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Abstract: Power Spectrum Analysis (PSA) is being
studied as a counterfeit detection tool. We describe other
possible applications: process monitoring, tracking
changes in packaging, and changes due to gamma-ray
exposure.
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Introduction

Power spectrum analysis (PSA) measures the dynamic
frequency-domain responses of an integrated circuit (IC)
when subjected to dynamic stimuli.  Unique PSA
signatures exist in the power spectrum associated with each
IC, and these signatures are found to be sensitive to subtle
changes in the IC. PSA has been an effective tool in
detecting differences between genuine and counterfeit
devices once differentiating signatures have been identified
[1]. PSA has also been used to study the aging effects
when devices are subjected to accelerated aging [2].

In this paper, we describe other applications of PSA that
are not directly related to counterfeit and aging detection.
We describe the use of PSA as a monitor tool to track
changes resulting from process variations in IC fabrication.
By changing the biasing conditions, we show that PSA can
differentiate changes that originate from package. We also
show that changes due to radiation (gamma-ray) exposure
can also be detected by PSA.

PSA Basics

PSA uses off-normal biasing to stimulate devices. Off-
normal biasing refers to powering conditions that are not
used in regular testing. One of the off-normal biasing
conditions is to pulse the device with periodic waveform
voltages between the power (VDD) and ground (VSS) pins
with all the input and output pins floating. The device
responds to these pulses by loading on the periodic
waveform voltage. The amount of loading depends on the
device dynamic impedance. Figure 1 shows an example of
the off-normal biasing on a device with square-waveform
voltages; the top plot in Figure 1 shows the voltage
waveforms before (top black curve) and after (bottom red
curve) they are connected to a device. The corresponding
PSA spectra are shown in the bottom two plots. After the
square-waveform voltage is connected to the device, there
is a slight distortion in the voltage waveform (denoted by

the blue dashed circle). This slight distortion creates a
distinct fingerprint in the PSA spectra (right bottom plot of
Fig. 1).

PSA is non-destructive and the dynamic stimuli used in
PSA measurements are within the normal device operating
conditions. PSA has short acquisition times (typically less
than 20 seconds). PSA normally uses a “gold” standard as
a reference for comparison.
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Figure 1. Square-waveform voltage (top plot) before (top
black curve) and after (bottom red curve) connecting to a
device under test. Corresponding PSA spectra of the
waveform voltages are shown in the bottom two plots.

Process Monitoring

Figure 2 shows the PSA spectra of a Sandia-manufactured
ASIC from two different lots (Lot 1 and Lot 2). Figure 3
shows the corresponding Principal Component Analysis
(PCA) analysis of PSA data from multiple devices of these
two lots. PCA [3] is a long-established statistical analysis
method that reorganizes a data set with a large number of
variables such as in PSA spectra. Applying PCA to PSA
data allows the visual representation of PSA data in 3-D
distribution plots.

There are some minor processing differences between Lot
1 and Lot 2 and these differences are not observed with
conventional electrical testing. PSA can, however, detect
differences between these two lots. PCA analysis produces



two separated clusters as shown in Figure 3 corresponding
to these two lots. We believe that the observed differences
in PSA are most likely the result of the difference in contact
etch. There is no in-situ clean in Lot 1, but there is an in-
situ clean in Lot 2; this difference in contact etch may result
in minor differences in contact resistance that is observable
by PSA.

In Lot 2, there is also a process split between odd and even
wafers; the difference between the split is in the metal-etch
step. Figure 4 shows the PCA distributions of both even
and odd wafers for Lot 2. There is a slight separation
between even-wafer (open blue squares) and odd-wafer
distributions (open pink squares). The odd-wafer
distribution is situated closer to the Lot-1 distribution,
compared to the even-wafer distribution.

Figure 5 shows the edge-die and non-edge-die distributions
of Lot 2. Most of the edge dice (filled blue squares) are
located near the edge of the Lot-2 distribution. In addition,
the large majority of the outliers (circled in the figure) are
from the edge-die population. Even though electrical
testing does not show any significant differences between
edge-die and non-edge-die samples, PSA results appear to
indicate there are subtle process variations during
fabrication for the edge-die devices compared to the non-
edge-die devices, resulting in differences in the spectra that
produce both edge distributions and outliers.
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Figure 2. Representative PSA spectra of Sandia-
manufactured ASICs from two different wafer lots, Lot 1 and
Lot 2 (top two plots). The differences between PSA spectra

of these two lots are much more discernible in the

normalized or ratio plot shown in the bottom plot.
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Figure 3. Corresponding Principal Component Analysis
(PCA) analysis of PSA data from multiple devices from Lot
1 and Lot 2 shown in Figure 1.
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Figure 4. PCA analysis of PSA data from multiple devices
of Lot 2 showing a slight separation between even-wafer

and odd-wafer distributions.
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Figure 6 shows the PCA distribution of multiple devices of
an additional lot, Lot 3. The distributions of both Lot 1
and Lot 2 are also shown in Figure 6 as a comparison. As
expected, there is a significant overlap between Lot-2 and
Lot-3 populations. This was not surprising since the
devices from Lot 2 and Lot 3 were fabricated with similar
processing steps.
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Figure 5. PCA analysis of PSA data from multiple devices
from Lot 1 and Lot 2. The distributions of edge-die (filled
blue squares) and non-edge-dice (open blue squares)
devices are shown in the Lot-2 population.

Figure 6. PCA analysis of PSA data from multiple devices
of 3 different lots: Lot 1, Lot 2, and Lot 3; there is a
significant overlap between Lot-2 and Lot-3 populations.

Package Differentiation

In the previous sections, PSA biasing conditions (voltage
levels and frequency of the square waveforms) are tailored
to bring out difference in the die. PSA biasing conditions
can also be tailored specifically to detect differences that
are originated in the package. An example of package
differentiation is shown in Figure 7. Figure 7 shows the
PCA distributions from Sandia-manufactured devices from
Lot 1 and Lot 2 using two different types of packages
(Package 1 and Package 2). Lot 1 and Lot 2 are the same
two lots described in previous sections. PCA analysis in
Figure 7 shows two distinct distributions corresponding to
Package 1 (open circles) and Package 2 (filled circles). The

physical differences between these two types of packages
are shown in Figure 8. Interestingly, electrical acceptance
testing (focusing on functional, and AC/DC parametric
test) does not show any differentiation between devices
from these two types of packages.

Lot 1, Package 2

Lot 2, Wafer 1, Package 2

Lot 2, Wafer 8, Package 2 9

Lot 2, Wafer 1, Package 1

Lot 2, Wafer 8, Package 1 /
/

\
A\
\

oXoX N N |

\// >\
» Pack S
Package 1
\ /‘\
R
Y 10 ST

Figure 7.
Figure 7. PCA analysis of PSA data from multiple devices
of 2 different lots (Lot 1, Lot 2) showing two distinct
populations corresponding to Package 1 and Package 2.
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Figure 8. Optical images showing differences between
Package 1 and Package 2 that were used for Sandia-
manufactured ASICs.
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Detection Changes due to Gamma-ray Exposure
PSA can also be used to detect changes due to gamma-ray
exposure.  Figure 8 shows the PSA spectra and
distributions of Sandia-manufactured ASICs before and
after 1-Mrad gamma-ray exposure. No significant changes
were observed in conventional electrical testing for
exposed and unexposed sample, but significant differences
were observed in PSA before and after exposure.
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Figure 9. Normalized PSA spectra for Sandia-
manufactured devices before and
after 1-MRAD, gamma-ray exposure.
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Figure 9. PCA distributions for Sandia-manufactured
devices before and after 1-MRAD, gamma-ray exposure.

Conclusion

We have shown that PSA can be applied to other
applications that are not directly related to counterfeit and
aging detection. PSA can be used as a monitor tool to track
changes resulting from process variations in IC fabrication.
PSA can be tailored to differentiate changes that originate
from package by using specific biasing conditions.
Changes due to gamma-ray exposure can also be detected
with PSA.
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