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Evidence for an Excitonic Insulator Phase in a Zero-Gap InAs/GaSb Bilayer
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Introduction

InNAs/GaSb double quantum wells (DQWSs) have been attracting increasing interest in recent years. In these structures the electron and hole sub-bands are
localized in different quantum wells and their alignment can be tuned on the basis of the wells' thickness. The most studied regime, the topological insulator phase,
appears in a material with a bulk band gap as an ordinary insulator, together with exotic topologically protected conducting states on their edges or surface [1]. In
InAs/GaSb DQWs a quantum spin hall (QSH) phase has been predicted when the bands' inversion Is realized above a critical thickness of the InAs layer (for a
fixed thickness of the GaSb one) and several experimental results point at this phenomenology [2-8]. Little is known however about the transport properties at the
critical thickness, which corresponds to the phase boundary between the normal insulator (NI) and the topological insulator (Tl). Here we report on
magnetotransport experiments performed on a InAs/GaSb double quantum well grown with critical thickness parameters, in which degenerate electron and hole
sub-bands are expected. We observe a narrow and intense maximum (= 500 kQ) in the four-terminal resistance in the charge neutrality region, separating the
electron-like and hole-like regimes, with a strong activated temperature-dependence above T = 7 K and perfect stability against quantizing magnetic fields. By
comparing our experimental data of samples in different regimes (normal insulator, critical regime and topological insulator), we show that such unexpectedly large
resistance in our nominally zero-gap semi-metal system is due to the formation of an excitonic insulator state[9][10]. Our results pave a new way to experimental
study of this peculiar state of matter.

Three different regimes appear depending on the alignment between the valence band of GaSb
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Figure 2: (a) Band structures of the
InAs/GaSb DQWs calculated using the
8-band k.p method for three typical
configurations: (left) d = 9 nm, (middle)
d = 10 nm, and (right) d = 13 nm. (b-d)
4terminal resistance as function of gate
voltage, measured at T = 500 mK, In
samples A-C, respectively. The gate
voltage Is normalized so that the gate
voltage at the CNP is zero (Vg* = Vg
-Vg(CNP).
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and the conduction band of the InAs.

Our samples were engineered to display all these three typical configurations, for this purpose a | s "
series of INAs/GaSbh DQW samples, in which the thickness of InAs (d) was varied from 9 nm to 13
nm while the thickness of GaSb was fixed at 5 nm, were grown with the molecular beam epitaxy

(MBE) technigue.

Figure 1: (a) Schematic structure of the InAs/GaShb
DQW samples. (b) Evolution of the electron and hole
subbands as a function of the InAs thickness d,
calculated using the 8-band k:-p method. The critical
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the normal and inverted band structures, Is found to be
dc = 10.03 nm.
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Figure 3: Longitudinal resistance
versus gate voltages in the presence of
different parallel magnetic fields for the
critical (a) and two inverted samples (b)
and (c). While the critical sample (10/5
nm) has almost no parallel magnetic
field dependence, samples (11/5) nm
and (13/5 nm) show a strong parallel
magnetic field dependence,
characteristic of inverted band
configurations.

Figure 4: Hall
conductivity(o,,) at
300 mK at different
perpendicular
magnetic fields.
The blue and red
lines, defined by
the bondauries of
the plateau in the
CNR:

In sample cross at
B. < OT revealing a
normal insulator
regime for sample
(9/5 nm) (a);

In sample (10/5
nm) cross at B, ~
OT revealing a zero
gap sample (b);

In sample (12/5
nm) cross at B, >
OT , indicating an
iInverted regime (c).

sample from perp Magnetic field
T | |FIg.5: R, versus
—= | |gate voltages at
0.3K from O to 3
T perpendicular
magnetic field for
the normal
Insulating
sample 9/5 nm
(a), the critical
sample 10/5 nm
(b); and an
Inverted sample
13/5 (c). Notice
the decrease In
CNP peak at low
magnetic fields
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Excitonic insulator state

Gap In the critical sample!
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Our measurements reveal a peculiar
behavior in the critical sample

Figure 7: Open circles: Longitudinal
conductivity Gxx at the CNP measured at

Figure 6: Longitudinal resistance Rxx of the
critical sample EB4338 as a function of gate
voltage Vg for increasing temperatures at B
= 0 T, measured in sample B. Colour open
circles: maximum of Rxx in the CNR as a
function of 1/T, showing activated behavior.
The red continuous line is a fit to R_CNP xx
o eXp(A/2kBT), obtained for the data at T >
7/ K, which provides the estimation of the
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From the binding energy Eb ~ 2.13
meV, according to the theoretical
argument of Ref. [3], we obtain a

critical temperature
~ 7K. This value Is In extremely

good agreement with the

temperature at which we observe a

clear change from an activated
behavior (continuous red line In

Figure 4) to a weak T dependence In

our experimental data.

B =0T as a function of temperature.
Continuous red line: fit to the data with
GCNP xx xexp( —A/2kBT). In the inset we
iInclude the behavior expected for an
excitonic insulator (Fig. 2 from Ref. [10]).
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