requirement in the model. In joint FBA, the predicted flux distribution needed to fulfill
the ATPM requirement for four units of biomass, leading to the underestimation of the maximum growth
rate. In contrast, the flux distribution predicted by SteadyCom satisfied the ATPM requirement for one unit
of biomass in total. The allowable ranges of the relative abundance of the mutants at > 90% of the maximum
community growth rate computed by flux variability analysis (FVA) indicate the essentiality of each mutant
for growth using SteadyCom. The ranges converge to a unique community composition as the community
growth rate increases to its maximum. In contrast, joint FBA optimizing for an unweighted sum of biomass
predicts that each of the mutants can have abundances ranging from 0 to 100% for < 99% maximum
community growth and only the growth of Ec2 and Ec3 are necessary at 100% maximum community
growth
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SteadyCom was also applied to a gut microbiota model
consisting of nine species to predict the composition of gut
microbiota given the dietary information. A community
model consisting of nine microbes present in the human gut
with available genome-scale metabolic reconstructions was
compiled. The organisms include one species in the phylum
Bacteroidetes, five species in Firmicutes (two Clostridia and
three lactic acid bacteria), two species in Proteobacteria and
one species in Actinobacteria (B. adolescentis). In the
assembled community
model, B. thetaiotaomicron and F. prausnitziiare the only
organisms able to digest dietary fiber. Using the nine proxy
models, SteadyCom was able to predict the universal
dominance of Bacteroidetes and Firmicutes with non-zero
abundances for Actinobacteria and Proteobacteria given a
typical diet [27]. With randomizing the uptake rates of
microbes, an abundance profile of the phylum proxies
similar to the experimental phylum distribution was
predicted. A recent study comparing vegans and omnivores
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Figure G.2: Simulation of the gut microbiota model
subject to the estimated average American diet. (A)

from an urban USA area found surprisingly similar gut
microbiota compositions between the two groups [28]. Both
the community growth rates predicted by SteadyCom (see
Figure G.1) and the maximum growth rates for each species
predicted by joint FBA (see Figure G.2) given community
uptake rates based on the consumption and chemical
composition of the average American diet, lie in the range of
the intestinal microbial growth rates reported (i.e. 0.02—0.25
h™") [29]. This consistency supports the validity of constraint-

The maximum possible growth rates were predicted
for each species using joint FBA by maximizing the
biomass reaction of each species individually. (B)
The maximum community growth rate (the black
curve) and species composition (filled area) were
predicted by SteadyCom at varying maximum
specific fiber uptake rate (FUR)
of B. thetaiotaomicron. (C) Aggregate fiber uptake
and fiber-derived substrate (FDS)  export
by B. thetaiotaomicron that —are  required  for
maximum community growth were calculated using

based modeling frameworks based on the mass balance of FVA-

biochemical conversion and the potential for qualitative and quantitative predictions of gut microbiota
metabolism.

d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities [107]
To capture the multi-level nature of decision making in microbial communities, we had previously
developed OptCom [108] that uses a multi-level and multi-objective optimization formulation capable of
capturing both species- and community-level fitness criteria. Recently we developed d-OptCom (dynamic
OptCom) for the multi-objective dynamic analysis of the microbial communities. To this end, new time-



dependent constraints representing the conservation of mass for the biomass of each species and shared
metabolites with available uptake kinetics are added to the outer problem (see Figure G.3). The upper bound
on the uptake rate of each shared metabolite is determined by using the uptake kinetic expressions
incorporated as additional constraints in the outer problem. The inter-organism flow constraint (from the
original OptCom procedure) [108] is used instead of conservation of mass equations for the shared
metabolite without any uptake kinetics. The uptake/export rates of the shared metabolites are determined
by the outer objective function, however, they act as parameters for the inner problems of the respective
community members. This multi-level optimization problem can be recast as a nonlinear problem or a
mixed-integer nonlinear problem by using the strong duality or KKT conditions for the inner problems,
respectively. In both cases the problem is, in general, nonconvex due to the presence of uptake kinetic
expressions and conservation of mass equations.

d-OptCom incorporates the dynamic mass balance equations and substrate uptake kinetics and enables the
direct assessment of the shared metabolites and biomass concentrations in a given community. For example,
it is possible to maximize the total biomass concentration of the community instead of maximizing the
combined biomass flux of the community as in the original OptCom procedure [108]. Alternatively, one
can maximize (minimize) the concentration of a desired (undesired) shared metabolite, or minimize
deviation from a target time-dependent concentration pattern as the engineering objective. Furthermore,
this extends the concept of Descriptive OptCom [108] to a dynamic context (i.e., Descriptive d-OptCom)
where constraints on actual extracellular concentrations (e.g., the biomass composition of the community)
can be added to the outer problem in order to determine the dynamic changes in optimality levels of each
community member.

Maximize/Minimize Community-level fitness/Bioengineering objective

. (e.g., community biomass concentration)
subject to

Inter-organism flow constraints for shared metabolites without uptake kinetics
Conservation of mass equations for shared metabolites with uptake kinetics

Uptake rates < f(metabolite conc., kinetic parameters)

Maximize v! : 1
biomass

N 1

Maximize V.
biomass

subject to subject to

Network stoichiometry

Network stoichiometry

< Fixed uptake/export rates for the Fixed uptake/export rates for the >
shared metabolites shared metabolites
Other physiological & Other physiological &
L environmental constraints L environmental constraints
L i i

Figure G.3. Optimization structure of d-OptCom. Dynamic equations representing the conservation of mass for each shared
metabolite with available uptake kinetics are added as new constraints to the outer problem. The upper bounds on the uptake rates
are determined by using the uptake kinetic expressions.[107]

We model the competition between Rhodoferax ferrireducens and Geobacter sulfurreducens in subsurface
anaerobic environments [109]. In particular, given the time course G. sulfurreducens biomass fractions data
under different conditions, we are using Descriptive OptCom within each time interval to gain insights into
how the optimality levels for the participating community members change over time. Now we have
examined the impact of the addition of an acetate producer[110-112] (Shewanella oneidensis) to the G.
sulfurreducens-R. ferrireducens community by using the d-OptCom procedure. The combined uranium
reduction capability of S. oneidensis [113], and G. sulfurreducens promise a more effective bioremediation
strategy. The dynamic analysis of the uranium-reducing communities in the Rifle site with an additional
member showed that the incorporation of kinetic information can significantly sharpen the inference of
inter-organism metabolite trafficking due to the concentration limits of the shared metabolite and/or the
relative differences in the uptake efficiencies of community members. In addition, this analysis revealed



that addition of a new member to an existing community can significantly affect the behavior and
composition of the community exemplified by the dominance of S. oneidensis in the long run.

We also used d-OptCom to model and analyze the dynamics of a synthetic mutualistic relationship between
pairs of auxotrophic E. coli mutants. Wintermute and Silver[114] previously examined the co-growth of
several combinations of 46 mutant strains, where the deletion(s) in each strain blocks the biosynthesis of a
biomass precursor such as an amino acids, nucleotides or co-factors, thereby making them unable to grow
in minimal medium. We examined whether d-OptCom is capable of recapitulating the co-growth of
cooperating partners. To this end, we selected three such mutant pairs comprised of four genes involved in
the production of different amino acids with available uptake kinetics. These pairs include (dargH, A4lysA),
(dlysA, AtrpC) and (AdmetA, AilvE) where the deletion of argH, lysA, trpC, metA and ilvE block the
production of L-arginine, L-lysine, L-tryptophan, L-methionine and L-isoleucine, respectively. The selected
mutant pairs expand their own pool of required amino acids by aiding the growth of their conjugate partners,
thereby enhances the co-growth. This cooperative behavior was captured by d-OptCom as it simultaneously
takes into account species and community-level fitness functions enabling it to identify the impact of inter-
species interactions on the shared metabolite and biomass concentrations.

H. Specific Aim 3: Extracting Knowledge using MetRxn: Pathway Prospecting and
Svnthetic Biology

H.1. Kinetic Modeling

H.1.1. Background

The primary attraction behind constraint-based models is the minimal amount of biochemical knowledge
required to make quantitatively predictive inferences about network behavior. Despite their many successes
in metabolic system characterization and biological applications, their major limitation is the inability to
comment on the metabolite/enzyme concentrations and interactions, and to describe the transient nature of
metabolism. These caveats can be addresses by using kinetic metabolic models, which use ordinary
differential equations to obtain time-dependent metabolite concentrations and reaction fluxes. These models
require knowledge of stoichiometry, enzyme kinetics and efficient parameter estimation. The major
challenge in their construction lies in
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H.1.2. Results

Optimization-driven parameter estimation

In the context of this aim, we introduced a stepwise optimization procedure for kinetic parameter estimation
of a given metabolic network by making use of multiple fluxomic data. The main limitation in the
construction of kinetic models is the absence of available kinetic parameter values with reliable rate
expressions. The recently developed Ensemble Modeling (EM) [117] approach holds promise to address
some of these challenges by decomposing metabolic reactions into elementary reaction steps thus bypassing
the need for identifying the lumped form of kinetic rate laws. To this end, recently the EM approach has
been combined with an optimization-driven parameter identification method [118] to elucidate kinetic
parameters upon integration of multiple omic (i.e., fluxomic and metabolomic) data, describing metabolic
fluxes as a function of metabolite concentration and enzyme activity, as shown in Figure H.1.1.1. First, a
steady-state flux distribution is obtained by imposing the available fluxomic data and refining the flux
ranges for a reference strain (Figure H.1.1.1a). Next, in accordance with EM procedure, each reaction is
decomposed into its elementary mechanistic steps and the model parameters (i.e., reactions reversibilities
and enzyme fractions) are uniformly sampled within identified feasible ranges. Sampling of model
parameters provides an ensemble of models all of which are able to predict the same reference steady-state
flux distribution (Figure H.1.1.1b). For a given set of kinetic parameters from the sampled models in the
ensemble, the ODEs representing the conservation of mass are integrated until reaching steady-state (Figure
H.1.1.1c). The model integration allows for the evaluation of the objective function of the optimization
problem which is deviation from experimental flux measurements (Figure H.1.1.1d). The model predictions
are validated by a comparison between the available metabolomics, kinetic constants and performing cross-
validation tests (Figure H.1.1.1e). In order to improve model fitness, the optimization procedure provides
a new set of model parameters, based on the feedback receiving from predictive performance of the model
(Figure H.1.1.1f). Ultimately, a set of kinetic models that is tested and validated along different fluxomics
and metabolomics is identified (Figure H.1.1.1g). This procedure is implemented in a metabolic model of
E. coli core metabolism [ 118] that consists of 138 reactions, 93 metabolites and 60 substrate-level regulatory
interactions [119, 120] by making use of the fluxomic data for wild-type and seven mutant strains [121].
The predicted fluxes by the model are within the uncertainty range of experimental flux data for 78% of the
reactions (with measured fluxes) for both the reference (wild-type) and seven mutant strains. The predicted
metabolite concentrations by the model are also within uncertainty ranges of metabolomic data for 68% of
the metabolites. In addition, 80% of K, and k.., parameters are within one order of magnitude of literature
available values.

H.2. k-OptForce: Integrating Kinetics with FBA for strain design

H.2.1. Background

There has been rapid progress in recent years in the development of computational strain design protocols
for system-wide identification of
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between stoichiometry-only and kinetics-based descriptions of metabolism.
H.2.2. Results

k-OptForce protocol [130] seamlessly
integrates the mechanistic detail
afforded by kinetic models within a
constraint-based optimization
framework tractable for genome-scale
models. Instead of relying on
surrogate fitness functions such as P N
biomass maximization or worst-case e '
simulation for predicting flux re-
directions, k-OptForce uses kinetic
rate expressions to (re)apportion
fluxes in the metabolic network.
Using mechanistic models available
in literature the allowable phenotype
of both the reference and the engineered strain are characterized to be consistent with the allowable kinetic
space. Subsequently, alternative genetic intervention strategies consistent with the restrictions imposed by
maximum enzyme activity and kinetic regulations, as well as with the worst-case scenario of production of
the desired chemical are identified using a bilevel optimization framework (Figure H.2.1).

Application of the k-OptForce for the microbial overproduction of TAL in S. cerevisiae revealed the impact
of additional kinetic constraints in alleviating a severe worst-case simulation of regular OptForce, resulting
in a higher prediction of TAL yield (90% vs 35% of theoretical maximum) from fewer interventions (2 vs
4) as compared to regular OptForce predictions (Figure H.2.2). In general, both procedures suggest
strategies that increase the availability of precursors accoa and malonyl-CoA (malcoa), up-regulating
glycolysis, down-regulating Pentose Phosphate pathway, and reducing nadph production. However, while
regular OptForce suggests a number of knockouts to prevent leaking flux away from acetyl-coA
carboxylase, k-OptForce identifies that the kinetic expressions work in concert with the overproduction
goal (given the imposed concentration ranges) without the need for any direct enzymatic interventions. In
addition, the incorporation of kinetic information pushes metabolic flux in the direction that is needed for
overproduction and away from the “worst-case” behavior,

Original OptForce

’ P p—
"« accoac / - " "\ 5" accoac / -
accoal#4) makoa (85 "ﬁ‘ sk ALDD 003 (46) makoa

" L\ s
» e o s
& . g - e o T
oot 1% Savanlh T

Figure H.2.2: Comparison of intervention strategies predicted by regular
OptForce and k-OptForce for overproduction of TAL in S. cerevisiae
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resulting in higher predicted TAL yield.

H.3. Integration of computational strain design and
synthetic biology techniques for metabolic engineering
applications

H.3.1. Background

OptForce procedure [131] has been employed to identify
metabolic intervention strategies to increase Neurosporene
production in E. coli. Neurosporene is produced through 1-
deoxy-D-xylulose 5-phosphate pathway (DXP pathway).
The DXP pathway is also used for the biosynthesis of
isoprenoid, a class of organic compounds that are potentially
useful as biofuels, pharmaceuticals, nutraceuticals, flavors
and cosmetics products [132-134]. The DXP pathway
requires the cofactor NADPH [135]. Here, we proposed a
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Figure H.3.1: Glucose metabolism in E. coli.
The genes selected for overexpression are
highlighted in yellow boxes.

synthetic pathway for efficient NADPH regeneration and
developed a systematic approach to rationally control
NADPH regeneration from the synthetic pathway.

H.3.2. Results

Five enzymes from Zymomonas mobilis Entner-Doudoroff (ED) pathway were selected for overexpression
(See Figure H.3.1). Amino acid sequences of all five enzymes are back-translated using Operon Calculator



developed in the previous year. The resulting plasmid, R6K-Lacl-ED-tetAR, containing all five enzymes is
assembled using Gibson Assembly method [136]. ED-tetAR cassette is amplified from the plasmid and
integrated into the genome of EcNR2 (E. coli MG1655) strain [137] to produce ED 1.0 strain. We then
designed ribosome binding site (RBS) libraries for each enzyme using
RBS Library Calculator (https://salis.psu.edu/software). Each library  z.. R
contains 16 different RBS sequences that span a large range of translation ¢ «

initiation rates. 40 cycles of multiplex automated genome engineering
(MAGE) [137] was performed with oligonucleotides mixture containing
all these RBS libraries. We then transformed the resulting pool of
combinatorial variants with pMG3-mBFP plasmid harboring a NADPH-
dependent metagenomic blue fluorescent protein[138]. Wild-type ECNR2
strain and ED 1.0 strain, both transformed with pMG3-mBFP, were used
as reference strains. Screening was performed by characterizing specific
blue fluorescence production rate of the variants using microplate reader.
In each round of screening, the variants were found to span a large range :
specific blue fluorescence (See Figure H.3.2). The wild-type EcNR2 & ° l
strain harboring the mBFP plasmid exhibited a relatively lower specific BRT m % oa e w
blue fluorescent when compared with ED 1.0 and other ED variants. The . Screening Round 44
variants within the highest range and lowest range of specific blue 2

fluorescence were then sent for sequencing.

ED-tetAR cassette from two of the variants, 1-D4 and 1-G3, were
amplified and integrated into the chromosome of ECHW2 DXS-15 strain. ;.. . . . . 1
The strains were then transformed with pBad-crtEBI plasmid. Expression Figure H3.2:  Rank-ordered

of crtEBI operon allows the cells to produce Neurosporene. ECHW2  gpecific blue fluorescence in
DXS-15 crtEBI strain without the synthetic ED operons was used as  three different rounds of
reference. Neurosporene titer of all the strains were characterized in M9~ screening.

minimal media supplemented with 0.4% w/v of glucose. The control

strain accumulated 2212.1 pg/g DCW of Neurosporene. Expression of 1-D4’s ED pathway significantly
improved the production titer up to 3802.5 pg/g DCW (71.9% higher than reference strain). Another ED
pathway variant 1-G3 produced 53.2% more Neurosporene than the reference strain (3389.0 pg/g DCW of
Neurosporene). The DXP pathway required glyceraldehyde-3-phosphate and pyruvate as the pre-cursor
molecules and also NADPH as the source of reducing equivalents. Synthetic ED pathway is able to supply
both the pre-cursors and NADPH. This result demonstrates that the synthetic ED pathway is a promising
approach for enhancing production titer of isoprenoid.

|



We used kinetic model approaches for strain design by applying the k-OptForce [139] procedure for the
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Figure H.3.3: A schematic representation of the framework. (A)
The reactions with kinetic descriptions are shown in blue. (B)
The reactions are first decomposed into their elementary steps.
(C) Elementary kinetic parameters are expressed as a function
of reaction reversibilities and enzyme fractions. Reaction
reversibilities and enzyme fractions are sampled to construct an
ensemble of models, for any given reaction. (D) A genetic
algorithm (GA) implementation identifies the optimal
combination of the sampled parameters by minimizing the
deviation from experimentally measured flux data for multiple
mutant strains. (E) The k-OptForce procedure identifies a
minimal set of interventions that maximizes the yield of targeted
product

recently published large-scale kinetic model of E.
coli core metabolism [140]. The kinetic model
includes 138 reactions, 93 metabolites, and 60
substrate-level regulatory interactions and accounts
for glycolysis/gluconeogenesis, pentose phosphate
(PP) pathway, TCA cycle, major pyruvate
metabolism, anaplerotic reactions, glyoxylate
shunt, Entner—Doudoroff (ED) pathway, and a
number of reactions in other parts of the
metabolism. The model was parameterized using
the ensemble modeling (EM) formalism [141] by
simultaneously satisfying normalized flux data per
100 mmol of glucose uptake (for approximately 25
reactions per mutant) for the wild-type and seven
single gene deletion mutants, under aerobic
condition [121]. The EM approach decomposes all
reactions into elementary steps bypassing the need
of detail kinetic expressions. First, an ensemble of
kinetic models is generated by uniformly sampling
reaction reversibilities and enzyme fractions
following different time trajectories but all reaching
the same steady-state flux values. Next, a Genetic
Algorithm (GA) implementation is used to “swap”
kinetic parameterizations between models in the
ensemble so as to minimize the deviations from all
set of mutant network fluxes. Models constructed
using flux data for a single strain do not always
perform well in predicting deletion strain metabolic
phenotypes [142].

The k-OptForce procedure [143] was used to
identify the minimal interventions that maximize
the yield of succinate production using a hybrid
kinetic [140] and stoichiometric iAF1260 [118]
description of E. coli metabolism. Succinate was
chosen as the target bioproduct as there exists
numerous experimental strain-engineering studies
to compare the suggestions of k-OptForce
procedure [144-146]. This study was carried out
under both aerobic and anaerobic conditions to

assess the fidelity of the kinetic model when used to make predictions for a different environmental
condition (i.e., anaerobic) than the one parameterized for (i.e., aerobic). The goal was to quantify the
reduction in prediction quality moving from aerobic to anaerobic under glucose minimal condition and
suggest model modifications that remedy these shortcomings. k-OptForce recapitulated existing strategies
while also pointing at promising but currently unexplored interventions. In addition, results under anaerobic
condition indicate that the kinetic model needs to be re-parameterized with mutant flux information
involving a reversed TCA cycle routing flux towards succinate. A number of regulatory modifications of
the kinetic model are also found to be necessary to better reflect metabolic fluxes associated with anaerobic
succinate production. These include activation of fermentation pathways and pyruvate formate lyase (PFL)
by key regulatory proteins FNR (fumarate and nitrate reductase regulation) and ArcA (aerobic respiratory

control).



H.4. Synthetic Pathway Design
H.4.1. Background

The introduction of the concept of ‘total synthesis’ by Wohler [147] was one of the milestones in
chemistry [148]. The possibility to create synthetic compounds from simple chemical building
blocks has been a driving force of our modern world. Hence, it has been one of the ultimate goals
in biology to achieve the same conceptual and synthetic level as reached in chemistry, ever since
the principle of ‘metabolic engineering’ was developed in the early 1990s. Yet, cells are still far
from being ‘little chemical factories’ and metabolic engineering has so-far been limited in its
synthetic capabilities, relying mainly on the transplanting known pathways to a new host followed
by optimization. Nevertheless, in silico pathway design has been realized for the biosynthesis of
the value-added chemical 2,4-Dihydroxybutyric acid (DHB) [149], for producing
therapeutics[150], and for designing synthetic carbon fixation pathways so as to increase the net
carbon assimilation [151].

H.4.2. Results

Synthetic Entner-Doudoroff Pathway Design

Neurosporene in E. coli is produced through the 1-deoxy-D-xylulose 5-phosphate pathway (DXP pathway).
The DXP pathway is also used for the biosynthesis of isoprenoid, a class of organic compounds that are
potentially useful as biofuels, pharmaceuticals, nutraceuticals, flavors and cosmetics products [152-154].
The DXP pathway requires the cofactor NADPH [155]. We rationally engineered a synthetic version of the
Entner—Doudoroff pathway from Zymomonas mobilis that increased the NADPH regeneration rate in
Escherichia coli MG1655 by 25-fold. We combined systematic design rules, biophysical models, and
computational optimization to design synthetic bacterial operons expressing the 5-enzyme pathway as a
drop-in module, while eliminating undesired genetic elements for maximum expression control. Starting
from the first version of the pathway, we carried out systematic optimization of the enzymes’ expression
levels to improve the pathway’s activity, first employing a NADPH-dependent fluorescent protein reporter
to measure NADPH regeneration rates, followed by measuring the ED pathway’s effect on an NADPH-
dependent terpenoid biosynthesis pathway. By combining MAGE genome mutagenesis with our RBS
Library Calculator algorithm, we introduced targeted genome modifications to greatly vary the ED
pathway’s individual enzyme expression levels and to efficiently search its 5S-dimensional expression space.
We screened 624 ED pathway-genome variants for high NADPH regeneration rates, and then extensively
characterized 22 re-integrated pathways by measuring in vivo NADPH regeneration rates and NADPH-
dependent biosynthesis rates. The best variant exhibited 25-fold higher normalized mBFP levels when
compared to wild-type strain. Combining the synthetic Entner—Doudoroft pathway with an optimized
terpenoid pathway further increased the terpenoid titer by 97%
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The second study explores the reverse problem of identifying new ways of forming carbon-carbon bonds
from the combined use of methanol and CO; to stoichiometry-feasible C,+ products such as acetate. Finally,
the third study identifies suitable co-reactant and co-product pairs to drive forward the thermodynamically
unfavorable methane to acetate conversion. We compared the optimal pathways identified here with two
existing pathway design tools (Chou et al. [159] and Bar-Even et al. [151]) for all three case studies. The
results showed that the depth-first graph search algorithm for Chou et al. [159] identified only linear paths
connecting the primary substrate to the primary product for all the case studies, while failing to identify any
of the carbon-conserving cyclic networks. The Bar-Even et al. [151] approach successfully recapitulated
the NOG cycle (Case Study 1), however, cofactor imbalances were introduced for the last two studies.
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Figure H.4.1: Network designs for the co-utilization of methanol and
carbon dioxide towards acetate.

de novo Pathway Design

We have developed two novel procedures rePrime and novoStoic for the de novo pathway design. rePrime
is a reaction rule based algorithm that encodes reaction centers as elementally balanced operators. These
reaction rules capture moiety changes in the reaction centers by using the changes in the counts of prime
numbers (i.e., canonical label for moieties) between substrates and products. Other than metabolites
currently present in the database, our approach can be extended to novel metabolites as long as the structure
can be codified as counts of moieties (i.e., molecular signature). rePrime allows for different moiety sizes.
In the current implementation of rePrime, we trace moieties of up to a size of A=3. In principle, one could
expand the size of moieties traced or customize the size of the moiety traced based on the underlying
reaction chemistry. By combining metabolite balance and moiety balance constraints, novoStoic



simultaneously integrates reaction rules with known reactions. It thus enables homing in first to the most
desirable designs avoiding costly enumeration of alternatives that either include too many novel steps, are
redox imbalanced, or fail to meet cost/yield requirements. The MILP based computational framework
allows for straightforward control of cofactor regeneration, the number of novel reactions and the
imposition of carbon yield or profit margin requirements.

novoStoic allows us to exploit enzyme plasticity by suggesting homologs to perform the hypothesized
conversion when natural options are not available. In typical industrial bioprocesses, the number of novel
reactions must be carefully controlled (or minimized) as each novel reaction implies an additional enzyme-
substrate engineering challenge. In the event that the homolog is not promiscuous, protein engineering steps
have to be recruited to enhance non-natural substrate binding (e.g., by tuning the binding pocket structure
to accommodate the non-natural substrate [160]) and subsequently to increase catalytic rate [161]. For
example, Cargill, Inc. engineered a multi-step 3-hydroxypropionic acid biosynthesis pathway, which
employed a single non-natural enzyme (i.e. alanine 2,3-aminomutase), to bypass an ATP consuming step.
The team had to engineer a homolog lysine 2,3-aminomutase to confer it the desirable activity and at the
same time select a variant with the least negative effect on the host cell [162]. With the capability to blend
known reactions and non-natural ones, novoStoic could invoke novel steps only when necessary.

A number of chemical manufacturing processes are increasingly exploiting the chemoselectivity and
catalytic rate boost potential of enzymes [163] for the synthesis of pharmaceuticals and precursors. Studies
have demonstrated that multi-enzyme cascades of non-natural enzymes can be implemented in both in vivo
and in vitro fashion as well as in combination [164]. rePrime/novoStoic address the timely challenge of
integrating recent advancements for the rapid identification of complete pathways for bio-based
chemosynthesis and the elucidation of intermediates of ill-defined xenobiotic degradative pathways. The
detailed degradation map can therefore assist in evaluating the toxicity and potential side effects of new
drugs, and even enable the assessment of synergistic, antagonist or toxic drug interactions.

novoStoic sometimes predicts pathways where the rules invoked to fill in intermediate steps could map to
multiple possible reactions. The degree of specificity of the reaction rules can be controlled by preferentially
using moieties of size 3 or 2 and only size 1 if no solutions were recovered. Note that novoStoic does not
allow for mixing of moieties of different size during the pathway design phase. As anticipated, larger moiety
sizes generally yield novel steps “closer” to a known reaction and thus more likely to involve an existing
(promiscuous) enzyme with some level of this activity. However, larger moiety sizes (distance of 2 or 3)
severely restrict the number of possibilities for novel steps. Generally, we start the pathway design using
moieties of distance 3 and then reduce to 2 or even 1 depending on the efficacy of the search so far. In
addition, the requirement of elementally balanced reaction rules with proper cofactor utilization and stereo-
chemical changes necessitate a high quality biochemical database as an input for rePrime/novoStoic.
Incomplete or incorrect reaction annotation (e.g., molecular structure, stereochemistry, stoichiometry,
cofactor and reaction mechanism) could significantly affect the quality of the rules identified and the
reliability of a pathway. A number of automated algorithms [165] and procedures [166] have been
developed to reduce annotation inconsistencies and unify discrepancies across different databases.
However, expert curation is often necessary to include updated discoveries (e.g., fixing cofactor utilization
of a stoichiometrically balanced reaction) as well as to evaluate and resolve contradicting information [167].
Furthermore, we generally treat all rules as reversible. Therefore, additional scrutiny may be needed to
ensure that the reaction rule ultimately maps to a reaction that is thermodynamically feasible.
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