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SUMMARY 
Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast 
neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich 
nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 
micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the 
predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, 
spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while 
Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on 
the irradiated condition. It is believed the difference in the predicted uniaxial yield strength between 
spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample 
combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample 
preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes 
under the indenter with the possibility of dislocation channeling under Berkovich hardness indents 
leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a 
radiological area were realized.   
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indentation site. A step size of 0.25-0.3 microns was used for EBSD. ........................................ 7 

Figure 3. (a) EBSD-IFP map after indentation, (b) EBSD-IQ map, (c) load-displacement, (d) 
indentation modulus-displacement, and (e) hardness-displacement plots. The average 
indentation modulus and hardness values are given for each column of indents: red – 
first column from the right in the matrix, gray – second column from the right close to 
the large grain region, and black – third column from the right in the coarse grain 
region. The average values for each test were taken from 450-500 nm depth. A step size 
of 0.25-0.3 microns was used for EBSD. ..................................................................................... 8 

Figure 4. (a) Comparison of indentation stress-strain response with two different nanoindenter 
systems on the same sample. (b-c) EBSD IPF-IQ maps of the residual indents. A step 
size of 0.25-0.3 microns was used for EBSD. .............................................................................. 9 



DOE-NEET 
September 28, 2017 3 
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1. Introduction 
Nanoindentation offers a high throughput, low cost mechanical characterization method for irradiated 

materials. For example, significant throughput is gained by coupling ion-irradiation and nanoindentation 
to screen candidate materials. In the case of neutron irradiated materials which are still radioactive, the 
cost and dose can be significantly reduced by working with only small amounts of material. However, 
nanoindentation, namely hardness, is considered low quality data compared to traditional uniaxial (i.e., 
compression and tension) tests as shown schematically in Figure 1a. The current NEET project is focused 
on developing more quantitative nanoindentation protocols specifically for irradiated materials. This is 
accomplished through novel spherical indentation stress-strain protocols [1, 2]. These protocols provide 
an effective or indentation stress versus strain response that is related to a uniaxial stress-strain response. 
This includes quantification of an indentation modulus, yield strength, and work-hardening behavior 
illustrated in Figure 1b. To date, we have successfully applied these protocols to characterize the 
differences in mechanical response between microstructures containing He-bubbles and/or dislocation 
loops in ion irradiated tungsten [3, 4], length scale effects associated with twinning in high purity 
zirconium [5], and benchmarked these protocols against other small-scale mechanical test protocols on 
proton irradiated 304 stainless steel [6]. The current report presents indentation measurements on an 
advanced steel, nanostructured ferritic alloy (NFA) 14YWT, before and after fast neutron reactor 
irradiation at the BOR-60 reactor facility. These measurements differ from our previous work in two 
aspects: the volume probed contains multiple grains (polycrystalline) compared to single grain 
measurements and the radiation damage is in the form of neutrons instead of ions which presents 
additional procedural challenges for testing radiological samples. 

 
Figure 1. (a) Schematic illustrating the paradigm of throughput versus perceived quality for different 
mechanical testing techniques. The green arrow represents current efforts by the PI and colleagues to develop 
more quantitative spherical nanoindentation protocols for irradiated materials. (b) Example spherical 
indentation stress-strain curve with the indentation properties labeled: modulus, strength, and work-
hardening (𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊,𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊,𝑯𝑯𝒊𝒊𝒊𝒊𝒊𝒊), respectively. 
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2. Materials and Methods 

2.1 Samples 
The material tested was an oxide dispersion strengthened (ODS) nanostructured ferritic alloy (NFA) 

with a chemical composition of 12.8Cr- 2.95W-0.38Ti-0.22Y (wt.%) known as 14YWT [7]. This material 
system is one of the leading candidate materials for structural components in nuclear reactors due to its 
superior performance under the imposed extreme environment [8-12]. The material was manufactured 
through an extrusion and cross-rolling process designated as PM2 [13] and comes from a large ~10mm 
thick plate designed as NFA-1 [14]. Fast neutron irradiation was performed at the BOR-60 fast neutron 
reactor facility at a temperature of 360 °C to a displacement damage of 7 dpa [15, 16]. An unirradiated 
sample sectioned from the plate was metallographically prepared with a final vibratory polish using 0.05 
micron colloidal silica. The irradiated sample was originally wire electrical discharged machined (EDM) 
from the NFA-1 plate into a tube prior to irradiation [16]. The tube axis lies along the plate rolling direction 
[16]. After irradiation, a small piece was sectioned from the tube and prepared with 0.1 µm diamond 
suspension so that nanoindentation could be performed along the tube axis direction. The unirradiated 
sample was mounted in epoxy while the irradiated sample was glued to a steel holder.  

2.2 Experiments 
Electron backscatter diffraction (EBSD) was performed on unirradiated samples using an FEI XL30 

scanning electron microscope (SEM) and TSL EDAX Hikari detector to identify the microstructure at 
indentation sites. Nanoindentation was performed using several different indenters and tip geometries to 
determine the change in mechanical properties after irradiation. Two different nanoindenters were used to 
make the measurements on unirradiated samples, an MTS NanoXP Nano-indenter and a Hysitron Tribo950, 
and a third, separate nanoindenter located in a radiological area was used to test the neutron irradiated 
sample, a Hysitron Tribo900 upgraded with a Peformech digital controllwer so that the hardware was 
equivalent to the Tribo950 used for the unirradiated sample (see Table 1). All three indenters have a 
continuous stiffness measurement (CSM or CMX) module which allows for the continuous measurement 
of stiffness by applying a sinusoidal loading signal with a prescribed frequency and displacement or loading 
amplitude to generate many small elastic unloads. This is critical for determining the effective zero-point 
correction and evolution of contact area for the spherical nanoindentation protocols [2, 17]. The method or 
loading function used in all cases can be described as a constant strain rate method (loading rate divided by 
the load) to a prescribed depth. The CSM or CMX displacement amplitude was ~ 2nm in all cases and the 
frequency which depends in part on the indenter head/transducer was 45 Hz for the MTS NanoXP, 80 Hz 
for the Hysitron Tribo950 High Load Transducer, and 100 Hz for the Hysitron Tribo950 Low Load 
Transducer. Data was collected with three different tip geometries: Berkovich (pyramidal), spherical with 
a radius of 100 microns, and spherical with a radius of 5 microns. 

 
Table 1. Description of nanoindenter systems and test methods used. 

Manufacturer and Model Head/Transducer Diamond Indenter Tip(s) Method Description 
MTS NanoXP/ Keysight 
G200 

XP 100 µm radius Constant Strain Rate 
with CSM Berkovich 

Hysitron Tribo950 
(non-radiological area) 

High Load 100 µm radius 
5 µm radius 

Constant Strain Rate 
with CMX in open loop 
control Low Load Berkovich 

Hysitron Tribo950 
(radiological area) 

High Load 100 µm radius 
5 µm radius 

Constant Strain Rate 
with CMX in open loop 
control Low Load Berkovich 
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2.3 Analysis 
Berkovich nanoindentation tests were analyzed using the Oliver-Pharr method [18, 19] to determine 

the modulus and hardness. The modulus and hardness for each test was calculated as the average between 
200 and 250 nm depth. The area function was calibrated from indents on fused silica. Spherical 
nanoindentation tests were analyzed following the indentation stress-strain protocols of Kalidindi and 
Pathak [2]. The indentation properties of indentation modulus, indentation yield strength, and indentation 
work-hardening are shown on Figure 1b. These are not to be confused with uniaxial stress-strain properties 
although there is a relationship between indentation and uniaxial stress-strain for these protocols [20, 21]. 
The relationship between indentation and uniaxial measurements is presented next.  

Estimates for the indentation modulus, 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, can be calculated from available elastic constants [22] and 
theory for elastically anisotropic cubic materials from Vlassak and Nix [23, 24], Table 2. According to 
Vlassak and Nix [23, 24], the effective modulus, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒, is a combination of the indenter Young’s modulus, 
𝐸𝐸𝑖𝑖, and Poission’s ratio, 𝑣𝑣𝑖𝑖 and the polycrystalline average sample Young’s modulus, 𝐸𝐸𝑠𝑠�, Poisson’s ratio, 
𝑣𝑣𝑠𝑠� , and anisotropy term, 𝛽𝛽, which depends on the crystal elastic constants and crystal orientation, according 
to Eqn. (1). Here, we denote the entire sample term as the indentation modulus, 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, according to Equation 
Eqn. (2). The estimated indentation moduli in Table 2 serve as a guide for the spherical nanoindentation 
stress-strain analysis. 

 
1

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒
= 1

𝛽𝛽
�1−𝑣𝑣𝑠𝑠�

2

𝐸𝐸𝑠𝑠�
� + 1−𝑣𝑣𝑖𝑖

2

𝐸𝐸𝑖𝑖
 (1) 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽 𝐸𝐸𝑠𝑠�

1−𝑣𝑣𝑠𝑠�
2  (2) 

 
Table 2: Estimated indentation moduli along different crystal directions of 14YWT. The indenter tip 
material, diamond, Young’s modulus and Poisson’s ratio are assumed to be 1140 GPa and 0.07, respectively. 

Crystal Direction β 𝐸𝐸𝑠𝑠�

1 − 𝑣𝑣𝑠𝑠�
2 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 

(100) 0.959 245.5 195 235 
(101) 1.008 245.5 204 248 
(111) 1.024 245.5 206 251 

 
Berkovich hardness measurements, 𝐻𝐻, were converted to uniaxial yield strength values, 𝜎𝜎𝑦𝑦𝑦𝑦, using Eqn. 

(3) which is an empirical relationship determined from a large set of Vickers hardness and tensile yield 
strength data on various unirradiated and irradiated steels [25]. Equation (3) assumes a relationship between 
Vickers hardness, 𝐻𝐻𝐻𝐻, and Berkovich nanohardness as 𝐻𝐻𝐻𝐻 = 94.5𝐻𝐻 due to the difference between the 
surface contact area used for a four sided pyramid for Vickers hardness and the projected contact area used 
for a three-sided pyramid for Berkovich hardness. Spherical indentation yield strength, 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, was converted 
to uniaxial yield strength using Eqn. (4) which was derived from finite element simulations with an isotropic 
elastic-plastic model that follows J2 flow theory [21]. 

𝜎𝜎𝑦𝑦𝑦𝑦 = 266.5𝐻𝐻 − 114  (3) 
𝜎𝜎𝑦𝑦𝑦𝑦 = 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖

2
 (4) 
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3. Results and Discussion 

3.1 Local microstructure and mechanical heterogeneities 
A 100 micron radius indenter was chosen to provide a more homogenous response of the material that 

could be interpreted as a bulk, polycrystalline response. This is the case for most indents in regions with 
nanocrystalline (200-300 nm) grains as shown in Figure 2b. However, there are some large grain (several 
microns) regions in the microstructure as shown in Figure 2c. The indentation stress-strain response when 
the indenter falls in or near these large grain regions shows the same indentation yield strength as the 
nanocrystalline regions; however, the indentation work-hardening is significantly reduced, Figure 2a. 
Similarly, Berkovich nanohardness measurements inside and outside these large grain regions show a 
significant difference in the mechanical response as shown in Figure 3. In this case the hardness at a depth 
of 450-500 nm is ~ 5.10 GPa in the nanocrystalline region and ~2.69 GPa in the coarse grain region. It is 
not clear if this difference in mechanical response is because the large grains are structurally different 
(e.g., different oxide particle morphologies) compared to the nanocrystalline grains or simply because of 
the difference in the number of grain boundaries. This is a topic of on-going research.  

 
Figure 2. (a) Representative indentation stress-strain curves for 14YWT ODS steel with a 100 µm radius 
indenter. (1) is the nominal response while (2) is atypical. (b-c) The corresponding EBSD Inverse Pole Figure 
(IPF) maps with Image Quality (IQ) superimposed that shows the difference in the microstructure on the 
surface at the indentation site. A step size of 0.25-0.3 microns was used for EBSD. 
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Figure 3. (a) EBSD-IFP map after indentation, (b) EBSD-IQ map, (c) load-displacement, (d) indentation 
modulus-displacement, and (e) hardness-displacement plots. The average indentation modulus and hardness 
values are given for each column of indents: red – first column from the right in the matrix, gray – second 
column from the right close to the large grain region, and black – third column from the right in the coarse 
grain region. The average values for each test were taken from 450-500 nm depth. A step size of 0.25-0.3 
microns was used for EBSD. 
 

3.2 Comparison between different nanoindenters 
The current LANL indentation capability in a radiological area for testing neutron irradiated samples 

is limited to a Hysitron Tribo950. To date, the indentation stress-strain protocols [2] used in this work 
have only been employed using Keysight (Agilent and MTS) nanoindenters. The Hysitron nanoindenter is 
very different in the instrumentation and electronics; however, the general measurement procedure is the 
same. Figure 4 shows representative data from both nanoindenters on the same unirradiated sample with 
indenter tips with a nominal radius of 100 microns, and Table 3 lists the average properties. It is clear that 
both systems give the same result. The main differences between the two sets of data are the data 
collection frequency (higher for Tribo950) and the actual tip geometry. The nanoindenter tips are imaged 
by the manufacturers and specified to be nominally 100 microns in radius. This radius is used in the 
indentation stress-strain analysis. It is clear from Figure 4c that the Tribo950 tip has an asperity, 
particularly at larger depths, at which it becomes less spherical. It is our belief that this doesn’t have a 
significant effect on the indentation yield strength measurement which occurs at very shallow depths. 
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Rather it produces some error in the indentation stress at larger strains (~0.03). In the future, this tip will 
be replaced with a more spherical probe. 

 
Figure 4. (a) Comparison of indentation stress-strain response with two different nanoindenter systems on the 
same sample. (b-c) EBSD IPF-IQ maps of the residual indents. A step size of 0.25-0.3 microns was used for 
EBSD. 
 
Table 3. Average properties for spherical stress-strain measurements for both systems. The averages and 
standard deviations come from a total of 13 and 11 tests for the NanoXP and Tribo950, respectively. 

System Eind [GPa] Yind [GPa] Hind [GPa] 
NanoXP 241 ± 6 2.20 ± 0.25  79.6 ± 17.6 
Tribo950 245 ± 5 2.28 ± 0.11 72.8 ± 4.5 

3.3 Radiation hardening measurements 
Figure 5 shows representative spherical indentation stress-strain curves for 100 micron radius and 5 

micron radius tips for the unirradiated and irradiated conditions. A second smaller indenter tip was chosen 
in order to collect indentation data at larger indentation strains (~10%). In this case the exact same tips 
were used for unirradiated and irradiated samples since it can be moved from the non-radiological 
indenter to the radiological indenter. Table 4 lists the average indentation modulus and indentation stress 
values for 100 µm radius and 5 µm radius spherical tips. The indentation stress from spherical tips is 
defined at three different strain offsets: 0.2% (indentation yield strength), 1%, and ~8-9% (at the end of 
the test). Table 5 list the Berkovich indentation modulus and hardness measurements averaged between 
200 and 250 nm depth. 
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Figure 5. Spherical nanoindentation stress-strain measurements of unirradiated and neutron irradiated 
samples with (a) 100 micron radius indenter and (b) 5 micron radius indenter. The solid gray line is the 
average indentation modulus between the two tests, and the dotted gray line is a 0.2% strain offset line used 
to determine the indentation yield strength. 
 
Table 4. Radiation hardening measurements from spherical nanoindentation tests. The averages and 
standard deviations come from 6-11 tests. 

Condition Indenter Type Eind [GPa] Indentation Yield 
(0.2% offset) 
[GPa] 

Indentation 
Stress @ 1% 
offset [GPa] 

Indentation 
Stress @ 8-9% 
offset [GPa] 

Unirradiated 100 µm radius 245 ± 5 2.28 ± 0.11 3.46 ± 0.18 --- 
Irradiated 100 µm radius 242 ± 1 4.26 ± 0.33 5.80 ± 0.50 --- 
Unirradiated 5 µm radius 246 ± 5 2.77 ± 0.55 3.25 ± 0.69 5.18 ± 1.08 
Irradiated 5 µm radius 250 ± 6 4.79 ± 0.69 5.58 ± 0.56 7.60  ± 0.52 

 
Table 5. Radiation hardening measurements from Berkovich hardness measurements averaged over 200-
250nm depth. The averages and standard deviations come from 8-12 tests. 

Condition Indenter Eind [GPa] Hardness [GPa] 
Unirradiated Berkovich 242 ± 7 5.03 ± 0.19 
Irradiated Berkovich 244 ± 6 6.0 ± 0.26 

 
Two points need to be made before discussing the predicted tensile yield strengths from the data in 

Tables 4 and 5. The first is that the increase in the spherical indentation yield strength (radiation 
hardening) for the neutron irradiated sample is approximately 2 GPa for both tip sizes and remains around 
2-2.5 GPa regardless of the strain offset (i.e., 0.2, 1, or 8-9%). Thus, we are fairly confident that the 
change in spherical indentation yield strength is not affected by the tip size or the definition of the 
indentation yield strength (i.e., 0.2% offset). The second point, is that the spherical indentation stress in 
the unirradiated material for the 5 micron radius tip at 8-9% strain, 5.18 ± 1.08 GPa (Table 4), is the same 
magnitude as the Berkovich hardness, 5.03 ± 0.19 (Table 5). This is indicative of the work-hardening of 
the material under the indenter tip that occurs for both tip geometries. This work-hardening behavior is 
clearly captured in the spherical indentation stress-strain curve, Figure 5b, between the indentation yield 
point and the indentation stress at 8-9% strain offset (end of the test); whereas, it is not directly observed 
from Berkovich nanoindentation tests. The point of comparing these two types of indentation tests on the 
unirradiated material is to show that the spherical indentation protocols capture and elastic loading 
modulus, elastic to plastic transition or indentation yield strength, and the early work-hardening behavior; 
and the magnitude of the spherical indentation stress will eventually approach the Berkovich hardness 
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value. In other words, they differ in the mechanical information given, but will converge on the 
mechanical behavior at 8-9% strain offset regardless of the indentation method used. 

Figure 6 shows the predicted uniaxial yield strengths based on the data in Tables 4 and 5 using Eqns. 
(3) and (4) to convert indentation measurements to uniaxial yield strength. The unirradiated predictions 
for all three indentation measurements agree reasonably well with tensile measurements from literature 
[26]. However, there is a significant difference in the predicted yield strength from spherical and 
Berkovich tests on the irradiated material. Spherical indentation tests predict a ~ 1 GPa increase in 
uniaxial yield strength while Berkovich hardness measurements predict only a ~250 MPa increase in 
strength. It is not clear to us why this is the case, but we present three possible causes from the greatest 
contributing factor to the least. The first possibility is that our Berkovich hardness measurements fell in a 
soft region on the irradiated material. This seems likely given that previous reports of nanohardness on 
the same irradiated material are ~ 7 GPa at 500 nm depth [15, 16] also shown in Figure 6. This would 
give a predicted uniaxial yield strength of ~1750 MPa or an increase in uniaxial yield strength of 500 
MPa, closer to the spherical indentation predictions. The second factor is that the spherical indentation 
protocols are highly sensitive to sample preparation [27] and the 0.1 µm diamond final polish on the 
irradiated sample may have left some deformation at the surface. This could increase the apparent 
indentation yield strength of the irradiated material. The third possibility is that strain softening could be 
occurring in Berkovich hardness tests on the irradiated sample due to dislocation channeling. This has 
been observed in transmission electron microscopy under Berkovich indents in ion irradiated ferritic Fe-
Cr alloys [28]. The stress and strain fields under both indenters are highly heterogeneous; however, for 
the Berkovich indenter, the strain is arguably more concentrated compared to the spherical probes.  

 
Figure 6. Predicted uniaxial yield strength from spherical indentation yield strength and Berkovich 
nanohardness measurements on unirradiated and irradiated conditions. Unirradiated tensile values come 
from Ref. [26]. The Irradiated UCB values come from Refs. [15, 16] and are taken at a depth of 500 nm. 

4. Future Work 
There are three outstanding questions from the work so far: 

(1) How does the spherical nanoindentation mechanical response of ion irradiated material compare 
to fast neutron irradiated material? To answer this, we will be ion irradiating the same 14YWT 
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alloy under comparable conditions in temperature and dose to the neutron irradiated sample 
followed by indentation testing. 

(2) Are the large grain regions mechanically and structurally different (e.g., different strength) than 
the nanocrystalline regions? This is being answered through small radius (1 micron) spherical 
indentation, Berkovich indentation, and TEM inside and outside the large grain regions. 

(3) What is the cause for the difference in the radiation hardening measured from spherical 
indentation yield strength and Berkovich nanohardness measurements? EBSD on the irradiated 
sample would allow correlations between the grain structure and indents. In addition, TEM under 
spherical and Berkovich indents would hopefully provide evidence if dislocation channeling has 
occurred. Spherical indents to larger strains may also show strain softening if dislocation 
channeling occurs at higher strains. 
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