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ABSTRACT

A set of linear and nonlinear stability analysis tools have been developed to analyze steady
state incompressible flows in 3D geometries. The algorithms have been implemented to be
scalable to hundreds of parallel processors. The linear stability of steady state flows are
determined by calculating the rightmost eigenvalues of the associated generalize eigen-
value problem. Nonlinear stability is studied by bifurcation analysis techniques. The
boundaries between desirable and undesirable operating conditions are determined for
buoyant flow in the rotating disk CVD reactor.

INTRODUCTION

With modern algorithms and parallel computers, incompressible flow models on complex
three-dimensional (3D) geometries can be solved quickly and reliably. When a fully-cou-
pled Newton method is used [1], coupled with a scalable iterative linear solver, it is possi-
ble to directly calculate steady-state solutions. We have previously used such algorithms to
study the chemical vapor deposition of Gallium Arsenide, where parameters studies con-
sisting of dozens of steady-state calculations were used to suggest design modifications
[2-5].

Steady-state algorithms, as opposed to transient algorithms, converge indiscriminately to
stable and unstable solutions. One way to determine the linear stability of a steady state
solution is to linearize the problem about the solution and then solve the associated gener-
alized eigenvalue problem. If all the eigenvalues have negative real part, than small distur-
bances decay in time; however, any eigenvalues with positive real parts imply that the
solution is unstable because any disturbances aligned with the associated eigenvectors will
grow. The Cayley transformation, coupled with a robust eigen-solver, can be used to iden-
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tify several rightmost eigenvalues. This methodology has been used successfully by a few
groups [6-9].

The linear stability analysis can only determine local stability; complementary nonlinear
analysis techniques can be used to probe the global behavior. Bifurcation analysis tech-
niques such as continuation methods [10] can locate such phenomena as turning points
and regions of parameter space that exhibit multiple steady state solutions [11].

In this paper, we demonstrate how augmenting a robust steady-state flow code with a set
of stability anaIysis algorithms can yield a powerful tool for analyzing engineering flow
problems. In addition, we show that careful implementation of these tools can lead to
algorithms that scale to hundreds of parallel processors and models consisting of millions
of unknowns.

NUMERICAL METHODS: Eigensolver

The algorithms and parallel implementation of the linear stability analysis algorithms has
been detailed in a previous report [8]. After a steady-state solution to the incompressible
Navier-Stokes equations are calculated, the evolution equations are linearized about the
steady state. The associated generalized eigenvalue problem has the form

Jz = kMz, (1)

where J is the Jacobian matrix, M is the mass matrix, z is an eigenvector, and k its asso-

ciated eigenvector. A Cayley transformation, which includes two adjustable real parame-

ters, a and w, is used to reformulate the generalized eigenvalue problem into an ordinary

eigenvalue problem for the transformed eigenvalues y:

(J- CJM)-’(J-pM)Z = yz,

A simple relationship exists between the transformed and original eigenvalues,

(’))

(3)

Appropriate choices of o and p are made so that the eigenvalues of interest (those ~ with

largest real part) are mapped to the eigenvalues of largest magnitude in the Cayley system.

The eigenvalue problem defined in equation (2) is solved using Arnoldi’s method using a
version of the P_ARPACK software [12,13] modified to perform the Cayley transforma-

tion. With proper choices of o and p, we found that an Arnoldi spaces of size 24 was

typically sufficient for calculating eigenvalues to three digits of accuracy. The main hurdle
for a scalable algorithm is the solution of the linear set of equations (2) to sufficient accur-
cay with an parallel iterative matrix solver. Details can be found in a previous paper [8].

NUMERICAL METHODS: Bifurcation Analysis Algorithms
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The nonlinear analysis algorithms are used to detect and delineate regions of multiple
steady states. The two algorithms used in this work are a pseudo arc-length continuation
algorithm and a turning point (a.k.a. saddle point) bifurcation tracking algorithm. Each of
the algorithms was implemented using bordering algorithms, which require minimal intru-
siveness to the code that was already set up to do a fully coupled Newton method. Rou-
tines where written that have just three main calls to the MPSalsa finite element code: (1)
Calculate a residual vector given a solution vector and a parameter value; (2)
Calculate a Jacobian matrix given a solution vector and a parameter value; and (3) Solve a
linear system given a Jacobian matrix and right hand side. Since the linear systems all
involve the same Jacobian matrix as solved by the steady-state code, these algorithms do
not require modification of the matrix fill routine, sparse matrix allocation, or parallel
communication maps.

The pseudo arc-length continuation algorithm [10] allows steady-state solution branches
to be tracked around turning points, by basing the continuation algorithm on a monotonic

arc-length variable s in place of the system parameter p. This requires a modification to

the Newton algorithm. The usual Newton iteration for reaching a steady-state solution

vector x is to solve

Z?(x, p) = O with Ncw[on iteration J& = –R, (4)

where R is the residual equations from the PDE discretization, J is the Jacobian matrix,

and 6X is the update to the latest estimate of the solution vector. For arc-length continua-

tion, an additional constraint equation N, which ensures that the next solution is a distance

s from the previous solution, is solved simultaneously with the steady-state equations.

Newton’s method on this augmented nonlinear system is used to solve for unknowns x

and p, and has the form,

R=O
with Newton iteration

N(x, p,s) = o 1[1-[1“J Rp &. _R

N,. N,, 6P - -N
(5)

I-.. lti ---- -

A bordering algorithm is used to manipulate the Newton iteration so that it requires two

linear solves of the matrix J in place of one solve of the augmented matrix in eq. (5). This

does not save CPU times but leads to much easier implementation within a code that is
already set up for solving sets of linear equations coming from the Jacobian matrix.

Solution branches can pass through turning points. These bifurcations signify the creation
or destruction of two steady state solution branches and can delineate regions of multiplic-
ity. In our example problem in the next section, the turning point is also the global stability
limit for the desirable flow pattern. At a turning point one eigenvalue of the matrix is iden-
tically zero, and we use this fact to directly calculate the bifurcation. For small systems of
equations, this can be specified with a single additional constraint equation, that the deter-
minant of the Jacobian matrix is zero. However this is not a feasible calculation for large

systems of equations. We use the fact that there exists a null vector n (the eigenvector
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associated with the zero eigenvalue) of unit length in the null space of J. This leads to a

system of system of 2NX +- 1 equations and unknowns (x, n, and p), where IVx is the

length of x (and the order of J ),

R=O

Jn = O with New(on i(era[ion

ltn = 1 ][1JO RP3X

Jxn J Jpn an =

,01’0 5P

-R

1-Jn .

1 – ltn

(6)

The third equation, lfn = 1, is used to set the length of n, which is otherwise arbitrary up

to a constant. The form of 11, often chosen to be the vector of all 1‘s, can be chosen by the

user.

Another bordering algorithm is used to solve the Newton step by requiring only linear

solves with the matrix J. This requires four linear solves per Newton step of the aug-

mented. The fact that it is the same matrix each time can be used to save on operations by
reusing the preconditioned.

RESULTS

The impact of combining a robust steady-state flow code with linear and nonlinear stabil-
ity analysis tools is demonstrated on an industrially relevant problem: flow in the rotating
disk CVD reactor. This reactor configuration as shown in Figure 1 is commonly used to
grow semiconductors such as gallium arsenide and gallium nitride. Under ideal circum-
stances, the flow patterns approach those of the von Karman similarity solution [14]. This
leads to very uniform film growth rates across the susceptor which in turn can lead to high
quality films. However, it has been shown experimentally and numerically that undesirable
flow patterns can occur [15- 17] due to the destabilizing buoyancy force of the fluid being
heated from below.

Our model involves the incompressible Navier-Stokes equations, the continuity equation,
and a heat balance. In this paper we use the Boussinesq approximation for modelling
buoyancy and fix all physical properties constant. Although the temperature differences in
this reactor generally warrant temperature dependent properties and in particular an idea
gas treatment of density variation with temperature, the simpler model improves the
chances of discovering simple scaling laws in the results. In this work, the Prandlt number
and the reactor aspect ratio were fixed at unity. The inlet plug flow velocity is fixed at the
matching conditions, which is the rate at which an infinite disk would pump in the flow
[15]. The other parameters that are varied in this study are the rotational Reynolds number
and the Rayleigh number, defined as:

L2R2
Re=— and Ra =

g~ATv~/2

v Q3/2a
(7)
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FIGURE 1. Geometry and sample mesh for the axisymmetric model of the rotating disk
reactor.

In these definitions, Q in the disk rotation rate, R is the disk radius, v is the kinematic

viscosity, g~AT is the gravity magnitude times the thermal expansion coefficient times

the temperature difference over the reactor, and u is the thermal diffusivity. In the Ray-

leigh number there are three length scales in the numerator: in our definition, these are

chosen to be the momentum boundary layer thickness,
[

~. Using an axisymmetric

model, we tracked the steady state solutions and located regions where multiple steady
states coexist. Figure 2 clearly shows this region in a plot of the Nusselt number (a mea-
sure of heat flux) at the center of the rotating disk as a function of the Rayleigh number (a
measure of the buoyancy force). Solution branches labeled A, B, and C exist at the exact
same conditions. It was determined through linear stability analysis that solution branch B
is unstable, while A and C are stable. By visualizing the solutions it is evident that solu-
tions on branch A exhibit desirable flow pattern similar to the von Karrnan similarity solu-
tion, while solutions on branch C exhibit a buoyancy-induced torroidal recirculation cell.

While operating on branch A is possible for Ra >7, it is also possible that the reactor

would get attracted to branch C. The behavior is dependent on the initial configuration of
the reactor, the procedure bringing the reactor to the final conditions, and upon random

disturbances. However, if the reactor is designed and operated at Ra <7 where branch C

no longer exists, and if our assumption is true that no other solution branches exist at these
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FIGURE 2. Locus of steady state solutions as measured by the Nusselt number at the
center of the disk, as a function of the Rayleigh number. The rotational rate is Re=83.4
and the irdet flow rate is at matching conditions. A region of multiplicity is evident.

parameter values, than the reactor must operate at the desirable conditions associated with
branch A.

It is therefore necessary only to know the location of the left end of branch C to tell
designers how to avoid the reactor operating with these undesirable recirculation. This
point is a turning point, and can be converged to with the robustness of Newton’s method
using the algorithms described above. We have calculated this turning point and then
tracked it as a function of the rotational Reynolds number of the reactor, as presented in
Figure 3. For the range of Reynolds numbers studied, it appears that a safe reactor design
would satisfy the criterion,

The turning point ends near Re = 48, below which there is continuous transition from

the desirable to the undesirable flow patterns. Future results will study how this scaling
law persists to higher Reynolds numbers and for different reactor aspect ratios.

In addition to knowing the limit of the global stability of the solution branch A, it is also
important to know the limits of its local stability. In order to scale-up the reactor to larger
deposition surfaces, it might not be feasible to keep within the criterion defined by eq. (8).
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FIGURE 3. Locus of turning points marking the left end of branch C in Figure 2, as a
function of the rotational Reynolds number. Designing a reactor to operate below this
curve will avoid the chance of seeing the undesir~ble &circulations of branch C.

Also, through careful procedures or sophisticated controls, it might be possible to avoid
other stable solution branches.

The determination of local stability limit of this branch should include non-axisymmetric
disturbances, so we have studied a full three-dimensional model. The geometry is exactly
the same as the axisymmetric model above, but now consists of 500,000 total unknowns
and uses an unstructured finite element mesh. This problem was run on 256 processors of
the Sandia/Intel Tflop computer, each of which is a 333 MHz Pentium Chip. A single
eigenvalue calculation required about 20 minutes to calculate the several largest eigenval-
ues to sufficient accuracy. A continuation run along solution branch A of Figure 2 was per-
formed, and at each step the rightmost eigenvalues were computed using the algorithms
described above. The first two complex pairs of eigenvalues to cross into the positive real
plane are plotted as a function of Rayleigh number in Figure 4.

It can be seen that this solution branch loses linear stability to a Hopf bifurcation near

Ra = 18.5 and is quickly followed by a second Hopf bifurcation near Ra = 19.0. This

instability represents a hard upper limit for operating this reactor under desirable flow sit-
uations, for all other parameters being fixed. Visualization of the eigenvectors associated
with the destabilizing bifurcations revealed that the first bifurcation is an axisymmetric
bifurcation. This can be efficiently detected with the axisymmetric model. The second
Hopf bifurcation is a mode- 1 instability. and this is quickly followed by a third to a mode-
2 instability. The proximity of three Hopf bifurcations suggest a region of very compli-
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FIGURE 4. Plot of the four largest eigenvalues in the complex plane as a function of the
Rayleigh number, along solution branch A in Figure 2, using a 3D model of 500,000 unknowns,

The region of linear stability of this branch ends in a Hopf bifurcation near Ra = 18.5.

cated dynamics. A mesh convergence study with up to four million unknowns, presented
in [7], confirms these results.

CONCLUSIONS

Linear stability and bifurcation analysis routines have been linked to a steady-state, finite
element, parallel, incompressible flow code. The power of these tools is demonstrated on a
significant engineering design problem: avoiding recirculating flows in the rotating disk
chemical vapor deposition reactor. A region of solution multiplicity is determined using
arc-length continuation. For a region of two-parameter design space, a simple design rule
for avoiding the possibility of simple torroidal recirculation is proposed, based on the
direct calculation of the turning point where this undesirable flow pattern originates. Using
a scalable eigenvalue calculation routine applied to a 3D flow model, the value of one key
design parameter is determined which corresponds to the loss of the local stability of the
desirable flow branch.
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