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ABSTRACT 
 
The Nuclear Regulatory Commission (NRC) is proposing a new rulemaking on emergency core 
system/loss-of-coolant accident (LOCA) performance analysis. In the proposed rulemaking, designated as 
10 CFR 50.46c, the US NRC puts forward an equivalent cladding oxidation criterion as a function of 
cladding pre-transient hydrogen content. The proposed rulemaking imposes more restrictive and burnup-
dependent cladding embrittlement criteria; consequently more fuel rods need to be analyzed under LOCA 
conditions to maintain the safety margin, in contrast to the current practice with which only one hot rod 
needs to be analyzed.  New multi-physics analysis methods are required to provide a thorough 
characterization of the reactor core in order to identify the locations of the limiting rods and quantify 
safety margins under LOCA conditions. The U.S. DOE’s Light Water Reactor Sustainability (LWRS) 
Program has initiated a project to develop multi-physics analytical capabilities, called LOTUS, to support 
the industry in the transition to the proposed rule.  An approach to uncertainty quantification and 
sensitivity analysis with LOTUS was developed.  A typical four-loop PWR plant model was developed 
and simulated by RELAP5-3D with inputs generated from core design and fuel performance analyses, 
and uncertainty quantification and sensitivity analysis were performed with seventeen uncertain input 
parameters. The maximum equivalent cladding reacted ratio (ECRR) and peak clad temperature ratio 
(PCTR) were selected as the figures of merit (FOM).  Pearson, Spearman, partial correlation coefficients, 
and Sobol indices were considered for all of the figures of merit in the sensitivity analysis. 
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1. INTRODUCTION 
 
The current emergency core cooling system (ECCS) acceptance criteria for loss-of-coolant accidents 
(LOCAs) in light-water reactors (LWRs) are described in 10 CFR 50.46. Two of the five criteria specify 
that the calculated peak cladding temperature (PCT) and maximum cladding oxidation shall not exceed 
2200°F (1478K) and 17% equivalent cladding reacted (ECR), respectively [1]. Ever since the 
establishment of these cladding embrittlement criteria, more extensive research and experiments have 
been conducted which resulted in an increased understanding of fuel and clad behavior under both normal 
operating conditions and LOCA transient conditions. The new studies indicated that current regulatory 
acceptance criteria may be non-conservative for high burnup fuel. The Nuclear Regulatory Commission 
(NRC) is considering a rulemaking change that would revise the requirements in 10 CFR 50.46. In the 
proposed new rulemaking, designated as 10 CFR 50.46c, the NRC proposed a fuel performance-based 
ECR criterion as a function of cladding hydrogen content before the accident (pre-transient), to include 
the effects of burnup on cladding performance [2]. The pre-transient cladding hydrogen content, in turn, is 
a function of the fuel burnup and cladding materials. A characteristic of the proposed new rulemaking, as 
illustrated in Figure 1, imposes more restrictive and fuel rod-dependent cladding embrittlement criteria; 



consequently fuel cladding performance and ECCS performance need to be considered in a stronger 
coupled way in LOCA analyses. Therefore, a thorough characterization of the reactor core is required in 
large break LOCA (LBLOCA) analyses.  
 

 
Figure 1.  Analytical Generic Limit Proposed by the NRC for Existing Fuel, ECR & PCT versus 

Hydrogen [2]. 
 

The DOE Light Water Reactor Sustainability (LWRS) Program has initiated a project to develop 
analytical capabilities to support the industry in the transition to the proposed rule. The general idea 
behind the initiative consists in the development of an integrated multiphysics evaluation model. The 
motivation is to develop a systematic methodology to better characterize how uncertainties are propagated 
and how sensitivity analyses are performed across multiple physical disciplines (i.e. core design, fuel 
performance and system analysis) and the data stream involved in LOCA safety analyses as regulated 
under 10 CFR 50.46c.  This integrated evaluation model is called LOTUS which stands for LOCA Toolkit 
for the U.S. Light Water Reactors. 
 
The LOTUS framework is notionally illustrated in Figure 2.  The primary characteristic of LOTUS is an 
integrated multiphysics simulation based tool to manage data flow stream, uncertainty propagation, 
sensitivity analysis and risk assessment. The focus of LOTUS is to establish the automation interfaces 
among the five disciplines, as depicted in Figure 2, such that uncertainties can be easily propagated and 
sensitivity analysis can be easily performed with a large number of simulations.  

 

 
Figure 2. Schematic illustration of LOTUS. 
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Uncertainty quantification refers to the determination of uncertainty in model outputs based on the 
uncertainty in model inputs. Sensitivity analysis seeks to determine the contribution of the uncertainty in 
a single model input to the uncertainty in model results. Sensitivity analysis provides a clearer picture of 
how system inputs correlate to system outputs. Parameters with negligible or no contribution to the 
system response can be removed in future studies while those parameters with significant contribution 
present a guide to where areas of future research should be focused on reducing the input uncertainty. In 
this work, a PWR plant model was developed with the input from core design and fuels performance and 
large-break LOCA (LBLOCA) accidents were simulated by RELAP5-3D [3]. Uncertainty quantification 
and sensitivity analysis were performed with seventeen uncertain input parameters. The maximum peak 
clad temperature ratio (PCTR) and maximum equivalent cladding reacted ratio (ECRR) are selected as the 
figures of merit (FOM). A Monte Carlo sampling approach is used to evaluate those parameters that most 
profoundly affect the FOM. In the Monte Carlo based method, a large number of model simulations are 
performed to produce a significant number of samples that can be used for both uncertainty quantification 
and sensitivity analysis. Therefore, probability distribution functions (PDF) and cumulative distribution 
functions (CDF) can be computed for each of the FOMs. The PDF can indicate how the correlation 
between model inputs and model outputs behave while the CDF can be used to quantify the uncertainty in 
the FOMs. Pearson, Spearman, partial correlation coefficients, and Sobol indices are considered for all of 
the figures of merit in sensitivity analysis to rank the importance of the uncertain parameters. 
 
2. MODEL DESCRIPTION FOR A TYPICAL PWR 
 
As an illustration of the LOTUS framework, we performed large break LOCA (LBLOCA) analyses using 
LOTUS aiming at supporting compliance with the 10 CFR 50.46c rule.  The selected plant for study is a 
typical four-loop PWR with 3411 MW rated thermal power.  The reactor core has 193 fuel assemblies 
with 17x17 fuel rod design with Zirlo cladding material in each assembly.  There are three batches of fuel 
loading – the fresh fuel, once-burnt fuel and twice-burnt fuel. Core design for this typical four-loop PWR 
was carried out and the equilibrium cycle was achieved using INL’s PHISICS core analysis package [4]. 
The details of the core physics analysis tools and core design parameters can be found in Ref. [4]. The 
equilibrium cycle was the subject of plant system safety studies and the results from the core design were 
fed into plant system safety analysis.  INL’s system safety analysis code RELAP5-3D [3] was chosen to 
perform system safety analysis.  The accident scenario selected is a LBLOCA with a double-ended 
guillotine break in a cold leg. A plant simulation model, as schematically shown in Figure 3 for this 
typical PWR was built.  In the plant model, each of the four loops is represented.  The ECCS is simulated 
for each loop.  The reactor core model has much more details than the traditional model used to 
demonstrate compliance to the existing 10 CFR 50.46 rule. 
 
The reactor core modeling in RELAP5-3D used different homogenization approaches for thermal fluid 
dynamics calculations than for the heat conduction and clad oxidation calculations in the fuel rods. A 
multiple channel approach was used for the thermal fluid dynamics calculation, as illustrated in Figure 4. 
Specifically, the assemblies in the core were grouped into various regions based on their burnup history. 
The assemblies with fresh fuel, once-burnt fuel and twice-burnt fuel were grouped together respectively. 
Two flow channels – one average channel and one hot channel – were built to represent each group of 
assemblies. Hence there are a total of six flow channels in this study. The flow channels are connected in 
the lateral direction to allow crossflow to be calculated. Crossflow is modeled at each axial elevation in 
the core between the three average core channels. It is also modeled at each axial elevation between the 
hot channels and the adjacent average channels. This allows flow to be redistributed around a blockage 
caused by cladding ballooning or rupture. The crossflow area is based on the minimum gap between the 
fuel rods along one side of a fuel assembly and the number of fuel assembly sides at the interface between 
the three average core channels; for example, for the hot assembly in each region, there are four sides at 
the interface. Loss coefficients are approximated based on flow across in-line and staggered rows of 
tubes, with the average distance of travel estimated to be about half an assembly width. 



 

 
 

Figure 3. RELAP5-3D Nodalization of a Typical Four-Loop PWR. 
 

 
 

Figure 4. Schematic Illustration of the Mapping Between the Core Design Analysis and the 
RELAP5-3D Analysis Core Model for a Typical Four-Loop PWR. 

 



The proposed 10 CFR 50.46c rulemaking implies that all the fuel rods (more than fifty thousands) have to 
be analyzed in order to find the rods with the limiting PCTR and ECRR values. However, it is 
computationally prohibitive to consider all the fuel rods in the reactor core. Instead a homogenization 
technique is used to reduce the number of fuel rods to be simulated. Two sets of heat structures were used 
for each assembly – one set represents the highest power rod or the hot rod in the assembly and the other 
set represents the average of the remaining fuel rods in the assembly. This is a reasonable approximation 
given that the fuel rod burnup normally does not vary too much within a PWR assembly and the hot rod 
in an assembly would be the limiting rod for that assembly.  
 
As a result, heat structures for the highest power assembly (hot assembly) and its hot rod in each group of 
assemblies were built and attached to the hot channel, as shown schematically in Figure 5, such that the 
PCT and ECR in the average rods and hot rod can be calculated. Analogously, the heat structures for the 
other assemblies and their respective hot rods were built and connected to the average channel, as shown 
in Figure 6, such that the PCT and ECR can be calculated for the average rods and hot rod in each 
assembly. Therefore, there are a total of 386 sets of heat structures for the fuel in this study (193 for 
assemblies plus 193 for hot rods). In this way, the total number of simulated fuel rods is reduced to a 
manageable number of 386. It is noted that the hot rod power has been subtracted from each assembly to 
yield the correct power for the average fuel rods in each assembly such that the reactor total power is 
conserved.  
 

 
Figure 5.  Schematic Illustration of the Heat Structure Mapping for the Hot Assembly and Its Hot 

Rod With the Hot Channel (One for Each Group of Assemblies).  
 

 
 

Figure 6. Schematic Illustration of the Heat Structure Mapping for Average Assemblies and Their 
Respective Hot Rods with the Average Flow Channel.   

 
The fuel performance calculations were performed with NRC’s FRAPCON code [5].  At each selected 
cycle exposure point where LBLOCA analyses are performed, FRAPCON input files for the fuel rods 
simulated in the RELAP5-3D model are automatically prepared by LOTUS.  The power histories required 



in the FRAPCON calculations are automatically retrieved from the core design analysis results.  The 
required parameters such as rod internal pressure, gap gas mole fraction, etc. are automatically obtained 
from the FRAPCON output files and mapped into the respective fuel rod models in the RELAP5-3D 
input file. 
 
3. SENSITIVITY ANALYSIS METHODOLOGY 
 
5.1  Figures of Merit 
 
Performing uncertainty and sensitivity analysis requires that a relevant system response output variable, 
or figure of merit (FOM), be chosen to analyze. In the current practice of LOCA analysis with 10CFR 
50.46 rules, the limiting fuel rod in the limiting transient case can be easily identified with the safety 
metric being the fuel rod with the highest PCT, which is normally the highest power rod (hot rod). The 
reactor core modeling in a LBLOCA analysis normally uses a simplified approach with the core flow 
represented by a hot channel and an average channel. The hot channel represents the flow channel 
adjacent to the highest power rod and the average flow channel represents the remaining flow in the core. 
The fuel and clad temperature distributions and clad oxidation rates within the hot rod are calculated by 
building a heat structure for the rod and attaching it to the hot channel. Average heat structures are built 
for the remaining fuel rods in the core and attached to the average flow channel such that the fuel and clad 
temperature distributions and clad oxidation rates can be calculated for the average rods. Conversely, with 
the proposed new rulemaking in 10 CFR 50.46c, both the PCT and ECR safety acceptance criteria are 
functions of the pre-transient hydrogen content in the clad. The limiting rods may not be the hot rod 
(highest power rod) any more and could even move from one rod location to another depending on fuel 
burnup and other conditions in an operating cycle. Therefore, new safety metrics have to be defined in 
compliance with 10 CFR 50.46c and all the fuel rods have to be considered in LOCA analyses in order to 
identify the limiting rods.  
 
Since both PCT and ECR limits are burnup-dependent, this added complexity requires defining new 
safety metrics that would synthesize PCT and ECR with fuel rod dependent cladding pre-transient 
hydrogen content. In this work, the safety metrics are defined as the ratios of the calculated PCT over 
PCT limits for each fuel rod, as well as the ratios of the calculated ECR over ECR limits for each fuel rod 
and are expressed in the following:  
 

                                                (1) 

                                                                (2) 
 

If we define PCTRmax and ECRRmax as the maximum value of PCTR and the maximum value of ECRR, 
respectively, the acceptance criteria for the safety metrics are the following: 
 

1)  PCTRmax < 1.0 or 
2)  ECRRmax < 1.0 

 
Using the above criteria, the limiting fuel rods can be identified as the fuel rods with PCTRmax or the 
ECRRmax. 
 
5.2 Input Uncertainty 
 

PCTR = PCT
Calculated

PCT Limit

ECRR = ECR
Calculated

ECRLimit



There exist large uncertainties in many of system and model input parameters. The primary objective of 
this work is demonstrate the uncertainty propagation and sensitivity analysis methodology with the focus 
on system and model parameter uncertainty as the uncertainty in user inputted values to the RELAP5-3D 
input file. The specific number of input parameters to consider in uncertainty quantification is sometimes 
defined by the analysis method itself. In non-parametric methods, such as the Monte Carlo approach used 
in the current work, the amount of parameters is not specified by the method itself but there is still 
motivation to limit the number of uncertain parameters [6]. The specific parameters should be judiciously 
chosen based on those that are expected to have the most influence on the FOMs for sensitivity analysis. 
A table of uncertain parameters can be developed that indicates the most important inputs to the model 
and their expected range of uncertainty. The important phenomena affecting the progression of the 
LBLOCA accident are first determined by the phenomena identification and ranking table (PIRT) 
process. A large number of studies have been done previously to identify the important phenomena. A 
PIRT analysis has been conducted in this work with the input from FPoliSolutions LLC [7]. For 
demonstration purposes, a reduced set of parameters with high importance to LBLOCA has been selected 
and is shown in Table I. The uncertain input parameters and their relevant uncertain ranges used in this 
work are shown in Table I. The double ended cold leg break is assumed to happen in the upper left loop 
shown in Fig. 3.  Accumulator I and II in Table I indicate the accumulators on the lower right loop and 
lower left loop shown in Fig. 3 respectively.  The input parameters are assumed to be mutually 
independent. Correlation between model inputs will have an effect on how these parameters are sampled 
for uncertainty quantification and sensitivity analysis and this is left for future work.  
 

Table I. Distribution of parameter uncertainties 
Parameter PDF type Min Max Comments 
Reactor thermal power  Normal 0.98 1.02 Multiplier 
Reactor decay heat power multiplier  Normal 0.94 1.06 Multiplier 
Fuel thermal conductivity (K) Normal 0.93 1.07 Multiplier 
Accumulator I pressure  Normal -0.9 1.1 Multiplier 
Accumulator I temperature (K) Uniform -11.1 16.7 Additive 
Accumulator I liquid volume (m3) Uniform -0.23 0.23 Additive 
Accumulator II pressure  Normal -0.9 1.1 Multiplier 
Accumulator II temperature (K) Uniform -11.1 16.7 Additive 
Accumulator II liquid volume (m3) Uniform -0.23 0.23 Additive 
Discharge coefficient multiplier for critical flow on 
the vessel side (CF_Coef_Vessel) of the broken loop 

Uniform 0.8 1.2 Multiplier 

Discharge coefficient multiplier for critical flow on 
the pump side (CF_Coef_Pump) of the broken loop 

Uniform 0.8 1.2 Multiplier 

Average core coolant temperature (T_avg) Normal -3.3 3.3 Additive 
Film boiling heat transfer coefficient (FB HTC) Uniform 0.7 1.3 Multiplier 
Condensation heat transfer coefficient (Cond. 
HTC) 

Uniform 0.7 1.3 Multiplier 

Natural convection heat transfer coefficient (NC 
HTC) 

Uniform 0.7 1.3 Multiplier 

Pump degradation Uniform 0.5 1.5 Multiplier 
Fuel rod gap thickness Normal 0.2 1.8 Multiplier 

 
It is noted that since fuel rod gap thickness is not an input in the RELAP5-3D model, the variation of the 
gap thickness is realized by varying the fuel rod radius.  In the subsequent sensitivity analysis work, fuel 
rod gap thickness is replaced with fuel rod radius.   
 
 



5.3  Sensitivity Analysis 
 
Global sensitivity analysis method is the method of choice in this work. Global sensitivity analysis 
methods explore the whole input parameter space by sampling chosen input parameters simultaneously. 
In Monte Carlo based methods, a large number of model simulations are performed to produce a 
significant number of samples that can be used for both uncertainty quantification and sensitivity analysis. 
Ikonen [8] compared a number of global sensitivity analysis methods by use of the nuclear fuel 
performance code VTT-modified FRAPCON-3.4.  
 
5.3.1. Scatterplots 

 
Scatterplots are often the first step to examine the relationship between the uncertainty in model inputs 
and analysis results while revealing any non-linearity or unexpected behavior [9]. Scatterplots provide the 
starting point for development of a more quantitatively sensitivity analysis strategy. Rank transformed 
data can also be used to create scatterplots when the data exhibits a non-linear yet monotonic relationship 
[6]. Rank transformation is used to rank the input and output data from the smallest values, with a rank of 
1, to the largest values with a rank corresponding to the number of samples. Rank transformed scatterplots 
are then formed by plotting the rank transformed output data y versus the rank transformed input data x. 
 
5.3.2. Person and Spearman Correlation Coefficients 
 
Although scatterplots are instrumental in examining the relationship between the model input and output 
parameters, quantitative methods such as correlation coefficients provide the degree of linearity that exists 
between inputs and outputs. Various methods for computing correlation coefficients exist in the literature 
[8, 9] and the method used must be sensibly chosen based on the sensitivity analysis approach. 
Correlation coefficients are valued between -1 and +1 where -1 represents a perfect inversely correlated 
linear relationship and +1 represents a perfect linear relationship. A value close to 0 indicates that the 
input has insignificant effect on the output. Absolute values of the correlation coefficients between model 
inputs and a particular FOM can then be ranked from those inputs that are the most influential to those 
that are the least influential on the FOM. The Pearson (or sample) correlation coefficient (CC) between 
inputs xj and output y as defined by Helton et al. [9] is: 
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and N is the number of samples. The Pearson correlation coefficient can also be applied to the rank 
transformed data and is then known as the Spearman, or rank, correlation coefficient (RCC). 
 
5.3.3. Partial Correlation Coefficients (PCC) 
 
In a global sensitivity analysis approach, perturbations in the model output are not purely a function of 
that of a single input, but rather a combinational effect from the perturbation of all model inputs 
simultaneously. To evaluate the comprehensive quality of the sensitivity analysis the square of the 
Pearson correlation coefficient (R2) can be calculated for each input parameter and summed. If the value 
remains significantly below unity then higher order sensitivity analysis methods, such as partial 



correlation coefficients (PCCs), must be used to analyze nonlinearities in the model [8]. PCCs 
characterize the linear relationship between a model input and model output after corrections have been 
made for the linear effects on the output by all other model inputs.  It is worthy pointing out that PCCs 
can give misleading results when correlations exist between model inputs [9]. 
 
 
5.3.4. Sobol Indices 
 
The Sobol variance decomposition method entails comparing the contribution of one input to the variance 
of an output.  Sobol indices differ from Pearson correlation coefficients in that Pearson measures are 
based upon linear regression, while Sobol indices capture more complex interactions. Here only the first 
order terms are presented.  Sobol indices are expressed mathematically in Equation 4. 
 

𝑆! =
!"# !!! !!|!!

!"# !
     (4) 

 
Where 𝑆! is the Sobol indices, 𝑣𝑎𝑟() is the variance operator, 𝑌|𝑋! represents 𝑌 conditional upon a fixed 
𝑋!, and 𝐸!!() is the expected value operator, expanded below in Equation 5.  
 

𝐸!! 𝑣𝑎𝑟 𝑌!|!! = 𝑓!! 𝑥! 𝑣𝑎𝑟 𝑌!|!! 𝑑𝑥!    (5) 
 

Sobol indices are computationally expensive. The sum of Sobol indices lies between zero (non-additive) 
and unity (additive).   It is important to note that a sum of unity does not necessarily indicate linearity.  
 
If the definitions in Equations 4 and 5 are strictly adhered to, a double loop Monte Carlo method is 
necessary with sampling methods requiring isolation of terms, as opposed to the more random sampling 
typically used for Pearson measures.  Plinkes method allows for the partitioning of a typical random 
distribution into approximately equally spaced partitions based upon the rankings of a given input [10].  
Estimators for the Sobol indices can be recast as Equation 6. 
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!
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                     (6) 

 
Where 𝑥!,! represents the jth partition of the ith input, 𝑁! is the population of partition j,  𝑀 is the number 
of partitions, 𝑌|𝑋! ∈ 𝑥!,! represents 𝑌 conditional upon 𝑋! residing in 𝑥!,!, and 𝑁  the total sample size.  In 
order to reduce bias, the boot strapping method is used with 10 resamples with replacement.  Sobol 
indices were calculated using the sensitivity analysis library in Python [11]. 
 
5.3.5. Sensitivity Analysis Toolkit 
 
The overall computational method to perform uncertainty quantification and sensitivity analysis is 
realized within the LOTUS framework. The data flow diagram to perform the uncertainty and sensitivity 
analysis is shown in Figure 7. A LOCA analysis toolkit has been developed using the Python 
programming language. The LOCA toolkit automatically samples each uncertain parameter shown in 
Table I from its distribution. For a uniform distribution, the minimum and maximum values are the 
boundaries of the sampling. For a normal distribution, the sampling boundaries were truncated at the 
minimum and maximum values, which is effectively a truncated normal distribution. No dependencies 
between parameters were considered in the sampling. The LOCA toolkit then modifies the RELAP5-3D 
input files according to the perturbed values. It automatically drives the desired number of RELAP5-3D 



runs on Idaho National Laboratory (INL)’s high performance computers (HPC). The toolkit also performs 
the postprocessing of the RELAP5-3D output files and presents the PCTRmax and ECRRmax values. 
 

 
 

Figure 7. Data Flow Diagram for LOTUS to Perform Sensitivity Analysis.   
 
6. RESULTS 
 
6.1  Uncertainty Quantification 
 
The LOTUS automation process starts with an existing RELAP5-3D plant system model and 
automatically maps in certain required parameters from fuel performance and core design calculations.  
To be consistent with fuel performance calculations, two sets of heat structures in the RELAP5-3D model 
were built for each fuel assembly – one for the hot rod and the other for the average rods. From the fuel 
performance calculations, the required parameters such as rod internal pressure, gap gas mole fraction, 
etc. are automatically obtained from the FRAPCON output files and mapped into the respective fuel rod 
models in the RELAP5-3D input files. From the core design calculations, the power shapes from the 
power maneuvering calculations are automatically obtained from the PHYSICS calculations and mapped 
into the RELAP5-3D input files. The best-estimate plus uncertainty (BEPU) analyses for LBLOCA were 
subsequently carried out with the Monte Carlo method. The uncertain input parameters, as shown in 
Table I, were randomly sampled in the BEPU analyses. The cladding pre-transient hydrogen up-take 
contents were also obtained from the FRAPCON output files. These are used in the determination of 
PCTR and ECRR calculations post RELAP5-3D LBLOCA calculations. The direct Monte Carlo 
simulations were carried out. One thousand LBLOCA cases with RELAP5-3D have been run on INL’s 
HPC, respectively, at seven selected cycle exposure points at Beginning of the Cycle (BOC), 100 days, 
200 days, 300 days, 400 days, 500 days and End of the Cycle (EOC). The PCTRmax and ECRRmax 
values from each RELAP5-3D output file were obtained and sorted by LOTUS among the 1000 runs, 
respectively, at the selected cycle exposure points. The probability distribution function (PDF) and the 
cumulative distribution function (CDF) of the figures of merit (PCTR and ECRR) were subsequently 
obtained.  From the CDF of PCTR and ECRR, the 95 percentile values of PCTR and ECRR, as well as 
their corresponding PCT and ECR values, are obtained and their associated 95% confidence intervals are 



subsequently calculated to construct the estimators of the 95/95 upper tolerance limits for PCT and ECR.  
The 95/95 estimators are then compared to the proposed 10 CFR 50.46c rule to demonstrate compliance.  
The 95% limit values with 95% confidence interval can be expressed as: 

𝑌!"/!" = 𝜇!"% ± 1.96 ∗ 𝑆𝐸!!"%                   (7) 
  

𝑆𝐸!!"% = 2.11 ∗ 𝑆𝐸!                   (8) 
 
Where 𝑌!"/!" is the 95/95 confidence interval, 𝜇!"% is the 95th percentile value, and 𝑆𝐸!!"% and 𝑆𝐸! are 
standard error of 𝜇!"%and the mean respectively [12]. 
 

Table II. Summary of the 95/95 Estimators for PCT and ECR 

 PCT (K) ECR (%) 

 𝜇!"% 1.96 ∗ 𝑆𝐸!!"% 𝜇!"% 1.96 ∗ 𝑆𝐸!!"% 

BOC 1404.82 16.74 6.27 0.33 

100 Days 1279.86 12.54 2.78 0.16 

200 Days 1269.28 8.60 4.43 0.16 

300 Days 1412.45 12.50 8.17 0.31 

400 Days 1320.00 9.09 6.77 0.20 

EOC 1250.39 11.25 3.75 0.18 

 
6.2  Sensitivity Analysis 
 
The same data used for the uncertainty quantification study is examined for the sensitivity analysis. For 
demonstration purpose, only the results at 300 days are presented here. The 2 FOMs and 17 input 
parameters were ranked by the method discussed in section 5.3 using the RANK function in Microsoft 
Excel to create scatterplots. The scatterplots for ranked ECRR versus ranked input parameter are shown in 
Figure 8 and a trendline is used on each of the plots to show a linear fit to the data. Scatterplots for PCTR 
are omitted. Those inputs that have a more prominent positive slope are the inputs that are most positively 
correlated with an increase in ECRR. For example, the rated reactor power and decay heat have an 
obvious positive slope meaning that as the rated power and decay heat are increased, the ECRR increases. 
Conversely, those inputs that have a prominent negative slope indicate a negative correlation between the 
input and ECRR. For example, as the gap thickness is increased, the clad outer surface temperature is 
exacerbated, increasing the clad surface oxidation. Notably, some cases do not have a particularly strong 
correlation with ECRR. However, correlation coefficients are needed to quantify the contributions of the 
uncertainty in each input parameter to changes in each FOM.  
 
The Pearson correlation coefficients between each of the perturbed parameters and considered FOMs 
were calculated using the PEARSON function in Microsoft Excel. The Spearman coefficients were also 
calculated by use of the CORREL function in Microsoft Excel on the rank transformed data and results 
were consistent with the Pearson correlation coefficients. The sum of the R2 values were examined for 
each FOM to ensure that Pearson correlation coefficients were suitable for analyzing model correlations. 
For ECRR the sum of the R2 values was equal to about 0.5. This indicates that the problem is highly 
nonlinear and interactions between input parameters exist.  Consequently higher order sensitivity analysis 
methods should be used.  Partial correlation coefficients and Sobol indices are shown here as well to 
demonstrate the application of sensitivity analysis techniques to LOTUS. PCCs were calculated using an 

 



Excel VBA script available publicly by Listen Data [13]. Values for all of the correlation coefficients for 
ECRR are shown in Table III along with the importance rank of each particular parameter. The results 
show that the fuel rod radius (gap thickness) is the most important parameter for ECRR, regardless of the 
correlation coefficient calculation technique.   
 
The most correlated parameters are consistent for each of the correlation techniques for at least the first 
five most influential parameters after which there are some differences. Interestingly, some sign change is 
noticed between correlation coefficient techniques for the least correlated values.  
 

Table III.  Summary of Correlation Coefficients and Importance Rank for ECRR 
ECRR RCC Rank CC Rank PCC Rank Sobol Rank 
Reactor Power 0.1596 3 0.1666 3 0.2055 3 0.0344 3 
Decay Heat 0.2166 2 0.2172 2 0.2732 2 0.0504 2 
K _UO2 -0.0255 13 -0.0418 10 -0.0852 7 0.0041 15 
P (Accum I) 0.1351 4 0.1507 4 0.1628 4 0.0268 4 
T (Accum I) 0.0046 17 -0.0057 17 0.0029 17 0.0098 8 
LV (Accum I) -0.0468 9 -0.0295 12 -0.0546 11 0.0066 11 
P (Accum II) 0.1344 5 0.1231 5 0.1553 5 0.0195 6 
T (Accum II) 0.0200 15 0.0380 11 0.0312 12 0.0116 7 
LV (Accum II) -0.0622 6 -0.0642 7 -0.0740 8 0.0079 9 
CF_Coef_Vessel 0.0512 8 0.0179 15 0.0291 14 0.0010 17 
CF_Coef_Pipe -0.0420 10 -0.0178 16 0.0144 16 0.0068 10 
T_avg 0.0314 12 0.0224 14 0.0309 13 0.0044 14 
FB HTC  -0.0528 7 -0.0763 6 -0.0875 6 0.0064 12 
Cond. HTC  0.0411 11 0.0548 8 0.0634 9 0.0061 13 
NC HTC  0.0090 16 0.0232 13 0.0263 15 0.0020 16 
Pump Degra.  -0.0254 14 -0.0440 9 -0.0549 10 0.0231 5 
Fuel rod radius -0.6043 1 -0.5415 1 -0.5790 1 0.3059 1 

 
 
7. CONCLUSIONS  
 
This work was performed to develop an uncertainty quantification and sensitivity analysis approach to 
large-break loss-of-coolant accident in response to the proposed 10 CFR 5046c new rulemaking.  The 
LOTUS toolkit was developed to handle the UQ/SA with the ability to perturb any number of selected 
input parameters, create an arbitrary number of perturbed RELAP5-3D input files, and post-process the 
RELAP5-3D cases. The results of sensitivity analysis show that a number of correlation coefficients can 
be calculated for the Monte Carlo global sensitivity analysis considered in this work.  Sensitivity analysis 
results also show that gap thickness, rated power and decay heat are most influential to the ECRR and 
PCTR as FOMs analyzed in this work.  
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Figure 8. Ranked ECCR versus Ranked Input Parameters for Sensitivity Analysis.   
 


	INL-CON-16-40397 Cover
	INL-CON-16-40397

