Final Report — Scott B. Baden

Domain Specific Language Support for Exascale

1 Introduction

High performance computing (HPC) systems have experienced significant disruption, the result of
technological trends that influence the strategy for implementing applications that can utilize the
hardware effectively. The driving force is the need to curb power consumption. As a result, we are
seeing exponential increases in parallelism within a single processor, reduced memory capacity per
processor core and complicated memory hierarchies. Since supercomputers comprise an intercon-
nected collection of servers or “nodes,” the impact of disruption is a daunting array of programming
challenges needed to deliver high performance, causing low level details to impose a hardship on
the application focused programmer.

Large scale HPC applications run on distributed memory computers and employ message pass-
ing to move data across distributed memory, generally via the de-facto standard interface, MPI.
While MPIs bulk-synchronous execution model works reasonably well for problems with a uniform
structure, many cutting-edge applications use irregular representations in space and time in order
to reduce memory and computation costs, posing a hardship for the programmer.

In HPC, performance often benefits from heuristic knowledge about the application. Since
such knowledge cannot be discovered by traditional program development tools such as translators,
optimizations are traditionally the responsibility by the programmer. More recently, domain specific
translation has emerged as a means of incorporating heuristic (domain science) knowledge into the
translator. While such translators aren’t general purpose, they significantly improve programmer
productivity. Research during the performance period resulted in 2 such translators—Bamboo and
Toucan—-that were able to overlap communication with computation automatically in legacy MPI
applications, thereby improving application performance.

2 Domain Specification Translation of legacy MPI

As noted above, HPC relies on MPI to move data through distributed memory. An important
optimization for MPI applications is to overlap communication with computation. However, MPI
applications typically do not infer overlap, and must be written to manage it explicitly, imposing
high software overheads that impede its use in practice. An alternative is to employ a non-bulk
synchronous, data-driven execution model (e.g. dataflow) that can overlap communication and
computation automatically. The remaining issue is how to avoid high programming overheads
needed to manually recode legacy applications. Fortunately, there is a connection between message
passing and data driven execution: communication between matched pairs of message sends and
receives in a running MPI programming corresponds to data motion in a data flow graph.

The project developed two translators based on this observation that can infer overlap of com-
putation and communication in MPI applications. Bamboo [1, 2, 3] (with former student Tan
Nguyen, Phd 2014, now at LBNL) and Toucan [4] (with current student Sergio Martin, at UCSD)
infer the data flow graph from calls sites of MPI sends and receives, and convert an MPI application
to run as a data-driven program that masks communication automatically. The work is unique in
that it uses domain-specific knowledge obtained from MPI call sites and relies on over decompo-
sition of processes into multiple tasks, rather than explicit heterogeneous parallel control flow via
MPI processes and OpenMP. The translation process comprises two phases: (1) add programmer
annotation (2) pass the code through the translator.

Bamboos optimizations have been shown to reduce communication delays significantly in stencil
methods and dense linear algebra at scale. In the case of dense linear algebra, Bamboo achieved the

July 11, 2017 1

Final Report — Scott B. Baden

performance benefit of lookahead by restructuring the much simpler, but lower-performing, non-
lookahead version of the well-known HPL benchmark [5], replacing the complicated synchronization
used in the lookahead algorithm with an external dynamic scheduler invoked by code automatically
generated by Bamboo.

Though Bamboo was able to hide communication, it employed static inlining to schedule com-
munication, which cannot support recursion, and also lead to significant code expansion. The
Toucan translator employed dynamic scheduling in lieu of inlining, rewriting the MPI calls to in-
voke Toucan’s run time system. Code expansion is modest, so Toucan could handle full scale
production codes, for example the Cart3D! aerospace design simulator developed for NASA. This
code has a large user community, and as a result, Toucan is an enabling technology for modernizing
production MPI applications.

3 Conclusions

Results with the Bamboo and Toucan translators showed that automated code restructuring pro-
duces performant code—that is competitive with hand coding—while avoiding the complexity of hand
coding. Moreover, these translators demonstrate the power of domain specific translation: to over-
come the limitations of conventional compilers and language constructs. The translators treated
MPI constructs as if they were a primitive language constricts in an embedding language, in par-
ticular, C and C++. Thus, it should be possible to use domain specific translation to optimize
applications that use other commonly used application development libraries besides MPI.

References

[1] T. Nguyen, P. Cicotti, E. Bylaska, D. Quinlan, and S. B. Baden, “Bamboo: Translating
mpi applications to a latency-tolerant, data-driven form,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, ser. SC '12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 39:1-39:11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389050

[2] ——, “Bamboo - preliminary scaling results on multiple hybrid nodes of knights corner and
sandy bridge processors,” in Third International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing, WOLFHPC 13, 2013.

[3] ——, “Bamboo — translating mpi applications to a latency-tolerant, data-driven form,”
in Proceedings of the 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC '12. Washington, DC, USA: TEEE Computer
Society, 2012, pp. 1-11. [Online]. Available: http://dx.doi.org/10.1109/SC.2012.23

[4] S. M. Martin, M. J. Berger, and S. B. Baden, “Toucan - a translator for communication tolerant
mpi applications,” in 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2017, pp. 998-1007.

[5] T. Nguyen and S. B. Baden, “Lu factorization: Towards hiding communication overheads with
a lookahead-free algorithm,” in 2015 IEEFE International Conference on Cluster Computing,
Sept 2015, pp. 394-397.

"https://www.nas.nasa.gov/publications/software/docs/cart3d

July 11, 2017 2

