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Abstract: We determine the small-x asymptotics of the gluon helicity distribution in

a proton at leading order in perturbative QCD at large Nc. To achieve this, we begin

by evaluating the dipole gluon helicity TMD at small x. In the process we obtain an

interesting new result: in contrast to the unpolarized dipole gluon TMD case, the operator

governing the small-x behavior of the dipole gluon helicity TMD is different from the

operator corresponding to the polarized dipole scattering amplitude (used in our previous

work to determine the small-x asymptotics of the quark helicity distribution). We then

construct and solve novel small-x large-Nc evolution equations for the operator related

to the dipole gluon helicity TMD. Our main result is the small-x asymptotics for the

gluon helicity distribution: ∆G ∼
(

1
x

)αGh with αGh = 13
4
√

3

√
αsNc

2π ≈ 1.88
√

αsNc
2π . We

note that the power αGh is approximately 20% lower than the corresponding power αqh for

the small-x asymptotics of the quark helicity distribution defined by ∆q ∼
(

1
x

)αqh with

αqh = 4√
3

√
αsNc

2π ≈ 2.31
√

αsNc
2π found in our earlier work.
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1 Introduction

A solid theoretical understanding of the small-x asymptotics of the quark and gluon helicity

distributions ∆q(x,Q2) and ∆G(x,Q2) is crucially important for the resolution of the

proton spin puzzle. The quark and gluon components of the proton spin,

Sq(Q
2) =

1

2

1∫
0

dx∆Σ(x,Q2) and SG(Q2) =

1∫
0

dx∆G(x,Q2) , (1.1)

may receive significant contributions from the small-x region. Given that the current

experimental values (see [1–4] for reviews), Sq(Q
2 = 10 GeV2) ≈ 0.15 ÷ 0.20 (integrated

over 0.001 < x < 1) and SG(Q2 = 10 GeV2) ≈ 0.13÷ 0.26 (integrated over 0.05 < x < 1),

still do not add up to the proton spin of 1/2, the small-x region may turn out to be

important for satisfying helicity sum rules [5–7] (see [8] for a review), such as the Jaffe-

Manohar sum rule [5]

Sq + Lq + SG + LG =
1

2
, (1.2)

– 1 –
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where Lq and LG denote the quark and gluon orbital angular momentum (OAM),

respectively.

Moreover, the experimental measurement of the relevant double-longitudinal spin

asymmetry ALL is always limited to the x ∈ [xmin, 1] subset of the x ∈ [0, 1] range em-

ployed in the integrals of eq. (1.1), with xmin given by the experimental coverage of the

specific machine and detector. No matter how high-energy an experiment may be, there

will always be some xmin below which it will not be able to measure ALL. Therefore, below

that xmin one does not have data from which to extract ∆q(x,Q2) and ∆G(x,Q2). To be

certain that the experimentally excluded region of x ∈ [0, xmin] does not contribute much

to Sq and SG, or to obtain an accurate estimate of how much spin resides at x ∈ [0, xmin],

one has to develop a quantitative theoretical understanding of ∆q(x,Q2) and ∆G(x,Q2)

at small x. Then one could hope for the following possible scenario at future polarized-

scattering experiments, such as the ones to be carried out at the proposed Electron-Ion

Collider (EIC) in the US [1]: one may obtain solid agreement between theory predictions

and experiment for the x-dependence of ALL above xmin (but still at small x), that is for

x>∼xmin, which would allow one to confidently extrapolate ∆q(x,Q2) and ∆G(x,Q2) to

the x < xmin region. This extrapolation, in turn, would allow one to make a good estimate

of the amount of the proton’s spin carried by the quarks and gluons at x < xmin. The

extrapolation would need to be further tested by later experiments probing polarization at

smaller values of x: if agreement is found again, one may be able claim that the procedure

is converging and that the spin at small x is approaching full theoretical control.

To address the important question of the small-x asymptotics of ∆q(x,Q2) in the

flavor-singlet channel, we derived small-x helicity evolution equations in [9]. The evolution

equations were written down for the polarized dipole amplitude, which can be defined as

the part of the forward scattering amplitude for a qq̄ dipole, with a longitudinally polar-

ized quark or antiquark in it, on a longitudinally polarized target proton that depends

on the product of the target and projectile polarizations. The polarized dipole amplitude

is related to the quark helicity transverse-momentum-dependent (TMD) parton distribu-

tion function: knowing the former gives us the latter [10]. The evolution equations for

the polarized dipole amplitude are both similar to and different from the unpolarized

Balitsky-Kovchegov (BK) [11–14] and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-

Kovner (JIMWLK) [15–18] evolution equations. The similarity is in the fact that both the

helicity evolution and BK/JIMWLK evolution involve Wilson lines. Moreover, just like in

the Balitsky hierarchy [11, 12], the helicity evolution equations do not close in general, and

the large-Nc limit has to be invoked to produce a closed equation [11–14]. There are also

important differences: helicity evolution is sub-eikonal, and involves the so-called “polar-

ized Wilson line” operator, which is related to the helicity-dependent part of a high-energy

polarized-quark propagator through a longitudinally polarized target [9]. The helicity evo-

lution equations also become a closed system of equations in the large-Nc&Nf limit, in

addition to the large-Nc limit.

Perhaps most importantly, the helicity evolution equations resum double logarithms

of energy, that is, powers of αs ln2 1
x with αs the strong coupling constant. This is

in contrast to the leading-logarithmic resummation of the powers of αs ln 1
x in the un-

– 2 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
8

polarized Balitsky-Fadin-Kuraev-Lipatov (BFKL) [19, 20] along with the BK/JIMWLK

equations. The double-logarithmic approximation (DLA) resulting from resumming the

powers of αs ln2 1
x was considered before for the t-channel quark exchange amplitudes [21–

27]. For helicity evolution it was first applied by Bartels, Ermolaev and Ryskin (BER)

in [28, 29] (see also [30–33]). (The DLA parameter αs ln2 1
x does not exist in the unpo-

larized BFKL/BK/JIMWLK evolution, and so far has been established either in t-channel

quark exchanges [21–27] or for the t-channel longitudinal spin transfer [28, 29].) To ac-

complish the DLA resummation in the s-channel small-x formalism we had to introduce

an auxiliary “neighbor” polarized dipole amplitude [9], which was never required in the

leading-logarithmic unpolarized dipole evolution [11–14, 34–36].

The derivation of the flavor-singlet helicity evolution equations from [9] was further

clarified in [37], where we also derived and solved the evolution equation for the quark

helicity TMD in the flavor non-singlet case. The resulting small-x (large-Nc) asymptotics

of the flavor non-singlet quark helicity distribution were in complete agreement with that

derived previously by BER [28].

The flavor-singlet large-Nc helicity evolution equations from [9] were first solved nu-

merically in [38] and then analytically in [39]. The resulting small-x asymptotics of the

quark helicity parton distribution function (PDF) were found to be

∆q(x,Q2) ∼
(

1

x

)αqh
with αqh =

4√
3

√
αsNc

2π
≈ 2.31

√
αsNc

2π
. (1.3)

The flavor-singlet quark helicity intercept αqh at large Nc was about 30% smaller than

that found by BER in [29]. We discussed the possible origin of our differences in [37]; in

appendix B of that paper we presented some of the DLA diagram contributions we believe

BER did not include in their analysis.

Having established the small-x asymptotics for the quark helicity distribution (1.3),

we now turn our attention to the gluon helicity distribution, which is the main topic of

this paper. We begin in section 2 by reviewing the central results from the quark helicity

case and by constructing a definition for the “polarized Wilson line” operator employed

previously in [9, 37] without presenting an explicit form. The polarized Wilson line op-

erator provides us with the operatorial form of the polarized dipole scattering amplitude

from [9, 37]. We proceed in section 3 by evaluating the gluon helicity TMDs at small x.

We consider both the dipole and Weizsäcker-Williams (WW) gluon helicity TMDs accord-

ing to the standard prescription [40]. Starting with their definitions, we express each of

those gluon helicity TMDs in terms of light-cone Wilson lines and an insertion of the sub-

eikonal longitudinal spin-dependent gluon field of the target. In [40] a similar procedure

expressed the unpolarized dipole gluon TMD in terms of the forward scattering amplitude

for a (fundamental) qq̄ dipole scattering on the target, hence giving rise to the name for

the dipole TMD. (Also see ref. [41] for related work on the distribution of linearly polarized

gluons.) This amplitude can be found by solving the BK evolution equation. Surprisingly,

and unlike the unpolarized case, the dipole gluon helicity TMD turns out not to be directly

related to the polarized dipole scattering amplitude. Instead it is related to a somewhat

different operator as shown in section 3. (The same applies for the WW gluon helicity

– 3 –
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TMD: it is not directly related to the polarized dipole amplitude. However, this is not

unlike the unpolarized case, in which the unpolarized WW gluon TMD was found to be

related to the color-quadrupole amplitude [42] and not to the dipole one.)

The small-x evolution for the dipole gluon helicity TMD is constructed in section 4.

There we begin by reconstructing the DLA evolution equations for the polarized dipole

amplitude from [9]; since now we have an operator expression for the polarized dipole am-

plitude, we use the operator language, similar to that developed by Balitsky in [11, 12].

This is a cross-check of both our equations in [9] as well as the operator definition and

approach. We proceed by applying the operator method to evaluate the operator related

to the dipole gluon helicity TMD. The result, in the large-Nc limit, is the evolution equa-

tions (4.42) which mix this “gluon helicity operator” with the “quark helicity operator”

given by the polarized dipole amplitude. These equations are solved in section 5, both

analytically and numerically. The end result is the following small-x asymptotics of the

gluon helicity distribution:

∆G(x,Q2) ∼
(

1

x

)αGh
with αGh =

13

4
√

3

√
αsNc

2π
≈ 1.88

√
αsNc

2π
. (1.4)

Equations (1.3) and (1.4) give us the leading-in-αs small-x asymptotics of both the quark

and gluon helicity distributions. It is interesting to note that αGh < αqh; we explore the

phenomenological consequences of this in section 6 and section 7.

In section 6 we estimate the amount of the proton’s spin carried by small-x gluons

using a simple phenomenological approach. As depicted in figure 9, we observe a 5÷ 10%

increase in the amount of gluon spin if we use our intercept (1.4) to augment the existing

DSSV14 [43] PDF parameterization. We also discuss the importance of incorporating our

work into future fits of helicity PDFs.

We conclude in section 7 by summarizing our main results and by outlining further

steps which need to be made in order to perform a detailed comparison with the experi-

mental data.

2 The quark helicity TMD and the polarized dipole amplitude

2.1 Review

In [9], we derived the polarized small-x evolution equations for the TMD quark helicity

distribution [44],

gq1L(x, k2
T )=

1

(2π)3

1

2

∑
SL

SL

∫
d2rdr−eixP

+r−e−ik·r 〈P, SL| ψ̄(0)U [0, r]
γ+γ5

2
ψ(r) |P, SL〉r+=0 ,

(2.1)

by relating it to a “polarized dipole amplitude” G(x2
10, zs), giving

gq,S1L (x, k2
T ) =

8Nc

(2π)6

∑
f

1∫
Λ2/s

dz

z

∫
d2x01 d

2x0′1 e
−ik·(x01−x0′1) x01 · x0′1

x2
01 x

2
0′1

G
(
x2

10, zs =
z

x
Q2
)

(2.2)

– 4 –
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in the flavor-singlet case [37]. In the above and throughout this paper, we use light-front

coordinates x± ≡ 1√
2
(x0±x3), denote transverse vectors (x1

⊥, x
2
⊥) by x and their magnitudes

by xT ≡ |x|, and indicate differences in transverse coordinates by the abbreviated notation

x10 ≡ x1−x0. The center-of-mass energy squared for the scattering process is s, the infrared

(IR) transverse momentum cutoff is Λ, and z is the fraction of the light-cone momentum of

the dipole carried by the polarized (anti-)quark. As is well-known, the TMD (2.1) contains

a process-dependent gauge link U [0, r]. For specificity, in [9] we considered semi-inclusive

deep inelastic scattering (SIDIS), although the resulting small-x evolution equations also

apply to the collinear quark helicity distribution, which is process independent.

The impact-parameter integrated polarized dipole amplitude is

G(x2
10, zs) =

∫
d2b10G10(zs) (2.3)

with b10 = (x1 + x0)/2. The polarized dipole scattering amplitude G10(zs) was defined as

the polarized generalization of the forward dipole S-matrix in terms of Wilson lines [9]:

G10(zs) ≡ 1

2Nc

〈〈
tr
[
V0V

pol †
1

]
+ tr

[
V pol

1 V †0

] 〉〉
(zs)

≡ zs

2Nc

〈
tr
[
V0V

pol †
1

]
+ tr

[
V pol

1 V †0

]〉
(zs), (2.4)

where the double-angle brackets are defined to scale out the center-of-mass energy zs

between the polarized (anti)quark and the target. While the unpolarized Wilson lines in

eq. (2.4) are the standard eikonal gauge links (in the fundamental representation),

V0 ≡ Vx0
[+∞,−∞] ≡ P exp

ig +∞∫
−∞

dx−A+(x+ = 0, x−, x0)

 , (2.5)

the polarized Wilson lines V pol
1 are more complex operators. Wilson lines in general cor-

respond to the eikonal propagators of partons in the background field of the target, with

the eikonal gauge link (2.5) being manifestly spin-independent. The polarized Wilson line

V pol
1 represents the spin-dependent propagator of a quark in the background field of the

target, which in the high-energy limit is suppressed by one factor of the center-of-mass en-

ergy, motivating the rescaling performed in eq. (2.4). Spin dependence is introduced into

the polarized Wilson line by the insertion of exactly one sub-eikonal interaction which is

sensitive to the spins of the parton and the target. As discussed in [9], the spin-dependent

interaction may correspond either to the t−channel exchange of two quarks or of the trans-

verse component of the gluon field. Because each such sub-eikonal interaction leads to

a suppression of the Wilson line by a factor of the energy, additional spin-dependent ex-

changes can be neglected as power suppressed. While we leave the determination of the

quark-exchange part of the polarized Wilson line operator for future work, we will show by

explicit calculation below that the gluon-exchange component takes the form

(V pol
x )g =

+∞∫
−∞

dx− Vx[+∞, x−] Ôgpol(0
+, x−, x) Vx[x−,−∞] (2.6)

– 5 –
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with the effective vertex Ôgpol computed in eq. (2.13) (see also eq. (2.14)). Here we

have defined an abbreviated notation for the light-cone Wilson line in the fundamental

representation,

Vx[b−, a−] = P exp

ig b−∫
a−

dx−A+(x+ = 0, x−, x)

 . (2.7)

The small-x limit of the quark helicity distribution (2.2) corresponds to the large-s limit

of the polarized dipole amplitude G(x2
10, zs). The evolution equations for the latter, derived

in [9], resum double logarithms of the energy, αs ln2 s
Λ2 ∼ αs ln2 1

x ∼ 1. Interestingly, in

addition to the “soft logarithm” coming from the longitudinal momentum integral which

is also generated by the unpolarized BFKL/BK/JIMWLK evolution, the polarized dipole

amplitude is especially sensitive to short-distance fluctuations about the polarized Wilson

line, generating an additional logarithm of energy coming from the transverse momentum

integration. Preserving these transverse logarithms of energy in the double-logarithmic

approximation (DLA) requires imposing a lifetime ordering constraint on the successive

steps of evolution, similar to the “kinematical improvements” which become important

in the unpolarized evolution at NLO (see, for example, [45]). Like in the unpolarized

case, the small-x evolution equations for the polarized dipole amplitude lead to an infinite

operator hierarchy, but simplify to a closed set of equations in the large-Nc limit, where Nc

is the number of colors. In the large-Nc limit, with DLA accuracy, the polarized evolution

equations are [9, 37]

G(x2
10, zs)= G(0)(x2

10, zs)+
αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

[
Γ(x2

10, x
2
21, z

′s)+3G(x2
21, z

′s)
]
, (2.8a)

Γ(x2
10, x

2
21, z

′s)= G(0)(x2
10, z

′s) +
αsNc

2π

×
z′∫

1

x2
10s

dz′′

z′′

min
[
x2

10 , x
2
21

z′
z′′

]∫
1
z′′s

dx2
32

x2
32

[
Γ(x2

10, x
2
32, z

′′s) + 3G(x2
32, z

′′s)
]
, (2.8b)

where G(0) are the initial conditions. Because of the lifetime ordering condition necessary

to preserve the double-logarithmic structure, the polarized dipole G depends upon an aux-

iliary function Γ, termed the “neighbor dipole amplitude”, in which further evolution is

constrained by the lifetime of an adjacent dipole. We also note that, although nonlinear

saturation corrections can be incorporated straightforwardly, even at leading order they re-

sum only leading logarithms αs ln 1
x and are beyond DLA accuracy. As such, the evolution

equations (2.8) are the quark helicity analog of the linear BFKL equation.

– 6 –
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Equations (2.8) were solved numerically in [38] and analytically in [39] for the high-

energy asymptotics yielding

G(x2
10, zs) =

1

3
G0 (zs x2

10)α
q
h (2.9a)

Γ(x2
10, x

2
21, zs) =

1

3
G0 (zs x2

21)α
q
h

4

(
x2

10

x2
21

)α
q
h
4

− 3

 , (2.9b)

where the exponent of the energy, known as the “quark helicity intercept” in analogy to

the Pomeron intercept, is given by

αqh =
4√
3

√
αsNc

2π
≈ 2.31

√
αsNc

2π
. (2.10)

The numerical solution of (2.8) found in [38] possesses two features which are not imme-

diately obvious from the evolution equations (2.8): a negligible dependence on the initial

conditions G(0) and an emergent scaling behavior. The scaling behavior is an observation

that for

zs >
1

x2
10

eζ0 , ζ0 ≈ (1÷ 2)

√
2π

αsNc
, (2.11)

the polarized dipole and neighbor dipole become functions only of the product of the energy

and transverse distances, G(x2
10, zs) = G(zsx2

10) and Γ(x2
10, x

2
21, zs) = Γ(zsx2

10, zsx
2
21),

rather than being dependent on each variable (made dimensionless with the help of the IR

cutoff Λ) individually. The coefficient G0 in eq. (2.9) is then the “scaling initial condition”

for when this behavior sets in, or, more precisely, the effective value of the inhomogeneous

term G(0) at the onset of scaling. In [39], G0 was set to 1 as irrelevant for the determination

of the intercept, but it is useful to keep here for power-counting purposes.

The main purpose of this paper is to extend the analysis summarized above for the

quark helicity distribution to the gluon helicity distribution. We will proceed to derive a

relation analogous to (2.2) between the gluon helicity distribution and a polarized dipole

operator, derive its large-Nc evolution equations similar to (2.8) which employ the solu-

tion (2.9), and obtain the gluon helicity intercept analogous to (2.10).

2.2 The gluonic contribution to the polarized Wilson line operator

Before proceeding to the gluon helicity distribution, it is a useful exercise to construct

the operator Ôgpol corresponding to t−channel gluon exchange in the polarized Wilson line.

This will provide a valuable cross-check of the quark helicity evolution equations (2.8) at the

operator level later on. We will evaluate eq. (2.6) directly by computing the polarization-

dependent propagator of a quark in the quasi-classical background field of a heavy nucleus.

For consistency with eq. (2.6), we choose a frame in which the quark is moving in the

light-cone minus direction and the target is moving in the plus direction, and we will work

in the A− = 0 gauge. The sub-eikonal vertex Ôgpol carries polarization information, while

all other interactions are eikonal, as illustrated in figure 1. As usual, the Fourier transform

– 7 –
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k

p2 p2 − k

p1

σσ′

Figure 1. The polarized Wilson line (2.6) in the quasi-classical approximation in A− = 0 gauge.

The filled circles denote the spin-dependent sub-eikonal scattering.

to the longitudinal coordinate x− puts the intermediate quark lines between scatterings on

mass shell [46, 47].

With the momenta labeled as in figure 1, the non-eikonal vertex is straightforward to

compute:

σ δσ,σ′ Ôgpol(k) ≡ 1

2p−2
ūσ(p2 − k)γi⊥uσ′(p2) ig Ai⊥(k) = − i σ

2p−2
δσσ′ k ×A(k) ig, (2.12)

where we only keep the spin-dependent terms proportional to σ and Aµ denotes the color

matrix Aaµt
a with ta the fundamental generators of SU(Nc). Fourier transforming to coor-

dinate space gives

Ôgpol(x
−, x) ≡

∫
dk+

2π

d2k

(2π)2
e−ik

+x− eik·x
[
g

2p−2
k ×A(k)

]
=

1

s
(−igp+

1 ) εijT
∂

∂xi⊥
Aj⊥(x−, x) ≡ 1

s
(−igp+

1 )∇×A(x−, x), (2.13)

where s = 2p+
1 p
−
2 is the center-of-mass energy of the polarization-dependent interaction and

p+
1 is the momentum of the polarized nucleon. We have defined ∇ ≡ (∂/∂x1, ∂/∂x2) and

the cross-product u × v = εijT u
ivj = u1 v2 − u2 v1. Here ε12

T = 1 = −ε21
T and ε11

T = ε22
T = 0

and Latin indices denote transverse components of 4-vectors, i, j = 1, 2. We observe that

∇×A = −(∂1
⊥A

2
⊥ − ∂2

⊥A
1
⊥) is the negative of the Abelian part of the field-strength tensor

F 12. In the A− = 0 gauge we are working in, the non-Abelian contribution ∼ [A1
⊥, A

2
⊥] is

further suppressed by an extra 1/s, but will appear in other gauges. We therefore conclude1

that the non-eikonal vertex Ôgpol when expressed in the most-general gauge-covariant form

is proportional to the gluon field-strength tensor F 12; we write

(V pol
x )g =

i g p+
1

s

+∞∫
−∞

dx− Vx[+∞, x−] F 12(x+ = 0, x−, x) Vx[x−,−∞]. (2.14)

It is also instructive to calculate the spin-dependent field Aj⊥(x−, x) explicitly for a

quark target with helicity SL and momentum p+
1 , giving

Aa i(x−, x) =
g

2π
(ta)SL δSLS′L

1

2p+
1

δ(x−) εij
xj⊥
x2
⊥

(2.15)

1We thank Ian Balitsky for this insight.
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for the transverse field entering eq. (2.13). The exact form of (2.15) is specific to the

quark target model, but the 1/p+ suppression is a general feature of the sub-eikonal spin-

dependent exchange. Hence we may write

A(x−, x) =
SL

2p+
1

Ā(x−, x) (2.16)

to scale out the sub-eikonal suppression of the emission vertex in the target and equivalently

write the polarized Wilson line as

(V pol
x )g =

1

2 s

∞∫
−∞

dx− Vx[+∞, x−]

(
−ig εijT

∂

∂xi⊥
Āj⊥(x−, x)

)
Vx[x−,−∞] (2.17)

=
ig

2 s

∞∫
−∞

dx− Vx[+∞, x−] F̄ 12(x−, x) Vx[x−,−∞],

where F̄ 12 = (2p+
1 /SL)F 12 and all of the energy suppression is contained in the prefactor

1/s which is then scaled out in the definition of the polarized dipole amplitude in eq. (2.4).

We have also put SL = +1, which will be our standard assumption about the helicity of

the target from now on, unless specified otherwise by notation.

Employing eq. (2.17) in eq. (2.4) we can finally write down an explicit operator ex-

pression for the polarized dipole scattering amplitude (in A− = 0 gauge):

G10(zs)≡ p+
1

2Nc

∞∫
−∞

dx−1

〈
tr

[
V0V1[−∞,x−1 ]

(
igεijT

∂

∂(x1)i⊥
Aj⊥(x−1 ,x1)

)
V1[x−1 ,∞]

]
+c.c.

〉
(zs).

(2.18)

3 The gluon helicity TMDs and new polarized dipole amplitude(s)

The gluon helicity TMD is defined2 similarly to (2.1) as [51]

gG1L(x, k2
T ) =

−2i

x P+

1

2

∑
SL

SL

∫
dξ− d2ξ

(2π)3
(3.1)

× eixP+ ξ−−ik·ξ 〈P, SL| εijT tr
[
F+i(0) U [0, ξ] F+j(ξ) U ′[ξ, 0]

]
|P, SL〉ξ+=0 .

For gluon TMD distributions, the field strength operators are connected by two fun-

damental gauge links U , U ′ which may separately be either future-pointing ([+]) or

2Note the differing normalizations and conventions, e.g. refs. [40, 48–51].
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past-pointing ([−]), with

U [+][y, x] ≡ P exp

ig y
−∫

+∞

dz−A+(0+, z−, y)

P exp

−ig y∫
x

dz ·A(0+,+∞−, z)


× P exp

ig+∞∫
x−

dz−A+(0+, z−, x)

 (3.2a)

U [−][y, x] ≡ P exp

ig y
−∫

−∞

dz−A+(0+, z−, y)

P exp

−ig y∫
x

dz ·A(0+,−∞−, z)


× P exp

ig−∞∫
x−

dz−A+(0+, z−, x)

 . (3.2b)

(The minus sign in the middle exponent in both equations (3.2) is due to the metric.) Of

particular interest are the “dipole distribution” gG dip
1L for which one is future pointing and

the other is past pointing, U = U [+] , U ′ = U [−], and the “Weizsäcker-Williams distribution”

gGWW
1L for which both are future pointing, U = U [+] , U ′ = U [+].

3.1 Dipole gluon helicity TMD

In this paper we will focus primarily on the “dipole-type” gluon helicity distribution. Start-

ing with eq. (3.1) with the appropriate gauge links, we multiply and divide by a volume

factor V − =
∫
d2x dx− and shift the operators in the matrix element to write

gG dip
1L (x, k2

T ) =
−2i

x P+V −
1

(2π)3

1

2

∑
SL

SL

∫
dξ− d2ξ dζ− d2ζ eixP

+ (ξ−−ζ−) e−ik·(ξ−ζ)

× 〈P, SL| εijT tr
[
F+i(ζ) U [+][ζ, ξ] F+j(ξ) U [−][ξ, ζ]

]
|P, SL〉ζ+=ξ+=0 . (3.3)

We next convert from the matrix element of a momentum-space eigenstate to a wave packet

which is localized in both impact parameter and momentum space:

1

2P+V −
〈P, SL| · · · |P, SL〉 =

∫
d2b db− ρ(b, b−) 〈p, b, SL| · · · |p, b, SL〉 ≡ 〈· · · 〉P,SL . (3.4)

This procedure is standard in the color-glass-condensate framework and is used to match

the “unintegrated gluon distribution” and the gluon TMD fg1 in the unpolarized sec-

tor [40, 52]; it is also similar to the calculation of the TMDs of a heavy nucleus in the

quasi-classical approximation [10]. Applying this to the dipole gluon helicity TMD gives

gG dip
1L (x, k2

T ) =
−4i

x

1

(2π)3

∫
dξ− d2ξ dζ− d2ζ eixP

+ (ξ−−ζ−) e−ik·(ξ−ζ)

×
〈
εijT tr

[
F+i(ζ) U [+][ζ, ξ] F+j(ξ) U [−][ξ, ζ]

]〉
, (3.5)

where we have again put SL = +1 for simplicity and dropped the P, SL subscript off the

angle brackets for brevity.
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To go further, we need to specify a gauge; we will work in the A− = 0 light-cone gauge,

which is equivalent to the covariant gauge in the quasi-classical approximation and is also

convenient for including logarithmic small-x evolution. In this gauge, the target field is

localized in x− such that the transverse segments of the staple-shaped gauge links U [±] at

x− = ±∞ do not contribute, leaving

gG dip
1L (x, k2

T ) =
−4i

x

1

(2π)3

∫
dξ− d2ξ dζ− d2ζ eixP

+ (ξ−−ζ−) e−ik·(ξ−ζ)

× εijT
〈

tr
[
Vζ [−∞, ζ−]F+i(ζ)Vζ [ζ

−,+∞]Vξ[+∞, ξ−]F+j(ξ)Vξ[ξ
−,−∞]

]〉
,

(3.6)

where we have used the cyclicity of the color trace. For the unpolarized gluon distribu-

tion, it is sufficient to replace the field-strength tensors by their eikonal approximations,

F+i ≈ −∂i⊥A+, but since the gluon helicity distribution contains a sub-eikonal contribution,

we must expand the product of field-strength tensors to the first non-vanishing sub-eikonal

order:

F+i(ζ) · · ·F+j(ξ)

=
(
∂+Ai⊥(ζ)−∂iA+(ζ)−ig [A+(ζ) , Ai⊥(ζ)]

)
· · ·
(
∂+Aj⊥(ξ)−∂jA+(ξ)−ig [A+(ξ) , Aj⊥(ξ)]

)
≈
(

∂

∂ζ−
Ai⊥(ζ)− ig [A+(ζ) , Ai⊥(ζ)]

)
· · ·
(

∂

∂ξj⊥
A+(ξ)

)

+

(
∂

∂ζi⊥
A+(ζ)

)
· · ·
(

∂

∂ξ−
Aj⊥(ξ)− ig [A+(ξ) , Aj⊥(ξ)]

)
. (3.7)

We next convert the sub-eikonal part of the field-strength tensor F+i(ζ) into a total

derivative,

Vζ [−∞, ζ−]

(
∂

∂ζ−
Ai⊥(ζ)−ig[A+(ζ), Ai⊥(ζ)]

)
Vζ [ζ

−,+∞] =
∂

∂ζ−

(
Vζ [−∞, ζ−]Ai⊥(ζ)Vζ [ζ

−,+∞]
)
,

(3.8)

which can then be integrated by parts to act on the Fourier factor and generate a net factor

of +ixP+. In the same way, the sub-eikonal part of the F+j(ξ) field-strength tensor can be

converted into a net factor of −ixP+ and the operator Aj⊥(ξ). After taking these deriva-

tives, we can safely set eixP
+(ξ−−ζ−) ≈ 1 (thus neglecting higher powers of x� 1), giving

gG dip
1L (x, k2

T ) (3.9)

= 4P+ 1

(2π)3

∫
dξ− d2ξ dζ− d2ζ e−ik·(ξ−ζ) εijT

×
{〈

tr

[
Vζ [−∞, ζ−]Ai(ζ) Vζ [ζ

−,+∞] Vξ[+∞, ξ−]

(
∂

∂ξj⊥
A+(ξ)

)
Vξ[ξ

−,−∞]

]〉

−
〈

tr

[
Vζ [−∞, ζ−]

(
∂

∂ζi⊥
A+(ζ)

)
Vζ [ζ

−,+∞]Vξ[+∞, ξ−]Aj(ξ) Vξ[ξ
−,−∞]

]〉}
.
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We can now similarly convert the eikonal parts of the field-strength tensors into total

derivatives,

∞∫
−∞

dζ− Vζ [−∞, ζ−]

(
∂

∂ζi⊥
A+(ζ)

)
Vζ [ζ

−,+∞] =
i

g

∂

∂ζi⊥
Vζ [−∞,+∞], (3.10)

which absorbs the dζ− integral from the TMD and can be integrated by parts to generate

a net factor of 1
gk

i
⊥:

gG dip
1L (x, k2

T ) =
−4

g(2π)3
P+

∫
d2ξ d2ζ e−ik·(ξ−ζ) ki⊥ε

ij
T (3.11)

×
{〈

tr

[(∫
dζ− Vζ [−∞, ζ−]Aj(ζ) Vζ [ζ

−,+∞]

)
Vξ[+∞,−∞]

]〉

+

〈
tr

[
Vζ [−∞,+∞]

(∫
dξ− Vξ[+∞, ξ−]Aj(ξ) Vξ[ξ

−,−∞]

)]〉}
,

where we also swapped i↔ j in the first term.

We observe that the sub-eikonal gluon vertex enters in a form similar to eq. (2.6), but

with an explicit transverse index. Defining the analogous polarized Wilson line (one may

call it the polarized Wilson line of the second kind to distinguish it from eq. (2.17))

(V pol
x )i⊥ ≡

+∞∫
−∞

dx− Vx[+∞, x−]
(
ig P+Ai⊥(x)

)
Vx[x−,−∞]

=
1

2

+∞∫
−∞

dx− Vx[+∞, x−]
(
ig Āi⊥(x)

)
Vx[x−,−∞] (3.12)

allows us to write the dipole gluon helicity TMD in a more compact form (compare this

with a very similar eq. (47) in [53])

gG dip
1L (x, k2

T ) =
−4i

g2(2π)3

∫
d2ξd2ζ e−ik·(ξ−ζ)ki⊥ε

ij
T

{〈
tr
[
Vξ(V

pol†
ζ )j⊥

]〉
−
〈

tr
[
(V pol
ξ )j⊥V

†
ζ

]〉}
,

(3.13)

where, for brevity, we have also dropped the explicit integration limits from the infi-

nite unpolarized Wilson lines. Swapping ζ ↔ ξ in the last term generates a minus sign

and makes the two terms in braces complex conjugates of one another. Relabeling the

dummy integration variables ζ and ξ as x1 and x0, respectively, and changing variables to

d2x0 d
2x1 = d2x10 d

2b10 with b10 ≡ 1
2(x1 + x0) the impact parameter, we can write

gG dip
1L (x, k2

T ) =
−4i

g2(2π)3

∫
d2x10 d

2b10 e
+ik·x10 ki⊥ε

ij
T

{〈
tr
[
V0 (V pol †

1 )j⊥

]〉
+ c.c.

}
. (3.14)

Defining another dipole-like polarized operator

Gi10(zs) ≡ 1

2Nc

〈
tr
[
V0(V pol †

1 )i⊥

]
+ c.c.

〉
(zs) (3.15)
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we rewrite the dipole gluon helicity TMD as

gG dip
1L (x, k2

T ) =
−8iNc

g2(2π)3

∫
d2x10 e

ik·x10 ki⊥ε
ij
T

[∫
d2b10G

j
10

(
zs =

Q2

x

)]
. (3.16)

The dipole gluon helicity TMD is related to an operator which is, surprisingly, different

from the polarized dipole amplitude in eq. (2.18). This is very different from the situation

with the unpolarized gluon TMDs for which the dipole gluon TMD was related to the

(unpolarized adjoint) dipole scattering amplitude on the target proton or nucleus [40]. This

relation gave rise to the “dipole” designation of this TMD. Here we see that this relation

is not universal and is not valid for the dipole gluon helicity TMD, therefore putting the

designation in question as well.

After the integration over all impact parameters, the new polarized dipole amplitude

is a vector-valued function of x10 alone, allowing us to write the decomposition∫
d2b10G

i
10(zs) = (x10)i⊥G1(x2

10, zs) + εijT (x10)j⊥G2(x2
10, zs). (3.17)

By further writing (x10)i⊥ as a derivative −i ∂
∂ki⊥

on the Fourier factor, we see that the

scalar function G1 does not contribute to the dipole gluon helicity TMD, leaving only

gG dip
1L (x, k2

T ) =
8iNc

g2(2π)3

∫
d2x10 e

ik·x10 k · x10 G2

(
x2

10, zs =
Q2

x

)
=

Nc

2π4αs
k2
T

∂

∂k2
T

[∫
d2x10 e

ik·x10 G2

(
x2

10, zs =
Q2

x

)]
. (3.18)

For future purposes, it is also useful to convert the derivatives back into coordinate space,

writing

gG dip
1L (x, k2

T ) =
1

αs 8π4

∫
d2x0 d

2x1 e
ik·x10 εijT

〈
tr

[
(V pol

1 )i⊥

(
∂

∂(x0)j⊥
V †0

)]
+ c.c.

〉

=
−Nc

αs 2π4

∫
d2x10 e

ik·x10

[
1 + x2

10

∂

∂x2
10

]
G2

(
x2

10, zs =
Q2

x

)
. (3.19)

We have thus expressed the dipole gluon helicity TMD in terms of a polarized dipole

operator; eqs. (3.18) and (3.19) should be compared with eq. (2.2) from the quark helicity

TMD. Unexpectedly, however, the polarized dipole operator (3.15) which determines the

dipole gluon helicity TMD is different from the polarized dipole amplitude (2.18) which

determines the quark helicity TMD. Comparing the underlying polarized Wilson lines, we

see that the quark case (2.17) is sensitive to a local derivative ∇× A(x−) reflecting spin-

dependent coupling at some point in the propagation through the target. On the other

hand, the gluon case (3.14) is sensitive to a total derivative k×V pol → ∇×V pol reflecting an

overall circular polarization which remains after the entire interaction with the target. In

principle, it would seem that quark helicity and gluon helicity are very different quantities,

with the gluon helicity requiring not only that a spin-dependent scattering take place but

also that the circular-polarized structure survive the rest of the rescattering. We will thus

need to derive new evolution equations analogous to eq. (2.8) for the new polarized dipole

amplitude G2 in order to determine the small-x asymptotics of the dipole gluon helicity

distribution.

– 13 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
8

3.2 Weizsäcker-Williams gluon helicity TMD

For completeness and further comparison, we will also evaluate the “Weizsäcker-Williams

(WW) gluon helicity TMD”:

gGWW
1L (x, k2

T ) =
−4i

x

1

(2π)3

∫
dξ− d2ξ dζ− d2ζ eixP

+ (ξ−−ζ−) e−ik·(ξ−ζ)

×
〈
εijT tr

[
F+i(ζ) U [+][ζ, ξ] F+j(ξ) U [+][ξ, ζ]

]〉
. (3.20)

Because both gauge links are now future-pointing, it is possible to choose a gauge in

which the WW gluon distributions possess a simple partonic interpretation; specifically,

we choose the A+ = 0 light-cone (LC) gauge with the ∇ · A(x− = +∞) = 0 sub-gauge

condition (see [54] for a discussion of the LC gauge and its sub-gauges).3 With this choice,

the gauge links are unity on both the light-like segments and on the transverse segments

at x− = +∞ (with the physical content of the gauge links having been encoded in the

boundary at x− = −∞), and we also have F+i = ∂+AiLC . Integrating the derivatives by

parts in the usual way gives

gGWW
1L (x, k2

T ) =
−4i

(2π)3
x(P+)2 (3.21)

×
∫
dξ− d2ξ dζ− d2ζ eixP

+ (ξ−−ζ−) e−ik·(ξ−ζ)
〈
εijT tr

[
AiLC(ζ)AjLC(ξ)

]〉
.

From here, the rest of the calculation is similar to the standard textbook treatment of the

unpolarized WW gluon distribution [47]. We first determine the explicit gauge transforma-

tion which achieves the form of eq. (3.21) in terms of the fields in the A− = 0 or covariant

gauge we have used elsewhere. The desired gauge condition

0 = A+
LC = SA+S−1 − i

g
(∂+S)S−1, (3.22)

and sub-gauge condition ∇ ·ALC(x− = +∞) = 0 [55, 56] are easily seen to be satisfied by

the gauge transformation

S(x) = P exp

ig
+∞∫
x−

dx−A+(x−, x)

 = Vx[+∞, x−]. (3.23)

The transverse components AiLC we need are given by

AiLC = SAi⊥S
−1 − i

g
(∂iS)S−1, (3.24)

where in the eikonal approximation we would normally neglect the first term compared

to the second term on the right-hand side. But for the gluon helicity, we must keep the

3Throughout this subsection, we denote the fields in the A+ = 0 , ∇ ·A(x− = +∞) = 0 gauge with the

explicit subscript “LC”; fields without explicit subscripts correspond to the A− = 0 gauge used elsewhere

in this paper.
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first sub-eikonal polarization-dependent correction to the product of the two fields, which

enters eq. (3.24) through Ai⊥:

AiLC(ζ)AjLC(ξ) ≈ i

g

(
Vζ [+∞, ζ−]Ai⊥(ζ)Vζ [ζ

−,+∞]
)( ∂

∂ξj⊥
Vξ[+∞, ξ−]

)
Vξ[ξ

−,+∞]

+
i

g

(
∂

∂ζi⊥
Vζ [+∞, ζ−]

)
Vζ [ζ

−,+∞]
(
Vξ[+∞, ξ−]Aj⊥(ξ)Vξ[ξ

−,+∞]
)
.

(3.25)

In the small-x limit, the longitudinal coordinate integrals are

∞∫
−∞

dζ−eixP
+ζ−Vζ [+∞, ζ−]Ai⊥(ζ)Vζ [ζ

−,+∞] ≈
∞∫
−∞

dζ−Vζ [+∞, ζ−]Ai⊥(ζ)Vζ [ζ
−,+∞]

=
−i
gP+

(V pol
ζ )i⊥V

†
ζ =

i

gP+
Vζ(V

pol †
ζ )i⊥ (3.26)

and

∞∫
−∞

dξ− eixP
+ξ−

(
∂

∂ξj⊥
Vξ[+∞, ξ−]

)
Vξ[ξ

−,+∞] =

=

+∞∫
−∞

dξ− eixP
+ξ−

+∞∫
ξ−

dz− Vξ[+∞, z−]

(
ig

∂

∂ξj⊥
A+(0+, z−, ξ)

)
Vξ[z

−,+∞]

=

+∞∫
−∞

dz−

 z−∫
−∞

dξ− eixP
+ξ−

 Vξ[+∞, z−]

(
ig

∂

∂ξj⊥
A+(0+, z−, ξ)

)
Vξ[z

−,+∞]

≈ −i
xP+

+∞∫
−∞

dz− Vξ[+∞, z−]

(
ig

∂

∂ξj⊥
A+(0+, z−, ξ)

)
Vξ[z

−,+∞]

=
−i
xP+

(
∂

∂ξj⊥
Vξ

)
V †ξ =

+i

xP+
Vξ

(
∂

∂ξj⊥
V †ξ

)
, (3.27)

where we have expanded the exponent to the first non-vanishing term. Inserting all of

these expressions into eq. (3.21) gives

gGWW
1L (x, k2

T ) =
4

g2(2π)3

∫
d2ξ d2ζ e−ik·(ξ−ζ) εijT (3.28)

×
〈

tr

[
(V pol
ζ )i⊥ V

†
ζ Vξ

(
∂

∂ξj⊥
V †ξ

)]
− tr

[(
∂

∂ζi⊥
Vζ

)
V †ζ Vξ (V pol †

ξ )j⊥

]〉
.

Swapping ζ ↔ ξ and i↔ j in the second term makes it the complex conjugate of the first

term. Relabeling the dummy integration variables ζ and ξ as x1 and x0, respectively, and

changing variables to d2x0 d
2x1 = d2x10 d

2b10 with b10 = 1
2(x1 +x0) the impact parameter,

– 15 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
8

we can write

gGWW
1L (x, k2

T ) =
4

g2(2π)3

∫
d2x10d

2b10 e
ik·x10 εijT

〈
tr

[
(V pol

1 )i⊥ V
†

1 V0

(
∂

∂(x0)j⊥
V †0

)]
+ c.c.

〉
.

(3.29)

It seems that the WW gluon helicity TMD is determined by yet another polarized

dipole-like operator

Gji10(zs) ≡ −1

2Nc

〈
tr

[
(V pol

1 )i⊥ V
†

1 V0

(
∂

∂(x0)j⊥
V †0

)]
+ c.c.

〉
(zs) (3.30)

which is a rank-2 tensor in the transverse plane. After integration over impact parameters,

we can correspondingly define a scalar function

G3(x2
10, zs) ≡

∫
d2b10 ε

ij
T G

ji
10(zs)

=
−1

2Nc

∫
d2b10 ε

ij
T

〈
tr

[
(V pol

1 )i⊥ V
†

1 V0

(
∂

∂(x0)j⊥
V †0

)]
+ c.c.

〉
(zs) (3.31)

in terms of which the WW gluon helicity TMD is written

gGWW
1L (x, k2

T ) =
−Nc

4π4αs

∫
d2x10 e

ik·x10 G3

(
x2

10, zs =
Q2

x

)
. (3.32)

We have now expressed the Weizsäcker-Williams gluon helicity TMD as well in terms

of a yet another new polarized dipole operator; eq. (3.32) for the WW gluon helicity dis-

tribution is directly comparable to eq. (3.18) for the dipole gluon helicity distribution

and eq. (2.2) for the quark helicity distribution. The polarized dipole operator (3.30) for

the WW gluon helicity distribution is different still from both the operator (3.15) for the

dipole gluon helicity distribution and the amplitude (2.18) for the quark helicity distribu-

tion. Although the WW gluon helicity distribution is built from the same polarized Wilson

line (3.12) as the dipole gluon helicity distribution, it is incorporated into a more compli-

cated operator due to the future-pointing structure of the WW gauge links: this feature

is similar to the unpolarized WW gluon TMD, which is related to the color quadrupole

operator instead of a dipole [40, 42].

4 Operator evolution equations at small x

Having constructed the appropriate polarized dipole amplitudes for the dipole gluon helicity

distribution (3.15) and Weizsäcker-Williams gluon helicity distribution (3.30), we will now

proceed to derive small-x evolution equations, focusing on the dipole distribution. We will

do this at the operator level using a procedure which is similar in spirit (although different

in gauge) to the background field method employed in [11].

Beginning with the operator definitions of the polarized Wilson lines and dipole am-

plitudes, we will separate the gauge fields Aµ of the target into “classical” fields Aµcl and

“quantum” fields aµ:

Aµ(x) = Aµcl(x) + aµ(x). (4.1)
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This separation can be done using a rapidity regulator η, such that the “fast” quantum

fields have rapidities greater than η, while the “slow” classical fields have rapidities less

than η and are effectively frozen from the point of view of the quantum fluctuations.

(Here “greater” and “smaller” rapidities depend on the choice of a coordinate system, and

may be interchanged.) This is essentially the rapidity factorization approach used in [57],

and the evolution equations we will derive can be understood as renormalization group

equations in the rapidity cutoff η. The classical fields of the target, being enhanced by

the target density, will be resummed to all orders. These classical fields (in the A− = 0

light-cone gauge) are localized in x− to a parametrically small window, which we choose to

be centered on the origin: x− ∈ [−R−,+R−] ∼ [− 1
p+ ,+

1
p+ ], with p+ the large momentum

of the target. Although the classical fields are Lorentz-contracted to a delta function at

x− = 0, the quantum fields can extend far beyond the target; we will calculate the first

correction due to these quantum fields in perturbation theory.

As a warm-up exercise and as a cross-check of our previous work [9], we will first employ

this method to rederive the evolution equations for the polarized dipole amplitude (2.4)

(or (2.18)) which governs the quark helicity distribution at small x. We will then repeat

this exercise to derive new evolution equations for the polarized dipole amplitude (3.15)

which governs the dipole gluon helicity distribution. We leave the corresponding evolution

equations for the Weizsäcker-Williams gluon helicity distribution for future work, although

we note that the small-x asymptotics of both gluon helicity distributions must coincide.

4.1 Evolution of the polarized dipole operator for quark helicity

We begin with the polarized dipole amplitude for the quark helicity distribution eq. (2.4),

using the explicit operator form (2.17) for the polarized Wilson line (cf. eq. (2.18)):

G10(zs) ≡ p+

2Nc

∞∫
−∞

dx−1

〈
tr

[
V0V1[−∞, x−1 ]

(
igεijT

∂

∂(x1)i⊥
Aj⊥(x−1 , x1)

)
V1[x−1 ,∞]

]
+ c.c.

〉
(zs).

(4.2)

Because this operator contains only t-channel gluon exchange, it will not couple directly to

soft quarks. This procedure will therefore only test the gluon emission sector of the quark

helicity evolution equations, but this is precisely what is needed to verify the evolution

equations in the large-Nc limit.

As in eq. (4.1), we first expand the gauge fields into classical and quantum components,

both in the Wilson lines and in the explicit operator insertion. We then keep the first

quantum correction to the classical background by contracting two of the quantum fields to

form a quantum propagator in the background of the classical fields.4 We may distinguish

4One may note a subtlety of this procedure: strictly, the fields must be time-ordered in order to apply

Wick’s theorem and form contractions. The fields entering the operators here are not time-ordered but

rather all sit at x+ = 0, which plays the role of time in light-front quantization. Time ordering may be

achieved by inserting a complete set of “out” states, as in [40], although the resulting Schwinger-Keldysh

ordering is still different from the forward-scattering time ordering implicit in the background field method.

The equivalence between these two time-ordered structures was verified in [58] up to next-to-leading order,

which is more than sufficient precision for our purposes here.
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the following classes of contractions shown diagrammatically in figure 2: “polarized ladder”

emissions (I and I′) in which a polarized gluon is emitted and absorbed by line 1; “polarized

non-ladder” emissions (II and II′) in which a polarized gluon is exchanged between lines

1 and 0; and unpolarized gluon emissions (dubbed “eikonal” in figure 2). As visualized in

figure 2, these contractions are

I : tr
[
V0 V1[−∞, x−1 ]∇× a(x−1 , x1) V1[x−1 ,∞]

]
(4.3a)

I′ : tr
[
V0 V1[−∞, x−1 ]∇× a(x−1 , x1) V1[x−1 ,∞]

]
(4.3b)

II + II′ : tr
[
V0 V1[−∞, x−1 ]∇× a(x−1 , x1) V1[x−1 ,∞]

]
(4.3c)

eikonal : tr
[
V 0 V1[−∞, x−1 ]∇× Âcl(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]∇× Âcl(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]∇× Âcl(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V 1[−∞, x−1 ]∇× Âcl(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]∇× Âcl(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]∇× Âcl(x−1 , x1) V 1[x−1 ,∞]

]
. (4.3d)

Consider first the contraction I. Expanding the Wilson line V1[x−1 ,∞] to first order in

the quantum field, we have

(δG10)I =
g2p+

2Nc

0∫
−∞

dx−1

∞∫
0

dx−2

〈
tr
[
V0t

aV †1 t
b
] ( ∂

∂(x1)i⊥
εijT a

j a
⊥ (x−1 , x1)

)
a+ b(x−2 , x1) + c.c.

〉
.

(4.4)

After forming the contraction of these two quantum fields, we set aµ = 0 in the rest of the

Wilson lines, such that only the classical background fields contribute. Since these classical

fields are localized at x− = 0 we replace the remaining semi-infinite Wilson lines by the

fully infinite ones: this is in accordance with the standard calculation in the shock wave

background [11]. The contraction between the operator insertion aja⊥ and the semi-infinite

Wilson line V1[x−1 ,∞] explicitly requires x−2 > x−1 , but in principle there are contribu-

tions from x−1 < x−2 < 0 and 0 < x−1 < x−2 in addition to the x−1 < 0 < x−2 written

here. We neglect these sub-eikonal virtual diagrams, since then the antiquark would again

need to scatter in the classical field in a spin-dependent way, making them further energy

suppressed. Thus only the x−1 < 0 < x−2 “real” diagram shown in figure 2 contributes.
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II

2

Figure 2. Diagrams illustrating contractions (4.3) contributing to the evolution of the polarized

dipole amplitude (4.2) for the quark helicity distribution. The blue band represents the classical

fields (shock wave), the black vertex represents the sub-eikonal operator insertion (2.13), and the

gray box represents the polarized Wilson line.

Similarly, only the diagram in which the radiated gluon scatters in a spin-dependent way

is capable of receiving logarithmic enhancement at small x.

The contraction in eq. (4.4) is the gluon propagator from the sub-eikonal emission

vertex to the Wilson line in the background of the classical fields. In general, we can write

it as a free propagator from the emission vertex to the shock wave, a Wilson line for the

interaction with the shock wave, and another free propagator to the absorption vertex:

0∫
−∞

dx−1

∞∫
0

dx−2 ε
ij
T

( ∂

∂(x1)i⊥
aj a⊥ (x−1 , x1)

)
a+ b(x−2 , x1) =

=

∫
d2x2

εijT ∂

∂(x1)i⊥

0∫
−∞

dx−1

∫
d4k1

(2π)4
eik

+
1 x
−
1 eik1·x21

−i
k2

1 + iε
N jµ(k1)


×
[

(U ba2 )µν (2k−1 )2π δ(k−1 − k−2 )

]

×

 ∞∫
0

dx−2

∫
d4k2

(2π)4
e−ik

+
2 x
−
2 e−ik2·x21

−i
k2

2 + iε
Nν+(k2)

 . (4.5)
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Here the numerator of the free gluon propagator in the η ·A ≡ A− = 0 light-cone gauge is

Nµν(k) = gµν − ηµkν + kµην

k−
= −

∑
λ=±

(ε∗λ(k))µ (ελ(k))ν − k2

(k−)2
ηµην . (4.6)

The contribution from the instantaneous gluon term (last term on the right-hand side of

eq. (4.6)) is proportional to a delta function in x− and cannot propagate across the classical

shockwave; it therefore does not contribute to real gluon emission. This allows us to replace

the numerators by polarization sums and write the interaction with the shockwave as a

polarization matrix:

(ελ(k1))µ(U bax )µν(ε∗λ′(k2))ν = δλλ′(Ux)ba + λ δλλ′ (U
pol
x )ba + . . . , (4.7)

where the ellipsis represents sub-eikonal terms which do not contribute to helicity evolution.

This gives

0∫
−∞

dx−1

∞∫
0

dx−2 ε
ij
T

( ∂

∂(x1)i⊥
aj a⊥ (x−1 , x1)

)
a+ b(x−2 , x1) =

=
∑
λ

λ

∫
d2x2

εijT ∂

∂(x1)i⊥

0∫
−∞

dx−1

∫
d4k1

(2π)4
eik

+
1 x
−
1 eik1·x21

−i
k2

1 + iε
(ε∗λ)j⊥


×
[

(Upol
2 )ba 2π(2k−1 ) δ(k−1 − k−2 )

]

×

 ∞∫
0

dx−2

∫
d4k2

(2π)4
e−ik

+
2 x
−
2 e−ik2·x21

−i
k2

2 + iε
[ελ(k2)]+

 . (4.8)

Each factor in brackets now has a transparent interpretation as the emission vertex of

a gluon with physical polarization λ, the polarized Wilson line for that gluon to scat-

ter in the classical field, and the absorption vertex. Performing the spin sum gives∑
λ λ(ε∗λ)j⊥[ελ(k2)]+ = iεj`T (k2)`⊥/k

−
2 (equivalently, we could have just kept the appropri-

ate terms in the numerators (4.6)), such that

0∫
−∞

dx−1

∞∫
0

dx−2 ε
ij
T

( ∂

∂(x1)i⊥
aj a⊥ (x−1 , x1)

)
a+ b(x−2 , x1) =

=
i

π

∞∫
−∞

dk−
∫
d2x2

 ∂

∂(x1)i⊥

0∫
−∞

dx−1

∫
d2k1 dk

+
1

(2π)3
eik

+
1 x
−
1 eik1·x21

1

k2
1 + iε


×

 ∞∫
0

dx−2

∫
d2k2 dk

+
2

(2π)3
e−ik

+
2 x
−
2 e−ik2·x21

1

k2
2 + iε

(k2)i⊥

 (Upol
2 )ba(k−)

∣∣∣∣∣
k−1 =k−2 =k−

. (4.9)
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The integrals in brackets are straightforward to perform:

0∫
−∞

dx−1

∫
d2k1 dk

+
1

(2π)3
eik

+
1 x
−
1 eik1·x21

1

k2
1 + iε

=
−1

2π
ln

1

x21Λ
θ(k−1 ) (4.10a)

∂

∂(x1)i⊥

[−1

2π
ln

1

x21Λ

]
=
−1

2π

(x21)i⊥
x2

21

(4.10b)

∞∫
0

dx−2

∫
d2k2 dk

+
2

(2π)3
e−ik

+
2 x
−
2 e−ik2·x21

1

k2
2 + iε

(k2)i⊥ =
i

2π

(x21)i⊥
x2

21

θ(k−2 ), (4.10c)

such that the full propagator for contraction I is

0∫
−∞

dx−1

∞∫
0

dx−2

( ∂

∂(x1)i⊥
εijT a

j a
⊥ (x−1 , x1)

)
a+ b(x−2 , x1) =

1

4π3

∞∫
0

dk−
∫
d2x2

x2
21

(Upol
2 )ba(k−).

(4.11)

The propagator (4.11) is the backbone of the calculation, trivially giving for diagram I

(δG10)I(zs) =
g2p+

8π3Nc

∞∫
0

dk−
∫
d2x2

x2
21

〈
tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉
(z′s = 2p+k−)

=
αsNc

4π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
21

〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s), (4.12)

where we have used the double-angle brackets defined in eq. (2.4). In the second line of

eq. (4.12) we have also modified the limits of k− integration to make sure that k− does not

exceed the large p− momentum of the projectile in the actual diagrammatic calculation.

It is straightforward to show that the propagators are symmetric, such that diagrams

I and I′ are equal and diagrams II and II′ are equal. In the case of diagram II, the only

difference is that the momenta are conjugate to different coordinates on opposite sides of

the shock wave (note that a+ in the contraction is now evaluated at x0):

0∫
−∞

dx−1

∞∫
0

dx−2

( ∂

∂(x1)i⊥
εijT a

ja
⊥ (x−1 , x1)

)
a+b(x−2 , x0) =

1

4π3

∞∫
0

dk−
∫
d2x2

x21 · x20

x2
21x

2
20

(Upol
2 )ba(k−),

(4.13)

which reduces back to (4.11) in the limit x0 → x1. This gives for diagram II

(δG10)II(zs) ≡
−g2 p+

2Nc

0∫
−∞

dx−1

∞∫
0

dx−2

〈
tr
[
V0t

aV †1 t
b
]( ∂

∂(x1)i⊥
εijT a

j a
⊥ (x−1 , x1)

)
a+ b(x−2 , x0)+c.c.

〉

= −αsNc
4π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x21 · x20
x221 x

2
20

〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s). (4.14)
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The extra minus sign from diagram II comes from having expanded V0 rather than V †1 ;

that is, from the opposite charge (−g) of the antiquark.

The last ingredient in the evolution is the unpolarized eikonal contribution, which can

simply be read off of the literature; the only difference is that line 1 for us is polarized.

(δG10)eik(zs) =
αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x

2
20

×
〈〈 1

N2
c

tr
[
V0t

aV pol †
1 tb

]
(U2)ba − CF

N2
c

tr
[
V0V

pol †
1

]
+ c.c.

〉〉
(z′s). (4.15)

With all three contributions from polarized ladder gluons (I + I′, (4.12)), polarized non-

ladder gluons (II + II′, (4.14)), and unpolarized gluons (eikonal, (4.15)), the complete

evolution of the polarized dipole amplitude for the quark helicity distribution is

G10(zs) = G
(0)
10 (zs) + 2(δG10)I(zs) + 2(δG10)II(zs) + (δG10)eik(zs)

= G
(0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

{[
1

x2
21

− x21 · x20

x2
21 x

2
20

]

×
〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s)

+
x2

10

x2
21x

2
20

〈〈 1

N2
c

tr
[
V0t

aV pol †
1 tb

]
(U2)ba−CF

N2
c

tr
[
V0V

pol †
1

]
+ c.c.

〉〉
(z′s)

}
, (4.16)

in complete agreement with eq. (50) of [9]. We should note that the limits of the x2 integral

in each term are set by enforcing a lifetime ordering condition: the lifetime of the quantum

fluctuation should be much longer than the subsequent classical interactions, in accordance

with the rapidity factorization scheme. The fact that we have successfully re-derived the

evolution equation (4.16) for the polarized dipole amplitude serves as an independent check

of eq. (50) in [9]. It also validates both the operator definition (2.17) of the polarized Wilson

line and our implementation of the operator-level evolution using the background field /

rapidity factorization methods. We will next repeat this analysis for the new polarized

dipole amplitude (3.15) for the dipole gluon helicity distribution.

Before we do that, let us make the connection between eq. (4.16) and eqs. (2.8).

Reinstating the lifetime ordering condition on the x2 integration in the first term in the

curly brackets of eq. (4.16) multiplies 1/x2
21 by θ(x2

10 z − x2
21z
′) while multiplying (x21 ·

x20)/(x2
21 x

2
20) by θ(x2

10 z − max{x2
21, x

2
20}z′). The DLA limit of the resulting kernel is

obtained by the following substitution:

1

x2
21

θ(x2
10z − x2

21z
′)− x21 · x20

x2
21 x

2
20

θ(x2
10z −max{x2

21, x
2
20}z′) ≈

1

x2
21

θ(x10 − x21). (4.17)

To simplify the second term in the curly brackets of eq. (4.16) we employ the Fierz identity,

which gives

2 tr
[
V0 t

a V pol †
1 tb

]
(U2)ba = tr

[
V0 V

†
2

]
tr
[
V2 V

pol †
1

]
− 1

Nc
tr
[
V0 V

pol †
1

]
. (4.18)
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The x2 integral in the second term of (4.16) is logarithmic only in the x21 � x10 and

x20 � x10 regions. In the x20 � x10 region eq. (4.18) ensures that the expression in the

double angle brackets in the second term inside the curly brackets of eq. (4.16) approaches

zero; thus the transverse logarithm coming from the x20 � x10 region vanishes. This is

in complete analogy with the unpolarized small-x evolution [11–18]. The physical reason

behind this cancellation is that when the emitted unpolarized gluon is very close to the

unpolarized quark (that it is emitted by) in the transverse plane, the system is identical to

the original unpolarized quark.

In the x21 � x10 region, however, the second term inside the curly brackets of eq. (4.16)

does not vanish, as again can be seen from eq. (4.18). The formal reason behind this is

that the zero-size polarized dipole does not have a unit S-matrix. In other words, polarized

dipoles do not have the color-transparency property that the unpolarized dipoles have, since

when the polarized quark line overlaps with the unpolarized anti-quark line in the transverse

plane, their interactions with the target do not cancel. Somewhat more physically, one can

argue that when an unpolarized gluon is emitted by a polarized quark, the system does

not become equivalent to the original polarized quark even if the gluon is very close to the

quark in the transverse plane.

In order to keep only the logarithmic x21 � x10 region, we replace

x2
10

x2
21 x

2
20

→ 1

x2
21

θ(x10 − x21) (4.19)

in the second term in the curly brackets of eq. (4.16). With the substitutions (4.17)

and (4.19), eq. (4.16) becomes

G10(zs) = G
(0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
21

θ(x2
10 − x2

21) θ

(
x2

21 −
1

z′s

)

×
{〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s)

+
〈〈 1

N2
c

tr
[
V0t

aV pol †
1 tb

]
(U2)ba − CF

N2
c

tr
[
V0V

pol †
1

]
+ c.c.

〉〉
(z′s)

}
. (4.20)

To further simplify eq. (4.20), we invoke the DLA approximation (and discard all the

leading-logarithmic evolution, such as BFKL, BK or JIMWLK; that is, put all the S-

matrices for the dipoles without polarized Wilson lines equal to one). We also employ the

large-Nc limit. With these approximations, we replace (see [9] and appendix A of [37])

〈〈
tr
[
V0 t

a V †1 t
b
]

(Upol
2 )ba

〉〉
→ Nc

2

〈〈
tr
[
V0 V

pol †
2

]〉〉
+
Nc

2

〈〈
tr
[
V pol

2 V †1

]〉〉
(4.21)
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and obtain

G10(zs) = G
(0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
21

θ(x2
10 − x2

21)θ

(
x2

21 −
1

z′s

)

×
{〈〈 1

2Nc
tr
[
V0V

pol †
2

]
+

1

2Nc
tr
[
V pol

2 V †1

]
+ c.c.

〉〉
(z′s)

+
〈〈 1

2Nc
tr
[
V2V

pol †
1

]
− 1

2Nc
tr
[
V0V

pol †
1

]
+ c.c.

〉〉
(z′s)

}
. (4.22)

Equation (4.22) has been derived for a polarized quark dipole evolution. The large-Nc

limit of helicity evolution, as considered in [9, 37], involves only gluons: the corresponding

dipole amplitude G10(zs) would correspond to the interaction of the quark line of one

large-Nc gluon and the anti-quark line of another large-Nc gluon with the target [34–36].

Here lies another important difference between the small-x helicity evolution at hand and

the unpolarized evolution [11–18, 34–36]: in the case of helicity evolution, the difference

between a polarized gluon emission by a polarized quark versus by a polarized gluon is not

only in the color factor. For instance, for helicity splitting functions at small-z and large

Nc one has ∆PGG(z) = 4 ∆PGq(z). Out of this factor of 4 difference, 2 is due to the color

factors, while another 2 is due to helicity dynamics in the splitting. This means that, when

going from the quark dipole of eq. (4.22) to the quark part of the gluon dipole, we need to

multiply the polarized gluon emission term (the first term in the curly brackets) by 2 [37].

(Ideally we would not be needing to do this “ad hoc” operation if we had started with the

polarized gluon dipole operator above.) We thus have

G10(zs) = G
(0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
21

θ(x2
10 − x2

21)θ

(
x2

21 −
1

z′s

)

×
{〈〈 1

Nc
tr
[
V0V

pol †
2

]
+

1

Nc
tr
[
V pol

2 V †1

]
+ c.c.

〉〉
(z′s)

+
〈〈 1

2Nc
tr
[
V2V

pol †
1

]
− 1

2Nc
tr
[
V0V

pol †
1

]
+ c.c.

〉〉
(z′s)

}
. (4.23)

The last step, which does not automatically follow from our formalism, is to iden-

tify whether various V V † correlators in eq. (4.23) combine into the amplitude G10(zs)

or into the auxiliary neighbor-dipole amplitude Γ. This depends on the lifetime ordering

for the subsequent evolution in those dipoles. For instance, since in eq. (4.23) we have

x21 � x10, the subsequent evolution in the dipole 02 in the non-eikonal emission diagrams

of figure 2 “knows” about the dipole 21, and hence tr
[
V0 V

pol †
2

]
in eq. (4.23) [9, 37] gives us

Γ02,21(z′s) ≈ Γ01,21(z′s). Similarly, one can show that tr
[
V0V

pol †
1

]
in eq. (4.23) contributes

Γ01,21(z′s) [37]. The remaining traces give us G’s. After performing this identification and
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integrating over impact parameters, we get

G(x2
10, zs) = G(x2

10, zs) +
αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′ s

dx2
21

x2
21

[
Γ(x2

10, x
2
21, z

′s) + 3G(x2
21, z

′s)
]
, (4.24)

in agreement with eq. (2.8a). (To arrive at eq. (4.24) one also needs to notice that, due to

the bounds of the x21 integral, z′ > 1/(x2
21 s) > 1/(x2

10 s) which is a stronger lower bound

on the z′ integration than Λ2/s of eq. (4.23).) Eq. (2.8b) is obtained by analogy, with a

slightly more subtle way of imposing the lifetime ordering.

4.2 Evolution of the polarized dipole operator for the dipole gluon helicity

The dipole gluon helicity distribution is governed by the polarized dipole amplitude (3.15)

and the (local) polarized Wilson line (3.12). Written explicitly, this operator is

Gi10(zs) =
p+

2Nc

∞∫
−∞

dx−1
〈
tr
[
V0V1[−∞, x−1 ](−ig)Ai⊥(x−1 , x1)V1[x−1 ,∞]

]
+ c.c.

〉
(zs). (4.25)

In the same way as before, we expand the fields in terms of classical and quantum com-

ponents, contracting the lowest-order contributions in the quantum fields. Again, there

are three general classes of contractions / diagrams: “polarized ladder” emissions (IV and

IV′), “polarized non-ladder” emissions (V and V′), and unpolarized emissions (“eikonal”),

as illustrated in figure 3. In analogy to eq. (4.3), the specific contractions are

IV : tr
[
V0 V1[−∞, x−1 ] ai⊥(x−1 , x1) V1[x−1 ,∞]

]
(4.26a)

IV′ : tr
[
V0 V1[−∞, x−1 ] ai⊥(x−1 , x1) V1[x−1 ,∞]

]
(4.26b)

V + V′ : tr
[
V0 V1[−∞, x−1 ] ai⊥(x−1 , x1) V1[x−1 ,∞]

]
(4.26c)

eikonal : tr
[
V 0 V1[−∞, x−1 ]Aicl⊥(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]Aicl⊥(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]Aicl⊥(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V 1[−∞, x−1 ]Aicl⊥(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]Aicl⊥(x−1 , x1) V1[x−1 ,∞]

]
+ tr

[
V0 V1[−∞, x−1 ]Aicl⊥(x−1 , x1) V 1[x−1 ,∞]

]
. (4.26d)
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eikonal

V

2

Figure 3. Diagrams illustrating contractions contributing the evolution of the polarized dipole

amplitude for the dipole gluon helicity distribution. The blue band represents the classical gluon

fields (shock wave), the vertex (i) denotes the sub-eikonal operator insertion, and the gray box

represents the polarized Wilson line.

As we saw in eqs. (4.11) and (4.13), the propagator for the ladder diagram I or IV

is just a special case of the propagator for the non-ladder diagram II or V. We therefore

begin by calculating diagram V, which is the contraction of the operator insertion with the

unpolarized Wilson line in the time ordering x−1 < 0 < x−2 . Expanding the unpolarized

Wilson line gives

(δGi10)V(zs) =
g2 p+

2Nc

0∫
−∞

dx−1

∞∫
0

dx−2

〈
tr
[
V0 a

i
⊥(x−1 , x1)V †1 a

+(x−2 , x0)
]

+ c.c.

〉

=
g2 p+

2Nc

〈
tr
[
V0t

aV †1 t
b
]

(∆i+
cl )bapol(x1, x0) + c.c.

〉
, (4.27)

where we have defined the propagator in the classical background field as

(∆i+
cl )bapol(x1, x0) ≡

0∫
−∞

dx−1

∞∫
0

dx−2 aia⊥ (x−1 , x1) a+b(x−2 , x0). (4.28)

As before, we will find that the propagator ∆µν
cl is symmetric, such that all of the polarized
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emissions shown in figure 3 can be written as

(δGi10)IV(zs) = (δGi10)IV′(zs) = −g
2p+

2Nc

〈
tr
[
V0t

aV †1 t
b
]

(∆i+
cl )bapol(x1, x1) + c.c.

〉
(4.29a)

(δGi10)V(zs) = (δGi10)V′(zs) =
g2p+

2Nc

〈
tr
[
V0t

aV †1 t
b
]

(∆i+
cl )bapol(x1, x0) + c.c.

〉
. (4.29b)

The two classes of diagrams differ only in two respects: a sign difference in the prefactor

(due to expanding V0 vs. V †1 ) and the arguments of the propagator (for ladder vs. non-

ladder emissions).

Thus the calculation is reduced to finding the propagator (4.28). In analogy to eq. (4.8),

we write the propagator as

(∆i+
cl )bapol(x1, x0) =

∑
λ

λ

∫
d2x2

 0∫
−∞

dx−1

∫
d4k1

(2π)4
eik

+
1 x
−
1 eik1·x21

−i
k2

1 + iε
(ε∗λ)i⊥


×
[

(Upol
2 )ba (2k−1 )2π δ(k−1 − k−2 )

]

×

 ∞∫
0

dx−2

∫
d4k2

(2π)4
e−ik

+
2 x
−
2 e−ik2·x20

−i
k2

2 + iε
[ελ(k2)]+


= − i

π
εijT

∫
dk−

∫
d2x2

 0∫
−∞

dx−1

∫
d2k1 dk

+
1

(2π)3
eik

+
1 x
−
1 eik1·x21

1

k2
1 + iε


×

 ∞∫
0

dx−2

∫
d2k2dk

+
2

(2π)3
e−ik

+
2 x
−
2 e−ik2·x20

1

k2
2 + iε

(k2)j⊥

(Upol
2 )ba. (4.30)

Employing the integrals in (4.10) we recast this as

(∆i+
cl )bapol(x1, x0) = − 1

4π3

∫
dk−

∫
d2x2 ln

1

x21Λ

εijT (x20)j⊥
x2

20

(Upol
2 )ba(k−). (4.31)

With the propagator (4.31), it is straightforward to obtain the evolution kernels IV − V′:

(δGi10)IV(zs) = (δGi10)IV′(zs)

=
αsNc

4π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

εijT (x21)j⊥
x2

21

×
〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]
(Upol

2 )ba + c.c.
〉〉

(z′s), (4.32a)

(δGi10)V(zs) = (δGi10)V′(zs)

= −αsNc

4π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

εijT (x20)j⊥
x2

20

×
〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s). (4.32b)
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The only other ingredient necessary is the unpolarized eikonal gluon contribution, which is

identical to (4.15) except for the replacement of the polarized Wilson lines V pol †
1 →(V pol †

1 )i⊥:

(δGi10)eik(zs) =
αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
10

x2
21 x

2
20

〈〈 1

N2
c

tr
[
V0t

a(V pol †
1 )i⊥t

b
]

(U2)ba

− CF
N2
c

tr
[
V0(V pol †

1 )i⊥

]
+ c.c.

〉〉
(z′s). (4.33)

Including all these contributions, we can immediately write down the evolution equa-

tion for the polarized dipole amplitude Gi10 as

Gi10(zs) = G
i (0)
10 (zs) + 2(δGi10)IV(zs) + 2(δGi10)V(zs) + (δGi10)eik(zs) (4.34)

= G
i (0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

×
{

ln
1

x21Λ
εijT

[
(x21)j⊥
x2

21

− (x20)j⊥
x2

20

]〈〈 1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.

〉〉
(z′s)

+
x2

10

x2
21x

2
20

〈〈 1

N2
c

tr
[
V0t

a(V pol †
1 )i⊥t

b
]
(U2)ba−CF

N2
c

tr
[
V0(V pol †

1 )i⊥

]
+ c.c.

〉〉
(z′s)

}
.

As expected, this evolution equation represents just the first of an infinite tower of operator

equations; we will remedy this problem in the usual way by taking the large-Nc limit.

We will also linearize the evolution equation, keeping the essential polarization-dependent

dipoles and neglecting additional unpolarized rescattering (e.g., the non-linear saturation

corrections); this will be necessary to generate double logarithms of energy. With these

simplifications, we replace

1

N2
c

tr
[
V0t

aV †1 t
b
]

(Upol
2 )ba + c.c.→

→ 1

2Nc
tr
[
V0V

pol †
2

]
+

1

2Nc
tr
[
V pol

2 V †1

]
+ c.c. (4.35a)

1

N2
c

tr
[
V0t

a(V pol †
1 )i⊥t

b
]
(U2)ba − CF

N2
c

tr
[
V0(V pol †

1 )i⊥

]
+ c.c.→

→ 1

2Nc
tr
[
V2(V pol †

1 )i⊥

]
− 1

2Nc
tr
[
V pol

0 (V pol †
1 )i⊥

]
+ c.c., (4.35b)

giving

Gi10(zs) =G
i(0)
10 (zs)+

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

×
{

ln
1

x21Λ
εijT

[
(x21)j⊥
x2

21

− (x20)j⊥
x2

20

]〈〈 1

2Nc
tr
[
V0V

pol†
2

]
+

1

2Nc
tr
[
V pol

2 V †1

]
+c.c.

〉〉
(z′s)

+
x2

10

x2
21x

2
20

〈〈 1

2Nc
tr
[
V2(V pol†

1 )i⊥

]
− 1

2Nc
tr
[
V0(V pol†

1 )i⊥

]
+c.c.

〉〉
(z′s)

}
. (4.36)
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The right-hand side of eq. (4.36) are now polarized dipole amplitudes, but we must think

carefully before identifying them with G or Gi. Depending on the precise limits of the

x2 integration, these dipoles may instead be “neighbor dipoles” Γ or Γi. These limits, in

turn, are dictated by the regions of transverse phase space which generate the greatest

logarithmic enhancement of the evolution.

Consider first the unpolarized eikonal emissions in the last line of eq. (4.36). Just like

in the quark helicity case, we see that the dipole BFKL kernel x2
10/(x

2
21 x

2
20) is potentially

DLA in both the x2
21 � x2

10 limit and in the x2
20 � x2

10 limit. In the latter case, x2 → x0,

however, the operators multiplying the kernel cancel and destroy the DLA contribution.

Therefore, similar to the quark case [9], we conclude that only the x2
21 � x2

10 region in

that term is DLA and simplify the dipole BFKL kernel to 1
x2

21
θ(x2

10 − x2
21)θ(x2

21 − 1
z′s),

where the available energy z′s acts as a UV cutoff. For each of the associated dipoles

tr
[
V2(V pol †

1 )i⊥

]
and tr

[
V0(V pol †

1 )i⊥

]
, we must impose a lifetime ordering condition on their

subsequent evolution to ensure that the “fast” quantum fields computed here live longer

than the “slow” classical fields. The first term tr
[
V2(V pol †

1 )i⊥

]
depends only on the distance

x21 associated with the quantum fluctuation and can be identified as Gi12(z′s). The second

term tr
[
V0(V pol †

1 )i⊥

]
appears to depend only on the distance x10, but must also respect the

lifetime ordering with respect to the virtual gluon loop of transverse size x21 that gave rise

to this term in the equation. This term is therefore a neighbor dipole Γi10,21(z′s) because

it “remembers” about the lifetime of the neighboring x21 quantum fluctuation (see [37] for

a detailed calculation explaining this conclusion). We therefore simplify the eikonal terms

to write

Gi10(zs) =G
i(0)
10 (zs)+

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

×
{

ln
1

x21Λ
εijT

[
(x21)j⊥
x2

21

− (x20)j⊥
x2

20

]〈〈 1

2Nc
tr
[
V0V

pol†
2

]
+

1

2Nc
tr
[
V pol

2 V †1

]
+c.c.

〉〉
(z′s)

}

+
αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2

x2
21

θ
(
x2

10−x2
21

)
θ
(
x2

21−
1

z′s

)[
Gi12(z′s)−Γi10,21(z′s)

]
. (4.37)

The story for the polarized gluon emissions in the second line of eq. (4.37), however,

is significantly more complicated. The reason is that the transverse integration does not

generate a logarithm of the energy, so the whole kernel is not DLA. (After integration,

ln 1
x21Λ becomes ln 1

x10Λ and not a logarithm of the energy.) It would seem, then, that the

polarized emissions only generate one logarithm of energy from the z′ integral and can be

neglected compared to the DLA evolution of the eikonal terms.

This, however, is not quite the case, because of the initial conditions. The initial

conditions for the polarized dipole operator Gi10, taken in the quark target model at a fixed

impact parameter, can be obtained by computing the diagrams shown in figure 4:

G
i (0)
10 (z) = Γ

i (0)
10,21(z) = −α

2
sCF
Nc

εij
(x1 − b)j
|x1 − b|2

ln
|x1 − b|
|x0 − b|

. (4.38)
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b

Figure 4. Diagrams contributing the initial conditions for Gi and Γi in eq. (4.39).

Integrating over the impact parameters yields∫
d2b10G

i (0)
10 (zs) =

∫
d2b10 Γ

i (0)
10,21(zs) = −α

2
sCF
Nc

π εij xj10 ln
1

x10 Λ
, (4.39)

which is independent of the energy. By contrast, the dipoles tr
[
V0V

pol †
2

]
and tr

[
V pol

2 V †1

]
in eq. (4.37) are the ones which enter the evolution (2.8) of the quark helicity distribution.

Their initial conditions are given by eq. (13b) in [37] for the impact-parameter integrated

case. Keeping only the gluon-exchange part of that expression,∫
d2b10G

(0)
10 (zs) =

∫
d2b10 Γ

(0)
10,21(zs) = −α

2
sCF
Nc

π ln(zs x2
10), (4.40)

we see that
∫
d2b10G

i
10 in (4.39) is suppressed by a logarithm of energy compared to∫

d2b10G10 in (4.40).

This implies that Gi starts energy-independent and, after one step of eikonal evolution,

acquires two logarithms of energy. On the other hand, G and Γ can mix into Gi through the

second line of eq. (4.37), picking up one logarithm of energy from the evolution. But since

G and Γ start off with one logarithm of energy from the initial conditions, both of these two

contributions are of the same order. Subsequent evolution in the eikonal Gi,Γi → Gi,Γi

channel and the prior evolution (2.8) in the polarized G,Γ→ G,Γ channel, are both double

logarithmic.

Therefore, we conclude that we must keep all of eq. (4.37), and we are left with a

transverse integral for the polarized emissions which covers the entire plane. The result-

ing kernel in the second line of eq. (4.37) is leading-logarithmic (LLA). This is similar

to the unpolarized BFKL/BK/JIMWLK evolution, which also has a LLA kernel, without

any logarithm of energy coming from the transverse coordinate integral. In the unpolar-

ized evolution case at LLA one does not need to impose the lifetime ordering condition

which would restrict the transverse integrals (see [45, 59] for the higher-order corrections

though). The same is true here: the transverse integral in the second line of eq. (4.37) is

unconstrained.

This leads to a problem though: with an unconstrained integral the second line of

eq. (4.37) we cannot tell whether the dipole 21 is smaller than the dipole 20 (x21 � x20) or

vice versa (x20 � x21) or both dipoles are large x21 ∼ x20 � x10. This was not necessary

for the LLA unpolarized dipole evolution [34, 35, 60], since there the subsequent evolution

in all the daughter dipoles was independent of other dipoles and their sizes. This is not

– 30 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
8

the case for our DLA helicity evolution (2.8), where the subsequent evolution in a given

dipole can make it a “neighbor dipole” if the adjacent dipole (produced in the same step

of evolution) was smaller in the transverse plane.

By our power counting, the subsequent evolution for the correlators in the second line

of eq. (4.37) should be DLA. Hence it should be expressed in terms of the DLA amplitudes

G and Γ. Consider specifically diagram V in figure 3. When x20 � x21, the subsequent

evolution in dipole 20 is given by G20(z′s). Conversely, when x21 � x20, the subsequent

evolution in dipole 20 is given by Γ20,21(z′s). With the DLA accuracy of this subsequent

evolution we can not distinguish, say, x21 < x20 from x21 � x20. Therefore, to include

both the x21 < x20 and x21 > x20 regions of integration in the second line of eq. (4.37) we

define a new amplitude

Γgen
20,21(z′s) = θ(x20 − x21) Γ20,21(z′s) + θ(x21 − x20)G20(z′s). (4.41)

This amplitude Γgen encompasses both regions of transverse plane with the DLA accuracy,

and is thus the proper amplitude to use for diagrams IV, IV’ in figure 3 when describing

the subsequent evolution in dipole 20 and in diagrams V, V’ when describing the evolution

in either of the daughter dipoles, 20 or 21.

As a result of this analysis, we obtain the large-Nc evolution equations relevant for the

dipole gluon helicity distribution,

Gi10(zs) = G
i (0)
10 (zs) +

αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

εijT (x21)j⊥
x2

21

[
Γgen

20 , 21(z′s) +G21(z′s)
]

− αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

εijT (x20)j⊥
x2

20

[
Γgen

20 , 21(z′s) + Γgen
21 , 20(z′s)

]

+
αsNc

2π2

z∫
1

x2
10s

dz′

z′

∫
d2x2

x2
21

θ
(
x2

10 − x2
21

)
θ
(
x2

21 −
1

z′s

) [
Gi12(z′s)− Γi10 , 21(z′s)

]
,

(4.42a)

Γi10, 21(z′s) = G
i (0)
10 (z′s) +

αsNc

2π2

z′∫
Λ2

s

dz′′

z′′

∫
d2x3 ln

1

x31Λ

εijT (x31)j⊥
x2

31

[
Γgen

30,31(z′′s) +G31(z′′s)
]

− αsNc

2π2

z′∫
Λ2

s

dz′′

z′′

∫
d2x3 ln

1

x31Λ

εijT (x30)j⊥
x2

30

[
Γgen

30 , 31(z′′s) + Γgen
31 , 30(z′′s)

]

+
αsNc

2π2

z′∫
1

x2
10s

dz′′

z′′

∫
d2x3

x2
31

θ

(
min

[
x2

10 , x
2
21

z′

z′′

]
− x2

31

)

× θ
(
x2

31 −
1

z′′s

) [
Gi13(z′′s)− Γi10 , 31(z′′s)

]
, (4.42b)
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∂

Figure 5. Linearized large-Nc evolution of the new dipole function Gi as written in eq. (4.42a).

Because there is no universal DLA parameter for the various terms, we have no a priori constraint

on the relative sizes of x20 and x21, which makes enforcing lifetime ordering in these dipoles more

subtle. We must distinguish between the ladder emission of polarized gluons (top line), which

are constrained by the lifetime of dipole 21 only, and the non-ladder emission of polarized gluons

(middle line), which are constrained by the lifetimes of both dipoles 20 and 21. The “+ c.c.” stands

for adding mirror-reflected diagrams as well as the true complex conjugates in which line 0 becomes

a polarized quark line.

which are illustrated in figures 5 and 6. The solution of these equations with the help

of eq. (3.18) will give us the small-x asymptotics of the dipole gluon helicity TMD and,

through this, of the gluon helicity PDF.

5 Solution of the evolution equations for the dipole gluon helicity

5.1 Structure of the evolution equations

We will now proceed to simplify and solve the evolution equations (4.42) for the polarized

dipole amplitude Gi10 at small x. First, it is convenient to convert from the vector quantity

Gi10(zs) to the scalar functions G1(x2
10, zs) and G2(x2

10, zs) by integrating over impact

parameters
∫
d2b10 =

∫
d2b20 =

∫
d2b21 and using the decomposition (3.17). The same

decomposition is applied to the impact-parameter integral of Γi10, 21(z′s). From eq. (3.19),

we see that the dipole gluon helicity distribution couples to the G2 function, which can be
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Figure 6. Linearized large-Nc evolution of the new dipole function Γi as written in eq. (4.42b).

Because there is no universal DLA parameter for the various terms, we have no a priori constraint

on the relative sizes of x30 and x31, which makes enforcing lifetime ordering in these dipoles more

subtle. We must distinguish between the ladder emission of polarized gluons (top line), which

are constrained by the lifetime of dipole 31 only, and the non-ladder emission of polarized gluons

(middle line), which are constrained by the lifetimes of both dipoles 30 and 31. The “+ c.c.” stands

for adding mirror-reflected diagrams as well as the true complex conjugates in which line 1 becomes

a polarized quark line.

extracted using the projection

G2(x2
10, zs) = −(x10)i⊥ε

ij
T

x2
10

∫
d2b10 G

j
10(zs). (5.1)

In doing the impact parameter integral, the Gi12 term from the unpolarized eikonal evolution

(third line of (4.42a)) drops out due to the angular integration. Similarly, the G21 term in

the polarized ladder evolution (first line of (4.42a)) appears to vanish due to the angular

integral. However, the radial integral in the kernel is potentially IR divergent without this

term, so we will keep this contribution for now. After performing the impact parameter
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integral of eqs. (4.42) along with the projection (5.1), we obtain

G2(x2
10, zs)

= G
(0)
2 (x2

10, zs) +
αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

x10 · x21

x2
10x

2
21

[
Γgen(x2

20, x
2
21, z

′s) +G(x2
21, z

′s)
]

− αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

x10 · x20

x2
10x

2
20

[
Γgen(x2

20, x
2
21, z

′s) + Γgen(x2
21, x

2
20, z

′s)
]

− αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

Γ2(x2
10, x

2
21, z

′s), (5.2a)

Γ2(x2
10, x

2
21, z

′s)

= G
(0)
2 (x2

10, z
′s) +

αsNc

2π2

z′∫
Λ2

s

dz′′

z′′

∫
d2x3 ln

1

x31Λ

x10 · x31

x2
10x

2
31

[
Γgen(x2

30, x
2
31, z

′′s) +G(x2
31, z

′s)
]

− αsNc

2π2

z′∫
Λ2

s

dz′′

z′′

∫
d2x3 ln

1

x31Λ

x10 · x30

x2
10x

2
30

[
Γgen(x2

30, x
2
31, z

′′s) + Γgen(x2
31, x

2
30, z

′′s)
]

− αsNc

2π

z′∫
1

x2
10s

dz′′

z′′

min
[
x2

10,x
2
21

z′
z′′

]∫
1
z′′s

dx2
31

x2
31

Γ2(x2
10, x

2
31, z

′′s). (5.2b)

We have defined an impact-parameter integrated amplitude Γgen by (cf. eq. (4.41))

Γgen(x20, x21, z
′s) = θ(x20 − x21) Γ(x20, x21, z

′s) + θ(x21 − x20)G(x20, z
′s). (5.3)

This function can be easily found using the analytic solution (2.9) for the asymptotics of

G and Γ at high energies.

The initial conditions for the scalar functions G2 and Γ2 in eqs. (5.2) follow from

eq. (4.39):

G
(0)
2 (x2

10, z) = Γ
(0)
2 (x2

10, x
2
21, z

′) = −α
2
sCF
Nc

π ln
1

x10 Λ
. (5.4)

It is useful to check that the transverse coordinate integral in the LLA kernel of

eqs. (5.2) (the first two lines of (5.2a) and (5.2b)) is convergent. To see this, let us use

eq. (5.3) and eq. (2.9) in eqs. (5.2), to check the behavior of the integrands in the x2
21 � x2

10

and x2
21 � x2

10 limits. Although individual terms appear to be logarithmically divergent in

the IR, the sum of the terms scales as
∞∫

dx2
21

(x2
21)1.5−αqh

ln
1

x2
21Λ2

, (5.5)

which is convergent for αqh <
1
2 . Noting from eq. (2.10) that αqh ∼

√
αs � 1, we con-

clude that this integral is convergent in the IR for perturbative αs. In the UV, the terms
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converge as ∫
0

dx2
21 ln

1

x2
21Λ2

(x2
21)c α

q
h (5.6)

with c a positive constant depending on the term. We therefore conclude that the transverse

coordinate integral in eqs. (5.2) is convergent in both the UV and IR limits.

The most intricate part of eqs. (5.2) is the treatment of the non-logarithmic trans-

verse integral; we want to evaluate it as completely as possible within our DLA accuracy.

Focusing on the evolution of G2 in eq. (5.2a), that integral is

J ≡ αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

x10 · x21

x2
10 x

2
21

[
Γgen(x2

20, x
2
21, z

′s) +G(x2
21, z

′s)
]

− αsNc

2π2

z∫
Λ2

s

dz′

z′

∫
d2x2 ln

1

x21Λ

x10 ·x20

x2
10x

2
20

[
Γgen(x2

20, x
2
21, z

′s)+Γgen(x2
21, x

2
20, z

′s)
]
. (5.7)

Next we insert the expression (5.3) for Γgen and the asymptotic solutions (2.9), scaling out

the various power-counting parameters:

J =
αsNc

2π2

z∫
Λ2

s

dz′

z′
(z′s x2

10)α
q
h G0 j(x

2
10) =

(
αsNc

2π2

1

αqh
G0

)
j(x2

10) (zs x2
10)α

q
h , (5.8)

where

j(x2
10) ≡ 1

G0

∫
d2x2 ln

1

x21Λ
(z′s x2

10)−α
q
h

×
{
x10

x2
10

·
(
x21

x2
21

− x20

x2
20

)[
θ(x2

21 − x2
20)G(x2

20, z
′s) + θ(x2

20 − x2
21) Γ(x2

20, x
2
21, z

′s)
]

−
(
x10 · x20

x2
10 x

2
20

)[
θ(x2

20 − x2
21)G(x2

21, z
′s) + θ(x2

21 − x2
20) Γ(x2

21, x
2
20, z

′s)
]

+

(
x10 · x21

x2
10 x

2
21

)
G(x2

21, z
′s)

}
. (5.9)

Using the expressions in (2.9) we write

j(x2
10) =

1

3

∫
d2x2 ln

1

x21Λ

×

x10

x2
10

·
(
x21

x2
21

−x20

x2
20

)θ(x2
21−x2

20)

(
x2

20

x2
10

)αqh
+θ(x2

20−x2
21)

(
x2

21

x2
10

)αqh4

(
x2

20

x2
21

)αqh
4

−3




−
(
x10 ·x20

x2
10x

2
20

)θ(x2
20−x2

21)

(
x2

21

x2
10

)αqh
+θ(x2

21−x2
20)

(
x2

20

x2
10

)αqh4

(
x2

21

x2
20

)αqh
4

−3




+

(
x10 ·x21

x2
10x

2
21

)(
x2

21

x2
10

)αqh . (5.10)
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Consider the DLA power counting in eq. (5.8). This step of evolution contains an

explicit factor of αs, together with 1
αqh

and G0. From eq. (2.10) we see that 1
αqh
∼ 1√

αs
, and

from eq. (4.40), we see that the scaling initial conditions G0 contain a relative logarithm

of energy, which also scales as 1√
αs

in the DLA power counting (αs ln2 s
Λ2 ∼ 1 such that

ln s
Λ2 ∼ 1√

αs
). The factor in parentheses in (5.8) is therefore an O (1) step of evolution in

this limit, and the energy dependence (zs x2
10)α

q
h is also an O (1) resummation. Next we

note that the quantity j(x2
10) in eq. (5.9) is independent of the energy z′s, is a dimensionless

function of x10 and Λ, and converges in the IR, such that the IR cutoff Λ enters only in a

single logarithm in the integrand. Therefore, the general form of j(x2
10) can be written as

j(x2
10) = f1(αs) ln

1

x10Λ
+ f2(αs), (5.11)

where f1 and f2 are some functions only of αs and contain no additional logarithms of

energy or of x10. The residual αs dependence in f1 and f2 is thus not enhanced by any

logarithms and only contributes to higher-order non-logarithmic corrections. In this spirit

we therefore set αs → 0 in eq. (5.9), replacing both G and Γ from (2.9) by 1
3G0, obtaining

j(x2
10) =

2

3

∫
d2x2 ln

1

x21Λ

x10

x2
10

·
(
x21

x2
21

− x20

x2
20

)
. (5.12)

The integral now is at most log-divergent in x21, and even that divergence is zero after

the angular integrations. Writing d2x2 = x21dx21dφ we can eliminate the first term in

parentheses after the angular averaging.5 Angular integration in the second term gives

(see eq. (A.14) of [47])

j(x2
10) = −4π

3

1

x2
10

∞∫
0

dx21 x21 ln
1

x21Λ
θ(x10 − x21) = −2π

3
ln

1

x10Λ
− π

3
. (5.13)

Neglecting the constant compared to the logarithm and substituting our result back into

eq. (5.8) we arrive at

J = −
(
αsNc

3π

1

αqh
G0

)(
zs x2

10

)αqh ln
1

x10Λ
. (5.14)

5It appears important to first choose the integration variables for the whole integral, and then integrate

both terms in parenthesis using the same variables. If one simply discards the first term in parentheses,

and writes d2x2 = x20dx20dφ
′ for the second term, the result appears to be IR divergent again due to an

illegal variable shift in one of two divergent terms of an overall convergent integral.
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Employing eq. (5.14) in eqs. (5.2) to replace the terms containing Γgen and G yields

G2(x2
10, zs) = G

(0)
2 (x2

10, zs)−
(
αsNc

3π

1

αqh
G0

)(
zs x2

10

)αqh ln
1

x10Λ

− αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

Γ2(x2
10, x

2
21, z

′s), (5.15a)

Γ2(x2
10, x

2
21, z

′s) = G
(0)
2 (x2

10, z
′s)−

(
αsNc

3π

1

αqh
G0

)(
z′s x2

10

)αqh ln
1

x10Λ

− αsNc

2π

z′∫
1

x2
10s

dz′′

z′′

min
[
x2

10 , x
2
21

z′
z′′

]∫
1
z′′s

dx2
31

x2
31

Γ2(x2
10, x

2
31, z

′′s). (5.15b)

This leaves the simplified equations (5.15) amenable to analytic solution, which we will

pursue next.

5.2 High-energy asymptotics

To begin, it is convenient to rescale the functions G2 and Γ2 to eliminate the constants:

G2 ≡
(
−αsNc

3π

1

αqh
G0 ln

1

x10Λ

)
Ḡ2 =

(
− G0

2
√

3

√
αsNc

2π
ln

1

x10Λ

)
Ḡ2, (5.16a)

Γ2 ≡
(
−αsNc

3π

1

αqh
G0 ln

1

x10Λ

)
Γ̄2 =

(
− G0

2
√

3

√
αsNc

2π
ln

1

x10Λ

)
Γ̄2, (5.16b)

which casts eq. (5.15) into the form

Ḡ2(x2
10,zs) =

(
zsx2

10

)αqh−αsNc

2π

z∫
1

x2
10s

dz′

z′

x2
10∫

1
z′s

dx2
21

x2
21

Γ̄2(x2
10,x

2
21,z

′s), (5.17a)

Γ̄2(x2
10,x

2
21,z

′s) =
(
z′sx2

10

)αqh−αsNc

2π

z′∫
1

x2
10s

dz′′

z′′

min
[
x2

10,x
2
21

z′
z′′

]∫
1
z′′s

dx2
31

x2
31

Γ̄2(x2
10,x

2
31,z

′′s), (5.17b)

where we have neglected the initial conditions for G2 and Γ2 as small when compared to

the J-term from eq. (5.14). Introducing the logarithmic variables

η ≡
√
αsNc

2π
ln
zs

Λ2
, s10 ≡

√
αsNc

2π
ln

1

x2
10Λ2

, (5.18a)

η′ ≡
√
αsNc

2π
ln
z′s

Λ2
, s21 ≡

√
αsNc

2π
ln

1

x2
21Λ2

, (5.18b)

η′′ ≡
√
αsNc

2π
ln
z′′s

Λ2
, s31 ≡

√
αsNc

2π
ln

1

x2
31Λ2

, (5.18c)
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along with the scaling variables

χ ≡ η − s10 =

√
αsNc

2π
ln(zs x2

10), (5.19a)

ζ ≡ η′ − s10 =

√
αsNc

2π
ln(z′s x2

10), ζ ′ ≡ η′ − s21 =

√
αsNc

2π
ln(z′s x2

21), (5.19b)

ξ ≡ η′′ − s10 =

√
αsNc

2π
ln(z′′s x2

10), ξ′ ≡ η′′ − s31 =

√
αsNc

2π
ln(z′′s x2

31), (5.19c)

and the rescaled intercept as α̂qh ≡ 4√
3
, we can rewrite eqs. (5.17) in the simple form

Ḡ2(χ) = eα̂
q
hχ −

χ∫
0

dζ

ζ∫
0

dζ ′ Γ̄2(ζ, ζ ′), (5.20a)

Γ̄2(ζ, ζ ′) = eα̂
q
hζ −

ζ′∫
0

dξ

ξ∫
0

dξ′ Γ̄2(ξ, ξ′)−
ζ∫

ζ′

dξ

ζ′∫
0

dξ′ Γ̄2(ξ, ξ′). (5.20b)

Let us emphasize that, although we have expressed eqs. (5.20) in terms of scaling variables,

we have not imposed a scaling form on the functions, rather it resulted naturally from the

form of the equations.

Following the procedure used in [39] to obtain an analytic solution for the quark helicity

distribution, we first differentiate eqs. (5.20) to get

∂

∂χ
Ḡ2(χ) = α̂qh e

α̂qhχ −
χ∫

0

dζ ′ Γ̄2(χ, ζ ′), (5.21a)

∂

∂ζ
Γ̄2(ζ, ζ ′) = α̂qh e

α̂qhζ −
ζ′∫

0

dξ′ Γ̄2(ζ, ξ′), (5.21b)

with the boundary condition

Γ̄2(ζ ′, ζ ′) = Ḡ2(ζ ′). (5.22)

Next, we introduce the Laplace transforms

Ḡ2(χ) =

∫
dω

2πi
eω χ Ḡ2ω, Γ̄2(ζ, ζ ′) =

∫
dω

2πi
eω ζ

′
Γ̄2ω(ζ), (5.23a)

Ḡ2ω =

∞∫
0

dχ e−ωχ Ḡ2(χ), Γ̄2ω(ζ) =

∞∫
0

dζ ′ e−ωζ
′
Γ̄2(ζ, ζ ′), (5.23b)

and start by focusing on eq. (5.21b), obtaining

∂

∂ζ
Γ̄2ω(ζ) =

α̂qh
ω
eα̂

q
hζ − 1

ω
Γ̄2ω(ζ). (5.24)

This ODE is straightforward to solve, and the solution reads

Γ̄2ω(ζ) =
α̂qh

1 + α̂qh ω
eα̂

q
hζ + α̂qhCω e

− ζ
ω (5.25)
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with the integration “constant” Cω, such that

Γ̄2(ζ, ζ ′) =

∫
dω

2πi
eω ζ

′
[

α̂qh
1 + α̂qh ω

eα̂
q
hζ + α̂qhCω e

− ζ
ω

]
. (5.26)

Collecting the pole at ω = − 1
α̂qh

and using the boundary condition (5.22) to obtain the

corresponding solution for G, we have

Ḡ2(χ) = e

(
α̂qh−

1

α̂
q
h

)
χ

+

∫
dω

2πi
α̂qhCω e

(ω− 1
ω )χ, (5.27a)

Γ̄2(ζ, ζ ′) = e
α̂qhζ−

1

α̂
q
h

ζ′

+

∫
dω

2πi
α̂qhCω e

ω ζ′− ζ
ω . (5.27b)

The integration constants Cω can be constrained by back-substituting the solu-

tion (5.27) into the differential equations (5.21). Plugging eq. (5.27b) into eq. (5.21b)

we arrive at the condition ∫
dω

2πi

1

ω
Cω e

− ζ
ω = 0, (5.28)

and similarly, using eq. (5.27a) in eq. (5.21a), we obtain∫
dω

2πi
ω Cω e

(ω− 1
ω ) ζ =

1

(α̂qh)2
e

(
α̂qh−

1

α̂
q
h

)
ζ
. (5.29)

This equation is hard to solve exactly, but it is straightforward to match the large-ζ asymp-

totics. In eq. (5.29), there is a pole at ω = 0 in the exponent which can be shown to give

a contribution that asymptotes to zero as ζ → ∞ (see appendix A for the calculation).

Hence, to make eq. (5.29) be valid at ζ →∞, we simply need Cω to contain a pole ω = α̂qh,

with an appropriate choice of the coefficient:

Cω =
1

(α̂qh)3

1

ω − α̂qh
. (5.30)

We verify explicitly in appendix A that eq. (5.30) solves eq. (5.29) in the large-ζ asymptotics

and that the ω = 0 pole is suppressed.

The asymptotic solution to eqs. (5.20) is thus (using α̂qh = 4√
3
)

Ḡ2(χ� 1) =

(
1 +

1

(α̂qh)2

)
e

(
α̂qh−

1

α̂
q
h

)
χ

=
19

16
e

13
4
√

3
χ
, (5.31a)

Γ̄2(ζ � 1, ζ ′ � 1) = e
α̂qhζ−

ζ′

α̂
q
h +

1

(α̂qh)2
e
α̂qhζ
′− ζ

α̂
q
h = e

4√
3
ζ−
√

3
4
ζ′

+
3

16
e

4√
3
ζ′−

√
3

4
ζ
. (5.31b)

Our analytic solution can be cross-checked numerically. We did this by solving

eqs. (5.20) on a discretized grid, exactly analogous to what we did in ref. [38]. The resulting

numerical solution of Ḡ2 is shown in figure 7 for a grid spacing of 0.033.6 These curves

demonstrate the scaling behavior of Ḡ2 in agreement with our analytic result in eq. (5.31a).

Moreover, from the slope of this curve we find agreement with the exponent 13/(4
√

3) of

Ḡ2 to within 1%.

6This corresponds to using maximum η and s values (see eqs. (5.18)) of 10 with a grid size of 300.
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Figure 7. Numerical solution of eqs. (5.20) for ln Ḡ2 plotted as a function of η − s10 (for three

different values of η + s10) in the left panel and as a function of η + s10 (for three different values

of η − s10) in the right panel. Both panels demonstrate that Ḡ2 is only a function of η − s10, as

expected from eq. (5.31a).
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Figure 8. Plot of the Γ̄2/Ḡ2 ratio given by the numerical solution of eqs. (5.20) as a function of

s21 − s10 (for three different values of η) in the left panel and as a function of η (for three different

values of s21 − s10) in the right panel. Both panels demonstrate that Γ̄2/Ḡ2 is only a function of

s21 − s10 in agreement with eq. (5.32).

To cross-check our solution for Γ̄2 we take the ratio of eqs. (5.31b) and (5.31a) to obtain

Γ̄2(ζ, ζ ′)

Ḡ2(ζ)
=

16

19

[
e
ζ−ζ′

α̂
q
h +

1

(α̂qh)2
eα̂

q
h(ζ′−ζ)

]
=

16

19

[
e
√

3
4

(s21−s10)+
3

16
e
− 4√

3
(s21−s10)

]
. (5.32)

The ratio Γ̄2/Ḡ2 given by our numerical solution is shown in figure 8. The plots demon-

strate that the ratio Γ̄2/Ḡ2 is only a function of s21− s10, in agreement with our analytical

result (5.32). We likewise were able to confirm in the physical region s10 < s21 < η the

functional form of (5.32), where we found agreement with the exponent
√

3/4 to within

5% and the coefficient 16/19 to within < 0.5%. Thus, we have numerically confirmed our

analytic solution for both Ḡ2 and Γ̄2.
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Finally, converting eqs. (5.31) back into the standard variables by using eqs. (5.19) and

reinserting the scaling factors from eq. (5.16) gives us our final answer

G2(x2
10, zs) ≈ −

19

32
√

3

√
αsNc

2π
G0 ln

1

x10Λ
(zs x2

10)
13

4
√

3

√
αsNc

2π , (5.33a)

Γ2(x2
10, x

2
21, z

′s) ≈ − 1

2
√

3

√
αsNc

2π
G0 ln

1

x10Λ

[
(z′s x2

10)
4√
3

√
αsNc

2π (z′s x2
21)
−
√

3
4

√
αsNc

2π

+
3

16
(z′s x2

21)
4√
3

√
αsNc

2π (z′s x2
10)
−
√

3
4

√
αsNc

2π

]
. (5.33b)

The asymptotic solution (5.33a) for the polarized dipole amplitude G2 is the central

result of this work. Substituting the solution eq. (5.33a) into eq. (3.19) yields the small-x

asymptotics of the dipole gluon helicity distribution:

gG dip
1L (x, k2

T ) ∼ G2

(
x2

10, zs =
Q2

x

)
∼
(

1

x

)αGh
(5.34)

with the gluon helicity intercept

αGh =
13

4
√

3

√
αsNc

2π
≈ 1.88

√
αsNc

2π
. (5.35)

Strictly speaking, this intercept has been obtained by solving the small-x evolution equa-

tions (4.42) applicable to the dipole gluon helicity distribution (3.19). The Weizsäcker-

Williams gluon helicity distribution (3.29) is defined by a different operator (3.30) than

the dipole gluon helicity distribution (3.15), and in general will have different evolution

equations than (4.42). While we leave the derivation and solution of these evolution equa-

tions for future work, we note that both the dipole and WW gluon helicity TMDs must

give the same gluon helicity PDF ∆G when integrated over all kT . Integrating eqs. (3.19)

and (3.29) over the transverse momentum to obtain the collinear gluon helicity distribution

∆G, we confirm that both distributions reduce to a common operator, and that all three

distributions possess the same small-x asymptotics:

∆G(x,Q2) =

∫
d2k gGWW

1L (x, k2
T ) =

∫
d2k gG dip

1L (x, k2
T )

=
1

αs 2π2

∫
d2x0 ε

ij
T

〈
tr

[
(V pol

0 )i⊥

(
∂

∂(x0)j⊥
V †0

)]
+ c.c.

〉

=
−2Nc

αsπ2

[(
1 + x2

10

∂

∂x2
10

)
G2

(
x2

10, zs =
Q2

x

)]
x2

10= 1
Q2

. (5.36)

We conclude that

∆G(x,Q2) ∼
(

1

x

)αGh
∼
(

1

x

) 13
4
√

3

√
αs Nc

2π

∼
(

1

x

)1.88
√
αs Nc

2π

. (5.37)

Thus, we see that the small-x asymptotics of these three distributions (∆G, gG dip
1L , gGWW

1L )

— and, indeed, all possible definitions of gluon helicity TMDs — are universal and governed

by the gluon helicity intercept (5.35).
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6 Phenomenology of the gluon spin at small x

In this section we give an estimate for the gluon spin SG in (1.1) based on our gluon

helicity intercept (5.35). The gluon spin has been a topic of intense investigation, with

only recent experiments showing that it can give a more substantial fraction of the proton’s

spin than once thought [61, 62]. Nevertheless, the estimates of SG are still plagued by the

lack of data below x = 0.05, which causes large uncertainties in this quantity (see, e.g.,

ref. [63]), and is one of the main motivations for the construction of an Electron-Ion Collider.

However, we emphasize that once our theoretical calculations of the gluon (and quark)

helicity intercepts push beyond the current approximations and include, e.g., large-Nc&Nf ,

running coupling, and LLA corrections, one could use these results in future extractions

of the already existing data to provide strong constraints on the small-x behavior of the

helicity PDFs, and, consequently, the quark and gluon spin. (We mention that helicity

PDFs have been extracted by several groups, e.g., DSSV [43, 64], JAM [65–67], LSS [68–70],

NNPDF [71, 72].)

In order to calculate SG, we need input for the gluon helicity PDF ∆G(x,Q2),

and we focus here on the fit from DSSV14 [43]. We proceed through a simple ap-

proach, which we also employed in ref. [38] for an estimate of the quark spin based

on (1.3), and leave a more rigorous phenomenological study for future work. First, we

attach a curve ∆G̃(x,Q2) = N x−α
G
h (with αGh given in (5.35)) to the DSSV14 result for

∆G(x,Q2) at a particular small-x point x0. We fix the normalization N by requiring

∆G̃(x0, Q
2) = ∆G(x0, Q

2). Then we calculate the truncated integral

S
[xmin]
G (Q2) ≡

∫ 1

xmin

dx∆G(x,Q2) (6.1)

of the modified gluon helicity PDF

∆Gmod(x,Q2) ≡ θ(x− x0) ∆G(x,Q2) + θ(x0 − x) ∆G̃(x,Q2) (6.2)

for different x0 values. The results are shown in figure 9 for Q2 = 10 GeV2 and αs ≈ 0.25,

in which case αGh ≈ 0.65. We see that the small-x evolution of ∆G(x,Q2) gives about a

5÷ 10% increase to the gluon spin, depending on where in x the effects set in and on the

parameterization of the gluon helicity PDF at higher x. Again we emphasize that the first

principles results of this work (along with that for the quark [9, 38, 39]) can be included

in future extractions of helicity PDFs, especially once the present large-Nc approximation

is relaxed, which will provide strong constraints on the small-x behavior of the quark and

gluon spin.

Saturation effects may also impact the amount of spin carried by small-x quarks and

gluons. The small-x asymptotics of ∆G found here and the small-x asymptotics of ∆q

found in [9, 38, 39] are such that x∆G → 0 and x∆q → 0 as x → 0. Hence the helicity

PDFs will not violate unitarity at small x. However, as one can see from the helicity

evolution equations including (LLA) saturation effects, as derived in [9, 37], saturation

would completely suppress the small-x evolution of helicity PDFs, making the effective

αqh and αGh zero in the saturation region (cf. [26] for the flavor non-singlet unpolarized
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Figure 9. Plot of S
[xmin]
G (Q2) vs. xmin at Q2 = 10 GeV2. The solid curve is from DSSV14 [43].

The dot-dashed, long-dashed, and short-dashed curves are from various small-x modifications of

∆G(x,Q2) at x0 = 0.08, 0.05, 0.001, respectively, using our gluon helicity intercept (see the text

for details).

quark distribution). Therefore, a very small amount of the proton spin should reside in

the saturation region. This observation can become an important component of the future

small-x helicity PDF phenomenology.

7 Conclusions

In this paper, we have shown that the dipole gluon helicity distribution (3.18) and the

Weizsäcker-Williams gluon helicity distribution (3.32) at small x are governed by polar-

ized dipole operators (3.15) and (3.30), respectively. These operators are different from

each other and from the polarized dipole amplitude (2.4) which governs the quark helicity

distribution at small x. For the case of the dipole gluon helicity distribution, we have

derived double-logarithmic small-x evolution equations given by eqs. (4.42) in the large-Nc

limit. These gluon helicity evolution equations mix with the small-x quark helicity evolu-

tion (2.9), but ultimately result in a gluon helicity intercept (5.35) which is smaller than

the quark helicity intercept (2.10) by about 20%. One may speculate that the fact that

αGh < αqh is partially responsible for the difficulty in experimentally detecting a non-zero

signal for ∆G at small-x.

The difference between the quark and gluon helicity intercepts mathematically re-

sults from the fact that the small-x evolution for quark and gluon helicity is given by a

coupled set of equations, eqs. (2.8) and (4.42). This is similar to the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equations [73–75] which mix the evolution of

the (flavor-singlet) quark and gluon distributions. Due to this mixing, the Q2 dependence

of quark and gluon PDFs is different from each other. The unpolarized small-x evolution

is different in this respect: at LLA the BFKL evolution is entirely gluon-driven. The quark

distribution is obtained from this evolution by having a gluon at the end of BFKL ladder

emit a qq̄ pair. This results in x-dependence of the (flavor-singlet) unpolarized quark dis-

– 43 –



J
H
E
P
1
0
(
2
0
1
7
)
1
9
8

tribution at small x being practically the same as that for the gluons. In this paper we

observed that for helicity TMDs and PDFs the small-x evolution mixes the contributions

of quarks and gluons, resulting in a different x-dependence of quark and gluon helicity

PDFs. This is indeed different from the x-dependence of unpolarized quark and gluon

PDFs resulting from BFKL evolution.

On a technical level, this reduction of the gluon helicity as compared to the quark

helicity can be attributed to the fact that the dipole gluon helicity evolution receives

contributions from the radiation of virtual unpolarized gluons, but not real unpolarized

gluons (the bottom two diagrams of figure 5). The physical reason for this stems from

the definition (3.1) of what gluon helicity really means: a circular flow of the gluon field-

strength. Maintaining this circular orientation during the small-x evolution requires that

the angular correlations between the fields be preserved, but in the DLA limit, the radiation

of unpolarized gluons is isotropic. The resulting angular decorrelation causes the real gluon

emission term to drop out from the gluon helicity evolution equations (5.2), leaving only the

virtual emissions. Consequently, this leads to a depletion of the gluon helicity compared to

the quark helicity: the uncorrelated radiation of soft gluons causes the gluon distribution to

“forget” about polarized interactions which take place later in the cascade. Only cascades

which develop without such uncorrelated radiation contribute to the gluon helicity.

The fact that gluon helicity, which relies upon the circular transverse structure of

the fields, is capable of decorrelating can also be seen in the structure of the polarized

Wilson lines. The polarized Wilson line (3.12) relevant for the gluon helicity couples to

a total derivative: the curl operator applied to the entire Wilson line. This is in contrast

to the polarized Wilson line (2.17) relevant for the quark helicity, which couples to a local

derivative: the curl operator applied to a single point in the polarized Wilson line. This

operator structure suggests that a polarized interaction at any point in the cascade is

sufficient to contribute to the quark helicity, while only those polarized interactions which

preserve the angular correlations can contribute to the gluon helicity. Presumably, this

fundamental difference between the nature of quark and gluon helicity can be attributed

to the fact that the quark helicity (2.1) is defined as a matrix element of the axial vector

current. Until such accuracy that the evolution becomes sensitive to the axial anomaly, the

axial vector current which defines the quark helicity is conserved during the evolution; a

coupling to the axial vector current anywhere in the evolution is guaranteed to propagate

back to contribute to the quark helicity distribution.

We also note that the asymptotic solution (5.37) is an important input to the proton

spin puzzle and a first principles prediction to be tested against phenomenological extrac-

tions. The total gluon polarization SG is far less constrained by experiments than the

quark polarization Sq, so this theoretical guidance on how to extrapolate from data at

finite x down to x → 0 can provide a useful estimate of SG. In section 6 we gave such

an estimate of this quantity in a simple approach and found it could increase the current

DSSV extrapolation by 5÷ 10%. We stress again that the results for the small x behavior

of the gluon (and quark) from this work should be included in future helicity PDF fits.

Additionally, a recent paper [53] has provided a gauge-invariant definition of the gluon

orbital angular momentum operator in terms of Wilson lines at small x. Deriving and
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solving similar small-x evolution equations for such an operator could provide yet another

piece of the proton spin decomposition at small x.

In closing, we must emphasize a note of caution about the precise values of our quark

and gluon helicity intercepts: these numerical values are the result of a leading-order DLA

resummation at large Nc, and they may receive significant corrections at higher orders in

αs, at finite Nc, and at Nf 6= 0. The single-logarithmic corrections, which can include the

effects of parton saturation and multiple scattering, may be particularly important. Our

calculation is also performed at fixed coupling at this accuracy; to precisely set the scale

of αs, a higher-order calculation is needed. Indeed, we know from the unpolarized sector

that running coupling corrections [76–79] play an essential role in slowing down the small-x

evolution [80, 81] and bringing the theory in line with experiment [82–84]. As such, while

much work remains to be done in the intervening years, the growing pool of spin-related

operators whose small-x asymptotics have been calculated represents an important step in

developing the theoretical framework needed for a future Electron-Ion Collider.
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A A cross-check

Substituting eq. (5.30) into the left-hand side of eq. (5.29) we get

∫
dω

2πi
ω Cω e

(ω− 1
ω ) ζ =

3
√

3

64

∫
dω

2πi
ω
e(ω−

1
ω ) ζ

ω − 4√
3

=
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
n=2

(−ζ)n

n!

1

(n− 2)!

dn−2

dωn−2

(
eω ζ

ω − 4√
3

)∣∣∣∣∣
ω=0

=
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
n=2

(−ζ)n

n!

1

(n− 2)!

n−2∑
m=0

(
n− 2

m

)
ζn−2−m (−1)mm!

(
−
√

3

4

)m+1

=
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
n=2

n−2∑
m=0

(−ζ2)n−1

n! (n− 2−m)!

(√
3

4 ζ

)m
=

∣∣∣∣∣k = n− 2−m
∣∣∣∣∣ (A.1)

=
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
n=2

n−2∑
k=0

(−ζ2)n−1

n! k!

(√
3

4 ζ

)n−2−k

=
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
k=0

∞∑
n=k+2

(−ζ2)n−1

n! k!

(√
3

4 ζ

)n−2−k

=

∣∣∣∣∣l = n− k − 2

∣∣∣∣∣ =
3

16
e

13
4
√

3
ζ

+
3
√

3

64

∞∑
k=0

∞∑
l=0

(−ζ2)l+k+1

(l + k + 2)! k!

(√
3

4 ζ

)l

=
3

16
e

13
4
√

3
ζ − 3

√
3

64

∞∑
l=0

(
−
√

3

4

)l
Jl+2(2ζ).

While the remaining sum cannot be cast in a form of a single function, we can deduce

its large-ζ asymptotics:

∞∑
l=0

(
−
√

3

4

)l
Jl+2(2ζ)

∣∣∣∣∣
ζ→∞

−→
∞∑
l=0

(
−
√

3

4

)l√
1

πζ
cos

(
2ζ − πl

2
− 5π

4

)
∼ 1√

ζ
−→ 0.

(A.2)

We conclude that

3
√

3

64

∫
dω

2πi
ω
e(ω−

1
ω ) ζ

ω − 4√
3

=
3

16
e

13
4
√

3
ζ

+O
(

1√
ζ

)
(A.3)

and, hence, eq. (5.30) solves eq. (5.29) in the large-ζ asymptotics.
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