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ABSTRACT: We determine the small-z asymptotics of the gluon helicity distribution in
a proton at leading order in perturbative QCD at large N.. To achieve this, we begin
by evaluating the dipole gluon helicity TMD at small x. In the process we obtain an
interesting new result: in contrast to the unpolarized dipole gluon TMD case, the operator
governing the small-x behavior of the dipole gluon helicity TMD is different from the
operator corresponding to the polarized dipole scattering amplitude (used in our previous
work to determine the small-z asymptotics of the quark helicity distribution). We then
construct and solve novel small-z large-N,. evolution equations for the operator related

to the dipole gluon helicity TMD. Our main result is the small-x asymptotics for the
G

gluon helicity distribution: AG ~ (7)™ with aff = - \/%2 ~ 1.88,/% . We

note that the power oz,? is approximately 20% lower than the corresponding power a;]l for

q
the small-z asymptotics of the quark helicity distribution defined by Aq ~ (%)ah with

q __ i as Ne ~ as Ne 3 3
oy = 73 SoC R 2.31 o found in our earlier work.
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1 Introduction

A solid theoretical understanding of the small-x asymptotics of the quark and gluon helicity
distributions Ag(z,Q?) and AG(x,Q?) is crucially important for the resolution of the
proton spin puzzle. The quark and gluon components of the proton spin,

1 1

Sq(Qz):;/da:AE(a:,Qz) and Sg(Q2):/dxAG(x,Q2), (1.1)
0 0

may receive significant contributions from the small-z region. Given that the current
experimental values (see [1-4] for reviews), S,(Q* = 10GeV?) ~ 0.15 + 0.20 (integrated
over 0.001 < z < 1) and Sg(Q? = 10GeV?) ~ 0.13 = 0.26 (integrated over 0.05 < z < 1),
still do not add up to the proton spin of 1/2, the small-z region may turn out to be
important for satisfying helicity sum rules [5-7] (see [8] for a review), such as the Jaffe-
Manohar sum rule [5]

1
Sq+Lq+Sg+LG:§, (1.2)



where L, and Lg denote the quark and gluon orbital angular momentum (OAM),
respectively.

Moreover, the experimental measurement of the relevant double-longitudinal spin
asymmetry Apy is always limited to the z € [Tmyin, 1] subset of the x € [0, 1] range em-
ployed in the integrals of eq. (1.1), with i, given by the experimental coverage of the
specific machine and detector. No matter how high-energy an experiment may be, there
will always be some x,;n below which it will not be able to measure Ay ;. Therefore, below
that o, one does not have data from which to extract Ag(z, Q%) and AG(z,Q?). To be
certain that the experimentally excluded region of = € [0, Zyin] does not contribute much
to Sy and Sg, or to obtain an accurate estimate of how much spin resides at = € [0, Zmin],
one has to develop a quantitative theoretical understanding of Aq(z, Q?) and AG(z, Q?)
at small z. Then one could hope for the following possible scenario at future polarized-
scattering experiments, such as the ones to be carried out at the proposed Electron-Ion
Collider (EIC) in the US [1]: one may obtain solid agreement between theory predictions
and experiment for the z-dependence of Apy above xyi, (but still at small ), that is for
&> Tpmin, which would allow one to confidently extrapolate Ag(z, Q%) and AG(z,Q?) to
the © < xpin region. This extrapolation, in turn, would allow one to make a good estimate
of the amount of the proton’s spin carried by the quarks and gluons at & < xpi,. The
extrapolation would need to be further tested by later experiments probing polarization at
smaller values of x: if agreement is found again, one may be able claim that the procedure
is converging and that the spin at small x is approaching full theoretical control.

To address the important question of the small-z asymptotics of Ag(x,Q?) in the
flavor-singlet channel, we derived small-z helicity evolution equations in [9]. The evolution
equations were written down for the polarized dipole amplitude, which can be defined as
the part of the forward scattering amplitude for a ¢g dipole, with a longitudinally polar-
ized quark or antiquark in it, on a longitudinally polarized target proton that depends
on the product of the target and projectile polarizations. The polarized dipole amplitude
is related to the quark helicity transverse-momentum-dependent (TMD) parton distribu-
tion function: knowing the former gives us the latter [10]. The evolution equations for
the polarized dipole amplitude are both similar to and different from the unpolarized
Balitsky-Kovchegov (BK) [11-14] and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) [15-18] evolution equations. The similarity is in the fact that both the
helicity evolution and BK/JIMWLK evolution involve Wilson lines. Moreover, just like in
the Balitsky hierarchy [11, 12], the helicity evolution equations do not close in general, and
the large- N, limit has to be invoked to produce a closed equation [11-14]. There are also
important differences: helicity evolution is sub-eikonal, and involves the so-called “polar-
ized Wilson line” operator, which is related to the helicity-dependent part of a high-energy
polarized-quark propagator through a longitudinally polarized target [9]. The helicity evo-
lution equations also become a closed system of equations in the large- N &Ny limit, in
addition to the large- N, limit.

Perhaps most importantly, the helicity evolution equations resum double logarithms

1

of energy, that is, powers of ay In? 2 with ay the strong coupling constant. This is

in contrast to the leading-logarithmic resummation of the powers of ag ln% in the un-



polarized Balitsky-Fadin-Kuraev-Lipatov (BFKL) [19, 20] along with the BK/JIMWLK
equations. The double-logarithmic approximation (DLA) resulting from resumming the
powers of a In? % was considered before for the ¢-channel quark exchange amplitudes [21—
27]. For helicity evolution it was first applied by Bartels, Ermolaev and Ryskin (BER)
in [28, 29] (see also [30-33]). (The DLA parameter o 1n2% does not exist in the unpo-
larized BFKL/BK/JIMWLK evolution, and so far has been established either in ¢-channel
quark exchanges [21-27] or for the ¢-channel longitudinal spin transfer [28, 29].) To ac-
complish the DLA resummation in the s-channel small-z formalism we had to introduce
an auxiliary “neighbor” polarized dipole amplitude [9], which was never required in the
leading-logarithmic unpolarized dipole evolution [11-14, 34-36].

The derivation of the flavor-singlet helicity evolution equations from [9] was further
clarified in [37], where we also derived and solved the evolution equation for the quark
helicity TMD in the flavor non-singlet case. The resulting small-z (large-N,.) asymptotics
of the flavor non-singlet quark helicity distribution were in complete agreement with that
derived previously by BER [28].

The flavor-singlet large-N, helicity evolution equations from [9] were first solved nu-
merically in [38] and then analytically in [39]. The resulting small-z asymptotics of the
quark helicity parton distribution function (PDF) were found to be

1\ % 4 as N, as N,
A Y~ = ith of = — ¢ 231/ ——C. 1.3
oo @)~ (3) 7 witn af = N e [ (1.3

The flavor-singlet quark helicity intercept az at large N. was about 30% smaller than
that found by BER in [29]. We discussed the possible origin of our differences in [37]; in
appendix B of that paper we presented some of the DLA diagram contributions we believe
BER did not include in their analysis.

Having established the small-z asymptotics for the quark helicity distribution (1.3),

we now turn our attention to the gluon helicity distribution, which is the main topic of
this paper. We begin in section 2 by reviewing the central results from the quark helicity
case and by constructing a definition for the “polarized Wilson line” operator employed
previously in [9, 37] without presenting an explicit form. The polarized Wilson line op-
erator provides us with the operatorial form of the polarized dipole scattering amplitude
from [9, 37]. We proceed in section 3 by evaluating the gluon helicity TMDs at small x.
We consider both the dipole and Weizsécker-Williams (WW) gluon helicity TMDs accord-
ing to the standard prescription [40]. Starting with their definitions, we express each of
those gluon helicity TMDs in terms of light-cone Wilson lines and an insertion of the sub-
eikonal longitudinal spin-dependent gluon field of the target. In [40] a similar procedure
expressed the unpolarized dipole gluon TMD in terms of the forward scattering amplitude
for a (fundamental) ¢g dipole scattering on the target, hence giving rise to the name for
the dipole TMD. (Also see ref. [41] for related work on the distribution of linearly polarized
gluons.) This amplitude can be found by solving the BK evolution equation. Surprisingly,
and unlike the unpolarized case, the dipole gluon helicity TMD turns out not to be directly
related to the polarized dipole scattering amplitude. Instead it is related to a somewhat
different operator as shown in section 3. (The same applies for the WW gluon helicity



TMD: it is not directly related to the polarized dipole amplitude. However, this is not
unlike the unpolarized case, in which the unpolarized WW gluon TMD was found to be
related to the color-quadrupole amplitude [42] and not to the dipole one.)

The small-z evolution for the dipole gluon helicity TMD is constructed in section 4.
There we begin by reconstructing the DLA evolution equations for the polarized dipole
amplitude from [9]; since now we have an operator expression for the polarized dipole am-
plitude, we use the operator language, similar to that developed by Balitsky in [11, 12].
This is a cross-check of both our equations in [9] as well as the operator definition and
approach. We proceed by applying the operator method to evaluate the operator related
to the dipole gluon helicity TMD. The result, in the large- N, limit, is the evolution equa-
tions (4.42) which mix this “gluon helicity operator” with the “quark helicity operator”
given by the polarized dipole amplitude. These equations are solved in section 5, both
analytically and numerically. The end result is the following small-x asymptotics of the
gluon helicity distribution:

G
1\ 13 s Ne¢ s Ne
AG(z,Q?) ~ <m) with af = e ,/O‘% ~ 1.88,/0‘277 . (1.4)

Equations (1.3) and (1.4) give us the leading-in-as small-z asymptotics of both the quark

and gluon helicity distributions. It is interesting to note that ag < a%; we explore the
phenomenological consequences of this in section 6 and section 7.

In section 6 we estimate the amount of the proton’s spin carried by small-x gluons
using a simple phenomenological approach. As depicted in figure 9, we observe a 5 + 10%
increase in the amount of gluon spin if we use our intercept (1.4) to augment the existing
DSSV14 [43] PDF parameterization. We also discuss the importance of incorporating our
work into future fits of helicity PDFs.

We conclude in section 7 by summarizing our main results and by outlining further
steps which need to be made in order to perform a detailed comparison with the experi-
mental data.

2 The quark helicity TMD and the polarized dipole amplitude

2.1 Review

In [9], we derived the polarized small-z evolution equations for the TMD quark helicity
distribution [44],

yty°
9

7/1(7“) |Pa SL>7»+:() )

(2.1)

gt (@, k) = 32 ZSL/ dPrdr= e (P S (0)U0, 7]
by relating it to a “polarized dipole amplitude” G(z%,, zs), giving

8N d | ,
005 (@, k2) = GZ / Z/dem P ek @ —zo) %G(xm,w—fQ)
0101
A2/s

(2.2)



in the flavor-singlet case [37]. In the above and throughout this paper, we use light-front
coordinates z& = % (2°+23), denote transverse vectors (z} , 2% ) by z and their magnitudes
by xp = |z|, and indicate differences in transverse coordinates by the abbreviated notation
19 = 21 —2Zg. The center-of-mass energy squared for the scattering process is s, the infrared
(IR) transverse momentum cutoff is A, and z is the fraction of the light-cone momentum of
the dipole carried by the polarized (anti-)quark. As is well-known, the TMD (2.1) contains
a process-dependent gauge link U[0,r]. For specificity, in [9] we considered semi-inclusive
deep inelastic scattering (SIDIS), although the resulting small-z evolution equations also
apply to the collinear quark helicity distribution, which is process independent.
The impact-parameter integrated polarized dipole amplitude is

G(x3y, zs) = /d2b10 G1o(zs) (2.3)

with by = (21 + 24)/2. The polarized dipole scattering amplitude G1o(zs) was defined as
the polarized generalization of the forward dipole S-matrix in terms of Wilson lines [9]:

Gio(zs) = 21Nc <<tr [VQVIPOIT} + tr [VIPOIVQT] >>(zs)

= (o [P e [PV ) (), (2.4)

where the double-angle brackets are defined to scale out the center-of-mass energy zs
between the polarized (anti)quark and the target. While the unpolarized Wilson lines in
eq. (2.4) are the standard eikonal gauge links (in the fundamental representation),

+oo
Vo = Vi, [+00, —00] = Pexp |ig / de” ATzt =0,27,20) | , (2.5)

—0o0

the polarized Wilson lines V}? °l are more complex operators. Wilson lines in general cor-
respond to the eikonal propé;gators of partons in the background field of the target, with
the eikonal gauge link (2.5) being manifestly spin-independent. The polarized Wilson line
Vf ol represents the spin-dependent propagator of a quark in the background field of the
target, which in the high-energy limit is suppressed by one factor of the center-of-mass en-
ergy, motivating the rescaling performed in eq. (2.4). Spin dependence is introduced into
the polarized Wilson line by the insertion of exactly one sub-eikonal interaction which is
sensitive to the spins of the parton and the target. As discussed in [9], the spin-dependent
interaction may correspond either to the t—channel exchange of two quarks or of the trans-
verse component of the gluon field. Because each such sub-eikonal interaction leads to
a suppression of the Wilson line by a factor of the energy, additional spin-dependent ex-
changes can be neglected as power suppressed. While we leave the determination of the
quark-exchange part of the polarized Wilson line operator for future work, we will show by
explicit calculation below that the gluon-exchange component takes the form

+00
(Vo) = / da~ Vy[+00,27] 09, (0%,2™,2) Vyla~, o] (2.6)

—00



with the effective vertex @gol computed in eq. (2.13) (see also eq. (2.14)). Here we
have defined an abbreviated notation for the light-cone Wilson line in the fundamental
representation,

b

Ve[b™,a"] = Pexp ig/dx Atz =0,27,2)] . (2.7)

a

The small-z limit of the quark helicity distribution (2.2) corresponds to the large-s limit
of the polarized dipole amplitude G(z%, zs). The evolution equations for the latter, derived
in [9], resum double logarithms of the energy, o In? Az~ Qs 1D2% ~ 1. Interestingly, in
addition to the “soft logarithm” coming from the longitudinal momentum integral which
is also generated by the unpolarized BFKL/BK/JIMWLK evolution, the polarized dipole
amplitude is especially sensitive to short-distance fluctuations about the polarized Wilson
line, generating an additional logarithm of energy coming from the transverse momentum
integration. Preserving these transverse logarithms of energy in the double-logarithmic
approximation (DLA) requires imposing a lifetime ordering constraint on the successive
steps of evolution, similar to the “kinematical improvements” which become important
in the unpolarized evolution at NLO (see, for example, [45]). Like in the unpolarized
case, the small-z evolution equations for the polarized dipole amplitude lead to an infinite
operator hierarchy, but simplify to a closed set of equations in the large- N, limit, where N,
is the number of colors. In the large-IN. limit, with DLA accuracy, the polarized evolution
equations are [9, 37|

z CC%O
N, dz [ dx2
G(:v%o,zs):G(O)(x%o,zs)JrO‘; = /Z,/‘221[F(x%o,xgl,Z’S)+3G(xghzfs)]7 (2.82)
I
2248 2's
10
N,
Dado.ahi, #'s) = GO aty, o's) + 25

’
3 2 2 =z
’ mln[xlO,J:Ql 7]

dz" dr2
X / &= / % [T (2%g, 232, 2"s) + 3G (233, 2"'s)] | (2.8b)

Z//

where G are the initial conditions. Because of the lifetime ordering condition necessary
to preserve the double-logarithmic structure, the polarized dipole G depends upon an aux-
iliary function I', termed the “neighbor dipole amplitude”, in which further evolution is
constrained by the lifetime of an adjacent dipole. We also note that, although nonlinear
saturation corrections can be incorporated straightforwardly, even at leading order they re-
sum only leading logarithms a; In % and are beyond DLA accuracy. As such, the evolution
equations (2.8) are the quark helicity analog of the linear BFKL equation.



Equations (2.8) were solved numerically in [38] and analytically in [39] for the high-
energy asymptotics yielding

1
G(x3y,28) = §G0 (zs x%o)az (2.9a)

1 2\ %
(b ch.z0) = 3o (ot |1 (22) © -3, (2.90)

where the exponent of the energy, known as the “quark helicity intercept” in analogy to
the Pomeron intercept, is given by

4 asN, asN,
! = — /=~ 231 —. 2.1
“h V3V 27w 3 27 (2.10)

The numerical solution of (2.8) found in [38] possesses two features which are not imme-

diately obvious from the evolution equations (2.8): a negligible dependence on the initial
conditions G(©) and an emergent scaling behavior. The scaling behavior is an observation
that for

1 2
zs>TeCO, o=~ (1+2) T

, 2.11
1 asN, ( )

the polarized dipole and neighbor dipole become functions only of the product of the energy
and transverse distances, G(23,,2s) = G(zsx3,) and (23, 23,,25) = (2823, 2573;),
rather than being dependent on each variable (made dimensionless with the help of the IR
cutoff A) individually. The coefficient Gy in eq. (2.9) is then the “scaling initial condition”
for when this behavior sets in, or, more precisely, the effective value of the inhomogeneous
term G(%) at the onset of scaling. In [39], G was set to 1 as irrelevant for the determination
of the intercept, but it is useful to keep here for power-counting purposes.

The main purpose of this paper is to extend the analysis summarized above for the
quark helicity distribution to the gluon helicity distribution. We will proceed to derive a
relation analogous to (2.2) between the gluon helicity distribution and a polarized dipole
operator, derive its large- N, evolution equations similar to (2.8) which employ the solu-
tion (2.9), and obtain the gluon helicity intercept analogous to (2.10).

2.2 The gluonic contribution to the polarized Wilson line operator

Before proceeding to the gluon helicity distribution, it is a useful exercise to construct
the operator @g o1 corresponding to t—channel gluon exchange in the polarized Wilson line.
This will provide a valuable cross-check of the quark helicity evolution equations (2.8) at the
operator level later on. We will evaluate eq. (2.6) directly by computing the polarization-
dependent propagator of a quark in the quasi-classical background field of a heavy nucleus.
For consistency with eq. (2.6), we choose a frame in which the quark is moving in the
light-cone minus direction and the target is moving in the plus direction, and we will work
in the A~ = 0 gauge. The sub-eikonal vertex @gol carries polarization information, while
all other interactions are eikonal, as illustrated in figure 1. As usual, the Fourier transform



D2 p2—k
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Figure 1. The polarized Wilson line (2.6) in the quasi-classical approximation in A~ = 0 gauge.
The filled circles denote the spin-dependent sub-eikonal scattering.

to the longitudinal coordinate x~ puts the intermediate quark lines between scatterings on
mass shell [46, 47].

With the momenta labeled as in figure 1, the non-eikonal vertex is straightforward to
compute:

A 1 . L 10 .
005,00 O)1(k) = == to(p2 — k)v g (p2) ig A’ (k) = ———= d50r k x A(k)ig,  (2.12)
2p, 2p,

where we only keep the spin-dependent terms proportional to o and A, denotes the color
matrix Ajt® with ¢* the fundamental generators of SU(N,). Fourier transforming to coor-

dinate space gives

R dkt d%k e g
g — — —ikTx ik-x
Opol(:x ,x) = / o o) e e [_k X A(/{:)]

. i - . _
= < (—igp() € 5= Al (27, 2) = — (=igp]) V. x A(x™, z), (2.13)
where s = 2pfp2_ is the center-of-mass energy of the polarization-dependent interaction and
p{ is the momentum of the polarized nucleon. We have defined V = (9/dz!,9/02?) and
the cross-product u x v = e?uivj = ulv? —u2vl. Here 6%—:2 =1= —62T1 and 6%—11 = 6%2 =0
and Latin indices denote transverse components of 4-vectors, i,j = 1,2. We observe that
V x A= —(0} A% — 92 A}) is the negative of the Abelian part of the field-strength tensor
F12. In the A~ = 0 gauge we are working in, the non-Abelian contribution ~ [A} ,Ai] is
further suppressed by an extra 1/s, but will appear in other gauges. We therefore conclude!
that the non-eikonal vertex Oﬁol when expressed in the most-general gauge-covariant form

is proportional to the gluon field-strength tensor F''2; we write
+00
ol igpii_ — 1 12/ .+ _ _
v =ML [ o Voo, a ) PR = 0,07 0) Vil o) (24)
— o0

It is also instructive to calculate the spin-dependent field Ai(x*,g) explicitly for a
quark target with helicity S; and momentum pi", giving

A 2) = I (19 Sy 6e o L () € EL 2.15
(x ,Q)—27T()LSLS’LQP+ (@7)e? 3 (2.15)
1 i

"We thank Ian Balitsky for this insight.



for the transverse field entering eq. (2.13). The exact form of (2.15) is specific to the
quark target model, but the 1/p™ suppression is a general feature of the sub-eikonal spin-
dependent exchange. Hence we may write

A(x™,2) = ;1 Az, 2) (2.16)

to scale out the sub-eikonal suppression of the emission vertex in the target and equivalently
write the polarized Wilson line as

[e.o]

(leol)g:% /dac_ Vi [+00,27] (—zg €7 88 Al | (x ,)) Velz™, —o0] (2.17)
= ;i dx™ Vy[4o00,x ]Fu(:cf,g) Valx™, —o0],

—00

where F'2 = (2p/S) F'? and all of the energy suppression is contained in the prefactor
1/s which is then scaled out in the definition of the polarized dipole amplitude in eq. (2.4).
We have also put S;, = +1, which will be our standard assumption about the helicity of
the target from now on, unless specified otherwise by notation.

Employing eq. (2.17) in eq. (2.4) we can finally write down an explicit operator ex-
pression for the polarized dipole scattering amplitude (in A~ = 0 gauge):

+ 7 9 .
Guo(ew) = 1 [ o (on vt loc. o) (0 5 O ] o) ) Vil ol ) o),
c 1

(2.18)

3 The gluon helicity TMDs and new polarized dipole amplitude(s)

The gluon helicity TMD is defined? similarly to (2.1) as [51]

91L($ kT

d. d2
p+ QZ / < (3.1)

o pitPtE ,@é (P, Sy # tr [FH(0) U0, €] FH (&)U, 0]] |P, SL)e+—o -

For gluon TMD distributions, the field strength operators are connected by two fun-
damental gauge links U, U’ which may separately be either future-pointing ([+]) or

ZNote the differing normalizations and conventions, e.g. refs. [40, 48-51].



past-pointing ([—]), with

v Y
ultl [y, 2] = Pexp ig/dzA*(O*,z,y) P exp —ig/dz-A(O*,—i—oo,z)
+o0o
“+o00
X P exp ig/dz_ AT(0T, 27, 2) (3.2a)
Y Yy
ul-! [y, 2] = Pexp ig/dz_A+(O+,z_,y) P exp —ig/dz-A(0+,—oo_,z)
x Pexp ig/dz_ AT, 27, 2)| . (3.2b)

h
(The minus sign in the middle exponent in both equations (3.2) is due to the metric.) Of
particular interest are the “dipole distribution” gdelp for which one is future pointing and

the other is past pointing, U = U, 4’ = ¢!~ and the “Weizséicker-Williams distribution”
9171, GWW for which both are future pointing, U = U, U’ = yl+].

3.1 Dipole gluon helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Start-
ing with eq. (3.1) with the appropriate gauge links, we multiply and divide by a volume
factor V- = [ d?x dz~ and shift the operators in the matrix element to write

G 3 T [ P g ) e

Gdi

X (P, Sy € tr [Fwou U FIOUTE ] 1P S ey (33)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet
which is localized in both impact parameter and momentum space:

1

W(P,SL\~--|P,SL>:/d2bdbp(b,b) (9,5, ol I, by S1) = (- Vps, . (3.4)

This procedure is standard in the color-glass-condensate framework and is used to match
the “unintegrated gluon distribution” and the gluon TMD f{ in the unpolarized sec-
tor [40, 52]; it is also similar to the calculation of the TMDs of a heavy nucleus in the
quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD gives

i —47 1 _ B . C ey e
91 7k:2r)=x(27r)3/d§ 2 de d2¢ TPt E =) k(e

x (o [FHQO UG FHE uE ), (35)

where we have again put Sy = +1 for simplicity and dropped the P, Sy subscript off the
angle brackets for brevity.

~10 -



To go further, we need to specify a gauge; we will work in the A~ = 0 light-cone gauge,
which is equivalent to the covariant gauge in the quasi-classical approximation and is also
convenient for including logarithmic small-x evolution. In this gauge, the target field is
localized in 2~ such that the transverse segments of the staple-shaped gauge links U# at

x~ = £oo do not contribute, leaving
i —47 1 . _ .
G dip 2y _ _* 4 - 2 — 2~ JigPt(§7—¢7) —ik(£—()
@) = = [ de P e :
x el (1 [Ve[=00, ¢ FH(Q) VE[G ™, +oo] Veloo, €] FH(€) Vel ™, —o0] | )

(3.6)

where we have used the cyclicity of the color trace. For the unpolarized gluon distribu-
tion, it is sufficient to replace the field-strength tensors by their eikonal approximations,
Ftix —0114*, but since the gluon helicity distribution contains a sub-eikonal contribution,
we must expand the product of field-strength tensors to the first non-vanishing sub-eikonal
order:

FF()- FHI(g)
= (0 AL =" AT () =ig[AT(Q) s AL(Q)])-++ (9% AL ()= AT (©)=ig [A¥() , 4 (9)])

~ (a?_Ai(o —ig [A7(0), Ai(O]) = (a‘;fﬁ(é))

+ (5erar0) - (gElo —islat©). 41(0)). (37)

We next convert the sub-eikonal part of the field-strength tensor F™¢(¢) into a total
derivative,

Vilo0,¢7] e AL =iglAT(0). AL Q) Vele™hox] = 5= (Veloc, AL OV +oc]).

(3.8)
which can then be integrated by parts to act on the Fourier factor and generate a net factor
of +izPT. In the same way, the sub-eikonal part of the F*7(¢) field-strength tensor can be
converted into a net factor of —izP™ and the operator Ajl(f ). After taking these deriva-
tives, we can safely set ¢ (€” =) ~ 1 (thus neglecting higher powers of < 1), giving

g5 (x, k%) (3.9)
1 _ _ — ik (E— i
P G e icac @ el
x { <t1“ Vg[—oo, C_] AZ(C) VQ[C_, +OO] VéH—OO,f_] ((9?]/1+(£)> Vé[é_a _OO]] >
1

= (1r Ve, (e AT(0)) Ve roelVebroe, €] (0 Vel =) }

- 11 -



We can now similarly convert the eikonal parts of the field-strength tensors into total

derivatives,
o VAT ) i 0
[ ¢ Vi) (oA ) Wl el = S oo, 10
s 1 1

which absorbs the d¢~ integral from the TMD and can be integrated by parts to generate
a net factor of éki:

GOP (g2 — P /d2§d2 ik (E=0) i (3.11)

27T

{ dC_ Ve[—00,¢7] AV(¢) VC[C_,+OO]> Ve[+o0, —00 >

]
+ (tr |Veloe, ool ([ de Veloo, 6147 V™ ~od] )| >}

where we also swapped i <> j in the first term.

We observe that the sub-eikonal gluon vertex enters in a form similar to eq. (2.6), but
with an explicit transverse index. Defining the analogous polarized Wilson line (one may
call it the polarized Wilson line of the second kind to distinguish it from eq. (2.17))

+o0
(VPOI)Z = /d:):_ Vi [+00,27] (igP+Ai(x)) Vy[z™, —o0]
_1OO+OO
=3 / dz~ Vy[+oo,27] (ig A’ (z)) Vi[z~, —o0] (3.12)

allows us to write the dipole gluon helicity TMD in a more compact form (compare this
with a very similar eq. (47) in [53])

sy = et [ s aisap{ (ool e [0 |
(3.13)

where, for brevity, we have also dropped the explicit integration limits from the infi-
nite unpolarized Wilson lines. Swapping ¢ <> £ in the last term generates a minus sign
and makes the two terms in braces complex conjugates of one another. Relabeling the
dummy integration variables ¢ and § as x; and x(, respectively, and changing variables to
d?zo d%x1 = d?x10 d?byo with big = %(gl + ) the impact parameter, we can write

—4i . o
g5 (@, k) = m /d2x10 d*byg e EZ0 | € {< [V (VPty ]> + c.c. } (3.14)
Defining another dipole-like polarized operator

Lo(zs) = 21Nc < [V (VPOH) } +c.c. > (25) (3.15)
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we rewrite the dipole gluon helicity TMD as

N, o , 2
gdelp( kT 8Z /d2$10 k1o ]{;16;2 |:/ d2b10 G]10 <Z$ = Ci)] . (3.16)

The dipole gluon hehc1ty TMD is related to an operator which is, surprisingly, different
from the polarized dipole amplitude in eq. (2.18). This is very different from the situation
with the unpolarized gluon TMDs for which the dipole gluon TMD was related to the
(unpolarized adjoint) dipole scattering amplitude on the target proton or nucleus [40]. This
relation gave rise to the “dipole” designation of this TMD. Here we see that this relation
is not universal and is not valid for the dipole gluon helicity TMD, therefore putting the
designation in question as well.

After the integration over all impact parameters, the new polarized dipole amplitude
is a vector-valued function of z;, alone, allowing us to write the decomposition

/ d*b1o Go(25) = (10)7) G1(a2g, 28) + €2 (x10), Ga(x3y, 25). (3.17)
By further writing (z10)’, as a derivative —i 821

scalar function GG; does not contribute to the dipole gluon helicity TMD, leaving only

i 81 NC 2
gdep( Jk7) = 22n)7 /d22?106 0k - 219G (96%0,25 = Qx>

on the Fourier factor, we see that the

g9*(2m
Ne 9 0 2 ik- 2 Q°
= M kT@ |:/d 10 627210 GQ T10y RS = ? . (318)
For future purposes, it is also useful to convert the derivatives back into coordinate space,
writing
9P (2, k) = . /dzwo d*zy et o ¢l (e | (VPO 0_ Vi || +ee
a 87 - A(zo)) —
—Ne 2 ik- 2 O 2 Q?
= s 27‘(‘4 dx 17210 |:1 + .TlOaT%O G2 T1g, RS = ? . (319)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole
operator; egs. (3.18) and (3.19) should be compared with eq. (2.2) from the quark helicity
TMD. Unexpectedly, however, the polarized dipole operator (3.15) which determines the
dipole gluon helicity TMD is different from the polarized dipole amplitude (2.18) which
determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we
see that the quark case (2.17) is sensitive to a local derivative V x A(z™) reflecting spin-
dependent coupling at some point in the propagation through the target. On the other
hand, the gluon case (3.14) is sensitive to a total derivative k x VPol 5 v x ol reflecting an
overall circular polarization which remains after the entire interaction with the target. In
principle, it would seem that quark helicity and gluon helicity are very different quantities,
with the gluon helicity requiring not only that a spin-dependent scattering take place but
also that the circular-polarized structure survive the rest of the rescattering. We will thus
need to derive new evolution equations analogous to eq. (2.8) for the new polarized dipole
amplitude G2 in order to determine the small-z asymptotics of the dipole gluon helicity
distribution.
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3.2 Weizsacker-Williams gluon helicity TMD

For completeness and further comparison, we will also evaluate the “Weizséicker-Williams
(WW) gluon helicity TMD”:

gV (e, k7) = _;“(2;)3 / de~ d2€ d¢™ d2¢ P (€ =C) emik(E0)
x (e br [FQuic e FHe) ute, ). (3.20)

Because both gauge links are now future-pointing, it is possible to choose a gauge in
which the WW gluon distributions possess a simple partonic interpretation; specifically,
we choose the AT = 0 light-cone (LC) gauge with the V - A(x~ = +00) = 0 sub-gauge
condition (see [54] for a discussion of the LC gauge and its sub-gauges).?> With this choice,
the gauge links are unity on both the light-like segments and on the transverse segments
at = = +oo (with the physical content of the gauge links having been encoded in the
boundary at = = —oc), and we also have F = 8+AiLC. Integrating the derivatives by
parts in the usual way gives

—43
(2r)?

y / de= @26 de— d2¢ &P (€ —C7) pmiki(§=0) <ezz tr [AZ’LC(C) A‘io(ﬁ)b-

gV (a, kp) = z(P)? (3.21)

From here, the rest of the calculation is similar to the standard textbook treatment of the
unpolarized WW gluon distribution [47]. We first determine the explicit gauge transforma-
tion which achieves the form of eq. (3.21) in terms of the fields in the A~ = 0 or covariant
gauge we have used elsewhere. The desired gauge condition

0=Af,=SATS' - g(am) S1, (3.22)

and sub-gauge condition V - A;~(x~ = 4+00) = 0 [55, 56] are easily seen to be satisfied by
the gauge transformation

+oo
S(x) =Pexp ig/dx_ AT (z7,2) p = Vi[+oo,27]. (3.23)

P
The transverse components AiLC we need are given by

to=SA ST - ;(aiS) S (3.24)

where in the eikonal approximation we would normally neglect the first term compared

to the second term on the right-hand side. But for the gluon helicity, we must keep the

3Throughout this subsection, we denote the fields in the AT =0, V- A(z~ = 4+00) = 0 gauge with the
explicit subscript “LC”; fields without explicit subscripts correspond to the A~ = 0 gauge used elsewhere
in this paper.
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first sub-eikonal polarization-dependent correction to the product of the two fields, which
enters eq. (3.24) through AY :

(€ Afe©) ~ - (Vebroo. CTALO I+l <£ivg[+oo, 51) Vele™, +od]

i [0 ) ) Iy _
+g<8§i cl+oo,C ]> Ve[¢, +oo] (Vel+oo, 7] A (€) Vele ™, +00])
(3.25)

In the small-z limit, the longitudinal coordinate integrals are

o0 o0

/ d¢™e ™ ¢ Ve[ +o0, (1AL (O V[T, +o0] ~ / d¢™ Ve[ +o00, CTTAL(OV[C, +o0]
g; (VPLvi = g}_%vg(vg’” )i (3.26)
and
/Ood§_ el tes 9 5[+oo E7) ) Vel§, +oo] =
R o¢] o

+00 T

/ dg= Pt / dz™ Ve[+00,27] (ig a?A*(O*,ZTf)) Velz™, +od]
1

—00 &'*

—+00 z"
= /dz_ /dﬁ_ P Te” Vel+oo,27] (igaij/ﬁ((ﬁ',z_,f)) Velz™, 400

€

—00 —00

+o0o
o - (i O vt - -
N ot /dz Ve[+00, 2 ](Zgang (07, z ,5)) Velz™, +o0]

“oo 1

i oo (0

where we have expanded the exponent to the first non-vanishing term. Inserting all of

these expressions into eq. (3.21) gives

4 2 2 —ik-(§— i
0

ot e (i) | o[ (e) 2 ]

Swapping ¢ <+ § and i <> j in the second term makes it the complex conjugate of the first
term. Relabeling the dummy integration variables ¢ and 5 as z; and z, respectively, and
changing variables to d?z¢ d*r1 = d?z19 d?b1g with by, = (ml + zy) the impact parameter,

GWW
gL (I‘, k%) =
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we can write

g?LWW(m, k%) = W /dQ.TlOdzbl[) elkzlo 6? <tr

. )
yPehi yty VAl
ML 0(3(960)1 ¢

+ C.C.>.

(3.29)
It seems that the WW gluon helicity TMD is determined by yet another polarized
dipole-like operator

; 1
Gio(zs) = N <tr

which is a rank-2 tensor in the transverse plane. After integration over impact parameters,

(Vfd)i Vf Vo (8( i)j VJ) + c.c.> (2s) (3.30)
o)

we can correspondingly define a scalar function

Ga(aiy, 28) = /d2b10 €7 Go(2s)

-1 - N 0
d2b 7] t polys 1 i T
2N, / 10 €7 < r (V; )Y Vl Vo (8@0)1‘/0)

in terms of which the WW gluon helicity TMD is written

_N,
Ao

+ C.C.> (zs) (3.31)

2
A0 eE20 Gy <x%0, zs = Q) . (3.32)
x

gchWW (.’E, k%) -

We have now expressed the Weizsacker-Williams gluon helicity TMD as well in terms
of a yet another new polarized dipole operator; eq. (3.32) for the WW gluon helicity dis-
tribution is directly comparable to eq. (3.18) for the dipole gluon helicity distribution
and eq. (2.2) for the quark helicity distribution. The polarized dipole operator (3.30) for
the WW gluon helicity distribution is different still from both the operator (3.15) for the
dipole gluon helicity distribution and the amplitude (2.18) for the quark helicity distribu-
tion. Although the WW gluon helicity distribution is built from the same polarized Wilson
line (3.12) as the dipole gluon helicity distribution, it is incorporated into a more compli-
cated operator due to the future-pointing structure of the WW gauge links: this feature
is similar to the unpolarized WW gluon TMD, which is related to the color quadrupole
operator instead of a dipole [40, 42].

4 Operator evolution equations at small x

Having constructed the appropriate polarized dipole amplitudes for the dipole gluon helicity
distribution (3.15) and Weizsécker-Williams gluon helicity distribution (3.30), we will now
proceed to derive small-z evolution equations, focusing on the dipole distribution. We will
do this at the operator level using a procedure which is similar in spirit (although different
in gauge) to the background field method employed in [11].

Beginning with the operator definitions of the polarized Wilson lines and dipole am-
plitudes, we will separate the gauge fields A* of the target into “classical” fields A%, and
“quantum” fields a*:

At (z) = Al (z) + (). (4.1)
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This separation can be done using a rapidity regulator 7, such that the “fast” quantum
fields have rapidities greater than 7, while the “slow” classical fields have rapidities less
than n and are effectively frozen from the point of view of the quantum fluctuations.
(Here “greater” and “smaller” rapidities depend on the choice of a coordinate system, and
may be interchanged.) This is essentially the rapidity factorization approach used in [57],
and the evolution equations we will derive can be understood as renormalization group
equations in the rapidity cutoff . The classical fields of the target, being enhanced by
the target density, will be resummed to all orders. These classical fields (in the A= = 0
light-cone gauge) are localized in 2~ to a parametrically small window, which we choose to
be centered on the origin: = € [-R™,+R™| ~ [—p%r, +;%+]7 with p™ the large momentum
of the target. Although the classical fields are Lorentz-contracted to a delta function at
2~ = 0, the quantum fields can extend far beyond the target; we will calculate the first
correction due to these quantum fields in perturbation theory.

As a warm-up exercise and as a cross-check of our previous work [9], we will first employ
this method to rederive the evolution equations for the polarized dipole amplitude (2.4)
(or (2.18)) which governs the quark helicity distribution at small . We will then repeat
this exercise to derive new evolution equations for the polarized dipole amplitude (3.15)
which governs the dipole gluon helicity distribution. We leave the corresponding evolution
equations for the Weizsécker-Williams gluon helicity distribution for future work, although
we note that the small-x asymptotics of both gluon helicity distributions must coincide.

4.1 Evolution of the polarized dipole operator for quark helicity

We begin with the polarized dipole amplitude for the quark helicity distribution eq. (2.4),
using the explicit operator form (2.17) for the polarized Wilson line (cf. eq. (2.18)):

T 5
Gio(zs) = 2pN /dacl_ <tr {ngl[—oo,azl_] (ige%lAi(:cI,azQ) Vilzy s oo]] + C.C.> (zs).

O(x1)}
(4.2)
Because this operator contains only ¢-channel gluon exchange, it will not couple directly to
soft quarks. This procedure will therefore only test the gluon emission sector of the quark
helicity evolution equations, but this is precisely what is needed to verify the evolution
equations in the large- NV, limit.

Asin eq. (4.1), we first expand the gauge fields into classical and quantum components,
both in the Wilson lines and in the explicit operator insertion. We then keep the first
quantum correction to the classical background by contracting two of the quantum fields to
form a quantum propagator in the background of the classical fields.* We may distinguish

4One may note a subtlety of this procedure: strictly, the fields must be time-ordered in order to apply
Wick’s theorem and form contractions. The fields entering the operators here are not time-ordered but
rather all sit at ™ = 0, which plays the role of time in light-front quantization. Time ordering may be
achieved by inserting a complete set of “out” states, as in [40], although the resulting Schwinger-Keldysh
ordering is still different from the forward-scattering time ordering implicit in the background field method.
The equivalence between these two time-ordered structures was verified in [58] up to next-to-leading order,
which is more than sufficient precision for our purposes here.
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the following classes of contractions shown diagrammatically in figure 2: “polarized ladder”
emissions (I and I) in which a polarized gluon is emitted and absorbed by line 1; “polarized
non-ladder” emissions (IT and II') in which a polarized gluon is exchanged between lines
1 and 0; and unpolarized gluon emissions (dubbed “eikonal” in figure 2). As visualized in
figure 2, these contractions are

I: tr -VQ Vi[—o0, 21V x a(x],z,) (:l[xl_, oo] (4.3a)
O | ]
I': tr| Vo Vi[—o0, 27|V x a(z],z;) Vi[z], o0 (4.3b)
m+1r: tr| Vo Vi[—o0, 27|V X a(zy,z;) Vi[z], ] (4.3c)
] .
eikonal : tr| Vo Vi[—oo,27] V x Ay(z7,z) Vilz7, oo]}

+tr[ Vo Val=00,07] ¥ x Ay(aT,2;) ViloT, o0

- ) |
+ tr Vb VL[_OOM/L'I] y X Acl(vagl) VL[CBI, OO]]

+tr _VQ Vl[_oo>x1_]y X Acl(xl_vﬁl) [ZL’I_,OO]] (4-3d)

Consider first the contraction I. Expanding the Wilson line Vi [z, o0] to first order in
the quantum field, we have

P2pt ’ 7 9 .|
(0G10)1 = /da:l_ /de_ tr [Vgt“‘/ftb} ( —) aia(xl_,gl)> atb(xy,z) +cc ).

QNC N - 8(%‘1)1
—0o0 0

(4.4)

After forming the contraction of these two quantum fields, we set a* = 0 in the rest of the
Wilson lines, such that only the classical background fields contribute. Since these classical
fields are localized at =~ = 0 we replace the remaining semi-infinite Wilson lines by the
fully infinite ones: this is in accordance with the standard calculation in the shock wave
background [11]. The contraction between the operator insertion a’" and the semi-infinite
Wilson line Vi[z], 00] explicitly requires z; > 27, but in principle there are contribu-
tions from ] < z, < 0 and 0 < z; < 25 in addition to the 27 < 0 < z5 written
here. We neglect these sub-eikonal virtual diagrams, since then the antiquark would again
need to scatter in the classical field in a spin-dependent way, making them further energy
suppressed. Thus only the 2] < 0 < z; ‘“real” diagram shown in figure 2 contributes.
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11

Figure 2. Diagrams illustrating contractions (4.3) contributing to the evolution of the polarized
dipole amplitude (4.2) for the quark helicity distribution. The blue band represents the classical
fields (shock wave), the black vertex represents the sub-eikonal operator insertion (2.13), and the
gray box represents the polarized Wilson line.

Similarly, only the diagram in which the radiated gluon scatters in a spin-dependent way
is capable of receiving logarithmic enhancement at small x.

The contraction in eq. (4.4) is the gluon propagator from the sub-eikonal emission
vertex to the Wilson line in the background of the classical fields. In general, we can write
it as a free propagator from the emission vertex to the shock wave, a Wilson line for the
interaction with the shock wave, and another free propagator to the absorption vertex:

0 00
B i ) S -
/ dxy /d% 672(8(x1)i ai (21 ail)) a+b($2 ,Z1) =
1
—00 0

0
0 d*ky 4o —q )
_ d2 1j ’ dx= iky @y ’El'ﬁzliNJ“ k
/ " ETa(xl)l_/ ”71/(27046 R ®)
X (U3 (2K7)27 6(ky — k;)]

7 _ d4k2 ikt ik —1
—thy Ty o—ikoTy 7 NV ) 4.
8 /daﬁ2 /(27T)4e ‘ k2 + ie (k2) (4.5)
LO
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Here the numerator of the free gluon propagator in the n- A = A~ = 0 light-cone gauge is

14 v )
%ﬂ - Z (ex(k))* (ex(k))” — (kk_)Qnuny'

A==+

N (k) = g™ — (4.6)

The contribution from the instantaneous gluon term (last term on the right-hand side of
eq. (4.6)) is proportional to a delta function in = and cannot propagate across the classical
shockwave; it therefore does not contribute to real gluon emission. This allows us to replace
the numerators by polarization sums and write the interaction with the shockwave as a

polarization matrix:
(ex(k1)) (UL (€4 (K2))w = Oan (Un)™® + A G (URP + .. (4.7)

where the ellipsis represents sub-eikonal terms which do not contribute to helicity evolution.

This gives

0 00
_ — 1 a a _ _
/ dx, / Ty € (3(951)1 a’ (] @1)) at’(zy,z)) =
—00 0
6
A

0
0 d*ky 4o —1q ;
d2 /d —/ ezk’l z] ezﬁlgm (& J
s e et [ 4 [ e
—o0

x | (UE)" 2m(2ky) S(ky — ’fz_)]

T dRe g i
d —iky vy omiky Ty ko)t . 4.8
: /%/(%)46 ‘ 21 ae () (48)

Each factor in brackets now has a transparent interpretation as the emission vertex of
a gluon with physical polarization A, the polarized Wilson line for that gluon to scat-
ter in the classical field, and the absorption vertex. Performing the spin sum gives
YA ) lea(ke)]t = zeT(kzg) ‘. /k5 (equivalently, we could have just kept the appropri-
ate terms in the numerators (4.6)), such that

0 00
— — 1 a ' a _ _
/ dx /d% 6% (EM ai (331 >£1)> a+b(1‘2 7§1) =

d’k dk: 1
2 1 z x ik, -z
/dk /m e / x1/ e

X /d /d2k2 dk+ _’k+ _Zk2'$21
e Koz
2 27) k3 + ie

(ka)' | (UB . (49)
ki =ky =k~
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The integrals in brackets are straightforward to perform:

_ d k]_ dk k.+ = k.- 1 ]. ]. _
dx e %1 grEa =—1 0(k 4.1
/ / ‘ k3 +ie 2w N raA xo1 A (k) (4.102)
0 -1 1 —1 (z21)}
1 = — 4.10b
d(z1)Y, [2% nxglA] 2 2% ( )
d2ks dk ik i 1 o (e)Y
dxy Wy Ty g2 IR ko)' = 0(k 4.1
/ vy [ e = o), (400
such that the full propagator for contraction I is
roT 9 17 &
— - i - by..— T2 1\ ba
/d% /d% (8(931)16% @’ (3317&1)) a*P(ay, 1) = 3 /dk / o (U5 (-
—00 0 0

(4.11)

The propagator (4.11) is the backbone of the calculation, trivially giving for diagram I

Lo

B Oilsgc / a;z/’ / &2@ <<]\17 [Votavi tb} (UPOI)ba +c.c. >>(z’8), (4.12)

Lo ¢

2.+ 2
(0G10)1(28) = g P /dk‘_ / d—;@ <tr [VgtaVthb] (U;Ol)ba + c.c.> (2's =2pTk™)
0

A
s

where we have used the double-angle brackets defined in eq. (2.4). In the second line of
eq. (4.12) we have also modified the limits of £~ integration to make sure that £~ does not
exceed the large p~ momentum of the projectile in the actual diagrammatic calculation.

It is straightforward to show that the propagators are symmetric, such that diagrams
I and I’ are equal and diagrams II and II' are equal. In the case of diagram II, the only
difference is that the momenta are conjugate to different coordinates on opposite sides of
the shock wave (note that a™ in the contraction is now evaluated at z):

/dxl /d% i €T aJ_ “(ay ,931)) +b(332 ,Zg) = 13 /dk’ /d2 M USOI)(k )
3173
(4.13)
which reduces back to (4.11) in the limit 2, — z;. This gives for diagram II
—9°p* r —Oo - ay/T4b 9 ij - +b(,.—
(6G1o)u(zs) = SN dxl /d:z:2 tr [Vot Vi't } <3(a:1)1€T al (] ,gl)) a"(zy,zg)+c.c

o OésN z dZ .'1/'21 3720 1 atrtab pol\ba ,
T 47‘(‘2 / 23, 23, <Nc2 tr {Vgt Vit } (Ug ) +C-C.>>(Z s). (4.14)
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The extra minus sign from diagram II comes from having expanded V{ rather than VlT;

that is, from the opposite charge (—g) of the antiquark. -
The last ingredient in the evolution is the unpolarized eikonal contribution, which can

simply be read off of the literature; the only difference is that line 1 for us is polarized.

os N, i dz' x?
((5G10)eik(2’8) = o2 /Z,/dzxg 2 102
2

» 21 T30
(P ] - S ] et

With all three contributions from polarized ladder gluons (I+ T, (4.12)), polarized non-
ladder gluons (IT + II'; (4.14)), and unpolarized gluons (eikonal, (4.15)), the complete
evolution of the polarized dipole amplitude for the quark helicity distribution is

Gro(2s) = G\ (28) + 2(6G10)1(25) + 2(6G10)11(28) + (6G10)eir(25)
it 8 [ fen] [ -2
Ty T3 Ty

X <<%tr [VQtQVth} (U;Ol)ba + C.c.>>(z’s)

b (gt ] - G [t e i | s
in complete agreement with eq. (50) of [9]. We should note that the limits of the =5 integral
in each term are set by enforcing a lifetime ordering condition: the lifetime of the quantum
fluctuation should be much longer than the subsequent classical interactions, in accordance
with the rapidity factorization scheme. The fact that we have successfully re-derived the
evolution equation (4.16) for the polarized dipole amplitude serves as an independent check
of eq. (50) in [9]. It also validates both the operator definition (2.17) of the polarized Wilson
line and our implementation of the operator-level evolution using the background field /
rapidity factorization methods. We will next repeat this analysis for the new polarized
dipole amplitude (3.15) for the dipole gluon helicity distribution.

Before we do that, let us make the connection between eq. (4.16) and egs. (2.8).
Reinstating the lifetime ordering condition on the xy integration in the first term in the
curly brackets of eq. (4.16) multiplies 1/22%; by 0(z%, 2 — 23,2’) while multiplying (x5, -
To0)/ (23 239) by 0(22, 2 — max{x3,,73,}2’). The DLA limit of the resulting kernel is
obtained by the following substitution:

1 To1 " T 1
—5 0(z3gz — 25,2') — % 0(x3,2 — max{x3;, x5 }2) ~ o O(z10 —x21).  (4.17)
21 T321 20 21

To simplify the second term in the curly brackets of eq. (4.16) we employ the Fierz identity,
which gives

200 [Vt VP | ) =t [V | b [V vpelt] - —

- c

[VQ VfO”} . (4.18)
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The o integral in the second term of (4.16) is logarithmic only in the z9; < x19 and
x90 <K w1 regions. In the xoy < 19 region eq. (4.18) ensures that the expression in the
double angle brackets in the second term inside the curly brackets of eq. (4.16) approaches
zero; thus the transverse logarithm coming from the x99 < 19 region vanishes. This is
in complete analogy with the unpolarized small-z evolution [11-18]. The physical reason
behind this cancellation is that when the emitted unpolarized gluon is very close to the
unpolarized quark (that it is emitted by) in the transverse plane, the system is identical to
the original unpolarized quark.

In the z9; < x10 region, however, the second term inside the curly brackets of eq. (4.16)
does not vanish, as again can be seen from eq. (4.18). The formal reason behind this is
that the zero-size polarized dipole does not have a unit S-matrix. In other words, polarized
dipoles do not have the color-transparency property that the unpolarized dipoles have, since
when the polarized quark line overlaps with the unpolarized anti-quark line in the transverse
plane, their interactions with the target do not cancel. Somewhat more physically, one can
argue that when an unpolarized gluon is emitted by a polarized quark, the system does
not become equivalent to the original polarized quark even if the gluon is very close to the
quark in the transverse plane.

In order to keep only the logarithmic x9; < z19 region, we replace

2
1
Y10y 2 G(z10 — w21) (4.19)

2 .2
To1 T30 le

in the second term in the curly brackets of eq. (4.16). With the substitutions (4.17)
and (4.19), eq. (4.16) becomes

0) asN dz' d2l’2 1
Gio(zs) = Ggo / / 9010 33%1) 0 (95%1 - ,)

51321 zZ'Ss

C

X {<<]$2tr [Vgt“VTtb} (U;Ol)b“ + c.c.>>(z’s)

+ (gt v - e [ ] + c.c.>><z'8>}' (4.20)

To further simplify eq. (4.20), we invoke the DLA approximation (and discard all the
leading-logarithmic evolution, such as BFKL, BK or JIMWLK; that is, put all the S-
matrices for the dipoles without polarized Wilson lines equal to one). We also employ the
large- N, limit. With these approximations, we replace (see [9] and appendix A of [37])

(o] )+ 3 QP T 3 ey o
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and obtain

asN dz [ d*x 1
Gio(zs) = G&% / / 20 0(x3y — 23,)0 (3551 - ,)

.’IJ21 Z'Ss

. {<<2}Vtr [vgv;olq b [ + e )

+ << 2]1vctr [Vgi‘ﬂq _ 211\7 - [ngfou} n c.C.>>(z's)}. (4.22)

C

Equation (4.22) has been derived for a polarized quark dipole evolution. The large- N,
limit of helicity evolution, as considered in [9, 37], involves only gluons: the corresponding
dipole amplitude Gig(zs) would correspond to the interaction of the quark line of one
large- N, gluon and the anti-quark line of another large- NV, gluon with the target [34-36].
Here lies another important difference between the small-x helicity evolution at hand and
the unpolarized evolution [11-18, 34-36]: in the case of helicity evolution, the difference
between a polarized gluon emission by a polarized quark versus by a polarized gluon is not
only in the color factor. For instance, for helicity splitting functions at small-z and large
N, one has APgg(z) = 4 APgq¢(z). Out of this factor of 4 difference, 2 is due to the color
factors, while another 2 is due to helicity dynamics in the splitting. This means that, when
going from the quark dipole of eq. (4.22) to the quark part of the gluon dipole, we need to
multiply the polarized gluon emission term (the first term in the curly brackets) by 2 [37].
(Ideally we would not be needing to do this “ad hoc” operation if we had started with the
polarized gluon dipole operator above.) We thus have

SN d [ d? 1
Gio(zs) = Gg% + 2 / - / Ly — 23,)0 (xgl - )

3321

. {<<;Ctr [vgv;olq L[]+ ee )

+ << 2]1\76 {VQVPOH} 2]1\70“ [VQVEOH} + c.c.>>(z's)}. (4.23)

The last step, which does not automatically follow from our formalism, is to iden-

tify whether various VVT correlators in eq. (4.23) combine into the amplitude Gyg(zs)
or into the auxiliary neighbor-dipole amplitude I'. This depends on the lifetime ordering
for the subsequent evolution in those dipoles. For instance, since in eq. (4.23) we have
To1 <K x10, the subsequent evolution in the dipole 02 in the non-eikonal emission diagrams
of figure 2 “knows” about the dipole 21, and hence tr [VQ VQPOIT} in eq. (4.23) [9, 37| gives us

To2,21(%'s) ~ o1 21(2's). Similarly, one can show that tr [VQVfOH} in eq. (4.23) contributes
Lo1,21(%'s) [37]. The remaining traces give us G’s. After performing this identification and
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integrating over impact parameters, we get

z
N, dz d?
G2y, 25) = Gady, 25) + ——< [ = / S0 (2, 31, 2's) + 3G(ad, 7's)], (4.24)

255
in agreement with eq. (2.8a). (To arrive at eq. (4.24) one also needs to notice that, due to
the bounds of the xo; integral, 2’ > 1/(x3; s) > 1/(x3,s) which is a stronger lower bound
on the 2’ integration than A?/s of eq. (4.23).) Eq. (2.8b) is obtained by analogy, with a
slightly more subtle way of imposing the lifetime ordering.

4.2 Evolution of the polarized dipole operator for the dipole gluon helicity

The dipole gluon helicity distribution is governed by the polarized dipole amplitude (3.15)
and the (local) polarized Wilson line (3.12). Written explicitly, this operator is

‘ — .
lo(zs) = P day (tr [VoVi[—oo, 27 |(—ig) A" (z1, z)Vi[z],00]] + c.c.) (zs).  (4.25)
2N,

In the same way as before, we expand the fields in terms of classical and quantum com-
ponents, contracting the lowest-order contributions in the quantum fields. Again, there
are three general classes of contractions / diagrams: “polarized ladder” emissions (IV and
IV'), “polarized non-ladder” emissions (V and V'), and unpolarized emissions (“eikonal”),
as illustrated in figure 3. In analogy to eq. (4.3), the specific contractions are

IV : tr {VQ Vi[—oo, 27 ] @ (z,zy) Valzy, oo]} (4.26a)
4
v : tr {VQ Vi[—oo, 2] a' (27, zq) Vi[z], oo]} (4.26b)
| l
V+V: tr {VQ Vil—oo,z7] @' (z1,2) Vi[zy, oo]} (4.26¢)
[l .
eikonal : tr [VQ Vil—oo, 27 ] AY | (27, 2) Vi[z], oo]}
-
+tr| Vo Vi[—oo, @] Ay (a7, 2p) Vilay 700]]

-
+ tr

. I
Vo Vil-o0,a7] ALy (o7, 2;) Vil , o0

+tr[V Val-o0,a7] ALy (o7, 2y) Vil , o0 |

- . I
+ tr|Vy Val—o00, 7] Al (a7, 2y) Vala7 o<l

+tr| Vg Vl[_oov xl_] AilJ_(xl_vgl) [:L‘l_, OO]] . (4.26d)
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eikonal

Figure 3. Diagrams illustrating contractions contributing the evolution of the polarized dipole
amplitude for the dipole gluon helicity distribution. The blue band represents the classical gluon
fields (shock wave), the vertex (i) denotes the sub-eikonal operator insertion, and the gray box
represents the polarized Wilson line.

As we saw in eqs. (4.11) and (4.13), the propagator for the ladder diagram I or IV
is just a special case of the propagator for the non-ladder diagram II or V. We therefore
begin by calculating diagram V, which is the contraction of the operator insertion with the
unpolarized Wilson line in the time ordering z; < 0 < z;. Expanding the unpolarized
Wilson line gives

0 o r
. 2yt :
(0GY)v(zs) = 92]]; dxy /dx; <tr [Vgai(xf,gl) Vf a+(x2_,x9)] + c.c.>
‘ —00 0
2, +
_9p ay/T4b it
= N <tr [Vgt Vi't } (A )pol(xl,gg) + c.c.>, (4.27)

where we have defined the propagator in the classical background field as

(Az+)pol(w17 $0 =

é\o

dxy /d:v2 a'(xy, ;) a*b(:cz_,xg). (4.28)
0

As before, we will find that the propagator A’} is symmetric, such that all of the polarized
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emissions shown in figure 3 can be written as

: : g*p* b
(0G o) 1v(zs) = (6GYp)v (28) = — SN <tr [Vgtavlt } (A”)pol(xl,gl) + c.c.> (4.29a)

) ) 25+
(6Giy v (zs) = (6Giy )y (2s) = 92 J]\ch <tr [VQtCLVftb] (AL (21, 20) —l—c.c.>. (4.29b)

The two classes of diagrams differ only in two respects: a sign difference in the prefactor
(due to expanding V) vs. VlT) and the arguments of the propagator (for ladder vs. non-
ladder emissions). -

Thus the calculation is reduced to finding the propagator (4.28). In analogy to eq. (4.8),
we write the propagator as

7 dkl el x; iki-x —1i *\1
(S atarszo) =302 [ des / iy [ G et ()

x [(UFYo (2k1 )27 6(ky — k;)]

o

— d'ky —ik}xy —ikyx —1 +
X /dl‘2/(2ﬂ_)46 27ze 72720k%+i6[6>\(kj2)}

() d2k1 dk+ zk:+a: ik, -x 1
:—ejz/dk /d%z:2 /d:rl/ 16—1—21]{%”6

koQdk f'ijLx* —iky 1 ] ol\b
/ dry / et (UL (430)

Employing the integrals in (4.10) we recast this as

i 2 6T(LUQO) ol\ba
(AL (1, 2) = ~ 13 / dk~ / d*zy In -~ A a2 (US*) -y (4.31)

With the propagator (4.31), it is straightforward to obtain the evolution kernels IV — V'
(5G§0)IV(25) = (5G§o)lv’(25)

z .. .
_ 0‘8]\270 dzl/d%c2 In 1 6172(55221)1
4 $21A 1’21

S

x <<%tr [vgtavj tb} (UFye 4 C.c.>>(z’s), (4.32a)

(6G1p)v(28) = (6Gp)vr(25)

z .. .
_O‘S]ZC dz' / Pyl 6212(90220)1
47 1}211\ .%‘20

A2

s

X <<%tr [VQtGVth] (U;Ol)ba - C.C.>>(Z/S). (4.32b)

C
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The only other ingredient necessary is the unpolarized eikonal gluon contribution, which is
identical to (4.15) except for the replacement of the polarized Wilson lines V}” ot _, vy oltyi .

; N, [ d z? 1 ,
3Gig)eik(28) = ——° A2y — 20 (5t | Vot (VPO | (U)™
(0Gp)eik(28) = = / / oy <<N2 r[ ot (V1) }( 2)

S

_ g@ [V (VP } +ec. >>(Z'S)- (4.33)

Including all these contributions, we can immediately write down the evolution equa-
tion for the polarized dipole amplitude Gﬁo as

i0(z8) = GL 1 (25) + 2(0Gi ) )1v (25) + 2(5Gig)v (25) + (6Gig )ik (25) (4.34)

SN dz'
_Gu() (zs) +2 / © /dQZL‘Q

I (90 Y. (x20) 1
X{lnflleAeT 7 2 L] <<7

3 - 23 NE
o (e [ ] 0 o [ e >><Zfs>}_

tr [VgtaVthb] (U;Ol)b“ - c.c.>>(z’s)

As expected, this evolution equation represents just the first of an infinite tower of operator
equations; we will remedy this problem in the usual way by taking the large-N. limit.
We will also linearize the evolution equation, keeping the essential polarization-dependent
dipoles and neglecting additional unpolarized rescattering (e.g., the non-linear saturation
corrections); this will be necessary to generate double logarithms of energy. With these
simplifications, we replace

|
St [Vgtavf tb] (UE 1 ce. -

[

VoVt 4+ -t VPOV | + e (4.35a)
v+ g ]

2N 2N,

Cr
N2

tr V(v | -

%tr [Vgta(vfon)itb] (Ug)b [VO(VPOH) } +c.c. —

[

N [VPOI(VPOIT) }+cc (4.35b)

giving

: i asN, dz
0(28) = GO (25) + / s

X {ln acgllAeT (xjél)l — (x;é)oh] << 2]1\[0 tr [VQVQPOH} + Ctr [V;OIVJ} +c.c.>>(z's)
T e MR AT N R S
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The right-hand side of eq. (4.36) are now polarized dipole amplitudes, but we must think
carefully before identifying them with G or G’. Depending on the precise limits of the

13

zo integration, these dipoles may instead be “neighbor dipoles” T' or I'*. These limits, in
turn, are dictated by the regions of transverse phase space which generate the greatest
logarithmic enhancement of the evolution.

Consider first the unpolarized eikonal emissions in the last line of eq. (4.36). Just like
in the quark helicity case, we see that the dipole BFKL kernel x2,/(z3, x3;) is potentially
DLA in both the 23, < 2%, limit and in the 23, < x%, limit. In the latter case, z, — z,
however, the operators multiplying the kernel cancel and destroy the DLA contribution.
Therefore, similar to the quark case [9], we conclude that only the x%l < m%o region in
that term is DLA and simplify the dipole BFKL kernel to a%%lﬁ(w%o — 23))0(z% — =),
where the available energy z's acts as a UV cutoff. For each of the associated dipoles
tr [VQ(VPOIT) J_} and tr [VO(VPOIT) J_] , we must impose a lifetime ordering condition on their
subsequent evolution to ensure that the “fast” quantum fields computed here live longer

than the “slow” classical fields. The first term tr [‘/Q(VPOIT) } depends only on the distance
w91 associated with the quantum fluctuation and can be identified as G%,(2’s). The second
term tr [VO(VPOIT) L} appears to depend only on the distance x1g, but must also respect the
lifetime ordering with respect to the virtual gluon loop of transverse size z21 that gave rise
to this term in the equation. This term is therefore a neighbor dipole Fﬁom(z' s) because
it “remembers” about the lifetime of the neighboring 21 quantum fluctuation (see [37] for
a detailed calculation explaining this conclusion). We therefore simplify the eikonal terms
to write

; i (0 asN, r dz’'
lo(2s) =GiY) (z9)+ ) /Z,/dQCL‘Q
A72

X{mxiﬁ%[(”5)1—(”3)11«5 SVl ) R I

L21 Lo0

ozsN dz / d2:c2

1 . .
2772 $10 x%1)9<$%1 —%) [Gzlz(zls)—rzlo,m(zls)} . (4.37)

5321

The story for the polarized gluon emissions in the second line of eq. (4.37), however,
is significantly more complicated. The reason is that the transverse integration does not
generate a logarithm of the energy, so the whole kernel is not DLA. (After integration,
1

polarlzed emissions only generate one logarithm of energy from the 2’ integral and can be

= A and not a logarithm of the energy.) It would seem, then, that the

neglected compared to the DLA evolution of the eikonal terms.
This, however, is not quite the case, because of the initial conditions. The initial
conditions for the polarized dipole operator G’io, taken in the quark target model at a fixed
impact parameter, can be obtained by computing the diagrams shown in figure 4:
a?C’F (i (z, —b) 0 |z, — b
Ne |z, — bJ? |z — b

Gi) () = T3 (2) = — (4.38)
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b % % £
Figure 4. Diagrams contributing the initial conditions for G* and ' in eq. (4.39).

Integrating over the impact parameters yields

. . 20 . 1
/ dbyo G\ (zs) = / d%b1o T}, (25) = _O‘jTFMU Holn v, (439)
Cc

which is independent of the energy. By contrast, the dipoles tr [VQVgp Olq and tr [Vgp 01V£ }
in eq. (4.37) are the ones which enter the evolution (2.8) of the quark helicity distribution.
Their initial conditions are given by eq. (13b) in [37] for the impact-parameter integrated

case. Keeping only the gluon-exchange part of that expression,

/ d2b1o G\ (25) = / by T, (2s) = o0 In(zs22,), (4.40)
) NC

we see that [d?bi9 G}, in (4.39) is suppressed by a logarithm of energy compared to

fd2b10 G10 in (440)

This implies that G* starts energy-independent and, after one step of eikonal evolution,
acquires two logarithms of energy. On the other hand, G and I can mix into G* through the
second line of eq. (4.37), picking up one logarithm of energy from the evolution. But since
G and T start off with one logarithm of energy from the initial conditions, both of these two
contributions are of the same order. Subsequent evolution in the eikonal G*, I — G* T"
channel and the prior evolution (2.8) in the polarized G,I" — G, T" channel, are both double
logarithmic.

Therefore, we conclude that we must keep all of eq. (4.37), and we are left with a
transverse integral for the polarized emissions which covers the entire plane. The result-
ing kernel in the second line of eq. (4.37) is leading-logarithmic (LLA). This is similar
to the unpolarized BFKL/BK/JIMWLK evolution, which also has a LLA kernel, without
any logarithm of energy coming from the transverse coordinate integral. In the unpolar-
ized evolution case at LLA one does not need to impose the lifetime ordering condition
which would restrict the transverse integrals (see [45, 59] for the higher-order corrections
though). The same is true here: the transverse integral in the second line of eq. (4.37) is
unconstrained.

This leads to a problem though: with an unconstrained integral the second line of
eq. (4.37) we cannot tell whether the dipole 21 is smaller than the dipole 20 (21 < x90) or
vice versa (z99 < xe1) or both dipoles are large xo; ~ w9y > x10. This was not necessary
for the LLA unpolarized dipole evolution [34, 35, 60], since there the subsequent evolution
in all the daughter dipoles was independent of other dipoles and their sizes. This is not
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the case for our DLA helicity evolution (2.8), where the subsequent evolution in a given
dipole can make it a “neighbor dipole” if the adjacent dipole (produced in the same step
of evolution) was smaller in the transverse plane.

By our power counting, the subsequent evolution for the correlators in the second line
of eq. (4.37) should be DLA. Hence it should be expressed in terms of the DLA amplitudes
G and I'. Consider specifically diagram V in figure 3. When x99 < 21, the subsequent
evolution in dipole 20 is given by Gao(2’s). Conversely, when z9; < x99, the subsequent
evolution in dipole 20 is given by T'gg21(2’s). With the DLA accuracy of this subsequent
evolution we can not distinguish, say, xo1 < oo from x9; < x99. Therefore, to include
both the x9; < w99 and w91 > x9o regions of integration in the second line of eq. (4.37) we
define a new amplitude

F%S?Zl (Z/S) = 0(1’20 - xgl) F20721(2,5) + 9(1‘21 - $20) Ggo(zls). (441)

This amplitude I'8*" encompasses both regions of transverse plane with the DLA accuracy,
and is thus the proper amplitude to use for diagrams IV, IV’ in figure 3 when describing
the subsequent evolution in dipole 20 and in diagrams V, V’ when describing the evolution
in either of the daughter dipoles, 20 or 21.

As a result of this analysis, we obtain the large-N. evolution equations relevant for the
dipole gluon helicity distribution,

. , N. [ d? 1 €f (z21)
t(zs :Gl(o) z8) + s C//dQ:B In T L [Fgen Z's)+ G z's]
10( ) 10 ( ) o2 / o 2 o A fﬂgl 20,21( ) 21( )

a 1 ei] (xQO) n n
) Z//d2x2 In To1 A = x%O [ng,zl (2's) + F%i,zo(z/s)}
d2

<IN, dz
A2
<IN¢ dz'

Oé

27r2 /

1 . .
5510 $%1) 9(5531 - %) [ Z12(747,5) - F210,21(Z,5)}>

(4.42a)

i i(0 asNe | dz" 1 e (x31)J en
T0,01(2's) = Gl(() )(2/5) + 2 / e / A3l ﬂTf [Fgo 51(2"s) + G31(Z”3)}

T2

A2 31 31
ij J
OZSN dz" 2 €T (m30)J_ gen " gen "
/ d°z .T31A 2 {F30,31(2 s) + 151 50(2 3)}
30

asN dz” d2x3 e o 9
min (Tyg, 21—, | — L31
1‘31 z

x 9(»”17%1 - i) [ 33(2//3) —T'o 31(2 IS)} (4.42b)
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Figure 5. Linearized large-N, evolution of the new dipole function G* as written in eq. (4.42a).
Because there is no universal DLA parameter for the various terms, we have no a priori constraint
on the relative sizes of x99 and x2;, which makes enforcing lifetime ordering in these dipoles more
subtle. We must distinguish between the ladder emission of polarized gluons (top line), which
are constrained by the lifetime of dipole 21 only, and the non-ladder emission of polarized gluons
(middle line), which are constrained by the lifetimes of both dipoles 20 and 21. The “+ c.c.” stands
for adding mirror-reflected diagrams as well as the true complex conjugates in which line 0 becomes
a polarized quark line.

which are illustrated in figures 5 and 6. The solution of these equations with the help
of eq. (3.18) will give us the small-x asymptotics of the dipole gluon helicity TMD and,
through this, of the gluon helicity PDF.

5 Solution of the evolution equations for the dipole gluon helicity

5.1 Structure of the evolution equations

We will now proceed to simplify and solve the evolution equations (4.42) for the polarized
dipole amplitude G%; at small x. First, it is convenient to convert from the vector quantity

to(28) to the scalar functions Gi(x3),2s) and Go(x3,, 2s) by integrating over impact
parameters [ d?bjg = [d?bayg = [ d?ba; and using the decomposition (3.17). The same
decomposition is applied to the impact-parameter integral of P%o,zl(z/ s). From eq. (3.19),
we see that the dipole gluon helicity distribution couples to the Gy function, which can be
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Figure 6. Linearized large-N. evolution of the new dipole function I'* as written in eq. (4.42b).
Because there is no universal DLA parameter for the various terms, we have no a priori constraint
on the relative sizes of z39 and x3;, which makes enforcing lifetime ordering in these dipoles more
subtle. We must distinguish between the ladder emission of polarized gluons (top line), which
are constrained by the lifetime of dipole 31 only, and the non-ladder emission of polarized gluons
(middle line), which are constrained by the lifetimes of both dipoles 30 and 31. The “+ c.c.” stands
for adding mirror-reflected diagrams as well as the true complex conjugates in which line 1 becomes
a polarized quark line.

extracted using the projection

T10)" € ;
Go(x3y, 25) = —(1;)%;‘T /d2610 GY(25). (5.1)

In doing the impact parameter integral, the G, term from the unpolarized eikonal evolution
(third line of (4.42a)) drops out due to the angular integration. Similarly, the G2; term in
the polarized ladder evolution (first line of (4.42a)) appears to vanish due to the angular
integral. However, the radial integral in the kernel is potentially IR divergent without this
term, so we will keep this contribution for now. After performing the impact parameter

— 33 —



integral of egs. (4.42) along with the projection (5.1), we obtain

G2(x%07 ZS)

N, d 1
= G (a%,29) + 55 Z/fmm 8 Pyen(wBy, w8, #'5) + Glay, 2's)]
To1 A x10x21

asNe dZ 2 1 9010 9520 2 2 2 2
_ /d x2In i [Fgen(xm, 251, 2 8) + Dgen (31, 259, 2 8)}
21 33105’320

N, d d
_as / Z/ IQlI‘g :cw,a:%l,zs) (5.2a)

92103

Iy (‘I%Oa x%lv Z/S)

N, dz” 1 zg-z
=GO 2 Qs /d2 | 210" 231 [ 2 g2 0 G2,’}
5 (T10,2'8) + 27T2 3 n$31A 2222, gen (730, 231, 2" 8) + G(251, 2°5)

1"

%N dz 2 1 9510 9530 2 2 n 2 2

/ /d r3ln ——- A [rgen(x307$3172 5) 4+ Dgen (231, 230, 2 5)]
zyh atrg,

’
3 2 2 =z
mln[ 10,$21 ﬁ]

N, d " d
as i / $31 FQ(xlo,xgl,Z S) (52b)
73

17

z'"'s

9”10

We have defined an impact-parameter integrated amplitude I'gen, by (cf. eq. (4.41))
Dgen (220, T21, 2's) = 0(w20 — @21) ['(220, 221, 2'8) + O(w21 — w20) G20, 2'5). (5.3)

This function can be easily found using the analytic solution (2.9) for the asymptotics of
G and I' at high energies.

The initial conditions for the scalar functions Gy and T's in egs. (5.2) follow from
eq. (4.39):

2
0 0 OéSCF 1
Gy (ado, 2) = T (w08, ) = == F (5.4)

It is useful to check that the transverse coordinate integral in the LLA kernel of
egs. (5.2) (the first two lines of (5.2a) and (5.2b)) is convergent. To see this, let us use
eq. (5.3) and eq. (2.9) in egs. (5.2), to check the behavior of the integrands in the x3, > 23,
and 73, < 3, limits. Although individual terms appear to be logarithmically divergent in
the IR, the sum of the terms scales as

T dx3, 1
L : 5.5
/(33%1)1'5_0{2 n‘1521A2 (59)
1

which is convergent for oz% < 5. Noting from eq. (2.10) that oz;]l ~ Jas < 1, we con-

clude that this integral is convergent in the IR for perturbative a,. In the UV, the terms
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converge as

/ dz3y In mgllm (a3,)° % (5.6)
0
with ¢ a positive constant depending on the term. We therefore conclude that the transverse
coordinate integral in egs. (5.2) is convergent in both the UV and IR limits.
The most intricate part of egs. (5.2) is the treatment of the non-logarithmic trans-
verse integral; we want to evaluate it as completely as possible within our DLA accuracy.
Focusing on the evolution of Gy in eq. (5.2a), that integral is

asNe dZ 2 1 9310 5”21 2 .2 2
J 27?2 /d x2 In A 2322, [Fgen(aszo, x5,2's) + G(xy, 2 s)}

aN dz' 1 zyx
5 / [Pt IO e (03 i )+ T #5)] . (57)
21 1’103320

Next we insert the expression (5.3) for I'yen and the asymptotic solutions (2.9), scaling out
the various power—counting parameters:

asN,. 1

O{SNC dZ . o
(safo)h Goitaly) = (G 7760 ) dtaho) st 69

272 Nz

J =

1
R (Z/sadg)

Z10 Lo1 Lo 2 2 2 2 2 2 2
Y2 (2 - 2> {9(9521 — x39) G (23, 2/3) + 0(x50 — 51) T (239, 231, ZIS)}
L10 Ta1 Ty

L1 "L
- (00) (0230 — 231) G(ah1, 2's) + 0(a3y — a3) T(ady, w3y, 2's)|
10 20

+ <xl§a;21> G(a31, Z’S)}- (5.9)

L1p T2

Using the expressions in (2.9) we write

. 1
](55%0):3/612962111

21
q
q q “h
2 \% 2 \% 2 \ 2
L0 [ L21  ZLoo 2 2 L20 2 2 La1 L20
X 2'(2_2 O(zy—x3) | 5 | +0(a50—221) | 5 4l =5 ) -3
Tip \Ta1 T30 L10 L10 L21
q
q q “h
2 \% 2 \% 2 \2
AT 2 2 Ta1 2 2 T30 La1
—<2 5 O(ry—231) | =5 | +0(x51—2%) | 3~ 41 =5 -3
L10%20 Lo L0 L0
q
2 \%
L0 L X
n (120 221) ( §1> ' (5.10)
L1021 L0
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Consider the DLA power counting in eq. (5.8). This step of evolution contains an

explicit factor of ay, together with aiq and Go. From eq. (2.10) we see that aiq ~ \/%, and
h h S

from eq. (4.40), we see that the scaling initial conditions G contain a relative logarithm

of energy, which also scales as \/%—é in the DLA power counting (o In? 4z ~ 1 such that

In 25 ~ \/%75 ). The factor in parentheses in (5.8) is therefore an O (1) step of evolution in

this limit, and the energy dependence (zs x%o)az is also an O (1) resummation. Next we
note that the quantity j(z%,) in eq. (5.9) is independent of the energy 2’s, is a dimensionless
function of x19 and A, and converges in the IR, such that the IR cutoff A enters only in a
single logarithm in the integrand. Therefore, the general form of j(z2,) can be written as

J(a3) = fi(as) In ;OA + falas), (5.11)

where f; and fo are some functions only of ag and contain no additional logarithms of
energy or of x19. The residual a,; dependence in f; and fo is thus not enhanced by any
logarithms and only contributes to higher-order non-logarithmic corrections. In this spirit
we therefore set a; — 0 in eq. (5.9), replacing both G and T' from (2.9) by %GO, obtaining

] 2 1 =z z. z
jzlo) = 3 /d2932 In =10 <§1 - 20) . (5.12)

2
Lo Ty

The integral now is at most log-divergent in x9;, and even that divergence is zero after
the angular integrations. Writing d?zy = w21dx91d¢ we can eliminate the first term in
parentheses after the angular averaging.” Angular integration in the second term gives
(see eq. (A.14) of [47])

oo
dr 1 1 2m 1 T
2
=_—_—__ |d 1 0 — =——1 - —. 5.13
J(x7o) 3 37%0/ 2121 e (210 — T21) 3 MoA 3 (5.13)
0

Neglecting the constant compared to the logarithm and substituting our result back into
eq. (5.8) we arrive at

J=— (achlq Go) (zs x%o)az In (5.14)

3m o) 10\’

5Tt appears important to first choose the integration variables for the whole integral, and then integrate
both terms in parenthesis using the same variables. If one simply discards the first term in parentheses,
and writes d?zo = 220dx20d¢’ for the second term, the result appears to be IR divergent again due to an
illegal variable shift in one of two divergent terms of an overall convergent integral.
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Employing eq. (5.14) in egs. (5.2) to replace the terms containing I'gen and G yields

sNe 1 «a
G2(37%0723) Gé)(xl(]vzs) (oz G0> (zs:c%o) : In
3 O‘h

N. dz' [ d
ozs / : / le To(z3, 231, 2's), (5.15a)

z1o

z10A

N, 1 q
To(aiy, 23, 2's) = Ggo)(x%()azls) - <a§7r GO) (Z/S 33%0)% In

.%'10A
/
min o3y , 23, Z7 |

N. d " d
043 - / x31 To(z3y, 231, 2"s). (5.15b)
31

ld

z''s

This leaves the simplified equations (5.15) amenable to analytic solution, which we will

pursue next.

5.2 High-energy asymptotics

To begin, it is convenient to rescale the functions GGo and I's to eliminate the constants:

asN 1 1 — GO Oéch 1 —
Gs = —Go 1 Gy= |- 1 G 5.16
2 ( 3 af 0 :L‘10A> 2 ( 2v/3 V 2w " x10A> . (5.162)
asN,. 1 1 - Go asN, 1 —
Iy = —Go 1 o= |- 1 r 5.16b
2 ( 3 af o IL‘10A> 2 < 2v/3 V 2w " 1'10A> * ( )

which casts eq. (5.15) into the form

_ a dz' x3
Go(aiy, 28) = (2537%0)%— / - / —t Do (afg, 231, 2's), (5.17a)
2 2!
1
o min[x%o,zglzz—,l,]
- 7 agN, dz" da3; -
FZ@%O,Z‘%’Z,S): (Z,W%o)ah— ; : i / %Fz(xfo,xgl,z”s), (5.17b)
T z x5
11105 s

where we have neglected the initial conditions for G5 and I's as small when compared to
the J-term from eq. (5.14). Introducing the logarithmic variables

« N zS as N, 1
n=4/——In L $10 = ;WC n———s AT (5.18a)
’ [oes N, Z's - asNe 1
n = o In F’ S$91 = o n——7 3321/\2’ (518b)
lagN,  2"s asN, 1
7]// = ;ﬂ_c In F, S31 = ;7{- °ln——— x31A2, (5180)
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along with the scaling variables

asN.
X =1 =s10 = || = In(2s27), (5.19a)
Oéch ach
(=n —s10= \/;hl(z’s x%o), (=n —s9 = o In(2's x%l), (5.19b)
asNe asN.
E=n"—s10= o In(2"s z%y), &= —s3 = o In(z"sx3;),  (5.19c)
and the rescaled intercept as 02;11 = %, we can rewrite egs. (5.17) in the simple form
X ¢
Ga(x /dg/d ¢'To(¢, N, (5.20a)
0 0
¢ 13
Da(¢,¢) /dﬁ/dffsz /df/défzéf) (5.200)
0 ¢ 0

Let us emphasize that, although we have expressed egs. (5.20) in terms of scaling variables,
we have not imposed a scaling form on the functions, rather it resulted naturally from the
form of the equations.

Following the procedure used in [39] to obtain an analytic solution for the quark helicity
distribution, we first differentiate eqgs. (5.20) to get

d¢' Ta(x, ("), (5.21a)

dg' To(¢, &), (5.21D)

o
/

with the boundary condition

Ty(¢’,¢") = Ga(¢). (5.22)
Next, we introduce the Laplace transforms
~ dw ~ = dw / =
= | = ewX N — [ 2w
Ga(x) /2m. e X G, I'2(¢, ¢) /2m. e“ s T9w(0), (5.23a)
Gy = /dxewx Ga(x), [ (¢) = /dC'eWC'fg(C,C’), (5.23b)
0 0

and start by focusing on eq. (5.21b), obtaining

0 - &t aa 1=
—T = L e¢ — —T9y(0Q). 5.24
5T = el = ZTau() (5.24)
This ODE is straightforward to solve, and the solution reads
~q
_ af _<
Poul(Q) = 275 ¢ a7 el 4 Gl e (5.25)
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with the integration “constant” C,,, such that

= dw ’ dq ~d <
T2(¢, ()= [ ~—e¥¢ | —t el 14l Che s . 5.26
2(¢.¢) 2mi [1+@§Lwe Ty twe (5.26)
Collecting the pole at w = —&% and using the boundary condition (5.22) to obtain the
h
corresponding solution for GG, we have
_ (&‘f;%)x dw .
Ga(x) =e\ " +/2m,ozg Copelm0)x, (5.27a)
_ i (= ¢ d /
Do((,¢)=e " *h + / ﬁdi Ce?¢' 5. (5.27D)

The integration constants C, can be constrained by back-substituting the solu-
tion (5.27) into the differential equations (5.21). Plugging eq. (5.27b) into eq. (5.21b)
we arrive at the condition

dw 1 ¢
ZC,e s =0 5.28
/27T’i w w€ , ( )
and similarly, using eq. (5.27a) in eq. (5.21a), we obtain
dw 1 1 af——=7 )¢
_ -5)¢_ _ - h &
/2m’ wC,e(v=u) ¢ = L e< h> . (5.29)

This equation is hard to solve exactly, but it is straightforward to match the large-{ asymp-
totics. In eq. (5.29), there is a pole at w = 0 in the exponent which can be shown to give
a contribution that asymptotes to zero as ( — oo (see appendix A for the calculation).
Hence, to make eq. (5.29) be valid at ¢ — oo, we simply need C,, to contain a pole w = @&j,
with an appropriate choice of the coefficient:

1 1
(@) w—al’

C, = (5.30)

We verify explicitly in appendix A that eq. (5.30) solves eq. (5.29) in the large-¢ asymptotics
and that the w = 0 pole is suppressed.

The asymptotic solution to eqgs. (5.20) is thus (using &} = ig)
G ( >>1)_ 1+ 1 (&z_é)x— 19 %X (5 31 )
2{X = (dz)2 e = 166’ R Jla
T / d;lzc_% 1 &zC’—% icijcl 3 4 leﬁc
Lo((>1,>1)=e¢ “h+(Aq)2e = e Vs pest T (5.31b)
ap,

Our analytic solution can be cross-checked numerically. We did this by solving
egs. (5.20) on a discretized grid, exactly analogous to what we did in ref. [38]. The resulting
numerical solution of G is shown in figure 7 for a grid spacing of 0.033.5 These curves
demonstrate the scaling behavior of G5 in agreement with our analytic result in eq. (5.31a).
Moreover, from the slope of this curve we find agreement with the exponent 13/(4v/3) of
G+ to within 1%.

This corresponds to using maximum 7 and s values (see eqs. (5.18)) of 10 with a grid size of 300.
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Figure 7. Numerical solution of eqgs. (5.20) for In G plotted as a function of 7 — sy (for three
different values of 7 + s19) in the left panel and as a function of 1 + s1o (for three different values
of 7 — s10) in the right panel. Both panels demonstrate that Gy is only a function of 7 — sy, as
expected from eq. (5.31a).
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Figure 8. Plot of the T'y/Go ratio given by the numerical solution of egs. (5.20) as a function of
s21 — 819 (for three different values of 1) in the left panel and as a function of 7 (for three different
values of 31 — 510) in the right panel. Both panels demonstrate that I'y/G> is only a function of
$21 — $10 in agreement with eq. (5.32).

To cross-check our solution for T'y we take the ratio of egs. (5.31b) and (5.31a) to obtain

T / ¢
Ta(6,¢) _ 16| G, 1 eag@’—o] _16 [6{5<sm—81o>+1366—7§<321‘510> . (5.32)

The ratio T'y/G4 given by our numerical solution is shown in figure 8. The plots demon-
strate that the ratio I's / Go is only a function of s91 — s1¢, in agreement with our analytical
result (5.32). We likewise were able to confirm in the physical region s19 < s21 < 1 the
functional form of (5.32), where we found agreement with the exponent v/3/4 to within
5% and the coefficient 16/19 to within < 0.5%. Thus, we have numerically confirmed our
analytic solution for both Gy and T's.
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Finally, converting egs. (5.31) back into the standard variables by using egs. (5.19) and
reinserting the scaling factors from eq. (5.16) gives us our final answer

19 N, 1 13 [asNe
GQ(LU%(” ZS) ~ —327\/3 O[;ﬂ_ = G() In m (ZS $%0)4\/§ 2 s (5333)
1 N, 4 JasNe _ V38 [asNe
Tay(2ly, 23, 2's) ~ o3 a;W ©Go In T10A [(ZIS afo) V3V o (Zsay) AV o
3 4 fasNc _ 8 [asNe
+ 16 (Z'sa3)vaV 2 (Zsad) TV ] . (5.33b)

The asymptotic solution (5.33a) for the polarized dipole amplitude Gy is the central
result of this work. Substituting the solution eq. (5.33a) into eq. (3.19) yields the small-x
asymptotics of the dipole gluon helicity distribution:

i 2 1\ %
g P (2, kF) ~ Gy (x?o,zs = Ci) ~ <) (5.34)

T

with the gluon helicity intercept

13 (6% N (6% N
G S c S c
o = —=1/ ~ 1.884/ . 5.35
h 4\/§ 2m 2 ( )

Strictly speaking, this intercept has been obtained by solving the small-x evolution equa-
tions (4.42) applicable to the dipole gluon helicity distribution (3.19). The Weizsécker-
Williams gluon helicity distribution (3.29) is defined by a different operator (3.30) than
the dipole gluon helicity distribution (3.15), and in general will have different evolution

equations than (4.42). While we leave the derivation and solution of these evolution equa-
tions for future work, we note that both the dipole and WW gluon helicity TMDs must
give the same gluon helicity PDF AG when integrated over all k7. Integrating egs. (3.19)
and (3.29) over the transverse momentum to obtain the collinear gluon helicity distribution
AG, we confirm that both distributions reduce to a common operator, and that all three

+ c.c.>

distributions possess the same small-z asymptotics:

AG(r, Q) = / @k g7V (2, k3) = / 02k g8 (2, k2)
1

_ 2 ij polyi 0 it
= oo /d xo €7 <tr (VQ ) (3(%0)1‘/0)

—2N, 5 0 5 Q?
= aSﬂ-Q |:<1 + xlO%) GQ <$10,2$ = ? L . (536)
10_Q2
We conclude that
G 13 ags Ne as Ne
1) % 1\iv3V zr- 1\ 188V T
AG(z, Q%) ~ <$> ~ <$> ’ ~ <$> (5.37)

Thus, we see that the small-z asymptotics of these three distributions (AG, glGLdip, gfLWW)

— and, indeed, all possible definitions of gluon helicity TMDs — are universal and governed
by the gluon helicity intercept (5.35).
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6 Phenomenology of the gluon spin at small x

In this section we give an estimate for the gluon spin Sg in (1.1) based on our gluon
helicity intercept (5.35). The gluon spin has been a topic of intense investigation, with
only recent experiments showing that it can give a more substantial fraction of the proton’s
spin than once thought [61, 62]. Nevertheless, the estimates of S¢ are still plagued by the
lack of data below z = 0.05, which causes large uncertainties in this quantity (see, e.g.,
ref. [63]), and is one of the main motivations for the construction of an Electron-Ton Collider.
However, we emphasize that once our theoretical calculations of the gluon (and quark)
helicity intercepts push beyond the current approximations and include, e.g., large-N.& Ny,
running coupling, and LLA corrections, one could use these results in future extractions
of the already existing data to provide strong constraints on the small-z behavior of the
helicity PDFs, and, consequently, the quark and gluon spin. (We mention that helicity
PDF's have been extracted by several groups, e.g., DSSV [43, 64], JAM [65-67], LSS [68-70],
NNPDF [71, 72].)

In order to calculate Sg, we need input for the gluon helicity PDF AG(z,Q?),
and we focus here on the fit from DSSV14 [43]. We proceed through a simple ap-
proach, which we also employed in ref. [38] for an estimate of the quark spin based
on (1.3), and leave a more rigorous phenomenological study for future work. First, we
attach a curve AG(z,Q?) = N o (with af given in (5.35)) to the DSSV14 result for
AG(z,Q?) at a particular small-z point 2. We fix the normalization N by requiring
AG(z0, Q%) = AG(z0,Q?). Then we calculate the truncated integral

1
Skmin g2 = / dz AG(z, Q%) (6.1)

min

of the modified gluon helicity PDF
AGumod(z, Q%) = Oz — 20) AG(z, Q%) + 0o — 2) AG(, Q) (6.2)

for different xy values. The results are shown in figure 9 for Q? = 10 GeV? and o, ~ 0.25,
in which case af = 0.65. We see that the small-z evolution of AG(z,Q?) gives about a
5+ 10% increase to the gluon spin, depending on where in x the effects set in and on the
parameterization of the gluon helicity PDF at higher x. Again we emphasize that the first
principles results of this work (along with that for the quark [9, 38, 39]) can be included
in future extractions of helicity PDF's, especially once the present large- N, approximation
is relaxed, which will provide strong constraints on the small-z behavior of the quark and
gluon spin.

Saturation effects may also impact the amount of spin carried by small-z quarks and
gluons. The small-z asymptotics of AG found here and the small-z asymptotics of Ag
found in [9, 38, 39] are such that xAG — 0 and xAgq — 0 as x — 0. Hence the helicity
PDFs will not violate unitarity at small . However, as one can see from the helicity
evolution equations including (LLA) saturation effects, as derived in [9, 37], saturation
would completely suppress the small-z evolution of helicity PDFs, making the effective
af and af zero in the saturation region (cf. [26] for the flavor non-singlet unpolarized
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Figure 9. Plot of S[éf“““](Q2) VS. Zmin at Q2 = 10GeV2. The solid curve is from DSSV14 [43].
The dot-dashed, long-dashed, and short-dashed curves are from various small-z modifications of
AG(z,Q?) at 29 = 0.08, 0.05, 0.001, respectively, using our gluon helicity intercept (see the text
for details).

quark distribution). Therefore, a very small amount of the proton spin should reside in
the saturation region. This observation can become an important component of the future
small-z helicity PDF phenomenology.

7 Conclusions

In this paper, we have shown that the dipole gluon helicity distribution (3.18) and the
Weizsécker-Williams gluon helicity distribution (3.32) at small x are governed by polar-
ized dipole operators (3.15) and (3.30), respectively. These operators are different from
each other and from the polarized dipole amplitude (2.4) which governs the quark helicity
distribution at small x. For the case of the dipole gluon helicity distribution, we have
derived double-logarithmic small-z evolution equations given by eqs. (4.42) in the large- N,
limit. These gluon helicity evolution equations mix with the small-x quark helicity evolu-
tion (2.9), but ultimately result in a gluon helicity intercept (5.35) which is smaller than
the quark helicity intercept (2.10) by about 20%. One may speculate that the fact that
ag < az is partially responsible for the difficulty in experimentally detecting a non-zero
signal for AG at small-x.

The difference between the quark and gluon helicity intercepts mathematically re-
sults from the fact that the small-z evolution for quark and gluon helicity is given by a
coupled set of equations, egs. (2.8) and (4.42). This is similar to the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations [73-75] which mix the evolution of
the (flavor-singlet) quark and gluon distributions. Due to this mixing, the Q? dependence
of quark and gluon PDFs is different from each other. The unpolarized small-z evolution
is different in this respect: at LLA the BFKL evolution is entirely gluon-driven. The quark
distribution is obtained from this evolution by having a gluon at the end of BFKL ladder
emit a ¢q pair. This results in z-dependence of the (flavor-singlet) unpolarized quark dis-
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tribution at small z being practically the same as that for the gluons. In this paper we
observed that for helicity TMDs and PDF's the small-x evolution mixes the contributions
of quarks and gluons, resulting in a different z-dependence of quark and gluon helicity
PDFs. This is indeed different from the z-dependence of unpolarized quark and gluon
PDFs resulting from BFKL evolution.

On a technical level, this reduction of the gluon helicity as compared to the quark
helicity can be attributed to the fact that the dipole gluon helicity evolution receives
contributions from the radiation of virtual unpolarized gluons, but not real unpolarized
gluons (the bottom two diagrams of figure 5). The physical reason for this stems from
the definition (3.1) of what gluon helicity really means: a circular flow of the gluon field-
strength. Maintaining this circular orientation during the small-x evolution requires that
the angular correlations between the fields be preserved, but in the DLA limit, the radiation
of unpolarized gluons is isotropic. The resulting angular decorrelation causes the real gluon
emission term to drop out from the gluon helicity evolution equations (5.2), leaving only the
virtual emissions. Consequently, this leads to a depletion of the gluon helicity compared to
the quark helicity: the uncorrelated radiation of soft gluons causes the gluon distribution to
“forget” about polarized interactions which take place later in the cascade. Only cascades
which develop without such uncorrelated radiation contribute to the gluon helicity.

The fact that gluon helicity, which relies upon the circular transverse structure of
the fields, is capable of decorrelating can also be seen in the structure of the polarized
Wilson lines. The polarized Wilson line (3.12) relevant for the gluon helicity couples to
a total derivative: the curl operator applied to the entire Wilson line. This is in contrast
to the polarized Wilson line (2.17) relevant for the quark helicity, which couples to a local
derivative: the curl operator applied to a single point in the polarized Wilson line. This
operator structure suggests that a polarized interaction at any point in the cascade is
sufficient to contribute to the quark helicity, while only those polarized interactions which
preserve the angular correlations can contribute to the gluon helicity. Presumably, this
fundamental difference between the nature of quark and gluon helicity can be attributed
to the fact that the quark helicity (2.1) is defined as a matrix element of the axial vector
current. Until such accuracy that the evolution becomes sensitive to the axial anomaly, the
axial vector current which defines the quark helicity is conserved during the evolution; a
coupling to the axial vector current anywhere in the evolution is guaranteed to propagate
back to contribute to the quark helicity distribution.

We also note that the asymptotic solution (5.37) is an important input to the proton
spin puzzle and a first principles prediction to be tested against phenomenological extrac-
tions. The total gluon polarization Sg is far less constrained by experiments than the
quark polarization S, so this theoretical guidance on how to extrapolate from data at
finite £ down to  — 0 can provide a useful estimate of Sg. In section 6 we gave such
an estimate of this quantity in a simple approach and found it could increase the current
DSSV extrapolation by 5 <+ 10%. We stress again that the results for the small z behavior
of the gluon (and quark) from this work should be included in future helicity PDF fits.

Additionally, a recent paper [53] has provided a gauge-invariant definition of the gluon
orbital angular momentum operator in terms of Wilson lines at small x. Deriving and
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solving similar small-x evolution equations for such an operator could provide yet another
piece of the proton spin decomposition at small x.

In closing, we must emphasize a note of caution about the precise values of our quark
and gluon helicity intercepts: these numerical values are the result of a leading-order DLA
resummation at large N., and they may receive significant corrections at higher orders in
o, at finite N, and at Ny # 0. The single-logarithmic corrections, which can include the
effects of parton saturation and multiple scattering, may be particularly important. Our
calculation is also performed at fixed coupling at this accuracy; to precisely set the scale
of a, a higher-order calculation is needed. Indeed, we know from the unpolarized sector
that running coupling corrections [76-79] play an essential role in slowing down the small-z
evolution [80, 81] and bringing the theory in line with experiment [82-84]. As such, while
much work remains to be done in the intervening years, the growing pool of spin-related
operators whose small-x asymptotics have been calculated represents an important step in
developing the theoretical framework needed for a future Electron-Ion Collider.
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A A cross-check

Substituting eq. (5.30) into the left-hand side of eq. (5.29) we get

w =
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/dw,wae("J_l)C—3\/g d—w.wie
211 64 211 4

RV
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While the remaining sum cannot be cast in a form of a single function, we can deduce

its large-( asymptotics:

> \/§l 1 ml 5w 1
—>Z I \/:CCOS<2c—2—4)N\/E—>O.

Y ,
3v3 dwwe : 3 MC—{—O( (A.3)

7)

and, hence, eq. (5.30) solves eq. (5.29) in the large-( asymptotics.
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