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1. Accomplishments

In this section, major accomplishments for development and application of the prallell 3D finite
element Stokes dycore “FELIX-S” of the PISCEES project are discussed in certain detail and some
representative test results and findings are also provided.

1.1. A Picard-Newton finite element Stokes solver for ice-sheet dynamics

The Picard iteration is robust with respect to the initial guess for the solution, but is at best linearly
convergent for solving the nonlinear finite element Stokes system. Thus, it is time consuming for
long-time and large-spatial scale simulations in practical applications, such as decades to century
scale, whole-ice sheet simulations of Greenland and Antarctica. Newton-based nonlinear iterative
solvers are putatively quadratically convergent but are much less robust with respect to the initial
solution guess. Our approach is to first run the Picard iteration for a few steps to provide a good
initial guess for the Newton iteration, which then takes over until the solution converges. This
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hybrid approach provides a powerful and efficient tool for solving the nonlinear Stokes system. We
implemented and tested the performance of our new Stokes ice dynamics solver in the FELIX-S
model on several diagnostic, 3D ice-sheet experiments. Figure 1 shows convergence results of the
pure Picard and Picard-Newton methods for ISMIP-HOM benchmark experiments A and C. After
starting with several Picard iterations, the Newton method converges quadratically in every case.
The Picard-Newton method generally takes 8-15 iterations to reduce the relative residual by 10719,
whereas the pure Picard method almost always took 20-25 iterations to reach a much larger relative
residual of 1074
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Figure 1: Convergence results of the pure Picard and Picard-Newton methods for ISMIP-HOM benchmark experi-
ments A and C. From left to right and then from top to bottom: the ice-sheet horizontal length L= 5km, 10km,
20km, 40 km, 80 km, 160km. Solid lines: Exp. A with pure Picard method. Solid lines with asterisk: Exp. A with
Picard-Newton method. Dashed lines: Exp. C with pure Picard method. Dashed lines with plus: Exp. C with
Picard-Newton method.

1.2. A finite element ice-sheet temperature evolution solver and a finite volume ice-
sheet thickness evolution solver

The temperature equation of ice sheet is advection-dominated in the horizontal directions and
the melting point constraint needs to be satisfied throughout the 3D temperature field. We used
cubic finite element temperature approximations and the SUPG-FEM (Streamline Upwind Petrov-
Galerkin Finite Element Method) to stabilize the numerical scheme in our finite element ice-sheet
temperature solver. The melting point constraint is treated using the nonlinear iterative method.
The ice-sheet thickness evolution equation is a hyperbolic equation, and we implemented a upwind-
ing finite volume solver that conserves the mass of the ice-sheet locally and globally. This property
is often very important to simulation of long-time ice-sheet evolution. Combining the ice-sheet
temperature and thickness solvers with the above Stokes solver for ice-sheet dynamics, we are able
to simulate thermo-mechanically coupled ice-sheet evolution.

Figure 3 presents the results of the EISMINT-II benchmark experiments which are prognostic
by our FELIX-S model. The overall model time step is limited by the advective CFL condition in
the explicit Euler solution scheme for the ice-thickness evolution. We found a time step of 10 years
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to be adequate for stability in the experiments discussed below. Exps. A, F, and G are run for
100,000 years and Exps. B, C, and D for 60,000 years; all experiments are run to an equilibrium
state. On 256 processors, Exps. A, F, and G took about 48 hours to run and Exps. B, C, and D
took about 24 hours (2000-2500 model years per wall-clock hour). For all experiments, the results
by our computational model always show good stability and smoothness, remain radial symmetry
during the whole evolution, and have quite significant differences with the results obtained by SIA
models.

1.3. Development of a manufactured solution used for verification and validation
We developed a manufactured solution which is quite smooth and satisfies the compensated 3D
Stokes equation and the boundary conditions; it is given as follows.

The geometry is that of an idealized rectangular slab of isothermal ice with length L and average
thickness Z = lkm, resting on a sloping surface with a mean slope of @ = 0.5°. Let so(z,y) =
—x tan(a). The fixed smooth basal topography is defined as a series of 500 m amplitude sinusoidal
oscillations about the mean bed elevation:

b(ﬂ?,y) = so(x,y) + 77(%1/) —Z

with n(z,y) = % sin (2£) sin (%Ty) Due to ice-sheet flow and accumulation at the surface, the top

surface of the ice sheet slowly evolves from flat with a uniform slope to a sinusoidal shape:

S(l',y,t) - 80(1‘, y) + 77(% y)f’(t)

with £(t) = 1 — e !, where ¢; is a parameter that controls the rate of ice thickness change. See
Figure 3 for an sample illustration. The no-slip boundary condition is applied at the bottom
basal surface, and periodic boundary conditions are applied on the lateral surfaces. Then, the
manufactured solution is given by
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where ¢; and ¢y are parameters the user can choose to ensure that the velocity falls within a reason-
able range. We used our manufactured solution to verify our FELIX-S model. Simulation results
from the computational model show excellent, high-order accurate convergence of the computa-
tional model results to the manufactured exact solution. Manufactured solution technique is often
used for the verification of computational models in many fields. The manufactured solution for the
3D Stokes ice-sheet model we developed can be used by all groups developing such models to verify
their models. Furthermore, the manufactured solution provides an excellent setting for comparing
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Figure 2: Steady state results for the EISMINT-II experiments by our FELIX-S model on an unstructured tetrahedral
grid. From left to right: the velocity magnitude on the xz-plane, the temperature (K) on the zz-plane, and the basal
temperature on the zy-plane. From top to bottom: Exps. A, B, C, D, F, and G.

the fidelity of different computational models so that it provides a valuable tool for assessing the
relative usefulness of those models. Furthermore, because code verification is often a necessarily



step for the validation of mathematical models, the manufactured solution provides an avenue for
model validation as well.
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Figure 3: Illustration of the ice-sheet geometry (the top and bottom surfaces) of the manufactured Stoke solution at
the time ¢t = 0 (left) and at the time ¢ = 1000 years (right). The middle figure is the z-direction profiles taken at
y = L/4 of the ice-sheet top and bottom surfaces at 100 year time intervals from ¢ = 0 to 1000 years.

1.4. Verification of 2D first-order flowline model

For many regions, glacier inaccessibility results in sparse geometric datasets (e.g., along the central
flowline (CL) only) for use as model initial conditions. In these cases, two-dimensional flowline
models are often used to study glacier dynamics. Therefore, we systematically investigated the
applicability of a 2D, first-order Stokes approximation flowline model (FLM), modified by shape
factors, for the simulation of land-terminating glaciers by comparing it to a 3D, “full” Stokes
ice flow model (FSM) (represented by our FLEIX-S model). We explored the sensitivities of the
FLM and FSM to ice geometry, temperature, and forward model integration time. We found
that, compared to the FSM, the FLM generally produces slower horizontal velocities due to the
simplifications inherent in the FLM and to the underestimation of the shape factor (see Figure 4).
For polythermal glaciers, those with temperate ice zones, or when basal sliding is important, we
found significant differences between simulation results when using the FLM versus the FSM (see
Figure 5). Over time, initially small differences between the FLM and FSM become much larger
near the cold-temperate ice transition surfaces. Long time integrations further increase small initial
differences between the two models. We conclude that the FLM should be applied with caution
when modeling glacier changes under a warming climate or over long periods of time.

1.5. Implementation of the ice shelf dynamics modeling

Compared to the grounded parts of an ice sheet, the ice shelf experiences different boundary
conditions at its lower surface: (i) normal stress is equal to the buoyancy sea water pressure, and
(ii) the tangential friction is assumed to be zero. The variational form of the Stokes model, including
the ice shelf boundary conditions, now becomes

/ 20, Eu,, © Ev,, dX +/ Buy, - vy, ds + P,vy -nds — / PRV - vy dx = p/ g - vy dx,
Q Ty 514 Tw Q4 Q4

—/ qnV - uy, dx = 0.
Q

where I'y, denotes the part of ice shelf surface having contact with sea water and P, the water
pressure. Note that, to remove the numerical instability arising from the small hydrostatic disequi-
librium, we need to take account of the surface change in the integration time step when computing
the normal stress at the ice shelf bottom:

Onn (t> = PwYZzb (.’B, Y, t) )
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Figure 4: Steady state thermomechanically decoupled model results for the Haut Glacier d’ Arolla geometry with
parabolic cross-sections. (a) relative horizontal velocity error (r,) distribution; (b) relative temperature error (rr)
distribution; (c) surface (us) and basal velocity (us) of the FSM and the FLM along the CL; (d) difference of the

mean column ice temperature between FSM and FLM (AT = Term — TFSM) along the CL.
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Figure 5: Steady state thermomechanically coupled model results for the Haut Glacier d’ Arolla geometry with
parabolic cross-sections. (a) relative horizontal velocity error (r,) distribution (absolute values larger than 50 % are
not shown); (b) relative temperature error (rr) distribution; (c) surface (us) and basal velocity (u;) of FSM and
FLM along the CL; (d) difference of the mean column ice temperature between FSM and FLM (AT = Trim — TFSM)
along the CL. CTS represents the cold-temperate ice transition surface.



where py is the sea water density, g is the acceleration of gravity and zj, is the elevation at the ice
shelf bottom (the sea level is set to 0 m), which can be described as

2 (2, y,t) = 2p (z,y,t — dt) + u- n\/l + (92,/0x)* 4 (921,/By)*dL.

We should also note that large geometry changes may commonly appear around the grounding
line where two different boundary conditions intersect. In order to further stabilize the numerical
schemes used in the FELIX-S model, it is highly necessary to average/smooth the outer normal
values of the bottom faces near the grounding line. In addition, a consistent pattern of coordinate
rotation scheme is also strongly required for both the lower grounded and floating surfaces when
different boundary conditions are applied. To verify our model ability for simulating ice shelf
dynamics, we ran a diagnostic inter-comparison test with Elmer/Ice and found they are generally
consistent (see Figure 6).
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Figure 6: Comparison of horizontal velocity between Elmer/Ice (2D) and our model (3D).

1.6. Contact problem for grounding line migration

For the grounded element faces that lie below the sea level, there are two competing forces: sea
water pressure that is lifting the ice up and the gravity that drives ice flow down. To get the idea of
how many originally grounded faces at the bottom will now become afloat, we first need to evaluate
the magnitude of water pressure and internal stress exerted on them, which has been implemented
in two different ways in our FELIX-S model:

1. Following Elmer/Ice, we compute the “nodal force”, Fy,, exerted on the bottom faces by
the ocean by integrating the sea pressure over the element faces, as is inherent in the finite
element method. The so called “contact force”, R, exerted by the internal stress, is obtained
by computing the residual of Stokes system by removing the Dirichlet boundary condition at
the grounded bottom faces. The magnitude of nodal and contact forces, both face averaged
variables, are then compared: (i) if |Fy| >= |R|, set the element face mask to be floating;
(ii) if |Fw| < |R|, set the element face mask to be grounded. This method is quite handy.
However, we here also offer another way:

2. We compute the normal stress (onn) and water pressure (Py,) at the lower grounded faces and
compare them directly. The normal stress is computed directly from the velocity field based
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Figure 7: Comparisons of mean (along the y direction) velocities for upper ( ., v, and w,) and lower surfaces ( i,
vy, and w;) along the x direction for FELIX-S (black solid line), Elmer/Ice FF (red dotted line), DI (black dotted
line) and LG (blue dotted line) cases for the diagnostic experiment P75D. Where black dotted line is not clearly
visible, Elmer/Ice and FELIX-S solutions are overlying.

on Glen’s flow law. We here define a element face as floating only when Py >= |oyy,| for all
three nodes of it.

1.7. A comparison with Elmer/Ice for MISMIP3D

The Marine Ice Sheet Model Intercomparison for plan view models (MISMIP3d) contains bench-
mark experiments for Stokes and lower-order ice flow models. Based on our work during last year
we conduct a detailed comparison with Elmer/Ice, another “full” Stokes model, on MISMIP3d for
both diagnostic (P75D) and prognostic (Stnd, P75S and P75R) simulations.

We first compared the two models for the diagnostic experiment, P75D (Figure 7). Both models
use the same parameters and, despite the different element types discussed above, have identical
nodal coordinates over the entire model domain. From Figure 7, it is clear that the three velocity
components (u, v and w) for Elmer /Ice and FELIX-S are in very good agreement for both the upper
and lower surfaces, an indication of inherent consistencies between the two models (recall that the
most direct comparison between Elmer/Ice and FELIX-S is using the DI results from Elmer/Ice).
In general, for the horizontal velocity, u, the differences are relatively small near the ice divide and
increase continuously from the grounding line (GL) to the ice shelf portion of the domain (Figure
8). For the v and w velocity components, we observe relatively larger discrepancies in the region
of the GL (around km 535 — 555), but still very small differences (< 5%) over the majority of the
domain (Figure 8). Overall, we found that for the P75D experiment FELIX-S results in slightly
larger horizontal velocities (u) at the GL than does Elmer/Ice. As a result, FELIX-S exhibits a
slightly (1%) larger ice flux through the GL than does Elmer/Ice.

For the Stnd Prognostic experiment, FELIX-S uses the same initial ice sheet geometry and the
same along-flow resolution (50 m) and mesh coordinates as Elmer/Ice. Both models demonstrate a
continuous advance of the GL, with FELIX-S reaching a steady state GL position of 519.85 km and
Elmer/Ice reaching steady state positions of GL position 529.55, 526.80 and 522.35 km (for LG, DI
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Figure 8: Comparisons of mean (along the y direction) velocity differences for upper (Auy, Av, and Aw,) and
lower (Awu;, Av; and Aw;) surfaces along the z direction for FELIX-S and Elmer/Ice for the diagnostic experiment
P75D. The dotted, solid and dashed lines denote the differences by substrating Elmer/Ice LG, DI and FF values from
FELIX-S values, respectively.

and FF, respectively). Apparently, FELIX-S produces a slightly smaller equlibrium-sized ice sheet
with a GL position that is slightly more retreated than that of Elmer/Ice. This is consistent with
the results from the diagnostic experiment, which show that overall, FELIX-S results in slightly
higher along-flow velocities upstream from, at, and downstream from the GL (with the result of
a slightly higher ice flux across the GL, slightly thinner ice there, and hence floatation occurring
slightly farther inland). We have also experimented with finding the steady-state geometry and
GL position for FELIX-S by letting the ice sheet retreat from an initially over-sized configuration,
with a GL far advanced from its equilibrium position (rather than starting from an under-sized
configuration and advancing to its equilibrium position). In this case, we found a GL position
of 524.50 km, a circa 5 km difference with the advancing case, which is consistent with the 2D
MISMIP-3a experiments conducted by Elmer/Ice. As they found, we expect that the steady-
state GL locations from an advanced or retreated initial condition converge as the grid resolution
increases.

In the P75S and P75R prognostic experiments, we investigated advance and retreat of the GL
following a step-change perturbation in the basal friction distribution, for 100 years, and a return
to the initial basal friction distribution, for a further 100 years (the “S” and “R” experiments,
respectively). We start from the steady-state GL position of the Stnd prognostic experiment. Note
that, because of the different GL positions and refined meshes in the vicinity of GL. Similar to
the Stnd prognostic experiment, FELIX-S predicts relatively less GL advance (P75S) and more GL
retreat (P75R) than Elmer/Ice, as shown in Figures 9-11. Similar to Elmer/Ice, FELIX-S shows
a clear sensitivity to across-flow resolution (Ay); as the number of elements in the y direction
increases from 20 to 80, the “reversibility” — i.e. the return to the initial position — of the GL
improves (Figures 9-11). Importantly, we also found that as the number of elements in the y
direction increases from 20 to 80, the agreement between FELIX-S and Elmer/Ice increases for all
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Figure 9: GL evolutions on both the symmetry axis (top curves) and free-slip boundary (bottom curves) for the P75S
(solid curves) and P75R (dashed curves) comparisons among FELIX-S (a; black curves), Elmer/Ice DI (b; magenta
curves), LG (c; red curves) and FF (d; blue curves). The element number along y is 20.

GL implementations used by Elmer/Ice (i.e., LG, DI, and FF). Based on the related observation
in Elmer/Ice that the steady-state GL positions for LG, DI, and FF converge as grid resolution
increases, we conclude that FELIX-S and Elmer/Ice show convergence of steady-state groundling
line positions for the P75S and P75R experiments with increasing grid resolution.

1.8. Well posedness of a coupled ice-hydrology problem arising in glaciology

As a start towards the development of a coupled ice-hydrology problem, we have studied mathe-
matical properties of a coupled dycore/hydrology model. The description of the movement of ice
sheets such as Antarctica and Greenland features mathematical challenges such as the nonlinear
dependence of the ice viscosity on the ice velocity and the complex interaction between the ice
and the underlying bedrock. The latter is particularly difficult to model, given the difficulty of
measuring quantities of interest at such deep locations. Perhaps the most widely accepted choice
for modeling such interactions is a regularized Coulomb friction law introduced by Schoof that
involves an additional unknown, namely the effective pressure at the ice-bedrock interface. This
quantity can be modeled as the solution of an additional partial differential equation holding along
the ice-bedrock interface that models the subglacial hydrology. In particular, for the ice we con-
sider the Blatter-Pattyn (or first-order) model whereas for the subglacial hydrology model we use
a quasi-static model first introduced by Hewitt. We proved the existence and uniqueness of the
solution to the coupled ice-hydrology problem.

1.9. Efforts to merge FELIX-S into the existing ice flow model framework

Based on the achievements we have as described in the section above, we have tried to add the
existed FELIX-S code into the CISM framework. On June, 2015, our group member Tong Zhang
visited Sandia National Laboratories at Albuquerque, NM, for a tutorial of our Stokes ice sheet
model code, FELIX-S, with other folks (Stephen Price and Matthew Hoffman) from Los Alamos
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Figure 10: GL evolutions on both the symmetry axis (top curves) and free-slip boundary (bottom curves) for the
P75S (solid curves) and P75R (dashed curves) comparisons among FELIX-S (a; black curves), Elmer/Ice DI (b;
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Figure 11: GL evolutions on both the symmetry axis (top curves) and free-slip boundary (bottom curves) for the

P75S (solid curves) and P75R (dashed curves) comparisons among FELIX-S (a; black curves), Elmer/Ice DI (b;
magenta curves), LG (c; red curves) and FF (d; blue curves). The element number along y is 80.

11



National Laboratory. During the two-day’s stay, a through review of the usage of FELIX-S was
taken, including the mesh generating method, model parameter setting, numerical experiment im-
plementation, model runs and result visualization. The code is now saved as a repository on the
node of NERSC server. Thus, one can use FELIX-S as a stand-alone code for ice sheet simula-

tion.

An interface between FELIX-S and other ice flow codes, for example, Albany/FELIX, is still

underway.
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