
Quantum Accelerators for High-Performance Computing Systems

Keith A. Britt, Fahd A. Mohiyaddin, and Travis S. Humble†
Quantum Computing Institute

Oak Ridge National Laboratory
Oak Ridge, Tennessee USA

Email: †humblets@ornl.gov

Abstract—We define some of the programming and
system-level challenges facing the application of quantum
processing to high-performance computing. Alongside bar-
riers to physical integration, prominent differences in the
execution of quantum and conventional programs chal-
lenges the intersection of these computational models. Fol-
lowing a brief overview of the state of the art, we discuss
recent advances in programming and execution models
for hybrid quantum-classical computing. We discuss a
novel quantum-accelerator framework that uses special-
ized kernels to offload select workloads while integrating
with existing computing infrastructure. We elaborate on
the role of the host operating system to manage these
unique accelerator resources, the prospects for deploy-
ing quantum modules, and the requirements placed on
the language hierarchy connecting these different system
components. We draw on recent advances in the modeling
and simulation of quantum computing systems with the
development of architectures for hybrid high-performance
computing systems and the realization of software stacks
for controlling quantum devices. Finally, we present sim-
ulation results that describe the expected system-level be-
havior of high-performance computing systems composed
from compute nodes with quantum processing units. We
describe performance for these hybrid systems in terms
of time-to-solution, accuracy, and energy consumption,
and we use simple application examples to estimate the
performance advantage of quantum acceleration.

This manuscript has been authored by UT-Battelle, LLC, under Con-
tract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for the United States Government purposes.
The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

1. Introduction

Many advantages of quantum computing are now
well understood at the algorithmic level, but whether
quantum computing can support practical applications
remains an open question [1]. For example, despite
enormous potential to support scientific discovery [2],
there are many technical challenges to the integration of
quantum algorithms into practical HPC system design
[3]. Foremost is the realization of quantum processing
units (QPUs) that are sufficiently large in capacity and
robust in operation to provide reliable solutions for
problem of practical significance. In this regard, current
QPUs are little more than toys that enable exploratory
research and designs, though there is rapid progress
toward QPUs capable of so-called quantum supremacy
with some estimates for this crossover placed as early
as 2018 [4].

Given the apparent slowdown in Moore’s law and
the implication that future performance gains must
come from alternative technologies [5], the potential for
QPUs to impact existing applications has never been
more significant. As a specific and practical use case,
we explore the relevance of QPUs to accelerate high-
performance computing (HPC) and especially in the
role as computational accelerators [6], [7]. We define
some of the programming and system-level challenges
facing the integration of QPUs to HPC, and we discuss
a novel quantum-accelerator framework that uses spe-
cialized kernels to offload select workloads while also
maintain existing computing infrastructure.

2. State of the Art

State-of-the-art scientific computing, especially for
large-scale applications, lies in the massively parallel
heterogeneous architectures expressed by modern HPC



systems. The TOP500, for example, highlights ma-
chines that quickly solve a suite of benchmark problems
[8]. The dominate strategy to winning this competition
relies on parallelism at the node, thread, and instruction
level parallelism with various hardware and software
strategies for realizing each approach. Current systems
are routinely benchmarked over 1018 floating-point op-
erations per second, or 1 petaflop. Future designs for
exaflop systems are now being made with expected
delivery dates of 2021, if not sooner.

As part of the effort to maximize the parallelism
of HPC systems for scientific computing, attention has
been placed on node designs that incorporate special-
ized co-processors acting as accelerators [9]. The pur-
pose of the accelerator is to solve select computational
tasks more efficiently using a combination of device
design and programming optimization. Currently, one
of the most prominent examples of an accelerator is
the GPU [10], which is an integral part of the US
Titan supercomputer at Oak Ridge National Laboratory.
GPUs offer efficient implementations of SIMD pro-
grams (at a per thread level) that map particularly well
onto common scientific calculations, e.g., matrix-vector
operations. However, effective usage of the accelerator
paradigm requires the judicious selection of which tasks
should be off-loaded and to which accelerator device.

We consider how the HPC accelerator architecture
can be adopted to include quantum processing units
(QPUs). Our motivation is twofold. First, trends in the
design of HPC architectures suggest that the accelerator
paradigm is likely to persist into the exascale period.
Future HPC designs are anticipated to focus on extreme-
scale heterogeneity, in which multiple accelerators may
be allocated within a node. The impact of QPUs on sci-
entific computing is therefore greater if they can be rec-
onciled with these prevailing machine designs. Second,
existing application stacks for scientific computing are
complex hierarchies of concerns and abstractions. The
holistic rewriting of such software is not only ineffective
but also unlikely. In order to maximize the benefit of
QPUs to the scientific user, it is therefore advantageous
to integrate these processors into existing applications
through abstractions of specialized functionality. Sim-
ilar to how GPUs accelerate low-level linear algebra
methods, we expect QPUs may offer boost to applied
mathematical tasks. Of course, QPUs currently repre-
sent a very risky and technically challenging technology
and it is likely to require several years to develop a
mature HPC infrastructure that support these ideas.

Given the remarkable prowess of current HPC sys-
tems, it may be difficult to appreciate the relevance of

Figure 1. A typical node within the QPU-accelerated HPC system

QPUs to scientific computing as accelerators [11]. For
more than 25 years, the global scientific community
has pushed the development of quantum technology
toward more relevant scales. The fundamental principles
of quantum computing, namely, superposition, entangle-
ment, and randomness, have long been demonstrated in
proof-of-principle experiments. But the translation of
these physical concepts into a meaningful technology
has been a tremendous challenge due to the extreme
sensitivity of these physical systems to underlying noise
[12]. State-of-the-art chips from IBM and Google have
16 to 22 qubits and near-term plans of 50-qubits may
seem like meager improvements. But the computational
power of a QPU does not scale linearly with its capacity,
i.e., number of qubits. Rather the growth is exponential
due to the principle of quantum superposition. A jump
of more than 20 qubits in capacity therefore equates
with a 220 jump in computational power. Therefore
applications with 50-qubit QPUs may be able to outper-
form their conventional counterparts. Tests of quantum
supremacy at these scales are limited to seemingly
contrived problems, for example, generating chaotic
sequences of truly random numbers. Future tests must
be applied to more practical problem sets in scientific
computing including computational chemistry, materials
design, and machine learning.

Despite the success made in developing QPUs, there
are multiple barriers to the integration expected be-
tween these devices and conventional HPC systems.
Technological barriers arise from several factors. First
is the consequence that most quantum computing tech-
nologies are not based on CMOS technology. There
are several approaches toward silicon-based quantum



computing, but even those are not directly compatible
with existing processors. Second, nearly every quantum
technology requires some level of thermodynamic con-
trol to manage errors. For quantum computation, this
control manifests as isolation by ultra-high vacuum and
cryogenic refrigeration systems. These sensitive control
systems are largely incompatible with the noise and
vibrations found in a modern server room.

A less obvious, but equally significant, barrier to
integration is the logical interactions between the con-
ventional and quantum processing systems. Conven-
tional processors are managed and accessed by dedi-
cated operating systems, which have often been highly
specialized to standardized execution and programming
models. By contrast, QPUs are currently managed by
event-driven programs that interface with one-of-kind
control systems consisting of field generators. Design-
ing software that accounts for the tremendous differ-
ences between these hardware systems is an ongoing
challenge that changes continuously with improvements
in device physics and use cases.

3. Quantum Accelerator Design

We describe a system-level model for the integra-
tion of QPU’s as accelerators into HPC systems [3].
Our approach is based on the use of these quantum
accelerators for supporting large-scale scientific compu-
tations. We elaborate on the role of the host operating
system to manage these unique accelerator resources,
the prospects for deploying quantum modules, and the
requirements placed on the language hierarchy connect-
ing these different system components.

We first describe the structure of the QPU in terms
of three different subcomponents. As shown in Fig. 1,
the QPU consists of a quantum control unit (QCU),
quantum execution units (QEUs), and a quantum regis-
ter. The QCU represents the interface between the QPU
and the external system. The role of the QCU is to
parse incoming instructions and issue operands to the
various QEUs. Each QEU represents an implementa-
tion of a subset of available gate operations. Multiple
QEUs may be needed to express all possible gate op-
erations and these may have the benefit of operating
in parallel. Figure 2 emphasizes that each QEU acts
on the quantum register by emitting an applied field.
The field itself will depend strongly on the underlying
technology, the intended gate operation, and any error
mitigation methods. Notably, the QEU represents the
conversion of the digital operand into an analog field,
and the interaction between the field and the register

Figure 2. A component diagram defining the interfaces within a QPU-
accelerated compute node.

is modeled using quantum mechanical formalism. The
simplest such model would describe the interaction
using a Hamiltonian form.

As a physical subcomponent, the quantum register
represents where quantum information is stored within
the QPU. The register itself is composed of quantum
register elements - in isolation, each register element
stores a single qubit of information. Of course, n regis-
ter elements may store n separable qubits of information
as well as an infinite number of non-separable states.
For simplicity, we refer to an n-qubit register as having
a capacity of n qubits. The interactions between the
register and the QEUs work in both direction. Actions
on the register may also generate a field following
the application of a gate field by a QEU. The most
obvious example is during measurement readout, which
will cause the register to output a field indicating the
collapse of some register elements to a state in the
measurement basis. The resulting field must be col-
lected by the appropriate QEU and then converted to
a digital signal. Following analog-to-digital conversion,
the information is relayed to the QCU, which may either
forward the results back to the host system, or collect
the information for further processing, e.g., syndrome
decoding as part of fault-tolerant protocols.

4. Language Hierarchy

The structure described above imposes a natural
language hierarchy on the operation of the QPU. This



Figure 3. The language hierarchy used to program and control a QPU.

hierarchy is summarized in Fig. 3. We have described
the QPU component in terms of its subcomponents and
its interfaces. This component is understood to be part
of a larger system structure, the host HPC system. The
interactions between the host and accelerator devices
are driven by user-defined programming statements. We
discuss some of the languages required to manage the
interactions between a conventional host program and
a QPU device.

As shown in Fig. 3, the highest level language is
a typical programming language. However, in order
for a user to access the unique capabilities offered
by a QPU, the programming language must expose
some artifacts, such as keywords, data types, or li-
brary functions, that permit quantum logical operations.
Depending on the experience of the user, they may
either use existing programming languages augmented
with specialized libraries (with appropriate bindings) or
dedicated quantum programming languages, of which
several now exists [13]–[17]. However, the purpose of
the prepared source code is to undergo transformation
into an executable that can access and control of the
accelerator device, along with other system devices
and resources. Currently, there are no such executable
programs for QPUs. Rather every existing QPU pro-
totype is managed through an interpreted environment.
While these environments, such as Python and Lisp,
are capable of running scripts, they do not address the
more complicated question that arise within a dedicated
management system. We must expect that more mature
realization of QPUs will require a specialized language
for expressing quantum executables that can communi-
cated with the host OS.

Whether the executable is interpreted or not, the role
of the host is to issue instructions to the device [18],
[19]. The instruction set architecture (ISA) is an impor-

tant element in the design of the QPU as it impacts both
the compiled representation of the program as well as
the efficiency of the underlying device operations [20].
The ISA is an abstraction of the device capabilities
that must include appropriate constraints on possible
operations. For example, most QPUs have significant
limits on connectivity, i.e., constraints on which qubits
can undergo simultaneous operations. Connectivity con-
straints can often require additional movement or tele-
portation operations to co-locate data in appropriate
register location. We expect that the host compiler
will ultimately have responsible for satisfying these
constraints during executable construction, but the ISA
must provide sufficient information for this purpose.
Similar, different quantum technologies support unique
operations and ‘cross-compiling’ for different QPU will
require specific knowledge about the support ISA.

The stream of instructions and data sent to the
QPU must next be parsed into the opcodes that will
trigger specific quantum execution units (QEUs). Again,
technology-specific limitations as well as performance
tunings are likely to influence the design of these op-
codes. For example, a long-term goal of quantum com-
puting is to sustain fault-tolerant computations for arbi-
trarily long programs. This requires the use of quantum
error correction and fault-tolerant (FTQEC) operations,
which may manifest in device specific implementations.
The FTQEC opcodes of a specific QPU may be tuned
to ensure negligible errors rates.

Finally, the specification for how QEUs implement
the opcodes by issuing fields to the available register
represents a level of language that is unlikely to be
seen by the user. However, it is necessary to provide
specifications of this layer in order to realize the pre-
ceding layers as well as to provide methods for device
designers to evaluate instruction side effects and counter
on-chip noise.

We provide a simple example of the execution
model needed to realize this language hierarchy in
Fig. 4. This model emphasizes the interaction between
the host and device as well as the potential for the QPU
to loop through repeated instructions before responding.
We have assumed that these interactions are mediated
via the system memory and appropriate memory con-
trollers, but other possibilities include the current client-
server paradigm that is used by every QPU prototype
presently.

5. System Model and Simulation
As an example of how a QPU may be used within

an accelerator architecture, we have made a preliminary



Figure 4. The execution model for a QPU-accelerated host node
passing instruction from a CPU to memory to a QPU.

system model using the Structural Simulation Toolkit
(SST) [21]. The SST framework supports modeling of
the components and interfaces for conventional comput-
ing and enables user-defined components, such as those
for the QPU element introduced here. In addition, from
these component models, SST supports discrete-event
simulations to characterize and quantify the interactions
between components by collecting statistics.

We have used SST to develop a series of component
models for the QCU and QEU that implement the QPU
design. We do not implement the register components or
the field language as our studies do not currently inves-
tigate verification of quantum register state, a key aspect
of debugging quantum software. Rather we examine
the system-level interactions that parses and transmit
messages between components in order to ensure logi-
cal correction and resource management. Future studies
are prepared to integrate these system models with
quantum circuit simulation methods as part of software
debugging tools.

As an example of how we use system-level mod-
eling and simulation, we have simulated the execution
of a test program based on quantum search. Quantum
search is a well-known example of how quantum com-
puting may accelerate the task of finding a marked
element within an unstructured database. As originally
proposed by Grover, quantum search requires

√
N op-

erations to recover the element from a data base of
N elements, whereas brute force search requires N/2
elements on average [22]. This quadratic speedup in the
search speed is an interesting use case in scientific com-
puting, for example, in identifying correlations between
disparate datasets.

Our implementation decomposes the quantum
search algorithm into a sequence of one and two-qubit
gate operations. This ISA is widely used by the quantum
algorithms community but it is not strictly necessary.

TABLE 1. GATE MODELS FOR QPU OPCODES.

Gate Duration Power Energy

INIT 300 µs 0.1 pW 5 aJ

Unitary 40 ns 0.1 pW 4 zJ

READ 100 µs 0.1 pW 5 aJ

In addition, we have addressed aspect of scheduling
resources by assuming a serial sequence of gate opera-
tions. This ensures that no register element or QEU can
be simultaneously addressed by the QCU. However, this
is an overly conservative schedule as many operations
in our instruction list can be executed concurrently. In
addition, a serial schedule greatly increases the duration
of the quantum program. Because the computational
state of the register decays due to decoherence and
dephasing, this choice of schedule also greatly limits the
depth of a realistic program. We address this concern
by also including error correction into our simulation
of the algorithmic methods. Quantum error correction
and fault-tolerant operations enable the effects of noise
to be overcome, but at the cost of increased qubit and
gate resource requirements. We have used two levels of
Steane [[7,1,3]] error correction alongside Shor ancilla
and syndrome measurements.

A key part of the quantum search algorithm is
the implementation of the database to be searched.
The typical discussion invokes an oracular subroutine
that applies some hidden method for verifying when
a marked state has been located. We do not use an
oracle in our implementation, but rather we implement
the database as a multi-control NOT gate, which has the
effect of marking the computational register with the
sought-after state. Of course, the implementation of the
database query requires us to have a priori information
about what is the marked element, but we use this
implementation for test purposes only. In total, the
number of bare logical gates in the program scales as
O(2n/2), with n = log2 N . A single layer of quantum
error correction incurs an additional overhead of O(n7)
gates.

Our SST model accepts as text-based input the
string of program instruction to the host CPU. The
QCU component is initialized with a microcode archi-
tecture that defines opcodes for each of the available
instructions on the device. We assume the program
input has already been decomposed into this ISA, so
that the sequence of instructions set to the QCU from
the CPU do not require further decomposition. The



QCU parses these instructions and register addresses
into the corresponding opcode and then dispatches it to
the correct QEU. Note that our model for the QCU is
relatively simple and it does not include the logical for
routing and signaling opcodes to a QEU - this will be
investigated later.

The model for each QEU is to consume the received
instruction by activating a sequence of field generators
that applies the needed interactions onto the register.
We do not simulate the explicit action of generating the
fields, but rather we tally the amount of time required
for each received gate in the program. In addition, we
also tally energy consumption for each gate. The latter
metrics depend on the specific technology and device
design underlying the QPU. For the present study, we
consider a silicon-based QPU derived from a recent
design [23]. We summarize the results of this model
in Table 1 but details of these calculations are available
upon request. For this technology, the dominate energy
consumption comes from the initialization and readout
instructions, which arise during the program for the
implementation of quantum error correction as well as
for register preparation and measurements.

For the quantum search program, we have tallied the
total energy needed to perform a search over N items.
The results of these simulations are shown in Fig. 5.
We have compared these calculations to similar models
for brute force search using a conventional processor
(Intel i7). The conventional models account for only
the n-bit comparator required to identify the marked
item within the database and the main memory transfers
required to fetch N/2 elements. It is apparent that all
of the models scale exponentially with the size of the
data base, as expected based on their algorithmic com-
plexities. However, our models for the quantum search
program suggest energy requirements that are order of
magnitudes lower than conventional processing. This is
true even in the presence of multiple layers of quantum
error correction.

We must emphasize that our models for QPU and
CPU program execution have excluded many signifi-
cant sources of energy consumption. Our purpose for
these simulations has been to emphasize the minimal
energy consumption of lowest-level instructions and
opcodes issued within the device model. For quantum
computing, it is understood that manipulating individual
electrons, as is the case for silicon-based technologies,
requires very little energy. These physical limitations
are not met in practice, however, because current tech-
nology for the field generators used to actuate these
gates are typically based on macroscopic fields. We are

Figure 5. The estimated minimal energy consumption for searching
an unstructured database with respect to the size of the database.
Lines represent conventional methods with and without memory
costs as well as quantum search methods using a flip-flop silicon-
based processor. These estimates only account for minimal amount
of energy to perform the search operation.

refining our model to include these additional sources
of energy as well. However, our model for the CPU has
also emphasized the minimum energy per instructions
required. We have not accounted for cooling and other
inefficiencies in either model.

6. Conclusions

We have presented an overview of the structure and
operation of quantum accelerators for high-performance
computing. Our analysis has focused on only a single
QPU-accelerated node, which may be a reasonable
assumption in the near term. We have demonstrated
how modeling and simulation at the system level pro-
vides insights into both the structure and behavior of
these accelerated nodes. However, additional questions
arise regarding how quantum acceleration overlaps with
traditional parallelism and we expect to explore this
question with future models.

Acknowledgments

This manuscript has been authored by UT-Battelle,
LLC, under Contract No. DE-AC0500OR22725 with
the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the
article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or repro-
duce the published form of this manuscript, or allow



others to do so, for the United States Government
purposes. The Department of Energy will provide pub-
lic access to these results of federally sponsored re-
search in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

References

[1] M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Bab-
bush, A. Fowler, V. Smelyanskiy, and J. Martinis, “Commer-
cialize quantum technologies in five years.” Nature, vol. 543,
no. 7644, p. 171, 2017.

[2] A. Aspuru-Guzik et al., ASCR Workshop on Quantum Comput-
ing for Science, Jun 2015.

[3] K. A. Britt and T. S. Humble, “High-performance computing
with quantum processing units,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 13, no. 3,
p. 39, 2017.

[4] A. P. Lund, M. J. Bremmer, and T. C. Ralph, “Quantum sam-
pling problems, bosonsampling and quantum supremacy,” npj
Quantum Information, vol. 3, p. 15, 2017.

[5] T. M. Conte, E. Track, and E. DeBenedictis, “Rebooting
computing: New strategies for technology scaling,” Computer,
vol. 48, no. 12, pp. 10–13, 2015.

[6] T. S. Humble and K. A. Britt, “Software systems for high-
performance quantum computing,” in High Performance Ex-
treme Computing Conference (HPEC), 2016 IEEE. IEEE,
2016, pp. 1–8.

[7] K. M. Svore and M. Troyer, “The quantum future of computa-
tion,” Computer, vol. 49, no. 9, pp. 21–30, Sept 2016.

[8] Top500.org, TOP 500 The List. [Online]. Available:
http://www.top500.org

[9] J. Kurzak, D. A. Bader, and J. Dongarra, Scientific computing
with multicore and accelerators. CRC Press, 2010.

[10] S. Mittal and J. S. Vetter, “A survey of CPU-GPU het-
erogeneous computing techniques,” ACM Computing Surveys
(CSUR), vol. 47, no. 4, p. 69, 2015.

[11] R. P. Feynman, “Simulating physics with computers,” Interna-
tional journal of theoretical physics, vol. 21, no. 6, pp. 467–488,
1982.

[12] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon,
J. Kim, T. D. Ladd, and Y. Yamamoto, “Layered architecture
for quantum computing,” Physical Review X, vol. 2, no. 3, p.
031007, 2012.

[13] P. Selinger, “Towards a quantum programming language,” Math-
ematical Structures in Computer Science, vol. 14, pp. 527–586,
8 2004.

[14] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec,
O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt,
J. Black, F. Chong, M. Martonosi, M. S. andKen
Brown, M. Pedram, and T. Brun, “Scaffold: Quantum
programming language,” Tech. Rep., 2012. [Online]. Available:
ftp://ftp.cs.princeton.edu/techreports/2012/934.pdf

[15] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Val-
iron, “Quipper: A scalable quantum programming language,”
in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI
’13. New York, NY, USA: ACM, 2013, pp. 333–342. [Online].
Available: http://doi.acm.org/10.1145/2491956.2462177

[16] D. Wecker and K. M. Svore, LIQUID: A Software Design
Architecture and Domain-Specific Language for Quantum Com-
puting, 2014, http://arxiv.org/pdf/1402.4467v1.pdf.

[17] D. S. Steiger, T. Häner, and M. Troyer, “Projectq: An open
source software framework for quantum computing,” arXiv
preprint arXiv:1612.08091, 2016.

[18] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” arXiv preprint arXiv:1608.03355,
2016.

[19] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gam-
betta, “Open quantum assembly language,” arXiv preprint
arXiv:1707.03429, 2017.

[20] K. A. Britt and T. S. Humble, “Instruction set architectures for
quantum processing units,” arXiv preprint arXiv:1707.06202,
2017.

[21] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook, P. Rosenfeld,
E. CooperBalls et al., “The structural simulation toolkit,” ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 4,
pp. 37–42, 2011.

[22] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing. ACM, 1996, pp.
212–219.

[23] G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman,
G. Klimeck, and A. Morello, “Silicon quantum processor with
robust long-distance qubit couplings,” Nature Communications,
vol. 8, p. 450, 2017.


