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Observations: Size dependence
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Velocity, mm/hr

Observations: Effect of stress
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Static and dynamic wetting
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Fluid inclusion patterns along grain boundaries

Thiemeyer et al. (2015)



Classification & Quantification
Category 1: Almost no pressure build up Category 2: Low pressure build up

(< 0.03 MPa; no pressure release needed) (<1 MPa; no pressure release needed)
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Schedule

1. year

2.year

3. year

1. workshop

2. workshop

3. workshop

4. workshop

5. workshop

6. workshop

WP-1

Literature recherche

Process definition/description

Conceptuel modeling

WP-2

Upscalling study (microscale - macroscale)

Mathematical formulation

Programm developement

WP-3

Modelling_against observation




Technically challenging ...

Significance to understanding the geological disposal processes
> Migration of inclusion in a thermal/hydraulic/stress gradient
> Fully coupled THMC processes

» Upscaling from an individual inclusion scale to a continuum scale

Coupling
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Next steps: (1) Formulate migration of an individual
inclusion; (2) develop a conceptual model for fluid inclusion
migration on a continuum scale.
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Background: Conceptual models

Movement of gas will occur by the combined processes diffusion and bulk advection
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Advection and diffusion Visco-capillary flow of gas and Dilatancy controlled gas Gas transport in tensile
of dissolved gas water phase ("two-phase flow") flow ("pathway dilatior”) fractures ("hydro-/gasfrac”)

Choice of conceptual model(s) will dictate the predicted behaviour of the system

In clay-rich system considerable evidence exists suggesting gas flow is accompanied by the
creation of preferential pathways and dilation of the clay
Harrington & Tamayo (2016)



How stable are gas pathways?

Callovo-Oxfordian claystone Compact bentonite

13000 - -
——Injection (inlet) filter 1.0E-7 1
12000 - —— Injection guard-ring filter .
—— Backpressure (outlet) filter ——Flow rate into system

i ——— Sink array [1]
11000 - —— Backpressure guard-ring filter ——Sink array [2]

——Sink array [3]
= njection pressure

kPa)

= 10000

9000

8000

7000

6000

5000 v“

4000 - T T \‘
0 300 400 .

Gas pressure

Injection platen
Gas pressure (MPa)

BacKkpressure platen (kPa)
Flow rate (m®.s™) at STP

Elapsed time (d) 40Elapsedsgme (dayg?

——Flow rate into system

—— Sink array [1]

—— Sink array [2]

——Sink array [3]
Injection pressure

-~ Backpressure flow,

——Radial 1

Strain (%)

——Radial 2

Flow rate (microl/h)

—Radial 3

Flow rate (m3.s) at STP
Gas pressure (MPa)

290 310
Elapsed time (d)

Elapsed time (days)

Harrington & Tamayo (2016)



Chaotic behavior of fracture development
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Pattern formation in water-saturated granular materials during gas

injection
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Friction-capillary model
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Background: An age old problem...

“The displacement of an oil or gas phase from the centre
of a finely grained argillaceous matrix goes against the
laws of capillarity and is in principle impossible. The
barrier can, however, be broken in one way. The pressure
within the fluids formed in the pores of the source-rock
increases constantly as products of the evolution of
kerogene are formed. If this pressure comes to exceed
the mechanical resistance of the rock, microfissures will
be produced which are many orders of size greater than
the natural (pore) channel of the rock, and will permit
the escape of an oil or gas phase, until the pressure has
fallen below the threshold which allows the fissures to be
filled and a new cycle commences.”

Tissot, B., Pellet, R. (1971)

Mandl and Harkness (1987) suggest
hydrocarbon migration can only occur
through thick, continuous water-wet rocks
of low permeability through the process of
fracturing, forming what they refer to as

145 MPa 14.5 MPa

1.45 MPa 0.14 MPa Capillary pressure
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Figure 2. Sizes of molecules and pore throats in siliciclastic rocks on a logarithmic scale covering seven orders of magnitude. Measurement methods are shown at the top of the
graph, and scales used for solid particles are shown at the lower right. The symbols show pore-throat sizes for four sandstones, four tight sandstones, and five shales. Ranges of
clay mineral spacings, diamondoids, and three oils, and molecular diameters of water, mercury, and three gases are also shown. The sources of data and measurement methods

Harrington & Tamayo (2016)



Nanoconfinement & emergent properties
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Diffusion in Kerogen
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Schedule

Activity Spring Autumn20 | Spring Autumn Spring Autumn Spring Autumn
2016 16 2017 2017 2018 2018
2019 2019
Stagel: 1D flow Wksp 1 | Wksp 2
(laboratory)
Stage 2: Spherical Wksp 3 | Wksp 4

flow (laboratory)

Interim reporting

Stage 3: Field scale Wksp 5 | Wksp 6
flow

Stage 4: Gas flow in Wksp 7 | Wksp 8
natural clay

Final Reporting
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