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SUMMARY

Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast
neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich
nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5
micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the
predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However,
spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while
Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on
the irradiated condition. It is believed the difference in the predicted uniaxial yield strength between
spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample
combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample
preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes
under the indenter with the possibility of dislocation channeling under Berkovich hardness indents
leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a
radiological area were realized.
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1. Introduction

Nanoindentation offers a high throughput, low cost mechanical characterization method for irradiated
materials. For example, significant throughput is gained by coupling ion-irradiation and nanoindentation
to screen candidate materials. In the case of neutron irradiated materials which are still radioactive, the
cost and dose can be significantly reduced by working with only small amounts of material. However,
nanoindentation, namely hardness, is considered low quality data compared to traditional uniaxial (i.e.,
compression and tension) tests as shown schematically in Figure 1a. The current NEET project is focused
on developing more quantitative nanoindentation protocols specifically for irradiated materials. This is
accomplished through novel spherical indentation stress-strain protocols [1, 2]. These protocols provide
an effective or indentation stress versus strain response that is related to a uniaxial stress-strain response.
This includes quantification of an indentation modulus, yield strength, and work-hardening behavior
illustrated in Figure 1b. To date, we have successfully applied these protocols to characterize the
differences in mechanical response between microstructures containing He-bubbles and/or dislocation
loops in ion irradiated tungsten [3, 4], length scale effects associated with twinning in high purity
zirconium [5], and benchmarked these protocols against other small-scale mechanical test protocols on
proton irradiated 304 stainless steel [6]. The current report presents indentation measurements on an
advanced steel, nanostructured ferritic alloy (NFA) 14YWT, before and after fast neutron reactor
irradiation at the BOR-60 reactor facility. These measurements differ from our previous work in two
aspects: the volume probed contains multiple grains (polycrystalline) compared to single grain
measurements and the radiation damage is in the form of neutrons instead of ions which presents
additional procedural challenges for testing radiological samples.
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Indentation Strain
Figure 1. (a) Schematic illustrating the paradigm of throughput versus perceived quality for different
mechanical testing techniques. The green arrow represents current efforts by the Pl and colleagues to develop
more quantitative spherical nanoindentation protocols for irradiated materials. (b) Example spherical
indentation stress-strain curve with the indentation properties labeled: modulus, strength, and work-
hardening (Eing, Yina, Hina), respectively.
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2. Materials and Methods

2.1 Samples

The material tested was an oxide dispersion strengthened (ODS) nanostructured ferritic alloy (NFA)
with a chemical composition of 12.8Cr- 2.95W-0.38Ti-0.22Y (wt.%) known as 14YWT [7]. This material
system is one of the leading candidate materials for structural components in nuclear reactors due to its
superior performance under the imposed extreme environment [8-12]. The material was manufactured
through an extrusion and cross-rolling process designated as PM2 [13] and comes from a large ~10mm
thick plate designed as NFA-1 [14]. Fast neutron irradiation was performed at the BOR-60 fast neutron
reactor facility at a temperature of 360 °C to a displacement damage of 7 dpa [15, 16]. An unirradiated
sample sectioned from the plate was metallographically prepared with a final vibratory polish using 0.05
micron colloidal silica. The irradiated sample was originally wire electrical discharged machined (EDM)
from the NFA-1 plate into a tube prior to irradiation [16]. The tube axis lies along the plate rolling direction
[16]. After irradiation, a small piece was sectioned from the tube and prepared with 0.1 um diamond
suspension so that nanoindentation could be performed along the tube axis direction. The unirradiated
sample was mounted in epoxy while the irradiated sample was glued to a steel holder.

2.2 Experiments

Electron backscatter diffraction (EBSD) was performed on unirradiated samples using an FEI XL30
scanning electron microscope (SEM) and TSL EDAX Hikari detector to identify the microstructure at
indentation sites. Nanoindentation was performed using several different indenters and tip geometries to
determine the change in mechanical properties after irradiation. Two different nanoindenters were used to
make the measurements on unirradiated samples, an MTS NanoXP Nano-indenter and a Hysitron Tribo950,
and a third, separate nanoindenter located in a radiological area was used to test the neutron irradiated
sample, a Hysitron Tribo900 upgraded with a Peformech digital controllwer so that the hardware was
equivalent to the Tribo950 used for the unirradiated sample (see Table 1). All three indenters have a
continuous stiffness measurement (CSM or CMX) module which allows for the continuous measurement
of stiffness by applying a sinusoidal loading signal with a prescribed frequency and displacement or loading
amplitude to generate many small elastic unloads. This is critical for determining the effective zero-point
correction and evolution of contact area for the spherical nanoindentation protocols [2, 17]. The method or
loading function used in all cases can be described as a constant strain rate method (loading rate divided by
the load) to a prescribed depth. The CSM or CMX displacement amplitude was ~ 2nm in all cases and the
frequency which depends in part on the indenter head/transducer was 45 Hz for the MTS NanoXP, 80 Hz
for the Hysitron Tribo950 High Load Transducer, and 100 Hz for the Hysitron Tribo950 Low Load
Transducer. Data was collected with three different tip geometries: Berkovich (pyramidal), spherical with
a radius of 100 microns, and spherical with a radius of 5 microns.

Table 1. Description of nanoindenter systems and test methods used.

Manufacturer and Model | Head/Transducer | Diamond Indenter Tip(s) | Method Description

MTS NanoXP/ Keysight | XP 100 um radius Constant Strain Rate

G200 Berkovich with CSM

Hysitron Tribo950 High Load 100 um radius Constant Strain Rate

(non-radiological area) 5 pum radius with CMX in open loop
Low Load Berkovich control

Hysitron Tribo950 High Load 100 pm radius Constant  Strain Rate

(radiological area) 5 um radius with CMX in open loop
Low Load Berkovich control
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2.3 Analysis

Berkovich nanoindentation tests were analyzed using the Oliver-Pharr method [18, 19] to determine
the modulus and hardness. The modulus and hardness for each test was calculated as the average between
200 and 250 nm depth. The area function was calibrated from indents on fused silica. Spherical
nanoindentation tests were analyzed following the indentation stress-strain protocols of Kalidindi and
Pathak [2]. The indentation properties of indentation modulus, indentation yield strength, and indentation
work-hardening are shown on Figure 1b. These are not to be confused with uniaxial stress-strain properties
although there is a relationship between indentation and uniaxial stress-strain for these protocols [20, 21].
The relationship between indentation and uniaxial measurements is presented next.

Estimates for the indentation modulus, E;, 4, can be calculated from available elastic constants [22] and
theory for elastically anisotropic cubic materials from Vlassak and Nix [23, 24], Table 2. According to
Vlassak and Nix [23, 24], the effective modulus, Eefr, is a combination of the indenter Young’s modulus,
E;, and Poission’s ratio, v; and the polycrystalline average sample Young’s modulus, E;, Poisson’s ratio,
7, and anisotropy term, 8, which depends on the crystal elastic constants and crystal orientation, according
to Eqgn. (1). Here, we denote the entire sample term as the indentation modulus, E;,,4, according to Equation
Egn. (2). The estimated indentation moduli in Table 2 serve as a guide for the spherical nanoindentation
stress-strain analysis.

1 1 (1-752 1-v?
Eeff_E< Es )+ E; (1)
B
Eing =B T (2)

Table 2: Estimated indentation moduli along different crystal directions of 14YWT. The indenter tip
material, diamond, Young’s modulus and Poisson’s ratio are assumed to be 1140 GPa and 0.07, respectively.

Crystal Direction | B E, E.sf Eina
1—5,°

(100) 0.959 2455 195 235

(101) 1.008 2455 204 248

(111) 1.024 2455 206 251

Berkovich hardness measurements, H, were converted to uniaxial yield strength values, o, using Eqn.
(3) which is an empirical relationship determined from a large set of Vickers hardness and tensile yield
strength data on various unirradiated and irradiated steels [25]. Equation (3) assumes a relationship between
Vickers hardness, HV, and Berkovich nanohardness as HV = 94.5H due to the difference between the
surface contact area used for a four sided pyramid for Vickers hardness and the projected contact area used
for a three-sided pyramid for Berkovich hardness. Spherical indentation yield strength, Y;, 4, was converted
to uniaxial yield strength using Eqn. (4) which was derived from finite element simulations with an isotropic
elastic-plastic model that follows J, flow theory [21].

Oys = 266.5H — 114 3
Yin
Oys = Td (4)
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3. Results and Discussion

3.1 Local microstructure and mechanical heterogeneities

A 100 micron radius indenter was chosen to provide a more homogenous response of the material that
could be interpreted as a bulk, polycrystalline response. This is the case for most indents in regions with
nanocrystalline (200-300 nm) grains as shown in Figure 2b. However, there are some large grain (several
microns) regions in the microstructure as shown in Figure 2c. The indentation stress-strain response when
the indenter falls in or near these large grain regions shows the same indentation yield strength as the
nanocrystalline regions; however, the indentation work-hardening is significantly reduced, Figure 2a.
Similarly, Berkovich nanohardness measurements inside and outside these large grain regions show a
significant difference in the mechanical response as shown in Figure 3. In this case the hardness at a depth
of 450-500 nm is ~ 5.10 GPa in the nanocrystalline region and ~2.69 GPa in the coarse grain region. It is
not clear if this difference in mechanical response is because the large grains are structurally different
(e.g., different oxide particle morphologies) compared to the nanocrystalline grains or simply because of
the difference in the number of grain boundaries. This is a topic of on-going research.

6)

N

N

Indentation Stress [GPa]
w

—_
T

/
¢ 0.2% strain
// of fset

0 0.01 0.02 0.03

Indentation Strain

Figure 2. (a) Representative indentation stress-strain curves for 14YWT ODS steel with a 100 um radius
indenter. (1) is the nominal response while (2) is atypical. (b-c) The corresponding EBSD Inverse Pole Figure
(IPF) maps with Image Quality (1Q) superimposed that shows the difference in the microstructure on the
surface at the indentation site. A step size of 0.25-0.3 microns was used for EBSD.
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Figure 3. (a) EBSD-IFP map after indentation, (b) EBSD-1Q map, (c) load-displacement, (d) indentation
modulus-displacement, and (e) hardness-displacement plots. The average indentation modulus and hardness
values are given for each column of indents: red — first column from the right in the matrix, gray — second
column from the right close to the large grain region, and black — third column from the right in the coarse
grain region. The average values for each test were taken from 450-500 nm depth. A step size of 0.25-0.3
microns was used for EBSD.

3.2 Comparison between different nanoindenters

The current LANL indentation capability in a radiological area for testing neutron irradiated samples
is limited to a Hysitron Tribo950. To date, the indentation stress-strain protocols [2] used in this work
have only been employed using Keysight (Agilent and MTS) nanoindenters. The Hysitron nanoindenter is
very different in the instrumentation and electronics; however, the general measurement procedure is the
same. Figure 4 shows representative data from both nanoindenters on the same unirradiated sample with
indenter tips with a nominal radius of 100 microns, and Table 3 lists the average properties. It is clear that
both systems give the same result. The main differences between the two sets of data are the data
collection frequency (higher for Tribo950) and the actual tip geometry. The nanoindenter tips are imaged
by the manufacturers and specified to be nominally 100 microns in radius. This radius is used in the
indentation stress-strain analysis. It is clear from Figure 4c that the Tribo950 tip has an asperity,
particularly at larger depths, at which it becomes less spherical. It is our belief that this doesn’t have a
significant effect on the indentation yield strength measurement which occurs at very shallow depths.
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Rather it produces some error in the indentation stress at larger strains (~0.03). In the future, this tip will
be replaced with a more spherical probe.
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Figure 4. (a) Comparison of indentation stress-strain response with two different nanoindenter systems on the
same sample. (b-c) EBSD IPF-1Q maps of the residual indents. A step size of 0.25-0.3 microns was used for
EBSD.

Table 3. Average properties for spherical stress-strain measurements for both systems. The averages and
standard deviations come from a total of 13 and 11 tests for the NanoXP and Tribo950, respectively.

System Eind [GPa] Yind [GPa] Hind [GPa]
NanoXP 241+ 6 2.20+£0.25 79.6+17.6
Tribo950 245+5 2.28+0.11 72.8+4.5

3.3 Radiation hardening measurements

Figure 5 shows representative spherical indentation stress-strain curves for 100 micron radius and 5
micron radius tips for the unirradiated and irradiated conditions. A second smaller indenter tip was chosen
in order to collect indentation data at larger indentation strains (~10%). In this case the exact same tips
were used for unirradiated and irradiated samples since it can be moved from the non-radiological
indenter to the radiological indenter. Table 4 lists the average indentation modulus and indentation stress
values for 100 um radius and 5 um radius spherical tips. The indentation stress from spherical tips is
defined at three different strain offsets: 0.2% (indentation yield strength), 1%, and ~8-9% (at the end of
the test). Table 5 list the Berkovich indentation modulus and hardness measurements averaged between
200 and 250 nm depth.
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Figure 5. Spherical nanoindentation stress-strain measurements of unirradiated and neutron irradiated
samples with (a) 100 micron radius indenter and (b) 5 micron radius indenter. The solid gray line is the
average indentation modulus between the two tests, and the dotted gray line is a 0.2% strain offset line used
to determine the indentation yield strength.

Table 4. Radiation hardening measurements from spherical nanoindentation tests. The averages and
standard deviations come from 6-11 tests.

Condition Indenter Type | Eind [GPa] | Indentation Yield | Indentation Indentation
(0.2% offset) Stress @ 1% Stress @ 8-9%
[GPa] offset [GPa] offset [GPa]
Unirradiated | 100 um radius | 2455 2.28+0.11 3.46+£0.18 -
Irradiated 100 um radius | 242 %1 4.26 +0.33 5.80+£0.50 -
Unirradiated | 5 um radius 246 £ 5 2.77 £0.55 3.25+0.69 5.18 +£1.08
Irradiated 5 um radius 2506 4.79£0.69 5.58 £0.56 7.60 £0.52

Table 5. Radiation hardening measurements from Berkovich hardness measurements averaged over 200-
250nm depth. The averages and standard deviations come from 8-12 tests.

Condition Indenter Eind [GPa] Hardness [GPa]
Unirradiated Berkovich 242 +7 5.03+0.19
Irradiated Berkovich 244t 6 6.0+ 0.26

Two points need to be made before discussing the predicted tensile yield strengths from the data in
Tables 4 and 5. The first is that the increase in the spherical indentation yield strength (radiation
hardening) for the neutron irradiated sample is approximately 2 GPa for both tip sizes and remains around
2-2.5 GPa regardless of the strain offset (i.e., 0.2, 1, or 8-9%). Thus, we are fairly confident that the
change in spherical indentation yield strength is not affected by the tip size or the definition of the
indentation yield strength (i.e., 0.2% offset). The second point, is that the spherical indentation stress in
the unirradiated material for the 5 micron radius tip at 8-9% strain, 5.18 £ 1.08 GPa (Table 4), is the same
magnitude as the Berkovich hardness, 5.03 £ 0.19 (Table 5). This is indicative of the work-hardening of
the material under the indenter tip that occurs for both tip geometries. This work-hardening behavior is
clearly captured in the spherical indentation stress-strain curve, Figure 5b, between the indentation yield
point and the indentation stress at 8-9% strain offset (end of the test); whereas, it is not directly observed
from Berkovich nanoindentation tests. The point of comparing these two types of indentation tests on the
unirradiated material is to show that the spherical indentation protocols capture and elastic loading
modulus, elastic to plastic transition or indentation yield strength, and the early work-hardening behavior;
and the magnitude of the spherical indentation stress will eventually approach the Berkovich hardness
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value. In other words, they differ in the mechanical information given, but will converge on the
mechanical behavior at 8-9% strain offset regardless of the indentation method used.

Figure 6 shows the predicted uniaxial yield strengths based on the data in Tables 4 and 5 using Egns.
(3) and (4) to convert indentation measurements to uniaxial yield strength. The unirradiated predictions
for all three indentation measurements agree reasonably well with tensile measurements from literature
[26]. However, there is a significant difference in the predicted yield strength from spherical and
Berkovich tests on the irradiated material. Spherical indentation tests predict a ~ 1 GPa increase in
uniaxial yield strength while Berkovich hardness measurements predict only a ~250 MPa increase in
strength. It is not clear to us why this is the case, but we present three possible causes from the greatest
contributing factor to the least. The first possibility is that our Berkovich hardness measurements fell in a
soft region on the irradiated material. This seems likely given that previous reports of nanohardness on
the same irradiated material are ~ 7 GPa at 500 nm depth [15, 16] also shown in Figure 6. This would
give a predicted uniaxial yield strength of ~1750 MPa or an increase in uniaxial yield strength of 500
MPa, closer to the spherical indentation predictions. The second factor is that the spherical indentation
protocols are highly sensitive to sample preparation [27] and the 0.1 um diamond final polish on the
irradiated sample may have left some deformation at the surface. This could increase the apparent
indentation yield strength of the irradiated material. The third possibility is that strain softening could be
occurring in Berkovich hardness tests on the irradiated sample due to dislocation channeling. This has
been observed in transmission electron microscopy under Berkovich indents in ion irradiated ferritic Fe-
Cr alloys [28]. The stress and strain fields under both indenters are highly heterogeneous; however, for
the Berkovich indenter, the strain is arguably more concentrated compared to the spherical probes.

__ 3000 _ _
© W Unirradiated
E 2500 M Irradiated
i
% 2000 M Irradiated UCB
£ 1500
@
> 1000
T
E
= 500
-
0 A

Indentation Indentation Indentation Tensile
100pum radius  5um radius Berkovich

Figure 6. Predicted uniaxial yield strength from spherical indentation yield strength and Berkovich
nanohardness measurements on unirradiated and irradiated conditions. Unirradiated tensile values come
from Ref. [26]. The Irradiated UCB values come from Refs. [15, 16] and are taken at a depth of 500 nm.

4. Future Work

There are three outstanding questions from the work so far:

(1) How does the spherical nanoindentation mechanical response of ion irradiated material compare
to fast neutron irradiated material? To answer this, we will be ion irradiating the same 14YWT
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alloy under comparable conditions in temperature and dose to the neutron irradiated sample
followed by indentation testing.

(2) Are the large grain regions mechanically and structurally different (e.g., different strength) than
the nanocrystalline regions? This is being answered through small radius (1 micron) spherical
indentation, Berkovich indentation, and TEM inside and outside the large grain regions.

(3) What is the cause for the difference in the radiation hardening measured from spherical
indentation yield strength and Berkovich nanohardness measurements? EBSD on the irradiated
sample would allow correlations between the grain structure and indents. In addition, TEM under
spherical and Berkovich indents would hopefully provide evidence if dislocation channeling has
occurred. Spherical indents to larger strains may also show strain softening if dislocation
channeling occurs at higher strains.
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