
	 1	

Extreme	Scale	Unstructured	Adaptive	CFD	
for	Aerodynamic	Flow	Control	

Kenneth	E.	Jansen,	Michel	Rasquin,	Jed	Brown,	Cameron	Smith,	
Mark	S.	Shephard,	Chris	Carothers	

	 	

	 2	

1 Introduction	
Understanding	the	flow	of	fluid,	either	liquid	or	gas,	through	and	around	solid	bodies	has	challenged	
man	since	the	dawn	of	scientific	inquiry.		Many	of	the	great	minds	of	science	and	mathematics	have	
progressively	built	up	a	hierarchy	of	fluid	models	since	fluid	flow	impacts	our	lives	in	so	many	
fundamental	ways	–	from	the	early	days	of	flow	of	water	in	viaducts	to	cities,	to	today’s	flight	of	planes.	
This	chapter	is	concerned	with	the	computational	modeling	of	turbulent	flow	around	aerodynamic	
bodies	such	as	planes	and	wind	turbines.		In	this	case,	viscous	effects	near	the	solid	bodies	create	very	
thin	boundary	layers	that	yield	highly	anisotropic	(gradients	normal	to	the	surface	may	be	106	larger	
than	gradients	along	the	surface)	solutions	to	the	governing	non-linear	partial	differential	equations	
(PDE);	the	Navier-Stokes	equations.			Furthermore,	turbulent	flows	develop	extremely	broad	ranges	of	
length	and	time	scales	motivating	the	use	of	discretization	methods	capable	of	employing	adaptivity	and	
implicit	time	integration.		The	combination	of	these	features	–	non-linear,	anisotropy,	adaptivity,	and	
implicit	–	dramatically	raise	the	complexity	of	the	discretization,	posing	large	challenges	to	efficient	
scalable	parallel	implementation.	However,	through	careful	design,	the	more	complex	algorithms	can	
provide	great	reductions	in	computational	cost	relative	to	simpler	methods	(e.g.,	Cartesian	grids	with	
explicit	time	integration)	that	are	easier	to	mate	efficiently	to	hardware.	In	this	chapter,	we	not	only	
describe	our	approach	but	we	also	address	the	fact	that	while	complex	algorithms	may	never	be	as	
efficient	flop-for-flop	as	simple	methods,	in	the	important	measure	of	science-per-core-hour,	they	can	
still	win	big	by	making	complex	features	like	adaptivity	and	implicit	methods	as	efficient	and	scalable	as	
possible.	

2 Scientific	Methodology	

2.1 CFD	and	Turbulence	Modeling	
Computational	fluid	dynamics	(CFD)	is	a	general	field	wherein	a	given	fluid	model	is	discretized	for	
computer	solution	by	some	technique.	We	further	restrict	our	attention	to	continuum-based	PDE,	
viscous	fluid	models	based	on	the	Navier-Stokes	equations.	Viscous	aerodynamic	flows	are	characterized	
by	Mach	and	Reynolds	numbers.	The	Mach	number	is	the	ratio	of	flight	speed,	V,	to	local	sound	speed	
ranging	from	0.18	at	landing	(V=200	km/hr)	to	0.8	at	high	altitude	cruise	(V=880	km/hr)	for	typical	
commercial	airlines.		The	Reynolds	number	is	the	ratio	of	inertial	forces	to	viscous	forces	and	is	given	by	
Re=V	c/ν,	where	V	is	the	flow	or	plane	speed,	c	is	the	dimension	of	the	wing	in	the	flow	direction	(e.g.,	
mean	chord	of	6m),	andνis	the	kinematic	viscosity	(e.g.,	air	1.8x10-5m2/s).	Simulation	methods	that	
resolve	all	of	the	continuum-level	spatial	and	temporal	scales	are	referred	to	as	direct	numerical	
simulation	(DNS).	For	geometries	encountered	in	aerodynamics,	DNS	produces	too	broad	a	range	of	
scales	in	length	and	time	to	be	fully	resolved.	Indeed,	turbulence	theory	(Pope	2000;	Wilcox	1998)	
provides	that	the	ratio	of	the	largest	to	smallest	length	scale	grows	like	the	¾	power	of	Reynolds	
number.	As	turbulent	scales	interact	in	all	three	dimensions	this	leads	to	cell	count	growth	proportional	
to	the	9/4	power	of	Reynolds	number.	Furthermore,	time	accuracy	of	the	dynamics	of	these	small	scales	
requires	the	number	of	time	steps	to	grow	with	the	¾	power	making	the	overall	cost	of	the	simulation	
grow	cubically	with	Reynolds	number.			Since	flight	Reynolds	numbers	for	commercial	airlines	range	
from	18-80x106	even		for	smaller	components	like	the	vertical	tail	and	rudder	over	the	flight	speed	

	 3	

range,	DNS	will	remain	out	of	reach	for	aerodynamic	modeling	for	several	decades	(P	R	Spalart	et	al.	
1997b).	Wings	have	longer	chords	yielding	higher	Reynolds	numbers.	Full	plane	simulations	must	
consider	boundary	layers	growing	over	the	fuselage	that	add	another	order	of	magnitude	to	the	
Reynolds	number.		This	brings	about	the	need	to	pursue	a	secondary	model	for	some	or	all	of	the	
turbulent	scales,	typically	referred	to	as	a	turbulence	model.	Models	that	average	the	equations	in	time	
to	remove	all	of	the	turbulent	scales	are	referred	to	as	Reynolds-averaged	Navier-Stokes	(RANS)	models.	
Intermediate	to	RANS	and	DNS	are	large	eddy	simulation	(LES)	models,	which,	as	the	name	implies,	
resolve	the	large	eddies	and	model	the	smaller	eddies.		For	aerodynamic	problems	at	flight	scale,	LES,	is	
typically	still	too	costly	and	is	expected	to	remain	so	(P	R	Spalart	et	al.	1997a;	P	R	Spalart	2001)	for	the	
next	several	decades.	As	the	references	explain,	the	impractical	cost	comes	primarily	from	the	near	wall	
regions	where	the	flow	is	attached	which	have	three-dimensional	resolution	needs	that,	while	having	
improved	constants,	still	scale	spatially	with	the	9/4	power	of	Reynolds	number.		The	modeling	shortfalls	
of	RANS	and	the	unacceptable	cost	of	LES	have	motivated	the	development	of	hybrid	models.	One	
particularly	promising	model	family	is	referred	to	as	detached	eddy	simulation	(DES)	(P	R	Spalart	et	al.	
1997b;	Philippe	R	Spalart	2009;	Shur	et	al.	2008).		DES	was	developed	specifically	to	behave	as	a	RANS	
model	in	attached	flows	(where	its	predictive	capacity	is	often	acceptable)	and	behave	as	an	LES	model	
in	separated	or	detached	flow	regions	(where	LES	is	often	superior	to	RANS	and	where	its	cost	is	not	
excessive	owing	to	the	fact	that	separated	flows	are	not	strongly	dependent	on	near	wall	turbulence	
structures).	DES	escapes	the	often	quoted	9/4	power	cell	growth	with	Reynolds	number.	DES	cost	is	
usually	dictated	by	the	volume	the	LES	zone	and	the	large	to	medium	size	eddies	within	it	that	must	be	
resolved	to	provide	its	improved	predictive	capacity.	

2.2 Discretization	Choices	
While	many	groups	are	now	making	progress	in	scale	resolving	methods	like	LES	and	DES,	our	mature	
finite-element	flow	solver	and	anisotropic	adaptive	meshing	procedures	are	ideally	suited	to	address	the	
challenging	fluid	flow	problems	involving	complicated	geometries	with	complex	anisotropic	solution	
features.	The	generality	of	our	current	algorithms,	together	with	their	ability	to	scale	with	an	implicit	
solve	on	massively	parallel	systems	(e.g.,	786,432	cores	of	IBM	BG/Q	with	more	the	3	million		processes	
(Rasquin	et	al.	2014),	and	192Ki	KNL	cores),	make	our	tools	a	strong	candidate	for	this	class	of	problem.		
While	there	do	exist	alternatives	that	may	be	appropriate	for	other	classes	of	problems,	each	has	at	
least	one	limitation	that	makes	their	application	to	the	complex	problems	considered	here	problematic.	
For	example,	structured	grid	approaches	such	as	spectral	methods	(Mansour	and	Wray	1994;	Moser,	
Kim,	and	Mansour	1999;	J.	Kim,	Moin,	and	Moser	1987)	and	finite	difference	methods	(Morinishi	et	al.	
1998)	are	outstanding	choices	for	simple	geometries	but	not	complex	ones	like	those	considered	here.	
Unstructured	grid	approaches	such	as	hexahedral-based	spectral	element	methods	(Fischer	et	al.	2007)	
and	finite	volume	methods	(Mahesh,	Constantinescu,	and	Moin	2004;	Muppidi	and	Mahesh	2005)		are	
also	good	choices	when	all	of	the	grid	length	scales	in	every	region	are	known	a	priori,	but		these	and	
other	similar	methods	have	not	been	successfully	mated	with	parallel,	anisotropic	mesh	adaptivity	to	
the	level	that	our	solver	has.	Finally,	block	structured	adapted	mesh	refinement	SAMR	solvers	(Dubey	et	
al.	2014)		address	both	the	complex	geometry	and	adaptivity	issues	but	are	inefficient	for	resolving	the	
highly	anisotropic	solutions	over	curved	geometries	since	the	mesh	scale	is	forced	to	match	the	smallest	
physical	scale	in	all	three	dimensions	near	boundaries.		For	DES	of	aerodynamic	boundary	layer	flows	

	 4	

considered	here,	boundary	layer	meshes	have	normal	resolution	needs	that	range	from	103	to	106	finer	
than	the	other	two	directions.	In	these	cases,	the	near	wall	region	would	require	106	to	1012	more	points	
with	isotropic	SAMR	than	anisotropic	AMR	since	the	very	fine	wall	resolution	is	needed	in	only	one	of	
the	SAMR	Cartesian	axes.		

In	our	approach,	which	will	be	described	in	detail	in	subsequent	sections,	we	employ	anisotropic	
adaptivity	for	general	unstructured	meshes	as	well	as	boundary	layer	hybrid	meshes.	This	anisotropic	
capability,	together	with	the	desire	to	automatically	and	efficiently	discretize	very	complex	geometries	
such	as	shown	in	Figure	1	are	two	of	the	reasons	we	focus	our	research	on	an	anisotropic-adaptive	
unstructured-grid	solver.		

2.3 Aerodynamic	Flow	Control	
The	goal	of	aerodynamics	is	to	improve	the	vehicle	performance	over	a	wide	range	of	operating	
conditions.	Traditionally,	this	has	been	done	solely	with	mechanical	flaps	but	a	new,	alternative	
approach	is	to	use	active	flow	control,	such	as	fluidic	modification	of	the	apparent	aerodynamic	shape	of	
lifting	surfaces	using	synthetic	jet	actuators	(Amitay,	Smith,	and	Glezer	1998;	Glezer	and	Amitay	2002).		
Synthetic	jet	actuators	oscillate	a	piezoelectric	membrane	to	alternately	expel	and	ingest	fluid	(zero-net-
mass-flux	driven	electrically).		Experimentally,	synthetic	jets	have	been	shown	to	produce	large	scale	
flow	changes	(e.g.,	re-attachment	of	separated	flow	or	virtual	aerodynamic	shaping	of	lifting	surfaces)	
from	micro-scale	input	(e.g.,	a	0.1	W	piezoelectric	disk	resonating	in	a	cavity);	a	process	that	has	yet	to	
be	understood	fundamentally.	

These	actuators	are	driven	at	frequencies	that	are	much	larger	than	the	characteristic	frequency	of	the	
flow	and,	thus,	can	be	applied	over	a	broad	range	of	operating	conditions.	Synthetic	jet	actuation	offers	
the	prospect	of	not	only	augmenting	lift	but	also	other	forces	and	moments	in	a	dynamic	and	controlled	
fashion.	This	makes	them	an	attractive	solution	for	a	wide	variety	of	challenging	flows.	Some	recent	
synthetic	jet	applications	involve	dynamic	``aero-shaping''	of	wings	and	blades	to	improve	the	
performance	around	design	conditions	and	to	alleviate	unsteady	aerodynamic	loading.	For	example,	
previous	and	continuing	experimental	studies	(Farnsworth,	Vaccaro,	and	Amitay	2008;	Maldonado	et	al.	
2010)	conducted	at	Rensselaer	Polytechnic	Institute	have	successfully	demonstrated	the	ability	of	
synthetic	jets	to	restore	and	maintain	flow	attachment.	Applications	of	this	technology	include	flight	
control	of	aerial	vehicles	(including	commercial	airplanes)	where	conventional	control	surfaces	(e.g.,	
flaps,	rudder,	etc.)	can	be	augmented	or	even	replaced	with	active	flow	control,	thus	improving	their	lift-
to-drag	ratio	and/or	control	power.	

2.3.1 Economic	impact	of	flow	control	on	a	vertical	tai/rudder	assembly	
The selection of a vertical tail/rudder assembly for past and future study is based on a number of factors. First, there is a
clear case for dramatic energy savings with a flow control-based redesign of aeronautical control surfaces. With active flow
control, greater control force can be obtained at lower deflection angles for a given control surface size. Or, more
importantly, a smaller and lighter control surface can create the required force. We speak generically about control
surfaces but these can include flaps, elevators, or even rudders on a vertical tail as was the subject of past Department of
Energy (DOE) Innovative	and	Novel	Computational	Impact	on	Theory	and	Experiment	
	(INCITE)	(Lab	2013;	Lab	2015;	Lab	2016)	and	Early	Science	Program	(ESP)	(Lab	2010;	Lab,	n.d.)studies.		
In	the	case	chosen	(vertical	tail/rudder	assembly),	the	energy	impact	is	directly	related	to	the	size	of	the	
stabilizer	since	it	is	a	significant	contributor	to	drag	in	the	cruise	condition	where	much	of	the	fuel	is	

Comment [MOU1]: 1=>	DLRModel	

	 5	

expended.	A	recent	study	at	Boeing	estimated	that	a	777-class	airplane	could	reduce	its	fuel	
consumption	by	0.75-1.0%	on	a	3000	Nautical	mile	trip	if	its	vertical	tail	size	could	be	reduced	by	25%.		
Our	joint	experimental/computational	studies	suggest	that	active	flow	control	can	achieve	this	size	
reduction	(see	Figure	2).	Reducing	the	size	of	the	vertical	tail	by	25%	is	not	an	arbitrary	number.	Current	
designs	are	in	fact	25%	larger	than	needed	for	all	but	one	certification	condition;	when	a	plane	needs	to	
be	capable	of	landing	after	losing	one	engine	(so	called	"engine	out"	landing).	Current	vertical	
tail/rudder	assemblies	are	sized	25%	larger	so	that	they	can	produce	the	required	side	force	to	
compensate	for	unequal	thrust	via	the	rudder.		Using	active	flow	control,	the	smaller	vertical	tail	can	
extend	the	rudder	deflection	angle	past	the	point	it	would	otherwise	separate,	thus	producing	the	
needed	additional	side	force	to	satisfy	this	certification	condition	while	reducing	drag	for	all	other	parts	
of	the	flight	envelope.	To	get	an	idea	of	the	economic/energy	impact	of	this	improvement,	consider	that	
commercial	airlines	consumed	over	20	billion	(B)	gallons	of	jet	fuel	a	year.		At	current	prices	this	is	$60	B	
and	projections	are	for	higher	future	prices.		

Indeed,	airline	manufacturers	have	already	optimized	the	wings	and	fuselage	to	a	level	that	resizing	the	
vertical	tail	is	viewed	as	one	of	the	new	``lowest	hanging	fruits"	for	further	energy	efficiency.	While	not	
all	of	that	20	B	gallons	of	fuel	was	expended	on	long	flights	where	the	cruise	component	of	fuel	
consumption	is	such	a	high	percentage,	even	a	fairly	conservative	estimate	of	0.5%	savings	would	result	
in	$0.3B	per	year.		It	is	also	worth	noting	that	the	25%	reduction	in	the	vertical	tail	size	will	also	reduce	
the	weight	creating	even	more	savings	not	only	in	cruise	but	also	in	the	takeoff	phase	and	in	
manufacturing	costs.	A	similar	analysis	of	wind	turbines	suggests	that	if	flow	control	could	reduce	the	
unsteady	loads	that	gusts	create	on	blades	then	substantial	savings	would	be	reaped	from	reduced	
maintenance	and	replacement	costs	on	the	gear	boxes	that	currently	absorb	those	loads.	

The	other	large	fuel	consumption	phase	of	the	flight	is	naturally	takeoff	which	becomes	even	more	
significant	for	short	and	medium	haul	flights.	A	similar	analysis	as	for	the	vertical	tail	can	be	made	for	
high	lift	wings	that	include	a	slat,	a	main	body	and	a	flat.	These	high	lift	devices	are	designed	to	provide	
the	adequate	additional	lift	during	the	takeoff	and	landing	phases	of	the	flight	but	the	slats	and	flats	are	
then	closed	in	cruise	configuration.	Flow	control	offers	the	capacity	to	produce	the	same	required	lift	
during	takeoff	and	landing	phases	but	with	smaller	slats	and	flaps	so	that	reduction	in	size	of	these	
devices	will	also	reduce	the	total	weight,	creating	even	more	savings	not	only	in	cruise	but	also	in	the	
takeoff	phase.	Marketing	of	planes	today	involves	many	factors	but	safety	and	energy	efficiency	are	high	
on	the	list.	

2.4 Vertical	Tail/Rudder	Assembly	Simulations:	Past	and	Future	
While	we	have	performed	similar	simulation	of	lab	scale	for	wings	(Wood	et	al.	2009;	Sahni	et	al.	2011)	
and		half	planes	(Kedar	C	Chitale,	Rasquin,	Martin,	et	al.	2014;	Kedar	C	Chitale,	Rasquin,	Sahni,	et	al.	
2014),	for	this	chapter	we	will	focus	our	discussion	on	our	simulation	of	a	vertical	tail/rudder	assembly.	
This	choice	is	not	only	because	it	has	complex	geometry	and	complex	flow	features	that	can	
demonstrate	tremendous	cost	reduction	through	the	use	of	the	anisotropic	adaptive	methods,	but	also	
because	there	are	many	practical	engineering	applications	that	could	benefit	from	a	more	fundamental	
understanding	of	flow	control	applied	to	such	a	configuration.	While	lower	fidelity	models	(such	as	

Comment [MOU2]: boeingForcePlot	

	 6	

RANS)	can	give	some	insight,	the	high-fidelity	models	discussed	here	(DES)	can	provide	much	deeper	
insight	into	the	underlying	flow	physics	at	a	broader	range	of	length	and	time-scales	and	much	higher	
confidence	in	the	resulting	predictions.	It	is	well	established	that	RANS	predictions	of	separated	flow	are	
less	accurate	than	LES	but,	resolution	of	the	eddies	in	the	region	where	the	flow	control	interacts	with	
the	separated	regions	is	essential	for	accuracy	and	for	obtaining	fundamental	insight	into	how	the	flow	
control	works	and	how	it	might	be	further	improved/altered	to	maintain	effectiveness	with	increasing	
Reynolds	number.			

2.4.1 Past	simulations	at	Re=0.35	Million	
Numerical	simulations	provide	a	complementary	and	detailed	view	of	the	flow	interactions	and	in	turn	
give	the	insight	required	to	understand	and	exploit	the	underlying	physical	mechanisms	related	to	active	
flow	control.	The	modeling	approach	that	is	the	focus	of	this	chapter	is	called	PHASTA.		PHASTA		has	
already	been	validated	with	a	closely	coordinated	experiment	on	a	prismatic	wing	(Sahni	et	al.	2011),	
and	more	recently		on		a	full	3D	vertical	tail/rudder	assembly	geometry	(Rathay	et	al.	2016)	at	wind	
tunnel	lab-scale.		The	lab-scale	numerical	predictions	were	found	to	be	in	excellent	agreement	with	the	
experimental	measurements.	Specifically,	Figure	2	demonstrates	that	our	simulations	were	able	to	
accurately	predict	the	side	force	(the	engineering	quantity	of	interest)	while	also	showing	excellent	
agreement	with	the	phase-averaged	structures	(key	to	understanding	the	fundamental	physics	of	how	
flow	control	achieves	this	benefit)	as	shown	in	Figure	3.	Furthermore,	numerical	calculations	were	also	
able	to	provide	instantaneous	flow	structures	that	are	inaccessible	via	experimental	measurements	and	
thus,	complement	the	joint	study,	see	Figure	4.	Our	past	success	with	DES	models	as	shown	in	these	
figures	and	in	(Sahni	et	al.	2011;	Rathay	et	al.	2016;	Rasquin	et	al.	2014)	confirm	that	is	the	right	method	
for	this	study.	

A	second	important	aspect	of	the	past	vertical	tail	simulations	was	the	relatively	short	time	they	
required.	Here	we	summarize	the	process	described	in	(Rathay	et	al.	2016).	The	simulation	was	started	
on	a	relatively	coarse	mesh	(M0	mesh	with	500	million	tetrahedral	elements)	of	the	baseline	flow	
configuration	(e.g.,	all	12	of	the	jets	were	discretized	but	zero	velocity	applied).	To	get	through	the	start	
up	transient,	a	RANS	model	and	a	relatively	large	time	step	(1.25e-3	seconds)	was	used	to	reach	a	steady	
state.	The	mesh	was	adapted	(details	on	adaptive	methods	in	subsequent	section)	to	produce	a	mesh	
with	780	million	tetrahedra,	M1	mesh.	Our	adaptive	tools	transfer	the	solution	to	the	new	mesh	which	
shortens	the	transient.		On	the	M1	mesh,	a	series	of	DES	with	zero,	1,	6,	and	12	jets	activated	at	1600	Hz	
were	performed	at	a	time	step	of	120	steps	per	jet	period.	Larger	(60	steps	per	period)	and	smaller	(180	
steps	per	period)	time	steps	were	tested	and	shown	to	be	almost	indistinguishable	and	thus	120	steps	
per	period	was	deemed	time-step	independent.		Each	case	was	run	for	50	jet	periods	to	clear	the	
transient	(e.g.,	the	flow	changes	both	due	to	better	modeling	capacity	of	the	DES	model	and	due	to	the	
flow	control’s	modification	of	the	flow—typically	a	reduction	in	the	separation).	Once	a	statistically	
stationary	limit	cycle	was	observed,	the	flow	was	integrated	another	200	jet	periods.		It	was	observed	
that	statistics	from	the	first	100	jet	periods	were	almost	indistinguishable	from	those	form	the	second	
100	jet	periods.		To	prove	grid	independence,	a	second	adaptation	(M2	mesh)	was	performed,	resulting	
in	1.25	billion	elements.		Results	from	the	M2	mesh	and	the	M1	mesh	were	compared	and	also	found	to	
be	almost	indistinguishable.				This	series	of	simulations	represents	a	complete	and	unprecedented	

Comment [MOU3]: 	boeingCompVortCFDEXP	

Comment [MOU4]: boeingIsoQ	

	 7	

demonstration	of	spatial,	temporal,	and	statistical	convergence	that	was	only	possible	with	Mira-scale	
resources	for	such	a	complicated	aerodynamic	simulation.	

	It	is	our	plan	to	use	Aurora	to	do	the	same	at	flight	scale.		Before	we	can	do	that,	we	need	to	discuss	the	
computational	resources	that	were	required	to	complete	the	lab-scale	simulation	on	Mira.		The	M2	
mesh	was	run	on	256K	cores,	4	processes	per	core,	64k	cores.	Completing	150	jet	cycles	consumed	3.75	
million	Mira-core	hours—	1.25	million	for	the	transient	50	jet	cycles	and	2.5	million	for	collecting	
statistics	over	100	jet	cycles.	This	corresponds	to	19	and	38	wall	clock	hours	respectively	on	1/12	of	
Mira.	Since	the	solution	on	0.75	billion	elements	and	1.25	billion	elements	is	almost	indistinguishable,	
we	will	keep	the	math	somewhat	simpler	(and	introducing	a	modest,	conservative	resource	adjustment	
factor)	by	the	using	the	following	numbers	in	subsequent	resource	estimates:	1	billion	elements,	
integrated	150	jet	cycles	consuming	3.75M	Mira	core-hours	on	64k	cores	in	less	than	2	days.	

2.4.2 Estimating	Resources	for	Flight	Reynolds	Number	Flow	Control	
PHASTA	has	met	the	challenge	of	validating	against	experiments	with	a	vertical	tail	at	Re=3.5e105.	
However,	the	target	designs	must	perform	at	flight	Reynolds	numbers	that	are	53	times	higher	
compared	with	the	lab	model.		There	are	two	fundamental	challenges	associated	with	the	higher	
Reynolds	numbers.	The	first	challenge	comes	with	estimating	the	resolution	needs	of	DES,	which,	as	
noted	earlier	is	not	the	simple	9/4	power	of	Reynolds	number.		Looking	first	at	the	attached	flow	
regions,	they	are	the	same	as	that	needed	by	lower	fidelity	models	like	RANS	since	in	fact	DES	does	
apply	RANS	models	in	those	regions.	Therefore,	the	mesh	resolution	needs	are	dominated	by	the	
separated	flow	regions	and	the	active	flow	control	regions.		First,	even	without	the	jets	on,	the	
separated	region	for	the	vertical	tail	involves	most	of	the	rudder	region	which	grows	both	in	length,	span	
and	height	with	rise	in	Reynolds	number.	This	factor	is	mitigated	substantially	by	the	fact	that	what	
constitutes	a	large	eddy	for	these	flows	also	grows	owing	to	the	fact	that	it	scales	with	the	height	of	the	
boundary	layer	at	separation.		DES	switches	from	RANS	mode	to	LES	mode	through	the	Kelvin-Helmholtz	
shear	layer	roll	up	process	(Kundu	and	Cohen	2012;	White	2000)	of	the	separating	shear	layer	and	thus	
this	rollup	length	scale	sets	the	size	of	the	largest	turbulent	eddy	for	the	separated	flow	zone	that	is	
resolved	via	LES.	From	this	largest	eddy	length	scale,	the	LES	zones	of	the	DES	model	must	then	resolve	a	
few	(3-4)	wave	number	doublings	to	resolve	sufficiently	far	into	the	inertial	range	for	the	LES	model	to	
represent	the	effects	of	the	remaining	turbulence	scales	on	the	resolved	field	and	thereby	provide	a	
better	model	than	RANS	which	represented	only	the	average	of	all	of	the	turbulent	scales.		To	be	clear,	
with	the	rise	of	the	Reynolds	numbers	by	increasing	of	the	characteristic	length	scale	of	the	geometry	
while	holding	velocity	fixed,	the	chord	and	span	increases	and	thus	the	thickness	of	the	boundary	layer	
at	separation	also	increases.	Thus,	the	turbulence	energy	spectrum	broadens	into	lower	wave	numbers	
and	this	is	what	makes	the	largest	eddy	grow	larger.	This	large	eddy	growth	partially	offsets	the	growth	
in	resolution	needs	coming	from	the	growth	in	the	LES	volume	with	the	increased	size	of	the	
aerodynamic	control	surfaces	(vertical	tail/rudder	assembly	in	this	case).	

The	second	challenge	is	associated	with	accurately	simulating	the	active	flow	control.	The	optimal	size	of	
the	actuator	is	still	under	research.	In	fact,	it	is	one	of	the	parameters	we	will	vary	in	our	Aurora	
simulations	to	determine	what	size	is	most	effective.		That	said,	our	preliminary	estimates	suggest	that	
the	actuators	will	grow	somewhat	but	not	linearly	with	chord	(and	other	length	scales	like	span	and	

	 8	

thickness).		At	flight	scales	and	speeds	it	is	expected	that	the	number	of	jets	will	likely	grow	from	our	
current	O(10)	configurations	to	O(100).		In	the	pending	INCITE	2017,	we	will	consider	a	Re=1.75M.	This	
five-fold	increase	in	Reynolds	number	appears	to	be	within	reach	with	Mira	(48Ki	node,	16	core,	IBM	
BG/Q	at	Argonne	National	Labs	(ANL)).	In	the	pending	Aurora	ESP	we	have	proposed	the	first	flight	scale	
DES	of	active	flow	control	on	a	vertical	tail/rudder	assembly.		We	estimate	these	meshes	will	reach	160	
billion	elements,	a	size	that	can	only	be	efficiently	simulated	with	Aurora’s	50k	KNH	nodes.		
Furthermore,	based	on	our	Theta	(3740	XEON	Phi	KNL	nodes,	64	core,	Cray	XC40	at	ANL)	scaling,	we	are	
confident	that	this	size	mesh	will	scale	well	to	the	full	50k	nodes	of	Aurora	(future	ANL	computer).	More	
detail	on	both	of	these	simulations	is	provided	next.	

2.4.3 INCITE	2017:	Five-fold	rise	in	Reynolds	number	flow	control	
With	the	concept	of	our	flow	control	research	now	introduced,	we	can	now	turn	our	attention	to	the	
specific	DES	simulations	planned	for	the	INCITE	2017.	The	Mira	five-fold	increase	in	Reynolds	number	
will	be	achieved	in	two	ways.		First,	the	geometric	model	will	be	scaled	up	by	a	factor	of	2	(going	from	a	
1/19th	scale	model	up	to	a	2/19th	scale).		Since	we	saw	great	success	with	12	jets	on	the	lab	scale	
model,	we	plan	to	use	the	same	size	jets	but	use	twice	as	many	of	them.	This	leaves	the	second	factor	of	
2.5	to	be	achieved	by	increasing	the	flow	speed	from	20	m/s	to	50	m/s.		This	is	very	close	to	the	true	
landing	speed	of	56	m/s.	More	details	about	the	impact	of	these	choices	on	the	demand	for	
computational	resources	will	be	provided	in	later	sections	but,	suffice	to	say	that	this	five-fold	jump	in	
Reynolds	number,	through	an	increased	number	of	jets	at	a	higher	flow	speed	(and	thus	smaller	grid	
spacing)	will	consume	60	million	Mira	core-hours.	That	is	to	say,	it	will	not	be	possible	to	sweep	over	a	
parameter	space	of	jet	speeds,	rudder	deflection	angles,	jet	sizes	or	other	parameters.		This	plan	has	
relatively	low	risk	since	our	experience	with	the	lab-scale	experimental	validation	gives	us	high	
confidence	that	keeping	these	parameters	at	the	best	choice	observed	there	will	provide	the	most	
insight	owing	to	the	ability	to	understand	directly	the	influence	due	to	only	changing	the	Reynolds	
number.		Specifically,	we	plan	to	simulate	a	20-degree	rudder	deflection	and	maintain	the	same	jet	
geometry	(1mm	by	19mm	rectangle	oriented	at	20	degrees	to	the	stabilizer	surface)	and	position	(5%	of	
chord	upstream	of	the	hinge	line).	The	detailed	data	obtained	(e.g.,	the	phase	averaged	structures	
shown	in	Figure	3	compared	for	two	otherwise	identical	cases	with	a	five-fold	Reynolds	number	
separation	will	enable	several	important	advances	to	the	field	of	aerodynamic	flow	control.		These	
include	but	are	not	limited	to:	1)	developing	scaling	laws	for	jet	structures,	2)	collecting	statistics	from	
the	scale	resolving	simulations	to	better	understand	why	RANS	models	are	failing	(two	Reynolds	
numbers	with	sufficient	separation	are	needed	to	do	this	properly)	and	3)	visualizing	the	vortex	
dynamics	interaction	of	both	instantaneous	and	phase	averaged	jet	structures	with	the	separated	
boundary	layer	flow	that	they	are	intended	to	alter.		A	second	simulation	of	the	baseline	flow	(no	jets	
present)	will	also	be	performed	so	that	the	action	of	the	flow	control	at	the	fivefold	higher	Reynolds	
number	can	be	compared	similarly	to	that	shown	in	Figure	2.	The	simulations	will	be	adapted	until	they	
have	shown	grid	independence.	Our	experience	with	validating	at	the	lab	scale	gives	us	confidence	that	
these	early	adapted	runs	will	consume	only	a	small	portion	of	the	allocation,	leaving	more	than	90%	of	
the	resources	to	be	carried	out	on	the	final,	grid	independent	mesh.	Statistics	will	be	collected	and	
analyzed	to	provide	insight	to	improvements	that	can	be	made	to	RANS	models	of	active	flow	control.		
By	collecting	this	information	at	Re=1.75M,	we	expect	to	be	able	to	make	quality	inferences	to	the	

	 9	

application	of	these	active	flow	control	approaches	at	flight	Reynolds	numbers	as	required	for	final	
designs	to	achieve	the	same	level	of	safety	with	substantial	fuel	savings.	In	this	way,	the	2017	INCITE	
campaign	will	gather	key	data	to	enable	our	Aurora	ESP	to	confidently	tackle	a	flight	Reynolds	number	
DES	of	a	vertical	tail/rudder	assembly.			

2.4.4 Aurora	ESP:	Flight	Reynolds	number	flow	control	
Using	Aurora,	we	have	proposed	extending	these	experiment-scale	and	five-fold	higher	Reynolds	
number	simulations	to	a	full-flight	Reynolds	number.		Specifically,	we	proposed	performing	12	
simulations	at	1/4	flight	scale	(varying	jet	width,	spacing,	and	aspect-ratio),	down	selecting	the	most	
promising	four	cases	for	a	1/2	flight	scale	simulation,	that	will	then	down	select	to	two	flight-matched	
cases.	This	suite	of	18	simulations	will	help	us	understand	how	the	flow	control	structures	and	the	jets	
that	create	them	must	be	adjusted	for	Reynolds	number.	

Using	our	past	DES	experience,	boundary	layer	theory,	and	the	best	available	guides	(P	R	Spalart	2001;	
Philippe	R	Spalart	2009;	Shur	et	al.	2008),	we	estimate	that	matching	flight	conditions	requires	182.4	
billion	(B)	elements	while	1/2	and	1/4	flight	scale	requires	48B	and	20B	respectively.	Note,	the	element	
count	on	the	full	flight	case	is	about	a	factor	of	two	higher	than	what	we	anticipate	being	required	
because	it	is	for	this,	most	economically	and	physically	relevant	case	that	we	have	planned	the	most	
extensive	grid	independence	checks.		Similarly,	the	number	of	steps	required	remains	the	same	due	to	
flow	control	scaling.		More	specifically,	in	all	flow	control	simulations	to	date,	the	unsteadiness	of	the	jet	
has	been	substantially	more	rapid	than	that	of	the	resolved	turbulence	(e.g.,	lab	scale	jet	is	at	1600Hz).	
The	jet	frequency	is	chosen	to	have	a	fixed	relationship	to	the	time	scale	related	to	the	chord	flight	(e.g.,	
c/V	the	chord	over	the	plane	speed).	Relative	to	the	lab-scale,	the	flight	speed	will	grow	by	2.38	while	
the	chord	length	grows	by	19.	To	generate	sufficient	momentum	at	these	larger	length	scales,	larger	jets	
operating	at	lower	frequencies	are	expected	to	be	more	effective,	thus	maintain	a	relatively	constant	
chord	flight	time	and	total	number	of	time	steps	required.		

	Factoring	in	the	mesh	growth	and	the	expected	speedup	up	of	Aurora,	we	project	that	we	will	be	able	
to	integrate	the	full	scale	vertical	tail/rudder	assembly	for	150	jet	periods	in	68.4M	Aurora	core-hours	
(ACH)	or	94.4%	of	a	full	machine	compute	day)	per	flight-scale	simulation,	18M	ACH	per	1/2-scale,	and	
7.5M	ACH	per	1/4-scale.	Thus,	the	12	simulations	at	1/4-scale	(on	4.5k	nodes),	4	simulations	at	1/2-scale	
(on	10k	nodes),	and	2	flight-scale	simulations	(on	full	machine)	require	350M	ACH	(node	counts	chosen	
according	to	strong	scaling	from	Figures	5	and	6.		Even	our	current	KNL	efficiency	would	enable	us	to	
perform	half	these	simulations	which	will	be	a	dramatic	step	forward	for	the	state	of	the	art	in	
aerodynamic	simulation;	the	first	ever	flight	Reynolds	number	DES	simulation	of	flow	control	on	an	
aerodynamic	component.		

2.5 Computational	Approach	
A	mature	finite-element	flow	solver	(PHASTA)	(Whiting	and	Jansen	2001;	Whiting,	Jansen,	and	Dey	
2003)	is	paired	with	anisotropic	adaptive	meshing	procedures	(D.	Ibanez,	Dunn,	and	Shephard	2016;	D.	
Ibanez	and	Shephard	2016a;	D.	Ibanez	and	Shephard	2016b;	D.	A.	Ibanez	et	al.	2016;	Smith,	Tran,	et	al.	
2015)	(which	we	have	developed	within	the	SciDAC		ITAPS	and	now	FASTMath	project)	to	provide	a	
powerful	tool	for	attacking	fluid	flow	problems	where	boundary	and	shear	layers	develop	highly	

Comment [MOU5]: ThetaScaling10B	ThetaScaling80B	

	 10	

anisotropic	solutions	that	can	only	be	located	and	resolved	by	applying	adaptive	methods	(Kedar	C	
Chitale,	Rasquin,	Sahni,	et	al.	2014;	K	C	Chitale	et	al.	2015).	The	solver	and	adaptive	mesh	control	are	
described	in	the	next	two	sections.	

2.5.1 Parallel	Flow	Solver	
PHASTA	is	a	parallel,	hierarchic	(2nd	to	5th	order	accurate),	adaptive,	stabilized	(finite-element)	
transient	analysis	tool	for	the	solution	of	compressible	or	incompressible	flows.	It	falls	under	the	realm	
of	computational/numerical	methods	for	solving	partial	differential	equations	which	have	matured	for	a	
wide	range	of	physical	problems	including	ones	in	fluid	mechanics,	electromagnetics,	biomechanics,	to	
name	a	few.	PHASTA	(and	its	predecessor	ENSA)	was	the	first	massively	parallel	unstructured	grid	
LES/DNS	code	(Jansen	1994;	Jansen	1999;	Jansen	1993)	and	it	has	been	applied	to	flows	ranging	from	
validation	benchmarks	(Sahni	et	al.	2011;	Araya	et	al.	2011;	Doosttalab	et	al.	2016) to	cases	of	practical	
interest	(Kedar	C	Chitale,	Rasquin,	Sahni,	et	al.	2014;	Kedar	C	Chitale,	Rasquin,	Martin,	et	al.	2014;	K	C	
Chitale	et	al.	2015;	Vaccaro	et	al.	2009;	Vaccaro	et	al.	2014;	Vaccaro	et	al.	2015).	The	practical	cases	of	
interest	not	only	involve	complicated	geometries	(such	as	detailed	aerospace	configurations	or	human	
arterial	system)	but	also	complex	physics	(such	as	fluid	turbulence	or	multi-phase	interactions).	

PHASTA	has	been	shown	(Jansen	1999;	Karanam,	Jansen,	and	Whiting	2008;	Whiting	and	Jansen	2001;	
Whiting,	Jansen,	and	Dey	2003)	to	be	an	effective	tool	using	implicit	techniques	for	bridging	a	broad	
range	of	time	and	length	scales	in	various	flows	including	turbulent	ones	(based	on	URANSS,	DES,	LES,	
DNS).	It	has	also	effectively	applied	recent	anisotropic	adaptive	algorithms	(Mueller	et	al.	2005;	Sahni	et	
al.	2008;	Sahni	et	al.	2006)		along	with	advanced	numerical	models	of	fluid	turbulence.	Note	that	DES,	
LES,	and	DNS	are	computationally	intensive	even	for	single	phase	flows.	PHASTA	has	extended	this	
capability	to	two	phase	flows	using	the	level	set	method	(S	Nagrath,	Jansen,	and	Lahey	2005;	Sunitha	
Nagrath	et	al.	2006;	Rodriguez	et	al.	2013;	Bolotnov	et	al.	2011;	Bolotnov	2013;	Mishra	and	Bolotnov	
2015;	Fang,	Rasquin,	and	Bolotnov	2016)	to	implicitly	track	the	boundary	between	two	immiscible	fluids.	
PHASTA	is	also	the	flow	simulator	for	SimVascular	(Zhou	et	al.	2010;	H.	J.	Kim	et	al.	2009;	Sahni	et	al.	
2009;	Figueroa	et	al.	2006;	Vignon-Clementel	et	al.	2006)	supported	by	NSF	and	NIH.	Furthermore,	many	
of	its	application	cases	have	been	sufficiently	complex	that	grid	independent	results	could	only	be	
obtained	by	efficient	use	of	anisotropically	adapted	unstructured	grids	on	meshes	capable	of	
maintaining	high	quality	boundary	layer	elements	(Sahni	et	al.	2008)	and	through	scalable	performance	
on	massively	parallel	computers	(Shephard	et	al.	2007).		Further	details	on	the	numerical	methods	
employed	in	PHASTA	are	given	in	the	Algorithmic	Details	section	but	it	is	worth	mentioning	that	both	of	
the	primary	work	components	of	the	flow	solver,	i.e.,	equation	formation	and	equation	solution,	have	
been	carefully	constructed	for	parallel	performance	and	scaling	to	786,432	cores	(on	1,	2,	and	4	
processes	per	core	which	exceeded	3M	processes)	on	Mira	as	shown	in	the	Scalability	and	Performances	
sections	(Rasquin	et	al.	2014).	

2.5.2 Adaptive	Mesh	Control	
The	application	of	reliable	numerical	simulations	requires	them	to	be	executed	in	an	automated	manner	
with	explicit	control	of	the	approximations	made.	Since	there	are	no	reliable	a	priori	methods	to	
efficiently	control	the	approximation	errors,	adaptive	methods	must	be	applied	where	the	mesh	
resolution	is	determined	in	a	local	fashion	based	on	the	spatial	distribution	of	the	solution	and	errors	

	 11	

associated	with	its	numerical	approximation.	For	instance,	regions	of	the	mesh	that	require	more	
resolution	can	be	identified	by	high	r.m.s.	value	of	the	solution	and/or	high	value	of	the	non-linear	
residual	of	the	discretized	Navier-Stokes	equations.	Furthermore,	the	reliability	and	accuracy	of	
simulations	is	also	a	strong	function	of	the	mesh	quality	and	configuration.	Many	physical	problems	of	
interest,	especially	in	the	field	of	fluid	mechanics,	solution	features	are	most	effectively	resolved	using	
mesh	elements,	which	are	oriented	and	configured	in	a	certain	manner	(Sahni	et	al.	2008;	Sahni	et	al.	
2006).	For	example,	in	the	case	of	viscous	flows	use	of	boundary	layer	meshes	is	central	to	the	ability	to	
effectively	perform	the	flow	simulations	due	to	their	favorable	attributes,	i.e.,	high-aspect	ratio,	
orthogonal,	layered	and	graded	elements	near	the	viscous	walls.	

The	PUMI,	parallel	unstructured	mesh	infrastructure	(D.	A.	Ibanez	et	al.	2016),	adaptive	meshing	tools,	
and	the	ParMA	partitioning	tool	(Smith	et	al.	2016)	have	already	been	ported	over	to	Mira	and	Theta	
and	allowed	the	generation	and	the	partitioning	of	a	92	billion	element	mesh	which	was	then	used	as	a	
scaling	benchmark	of	our	flow	solver	PHASTA	to	>3M	processes	(Rasquin	et	al.	2014).		Unstructured	
parallel	mesh	adaptation	procedures	based	on	local	modification	operators	are	used	to	adaptively	
construct	the	meshes	required	for	the	target	applications.		PUMI	supports	these	operations	through	the	
use	of	a	component	based	design.	At	PUMI's	core	is	an	array	based	mesh	representation	component	
that	provides	efficient	mechanisms	to	query	and	modify	the	mesh	while	maintaining	a	small	memory	
footprint	(D.	Ibanez	and	Shephard	2016a;	D.	A.	Ibanez	et	al.	2016).	Parallel	mesh	operations,	such	as	the	
definition	of	the	partition	graph,	the	migration	of	elements,	and	synchronization	of	off-process	
boundary	data,	is	provided	by	the	APF	component.	These	parallel	mesh	operations	provide	the	
supporting	functionality	to	implement	mesh	adaptation	and	fast	dynamic	load	balancing	components,	
MeshAdapt	(Alauzet	et	al.	2006;	Ovcharenko	et	al.	2013)	and	ParMA	(Smith	et	al.	2016;	Zhou	et	al.,	n.d.)	
respectively.			

ParMA	APIs	are	used	to	predictively	balance	mesh	elements	during	mesh	adaptation	to	avoid	memory	
exhaustion,	after	adaptation	operations	are	completed	to	ensure	that	the	applications	mesh	entity	
balance	requirements	are	met.	For	a	PHASTA	analysis	ParMA	first	targets	the	reduction	of	mesh	vertex	
imbalance	to	ensure	the	scalability	of	the	dominant	equation	solution	analysis	stage,	and	then	balances	
elements,	without	disturbing	the	vertex	imbalance,	to	scale	the	equation	formation	stage	(forming	the	
LHS	A	and	the	RHS	b).	PHASTA's	strong	scalability	on	Mira	was	improved	by	over	35%	using	ParMA	
meshes	relative	to		meshes	prepared	with	only	graph	and	geometric	based	partitioning	methods	(Smith,	
Rasquin,	et	al.	2015).	All	tools	scale	well	on	Mira	and	Theta.	

3 Algorithmic	Details	
While	the	previous	section	gave	the	background	on	the	science	of	CFD,	flow	control	and	our	parallel	
adaptive	approach,	efficient	execution	of	these	ideas	requires	many	algorithmic	details	to	be	explained	
so	as	to	ultimately	understand	how	best	to	execute	them	with	great	efficiency	and	high	scalability.	This	
section	revisits	the	flow	solver	and	and	its	supporting	adaptive	control	software	to	describe	those	
algorithmic	details.	

	 12	

3.1 Flow	solver	
Flow	computations	are	performed	using	a	stabilized,	semi-discrete	finite	element	method	for	the	
transient,	incompressible	Navier-Stokes	partial	differential	equation	(PDE)	governing	fluid	flows.	In	
particular,	we	employ	the	streamline	upwind/Petrov-Galerkin	(SUPG)	stabilization	method	introduced	in	
(Brooks	and	Hughes	1982)	to	discretize	the	governing	equations.	The	stabilized	finite	element	
formulation	currently	utilized	has	been	shown	to	be	robust,	accurate	and	stable	on	a	variety	of	flow	
problems	(see	for	example	(Taylor,	Hughes,	and	Zarins	1998;	Whiting	and	Jansen	2001).	

In	our	flow	solver	(PHASTA	which	stands	for	parallel,	hierarchic,	adaptive,	stabilized	transient	analysis),	
the	Navier-Stokes	equations	(conservation	of	mass,	momentum	and	energy)	plus	any	auxiliary	equations	
(as	needed	for	turbulence	models	or	level	sets	in	two-phase	flow)	are	discretized	in	space	and	time.	
Since	Galerkin's	method	has	been	shown	for	equal	order	basis	to	be	unstable	for	advection	dominated	
flows,	we	carry	out	the	discretization	in	space	with	a	stabilized	finite	element	method	(Brooks	and	
Hughes	1982),	thus	allowing	the	effective	use	of	equal	order	basis	functions	for	all	variables.	

The	stabilized	finite	element	method	leads	to	a	so-called	weak	form	of	the	governing	equations	which	is	
then	discretized.	In	PHASTA	we	employ	interpolating	linear	shape	functions	for	the	base	element	and	
then	employ	hierarchic,	piecewise	polynomials	(Whiting	and	Jansen	2001;	Whiting,	Jansen,	and	Dey	
2003)	for	higher-order	discretizations.	The	resulting	element	integrals	are	computed	using	Gauss	
quadrature.	Implicit	integration	in	time	is	then	performed	using	a	generalized-α	method	(Jansen,	
Whiting,	and	Hulbert	1999)	which	is	second-order	accurate	and	provides	precise	control	of	the	temporal	
damping	to	reproduce	Gear's	Method,	Midpoint	Rule,	or	any	blend	in	between.	On	a	given	time	step,	
the	resulting	non-linear	algebraic	equations	are	linearized	to	yield	a	system	of	equations	which	are	
solved	using	iterative	procedures,	e.g.,	GMRES	(Saad	and	Schultz	1986;	Shakib,	Hughes,	and	Johan	1989)	
is	applied	to	the	linear	system	of	equations	A	x	=	b		(where,	b	is	the	right-hand-side	or	residual-vector	of	
the	weak	form	and	A	is	the	left-hand-side	or	linearized	tangent-matrix	of	b	with	respect	to	unknown	
solution	coefficients	x).	

Next	we	focus	our	attention	on	the	parallel	paradigm	to	make	clear	our	approach	to	developing	a	
exaflop	flow	solver	for	a	diverse	class	of	flow	phenomena.	Finite	element	methods	are	very	well	suited	
for	use	on	parallel	computers	as	substantial	computational	effort	is	in	the	calculation	of	element	level	
integrals	and	in	the	solution	of	the	resulting	system	of	algebraic	equations	using	iterative	methods	
(which	employ	matrix-vector	A	p	products).	

Both	of	these	work	types	can	be	equally	divided	among	the	processors	by	partitioning	the	aggregate	
mesh	into	equal	load	parts.	One	important	point	to	consider	during	partitioning	is	that	the	
computational	load	(in	any	part)	during	the	system	formation	stage	(i.e.,	during	formation	of	A	and	b)	
depends	on	the	elements	present	in	the	part	whereas	in	the	system	solution	stage	it	depends	on	the	
degrees-of-freedom-holders	dofh	and	the	number	of	degree-of-freedom-variables	dofv	whose	product	
yields	the	total	unknowns	in	the	system	of	equations	on	that	part.	

For	example,	in	the	case	of	linear	finite	elements	of	all	the	same	topology,	work	involved	in	equation	
formation	is	proportional	to	the	number	of	mesh	elements	in	the	part	while	during	equation	solution	

	 13	

the	work	is	proportional	to	the	number	of	mesh	nodes	(dofh)	in	the	part	since	the	unknowns	are	
associated	with	the	nodes.	

Though	many	approaches	elect	to	re-distribute	data	for	load-balancing	(or	change	the	partition)	
between	two	stages	of	implicit	solvers,	for	example,	after	formation	the	matrix	(A)	is	(re-)	distributed	
based	on	rows,	in	our	native	approach	the	same	partition	is	maintained	throughout	both	stages	and	no	
re-distribution	of	data	is	performed	in	between.	PHASTA	also	supports	using	the	PETSc	(S	Balay	et	al.	
2015;	Satish	Balay	et	al.	2016)	solver	library	which	has	been	recently	modified	to	perform	this	data	re-
distribution	with	dramatic	improvement	to	the	scalability.	

Element-based	partitioning	is	currently	used	as	it	is	natural	for	element-integration/equation-formation	
stage	making	it	highly	scalable.	So	long	as	the	dofh	balance	is	also	preserved,	this	partitioning	also	
maintains	the	scalability	of	the	iterative	linear	solve.	In	element-based	partitioning,	each	element	is	
uniquely	assigned	to	a	single	part	but	in	turn	leads	to	shared	dofh	at	inter-part	boundaries.	

Typically,	element	balance	(with	sufficient	load	per	part)	and	minimization	of	amount	of	
communications	during	partitioning	results	in	a	reasonable	dofh	balance	as	well.	For	a	mesh	with	fixed	
element	topology	and	order,	balanced	parts	within	a	partition	implies	that	each	part	contains	as	close	to	
the	average	number	of	mesh	entities	as	possible.	For	other	cases,	such	as	ones	with	mixed	element	
topology	or	order,	weights	reflecting	the	work	load	for	every	individual	element	are	assigned	to	create	
parts	with	a	balanced	load.	

Each	processor	core	first	performs	interpolation	and	numerical	integration	over	the	(interior	and	
boundary)	elements	on	its	local	part	to	form	the	linearized	equations,	i.e.,	the	tangent	matrix	(A)	and	
the	residual	vector	(b).	Subsequently,	Krylov	iterative	solution	techniques	are	used	to	find	x.	These	
techniques	employ	repeated	products	of	A	with	a	series	of	vectors	(say,	p)	to	construct	an	orthonormal	
basis	of	vectors	to	approximate	x.	After	each	local	q=A	p	product	we	apply	communications	to	obtain	
complete	values	in	q.	To	describe	the	interactions	and	communications	among	parts	within	a	partition,	
we	employ	concept	of	a	partition-graph.	Each	partition-graph	vertex	represents	a	part	whereas	each	
partition-graph	edge	represents	interaction	between	a	pair	of	parts	sharing	dofh.	This	is	done	in	a	
distributed	way	such	that	a	part	contains	information	only	in	terms	of	its	portion	of	the	work	(or	sub-
mesh)	along	with	its	interaction	with	neighboring	parts.	The	interaction	between	neighboring	parts	is	
defined	based	on	shared	dofh,	where	every	shared	dofh	resides	as	an	image	on	each	part	sharing	it.	Only	
one	image	among	all	images	of	a	shared	dofh	is	assigned	to	be	the	owner	thereby	making	all	other	
images	explicitly	declared	to	be	non-owners.	

This	process	insures	that	the	sum	total	of	dofh	based	on	owner	images	over	all	the	parts	within	a	
partition	is	independent	of	the	partitioning	and	is	equal	to	the	number	of	(unique)	dofh	in	the	aggregate	
mesh.	Such	a	control	relationship	among	images	of	shared	dofh	allows	the	owner	image	of	each	shared	
dofh	to	be	``in-charge''	for	data	accumulation	and	update	and	in	turn	limits	communications	to	exist	only	
between	owner	and	non-owners	(i.e.,	non-owner	images	do	not	communicate	to	each	other).	
Furthermore,	data	exchange	is	done	only	for	vector	entries	(e.g.,	in	b)	as	this	is	sufficient	to	advance	the	
computations.	Thus,	partition-graph	edge	connects	only	those	pairs	of	parts	that	involve	owner	

	 14	

image(s).		Typically	for	the	three-dimensional	unstructured	meshes	each	part	contains	on	the	order	of	
40	partition-graph	edges	connecting	it	with	neighboring	parts.	

Before	proceeding	to	the	next	matrix-vector	product	in	the	series,	it	is	important	to	note	that	
computation	of	norms	is	required	to	perform	orthonormalization.	In	this	step,	the	norm	of	vector	q,	and	
its	dot-product	with	the	previous	vectors	in	the	series,	are	computed.	To	compute	a	norm	or	dot-
product,	first	a	local	dot-product	is	computed	(requiring	no	communication)	but	then,	to	obtain	a	
complete	dot-product,	a	sum	across	all	cores	is	needed.	A	collective	communication	(of	allreduce	type)	
is	used	to	carry	out	the	global	summation.	It	is	important	to	point	out	that	while	computing	a	local	dot-
product	value,	only	the	owner	image	of	each	shared	dofh	takes	active	part	to	correctly	account	for	its	
contribution	in	the	complete	(or	global)	dot-product.	Successive	A	p	products	are	carried	out	along	with	
communications	to	obtain	complete	values	and	to	carry	out	the	orthonormalization.	This	leads	to	an	
orthonormal	basis	of	vectors	which	is	used	to	find	an	approximate	update	vector	x	and	marks	the	end	of	
a	non-linear	iteration	step.	

PHASTA	has	two	forms	of	I/O;	one	file	per	MPI	process	and	MPI-IO	(N.	Liu	et	al.	2010)	which	allows	
multiple	parts	to	be	written	and	read	from	a	given	file.	The	latter	has	proven	scalable	to	>3M	processes	
on	Mira	and	256Ki	on	Theta.	PHASTA	has	been	coded	for	pure	MPI	and	MPI+X	where,	for	KNL,		X	is	
currently	OpenMP	but	other	options	are	being	developed.	While	MPI+X	has	been	shown	to	scale	at	
better	than	75%	efficiency	on	a	variety	of	architectures,	on	Mira	and	Theta,	pure	MPI	has	scaled	at	>	
90%	efficiency	(Figures	7,	5,	and	6).	

	

3.2 Adaptive	Mesh	Control	and	Partitioning	
Mesh	adaptation	procedures	based	on	local	mesh	modification	operators	are	used	in	this	project	to	
adaptively	construct	significantly	large	meshes	(in	the	order	of	1-10	billion	or	more	elements)	required	
for	the	target	applications.	This	requires	effective	execution	of	adaptive	meshing	techniques	on	meshes	
that	are	distributed	over	massively	parallel	systems.	The	current	process	of	adapting	a	distributed	mesh	
in	parallel	relies	on	a	flexible	and	distributed	mesh	representation	(Seol	and	Shephard	2006;	Seol	2005)		
that	is	designed	to	fulfill	its	needs	such	as	allowing	local	mesh	migration	to	move	groups	of	mesh	
entities.	

The	parallel	implementation	of	such	a	representation	scheme	builds	on	a	formal	partition	model	that	
describes	the	distribution	of	parts	in	the	partition	in	terms	of	adjacency	relations	of	mesh	entities	(S.	
Seol	et	al.	2012;	Zhou	et	al.	2012).	Conceptually	the	partition	model	lies	between	the	geometry	and	
mesh,	and	maintains	the	relationships	across	the	inter-part	boundaries.	

Moreover,	since	mesh	adaptation	selectively	refines	and/or	coarsens	a	mesh	to	control	the	mesh	
discretization	error,	it	is	clear	that	a	mesh	partitioning	that	was	balanced	is	likely	to	be	imbalanced	after	
the	mesh	is	adapted.	Thus,	we	have	developed	the	capacity	to	dynamically	alter	the	mesh	partitioning	
on	a	distributed	mesh	as	the	adaptive	simulation	proceeds	in	order	to	maintain	a	good	load	balance,	
both	in	terms	of	elements	per	part	and		dofs	per	part.	

Comment [MOU6]: figsca	

	 15	

Both	graph	(adjacency)	based	and	geometry	based	procedures	are	available	to	support	this	process.	
Based	on	past	experience	the	graph-based	procedures	tend	to	do	a	better	job	on	connected	meshes	and	
can	be	extended	to	account	for	geometrically-based	interactions	like	near	contact.	

We	are	currently	also	developing	and	using	iterative	load	balancing	algorithms	that	operate	by	doing	
iterations	of	load	migration	between	neighboring	processors.	Scalable	methods	of	this	type	have	been	
developed	(Ozturan	et	al.	1994).		Although	scalable,	these	methods	were	found	to	be	more	expensive	
than	effective	graph	partitioners	when	the	mesh	is	repartitioned	in	a	general	way.		However,	there	are	
steps	in	the	parallel	adaptive	process	where	the	current	partitions	are	known	to	be	nearly	balanced	and	
only	some	minor	movement	of	mesh	entities	is	needed	to	yield	load	balance	and/or	reduce	inter-
processor	communications.	Iterative	load	balancing	should	prove	effective	for	this.	Moreover,	we	have	
used	these	methods	to	improve	balance	in	degrees	of	freedom	while	maintaining	the	balance	in	
elements,	especially	for	partitions	with	lightly	loaded	parts.	

3.3 Algorithm	summary	
Summarizing,	PHASTA	addresses	the	challenges	of	obtaining	solutions	to	nonlinear	PDE’s,	generating	
highly	anisotropic	solutions	with	an	enormous	range	of	spatial	and	temporal	scales	that	require	implicit	
time	integration	with	complex	algorithms	that	pose	major	challenges	to	solution	efficiency	including:	
indirect	addressing	(irregular	memory	access)	for	unstructured	grids		and	for	sparse	linear	algebra,	
collective	communications	(dot	products	for	GMRES),		simultaneous	balancing	of	multiple	mesh	entities,	
and	finally	the	difficulty	of	balancing	work	for	adaptation.	While	these	aspects	prevent	PHASTA	from	
achieving	large	fractions	of	theoretical	peak	performance,	retreating	to	simpler	methods	would	result	in	
the	following:	1)	Cartesian	grid	methods	would	require	4e17	cells	(3e8	savings),	2)	an	octree/AMR	mesh	
would	require	3.35e13	cells	(2.8e4	savings).		These	savings	factors	refer	only	to	the	spatial	discretization.			
Implicit	time	integration,	while	complicated	algorithmically,	provides	a	factor	of	875	savings	in	time	step.	
From	these	factors,	which	are	multiplicative,	it	is	clear	that	the	efficiency	reduction	as	measured	in	
FLOPS	or	fractions	of	peak	performance	of	the	more	complicated	algorithms	is	recovered	many	times	
over	in	the	more	important	metric	of	science-progress-per-core-hour.	

4 Programming	Approach	
The	Theta	ESP	workshop	runs	also	gave	us	an	opportunity	to	study	performance,	scalability,	and	
memory	limits	across	multiple	nodes.	For	performance,	there	is	a	strong	interaction	between			
vectorization	and	the	use	of	cache.		This	further	ties	into	the	parallel	performance/scalability	through	
changes	to	the	communication	fabric	and	through	the	on-package	memory.		We	defer	discussions	of	
performance	and	scalability	to	the	next	subsections	until	after	we	have	explained	our	parallel	
programming	approach.		

Our	parallel	programming	approach	can	be	summarized	as	MPI+X.		Specifically,	MPI	across	nodes	
(allowing	the	possibility	of	multiple	MPI	processes	per	node)	combined	with	some	other	communication	
mechanism,	X,	within	nodes.	We	have	pursued	this	general	approach	for	seven	years.		As	we	have	tuned	
to	each	new	platform	(e.g,	BGP,	BGQ)	we	evaluate	the	available	choices	for	X	but	we	also	compare	it	to	
X=null,	that	is	pure	MPI	on	all	of	the	processes	within	and	across	the	nodes	and	even	multiple	processes	

	 16	

per	core.		On	the	entire	BlueGene	family,	pure	MPI	was	always	the	clear	winner	and	thus	all	the	
simulations	discussed	above	were	done	with	4	MPI	processes	per	core	(64	MPI	processes	on	16	cores	of	
each	node	for	BGQ).		

On	Theta,	the	gap	was	sufficiently	less	as,	during	the	workshop,	we	demonstrated	that	we	could	use	
X=OpenMP	for	distributing	our	block	level	loop	with	reduced	MPI	processes	with	acceptable	scaling.		We	
say	acceptable	because	the	performance	was	still	a	bit	below	that	of	pure	MPI	(80%	for	OpenMP	for	
problems	that	pure	MPI	was	still	at	100%)	but	this	at	least	demonstrates	that	we	have	a	viable	strategy	
should	MPI	across	all	processes	of	Aurora	degrade	as	some	have	predicted.	While	we	plan	to	continue	to	
develop	and	improve	our	OpenMP	code,	we	also	have	already	started	efforts	on	alternatives.		MPI	
endpoints(Sridharan,	Dinan,	and	Kalamkar	2014)	is	another	possible	option	for	X,	and	relative	to	
OpenMP,	would	operate	on	larger	part-level	constructs.	We	also	intend	to	explore	other	on-node	shared	
memory	models	such	as	MPI	3.0	shared	memory	windows	(Hoefler	et	al.	2013;	Zhu	et	al.	2015)	and	XSI	
shmem	(Group,	n.d.).	Note	that	PHASTA	only	requires	O(10)	MPI	functions	and	thus	places	low	demands	
whatever	parallel	paradigm	is	used.	Even	more	fine-grain	thread	parallelism	has	already	been	developed	
and	demonstrated	in	PHASTA	and	this	will	also	be	pursued	(more	details	in	Sec.	4.3).	

To	guide	the	choices	and	improvement,	Co-PI	Carothers'	developments	within	the	DOE	CODES	project	
(Various,	n.d.)	will	be	used	to	model	dragonfly	topology	communication	patterns.	During	the	
development	phase,	we	will	collect	full	scale	MPI	trace	data	from	PHASTA	runs	on	Mira	and	then	predict	
how	P2P	and	collective	operations	scale	on	a	simulated	Aurora-scale	system	using	our	massively	parallel	
dragonfly	network	model	in	CODES.			We	will	further	use	Intel	SDE	(web	page	2015)	to	understand	the	
work	that	takes	place	between	each	MPI	communication	completing	the	performance	analysis	model	
for	PHASTA.	We	also	plan	to	extend	our	iterative	partition	improvement	code	(ParMA(Smith	et	al.	2016))	
to	alter	the	element	and	node	balance	to	improve	overall	performance	based	on	the	performance	
analysis	model.	

In	summary,	we	propose	to	leverage	our	past	success	with	MPI	across	all	cores	to	>	3	M	processes	and	
compare	this	to	the	MPI+X	variants.	All	three	will	be	continuously	analyzed	in	our	Aurora	performance	
analysis	model	for	potential	performance	gains.	The	best	versions	of	all	three	will	be	evaluated	on	Theta	
to	confirm	emulated	projections	and	then	the	best	performing	option	will	be	used	for	the	Aurora	
science	production	runs.	

4.1 Scalability	
The	Theta	ESP	workshop	runs	gave	us	an	opportunity	to	study	scalability	and	memory	limits	at	large	
node	counts.		Despite	common	concerns	about	64	cores	sharing	16GB	of	fast	(MCDRAM)	memory,	we	
found	that	even	with	1.2M	elements	per	core,	the	code	stayed	within	MCDRAM	(e.g.,	80B	element	mesh	
run	on	1Ki	nodes	Figure	7.	When	the	same	mesh	was	run	on	node	counts	up	to	3Ki,	strong	scaling	was	
maintained	in	the	equation	formation.	Strong	scaling	was	demonstrated	in	a	10B	element	case,	Figure	6.		
Both	equation	formation	and	solution	scaled	equally	well	to	2Ki	nodes,	and	dropped	off	only	slightly	at	
3Ki.	While	these	results	suggest	that,	at	least	for	PHASTA,	our	MPI	only	approach	may	remain	viable,	we	
understand	that	it	is	prudent	to	have	alternatives	in	place	and	thus,	we	have	already	developed	and	
seen	promising	results	from	other	options.	

	 17	

4.2 Performance	
Achieving	the	highest	possible	portable	performance	on	new	architectures	has	been	a	major	focus	of	the	
PHASTA	development	since	its	inception	fifteen	years	ago	and	this	in	fact	built	upon	the	same	objectives	
of	its	predecessor	(ENSA)	developed	at	Stanford	fifteen	years	prior	to	that.		Throughout	this	thirty-year	
development	period,	considerable	flexibility	has	been	built	into	the	code	to	make	it	highly	adaptable	to	
hardware	and	software	advances.		For	example,	the	element	equation	formation	phase	which	involves	
intensive	loads,	stores,	multiplies	and	adds	was	originally	developed	for	the	Cray	vector	architecture	but	
it	has	been	generalized	over	the	years	to	improve	cache	performance	and	we	find	it	is	again	able	to	
strongly	exploit	vectorization	in	the	KNX	hardware.		Looking	at	the	hotspots	identified	by	VTUNE	runs	on	
KNL,	we	have	confirmed	that	a	very	high	percentage	of	our	computationally	intensive	kernels	are	
already	highly	vectorized.	While	tuning	for	single	core	performance	is	critical,	we	have	also	focused	
intensively	over	the	years	on	maintaining	parallel	scaling.		

Recent	runs	on	Theta	suggest	that	our	per	core	performance	is	roughly	five	times	that	of	Mira.	In	the	
short	time	that	KNL	has	been	available,	we	have	used	VTUNE	and	Advisor	on	both	the	full	code	and	
representative	computational	kernels	to	identify	ways	to	achieve	even	greater	vectorization	and	
stronger	acceleration.		Under	the	development	period,	further	specialization	for	KNH	will	be	the	primary	
focus.		Based	on	our	representative	kernel	tests,	we	anticipate	a	further	factor	of	two	acceleration	for	a	
total	of	tenfold	acceleration	per	core	relative	to	Mira.		

	

4.3 Portability	
Portability	across	HPC	platforms	has	been	a	major	objective	for	the	PHASTA	project;	the	code	has	been	
used	on	workstations	and	supercomputers	dating	back	to	the	Cray	X-MP	shared-memory	vector	
systems.	Portability	between	many-core	track	systems	(Theta/Aurora)	and	CPU-GPU	track	systems	
(Titan/Summit)	presents	a	significant	challenge.	The	most	important	difference	for	PHASTA	(and	many	
other	codes)	is	the	available	high	bandwidth	memory	(HBM)	per	computational	``core''	(SIMD	unit).	
Theta	has	260MB	of	MCDRAM	per	core	and	Aurora	is	projected	to	have	a	similar	amount,	but	Summit,	
like	most	GPU	systems,	will	likely	have	much	less.	While	PHASTA	is	shown	to	have	sufficient	HBM	for	
pure	MPI	on	Theta,	and	MPI+X	alternatives	can	further	reduce	that	usage	as	needed,	these	options	are	
likely	non-viable	for	CPU-GPU	track	systems.	

To	maintain	a	truly	portable	option,	and	to	provide	another	alternative	fine-grained	parallelism	we	will	
also	develop	a	parallel	paradigm	where	the	MPI	process	count	is	substantially	smaller	than	the	total	
number	of	computational	cores	(including	GPU	cores).	Work	for	parts	assigned	to	these	processes	is	
distributed	to	threads.	This	approach	has	already	been	developed	and	scaled	well	(greater	than	75%	
efficiency)	on	several	previous	platforms.	The	basic	idea	for	equation	formation	is	to	distribute	the	
blocks	of	elements	across	the	processing	units	since	this	is	embarrassingly	parallel	work.	Theta	should	
perform	well	under	this	approach.	Portability	to	CPU-GPU	systems,	where	HBM	per	core	is	much	
smaller,	will	likely	require	even	finer	grained	parallelism	(e.g.,	down	to	interior	loops	of	the	integral	
quadrature	operations	using	OpenMP	or	similar).	Regarding	equation	solution,	we	have	also	threaded	
the	matrix-vector	product	of	our	native	solver.	

	 18	

This,	plus	our	recent	integrated	development	with	the	PETSc	team	as	part	of	the	FASTMath	project,	
suggests	that	other	than	the	usual	tuning	to	improve	performance,	equation	solution	will	continue	to	
scale	well	on	Theta	and	Aurora	and	be	portable	to	other	architectures.	

4.4 External	Libraries	
Programming	Languages:		

• C,	C++,		and	Fortan	>=90	

Libraries:	

• Meshing	tools	for	adaptivity	and	partitioning:	
o PUMI	-	unstructured	mesh	tools;		
o Zoltan	-	partitioning	interface	to	high	quality	ParMETIS	multilevel	graph	methods,	and	

faster,	lower	quality,	recursive	geometric	sectioning	methods;	
o ParMETIS	-	multilevel	graph-based	partitioning	methods.	

• File	I/O:	
• MPI-IO	–	PHASTA	parallel	IO	using	SyncIO	[Liu,	N,	J	Fu,	C	D	Carothers,	O	Sahni,	K	E	Jansen,	

and	M	S	Shephard.	2010.	“Massively	Parallel	I/O	for	Partitioned	Solver	Systems.”	Article.	
Parallel	Processing	Letters	20	(4).	World	Scientific	Publishing:	377–95.]	

Parallel	Methods:	

• Pure-MPI:	MPI	1.0	
• MPI+OpenMP:	OpenMP	3.0	
• MPI+MPI:	Opportunities	to	reduce	communication	costs	are	provided	by	the	proposed	MPI	

endpoints	interface,	MPI	3's	shared	memory	window	functionality	(MPI_Win_allocate_shared),	
and	by	the	XSI	shared	memory	interface	(cited	above).	

Optional	Libraries:	

• Linear	equation	solver:	
o PETSc	-	open	source	algebraic	equation	solver;	
o svLS	-	open	source	incompressible	solver.	

• 	Meshing	tools	for	adaptivity	and	partitioning:	
o Simmetrix	-	geometric	model,	parallel	in-memory	mesh	generation	and	adaptation.	

• Visualization	and	data	analysis:	
o ParaView	–	in-situ	visualization	(Fabian	et	al.	2011;	Rasquin	et	al.	2011;	Ayachit	et	al.	

2016)	post	processing.	

	File	I/O:	

• Bzip	-	compressed	mesh	file	format;	

	 19	

• hbw_malloc/hbw_free	-	HBM	(high	bandwidth	memory)	`flat'	mode	to	support	planned	
developments	for	quickly	staging	checkpoint/restart	files	to	off	package	memory	(when	capacity	
permits).	

5 Software	Practices	
	

PHASTA	is	open	source	through	gitub	and	maintained	through	git.	It	is	built	using	CMAKE.		The	code	is	a	
mixture	of	Fortran	>=90,	C	and	C++.	The	choice	of	language	for	a	given	routine	roughly	follows	the	
following	guidelines.		The	most	computationally	intensive	routines	are	written	in	fortran	for,	possibly	
now	historic,	computational	efficiency	and	familiarity	of	the	engineering-based	developers.	The	IO	
routines,	both	large	data	for	geometry,	and	small	data	for	problem	parameter	definitions	are	written	in	
C	and	C++,	again,	due	to	a	possibly	now	historic	perception	that	these	languages	provide	greater	
flexibility.	As	these	languages	have	evolved,	the	relative	advantages	have	become	less	obvious	and	thus	
the	continuation	of	these	guidelines	has	at	least	as	much	to	do	with	inertia/legacy.	Obtaining	financial	
support	for	a	complete	rewrite	is	unlikely,	and,	despite	the	challenges	presented	by	working	with	three	
languages,	PHASTA	has	proven	agile	with	regard	to	rapid	implementation	and	testing	of	new	physics	
models,	new	math	discretizations,	and	new	solver	technologies.	

Where	practical,	portions	of	the	code	have	been	made	into	libraries	so	that	portions	of	the	code	that	are	
used	by	multiple	executables	are	isolated	(e.g.,	shape	functions	and	parallel	IO).	The	developer	
community	spans	more	than	10	universities	and	several	small	and	large	companies.		A	growing	set	of	
regression	tests	are	being	developed	to	ensure	that	new	developments	do	not	break	existing	capability.		

	

6 in	situ	Visualization	and	Computational	Steering		
	

For	visualization	of	field	data	on	full	3D	domain,	PHASTA	relies	on	the	ParaView	and	Catalyst	
libraries	developed	by	Kitware	Inc.	For	that	purpose,	two	visualization	strategies	have	been	
implemented	in	close	collaboration	with	Kitware:	classical	a-posteriori	visualization	of	
checkpoint	data	and	live,	in-situ	visualization.	

Classical	a-posteriori	visualization	illustrated	in	Figure	8	relies	on	the	ParaView	library	used	in	
client-server	mode.	A	dedicated	reader	has	been	implemented	in	order	to	load	checkpoint	data	
saved	to	file	systems	under	the	PHASTA	format.	Two	PHASTA	formats	are	available:	the	first	
format	corresponds	to	one	file	per	mesh	part	and	the	second	more	flexible	format	is	based	on	
MPI-IO	and	allows	any	arbitrary	number	of	parts	per	file.	Due	to	the	growing	size	of	the	data	
generated	by	simulations	in	general,	it	is	becoming	impractical	to	transfer	or	move	data.	
Consequently,	most	computing	centers	operate	their	own	visualization	cluster,	which	share	the	
same	file	system	as	the	compute	resource.	The	current	visualization	cluster	at	ALCF	is	named	

	 20	

Cooley	and	includes	a	total	of	126	compute	nodes;	each	node	has	12	CPU	cores	and	one	NVIDIA	
Tesla	K80	dual-GPU	card.	We	typically	use	from	2	to	16	nodes	to	visualize	the	flow	resulting	
from	our	simulations.	We	also	exercise	remote	visualization	on	meshes	prior	to	final	adapted	
ones	to	understand	the	behavior	of	flow	structures,	recognize	regions	of	critical	interest,	and	
extract	reduced	data	in	those	regions	for	detailed	quantitative	analysis	such	as	flow	variables	in	
homogeneous	lines	or	planes	to	collect	turbulence	statistics.		

However,	for	the	high-petascale	machines	of	the	near	future	and	the	exascale	machines	
currently	being	co-designed,	the	amount	of	solution	data	that	must	be	stored	for	later	retrieval	
and	post-processing	will	become	prohibitive	due	to	and	the	widening	gap	between	
computational	and	I/O	rates.	Clearly,	the	classical	paradigm	of	data	creation,	storage,	and	
retrieval	later	for	subsequent	analysis	(e.g.	generation	of	animations)	must	be	reconsidered	in	
order	to	perform	any	assessment	of	the	insight	in	a	reasonable	time	frame. This	situation	
strongly	motivates	in	situ	processing	of	the	data,	where	visualization	processing	is	performed	
while	data	is	still	resident	in	memory.		

We	started	to	collaborate	with	Kitware	Inc.	and	ALCF	in	2011	on	the	development	of	the	
ParaView	Coprocessing	Library,	which	is	Catalyst’s	predecessor.		We	applied	successfully	in	situ	
and	interactive	visualization	techniques	at	large	scale	on	BG/P	compute	resource	Intrepid	and	
Linux	visualization	resource	Eureka	(Fabian	et	al.	2011;	Rasquin	et	al.	2011).		

The	term	in-situ	is	rather	generic	and	several	in-situ	configurations	are	available.		The	opposite	
extreme	from	the	classical	run/store/read/analyze	is	to	embed	the	entire	data	analytics	process	
into	the	solver.	Here	images	of	a	pre-defined	data	analytics	filter	chain	are	processed	within	the	
primary	simulation	and	exported	either	to	files	or	directly	via	sockets	to	coprocessing	resource	
whose	only	requirement/capability	is	to	display	the	output.	While	this	approach	has	proven	
productive	in	some	application	areas,	it	typically	limits	the	extent	to	which	the	data	analytics	
can	be	reconfigured.		

In	many	situations,	it	is	highly	desirable	to	be	able	to	set	up	an	initial	definition	of	the	filter	
chain,	view	several	live	frames	from	an	ongoing	simulation,	and	then	redefine	the	filter	chain	to	
provide	a	more	insightful	window	into	the	ongoing	simulation.	Indeed,	if	these	views	can	be	
provided	at	a	live	frame	rate	(display	completed	before	the	next	data	set	is	delivered	to	the	
visualization	compute	resource),	computational	steering	becomes	possible	wherein	not	only	
can	the	data	analytics	be	redefined	in	a	way	that	maintains	temporal	continuity	of	the	insight	
but	also	key	parameters	of	the	solve	can	be	adjusted	and	their	influence	on	the	simulation	
observed.		

The	best	co-processing	approach	to	realize	this	vision	of	experiential	simulation	and/or	less	
aggressive	visions	of	near	time	but	not	necessarily	live	co-visualization	will	likely	be	best	
accomplished	by	something	between	the	two	extremes	described	above.	In	this	work,	we	
consider	two	co-visualization	models	which	are	both	illustrated	in	Figure	9.	The	first	will	be	
referred	to	as	classical	co-visualization	(CCV)	wherein	the	entire	data	set	is	exported	from	the	
ongoing	simulation	to	a	smaller	visualization	compute	resource.	No	data	reduction	is	performed	
on	the	solver	compute	resource,	which	has	the	advantage	of	not	burdening	it	with	the	

	 21	

computational	load	of	filtering	the	data.	However,	it	can	burden	it	with	the	time	to	ship	the	
data	to	the	visualization	compute	resource,	which	is	typically	blocking	to	the	solution	process	to	
some	extent.		

Once	the	full	data	is	shipped	to	the	co-visualization	resource,	any	desired	filter	chain	can	be	
executed	there	since	the	full	data	is	resident.		The	second	approach,	which	we	will	refer	to	as	in	
situ	data	extracts	(ISDE)	performs	the	currently	defined	filter	chain	on	the	solver	compute	
resource	and	then	ships	only	the	data	extract	to	the	visualization	compute	resource.	While	ISDE	
consumes	time	from	the	solver	compute	resource	to	do	the	data	extraction,	for	many	filter	
chains,	it	can	dramatically	reduce	the	amount	of	data	that	must	be	transported	to	the	
visualization	compute	resource.	It	is	important	to	note	that	the	filter	chain	performed	by	ISDE	
can	be	dynamically	reconfigured	without	stopping	the	run	and	thus,	both	are	suitable	
candidates	for	interactive	monitoring of ongoing jobs and/or computational steering.

In this work, four main components have therefore been carefully combined in order to
demonstrate our co-visualization capabilities, namely (1) a massively parallel CFD solver
PHASTA, (2) the visualization tool ParaView (Moreland 2011; ParaView 2009) and its
Coprocessing library (Fabian et al. 2011), (3) a fast I/O forwarding tool called GLEAN
(Vishwanath, Hereld, and Papka 2011) and (4) the full ALCF architecture.

Many configurations of our co-visualization stack were considered in this study, including the
co-visualization approach (CCV or ISDE), the data transport between the solver resource and the
visualization cluster (GLEAN or VTK sockets available in the Coprocessing library) and the
number of pvserver running on the visualization cluster to name a few.

In summary, a live data analysis was demonstrated to provide continuous and reconfigurable
insight into massively parallel simulations. Specifically, the full Intrepid ALCF resource (with
163,840 cores of a BG/P machine tightly linked through a high-speed network to a 800 cores and
200 GPUs visualization cluster (Eureka)) was engaged to evaluate the current software and
hardware’s ability to deliver visualizations from an ongoing simulation. CCV was explored using
two data transport mechanisms. While both data transport approaches were able to deliver data
from the compute to the visualization nodes at a high rate (O(50 GB/s)), the visualization cluster
needed intensive resource (especially in terms of cpu) to filter and, to a lesser extent, render the
data at a rate that kept up with the solver on a step by step basis.

Consequently, these results suggest that ISDE can be more suitable for live simulations that use
relatively simple filters that parallelize well, provided that these filters substantially reduce the
data that must be transported to a size that is however not (yet) penalized by the latency of the
network.

Clearly, much more complex analysis of the data could be performed on the visualization server
with the full data resident and in cases where that is needed, the lack of live interactivity could be
a fair trade. A similar conclusion could be made for simulations running at a small enough time
step that a significant number of steps could be skipped with an acceptable loss of interactivity.
It was also noted that ISDE was successful at 10% of the full ALCF visualization facility which
bodes well for exascale hardware which may not have as much data analytics capacity..

	 22	

In 2014, we ported this technology to Mira BG/Q (Fang, Rasquin, and Bolotnov 2016) with a
successful live demonstration of a PHASTA simulation running with 256k MPI processes and
instrumented with the Catalyst in situ library at the NUFO (National User Facility Organization)
conference in June 2014. Although similar in-situ configurations as the one shown in Figure 9
are also possible with Catalyst, this demonstration implies a more straightforward in-situ
visualization workflow illustrated in Figure 10. In this workflow, the filters and views for in-situ
visualization were chosen prior to the simulation. Consequently, flow pictures were created at
each time step of the simulation in batch mode in order to generate an animation of turbulent
flow structures in regions of interest.

More recently, this workflow has been updated for 512k cores and more than 1M MPI processes
in an accepted paper at SC16 (Ayachit et al. 2016) and to Theta. This paper examines several key
design and performance issues related to the idea of in situ processing at extreme scale on
modern platforms: scalability, overhead, performance measurement and analysis, comparison
and contrast with a traditional post hoc approach, and interfacing with simulation codes. These
principles were illustrated in practice with studies, conducted on large-scale HPC platforms,
which include a mini-application and multiple science application codes. In this context,
PHASTA demonstrated in situ methods in use at greater than 1M-way concurrency. 	

7 Summary		
A	massively	parallel	computational	approach	to	modeling	turbulent	flow	over	aerodynamic	bodies	with	
active	flow	control	was	described.	The	science	related	to	the	fluid	flow	physics	as	well	as	the	
computational	science	were	discussed	in	detail.				The	latter	includes	not	only	the	efforts	made	to	
achieve	near	perfect	strong	scaling	of	the	solver	to	more	than	3M	processes	of	IBM	BG/Q	and	more	
recent	scaling	and	performance	efforts	on	XEON	Phi	KNL,	but	also	efforts	to	extend	in	situ	data	analytics	
to	the	same	scale	to	more	effectively	extract	insight	from	ever-growing	computational	simulation	data	
streams.	

8 Bibliography	
Alauzet,	Frédérik,	Xiangrong	Li,	E	Seegyoung	Seol,	and	Mark	S	Shephard.	2006.	“Parallel	Anisotropic	3D	

Mesh	Adaptation	by	Mesh	Modification.”	Article.	Engineering	with	Computers	21	(3):	247–58.	
doi:10.1007/s00366-005-0009-3.	

Amitay,	M,	B	L	Smith,	and	A	Glezer.	1998.	“Aerodynamic	Flow	Control	Using	Synthetic	Jet	Technology.”	
Article.	AIAA	Paper	208.	

Araya,	Guillermo,	Luciano	Castillo,	Charles	Meneveau,	and	Kenneth	Jansen.	2011.	“A	Dynamic	Multi-
Scale	Approach	for	Turbulent	Inflow	Boundary	Conditions	in	Spatially	Developing	Flows.”	Journal	of	
Fluid	Mechanics	670:	581–605.	

Ayachit,	Utkarsh,	Andrew	Bauer,	Earl	P	N	Duque,	Greg	Eisenhauer,	Nicola	Ferrierz,	Junmin	Gu,	Kenneth	E	
Jansen,	et	al.	2016.	“Performance	Analysis,	Design	Considerations,	and	Applications	of	Extreme-
Scale	in	Situ	Infrastructures.”	Inproceedings.	In	Proc.	2016	ACM/IEEE	Conf.	on	Supercomputing,	
accepted.	

	 23	

Balay,	S,	W	Gropp,	L	C	McInnes,	and	B	Smith.	2015.	“{PETS}c	3.6	Users	Manual.”	Unpublished.	

Balay,	Satish,	Jed	Brown,	Matt	Knepley,	Lois	Curfman	McInnes,	Barry	F	Smith,	and	Hong	Zhang.	2016.	
“{PETSc}	Homepage.”	Unpublished.	

Bolotnov,	I	A.	2013.	“Influence	of	Bubbles	on	the	Turbulence	Anisotropy.”	Article.	Journal	of	Fluids	
Engineering	135	(51301):	1–9.	

Bolotnov,	I	A,	K	E	Jansen,	D	A	Drew,	A	A	Oberai,	R	T	Lahey	Jr.,	and	M	Z	Podowski.	2011.	“Detached	Direct	
Numerical	Simulations	of	Two-Phase	Bubbly	Channel	Flow.”	Article.	Intl.	J.	of	Multiphase	Flows	37	
(6):	647–59.	

Brooks,	A	N,	and	T	J	R	Hughes.	1982.	“Streamline	Upwind	/	{P}etrov-{G}alerkin	Formulations	for	
Convection	Dominated	Flows	with	Particular	Emphasis	on	the	Incompressible	{N}avier-{S}tokes	
Equations.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	32:	199–259.	

Chitale,	K	C,	O	Sahni,	M	S	Shephard,	S	Tendulkar,	and	K	E	Jansen.	2015.	“Anisotropic	Adaptation	for	
Transonic	Flows	with	Turbulent	Boundary	Layers.”	Article.	AIAA	Journal	53.	

Chitale,	Kedar	C,	Michel	Rasquin,	Jeffrey	Martin,	and	Kenneth	E	Jansen.	2014.	“Finite	Element	Flow	
Simulations	of	the	EUROLIFT	DLR-F11	High	Lift	Configuration.”	Inproceedings.	In	52nd	Aerospace	
Sciences	Meeting	(SciTech).	AIAA	Paper	2014-0749.	

Chitale,	Kedar	C,	Michel	Rasquin,	Onkar	Sahni,	Mark	S	Shephard,	and	Kenneth	E	Jansen.	2014.	
“Anisotropic	Boundary	Layer	Adaptivity	of	Multi-Element	Wings.”	Inproceedings.	In	52nd	
Aerospace	Sciences	Meeting	(SciTech).	AIAA	Paper	2014-0117.	

Doosttalab,	A,	J	G	Araya,	J	Newman,	R	J	Adrian,	K	E	Jansen,	and	L	Castillo.	2016.	“Effect	of	Small	
Roughness	Elements	on	Thermal	Statistics	of	a	Turbulent	Boundary	Layer	at	Moderate	Reynolds	
Number.”	Article.	Journal	of	Fluid	Mechanics	787:	84–115.	doi:10.1017/jfm.2015.676.	

Dubey,	Anshu,	Ann	Almgren,	John	Bell,	Martin	Berzins,	Steve	Brandt,	Greg	Bryan,	Phillip	Colella,	et	al.	
2014.	“A	Survey	of	High	Level	Frameworks	in	Block-Structured	Adaptive	Mesh	Refinement	
Packages.”	Journal	of	Parallel	and	Distributed	Computing	74	(12).	Elsevier	Inc.:	3217–27.	
doi:10.1016/j.jpdc.2014.07.001.	

Fabian,	N,	K	Moreland,	D	Thompson,	A	C	Bauer,	P	Marion,	B	Geveci,	M	Rasquin,	and	K	E	Jansen.	2011.	
“The	ParaView	Coprocessing	Library:	A	Scalable,	Genera	Purpose	in	Situ	Visualization	Library.”	
Inproceedings.	In	Proceedings	of	the	IEEE	Symposium	on	Large-Scale	Data	Analysis	(LDAV2011).	

Fang,	J,	M	Rasquin,	and	I	A	Bolotnov.	2016.	“Interface	Tracking	Simulations	of	Bubbly	Flows	in	PWR	
Relevant	Geometries.”	Article.	Nuclear	Engineering	and	Design	http://dx.	

Farnsworth,	J	A	N,	J	C	Vaccaro,	and	M	Amitay.	2008.	“Active	Flow	Control	at	Low	Angles	of	Attack:	
Stingray	Unmanned	Aerial	Vehicle.”	Article.	AIAA	Journal	46	(10):	2530–44.	

Figueroa,	A,	I	Vignon-Clementel,	K	E	Jansen,	T	J	R	Hughes,	and	C	A	Taylor.	2006.	“Efficient	Anisotropic	
Adaptive	Discretization	of	Cardiovascular	System.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	195	
(41–43):	5685–5706.	

Fischer,	P	F,	F	Loth,	S	E	Lee,	Sang-Wook	Lee,	D	Smith,	and	H	Bassiouny.	2007.	“Simulation	of	High-

	 24	

Reynolds	Number	Vascular	Flows.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	196:	3049–60.	

Glezer,	A,	and	M	Amitay.	2002.	“Synthetic	Jets.”	Article.	Annual	Review	of	Fluid	Mechanics	34	(1):	503–
29.	

Group,	The	Open.	n.d.	“XSI	Shared	Memory	Facility.”	Manual.	

Hoefler,	Torsten,	James	Dinan,	Darius	Buntinas,	Pavan	Balaji,	Brian	Barrett,	Ron	Brightwell,	William	
Gropp,	Vivek	Kale,	and	Rajeev	Thakur.	2013.	“MPI	+	MPI:	A	New	Hybrid	Approach	to	Parallel	
Programming	with	MPI	plus	Shared	Memory.”	Article.	Computing	95	(12):	1121–36.	

Ibanez,	Dan,	Ian	Dunn,	and	Mark	S	Shephard.	2016.	“Hybrid	{MPI}-Thread	Parallelization	of	Adaptive	
Mesh	Operations.”	Article.	Parallel	Computing	52	(2).	Elsevier:	133–43.	

Ibanez,	Dan,	and	Mark	S	Shephard.	2016a.	“Modifiable	Array	Data	Structures	for	Mesh	Topology.”	
Article.	SIAM	Journal	on	Scientific	Computing.	

———.	2016b.	“Portably	Performant	Mesh	Adaptation.”	Article.	Engineering	with	Computers.	

Ibanez,	Daniel	A,	E	Seegyoung	Seol,	Cameron	W	Smith,	and	Mark	S	Shephard.	2016.	“Pumi:	Parallel	
Unstructured	Mesh	Infrastructure.”	Article.	ACM	Transactions	on	Mathematical	Software	(TOMS)	
42	(3).	ACM:	17.	

Jansen,	K	E.	1993.	“Unstructured	Grid	Large	Eddy	Simulation	of	Wall	Bounded	Flow.”	Inproceedings.	In	
Annual	Research	Briefs,	151–56.	{NASA}	Ames	/	Stanford	University.	

———.	1994.	“Unstructured	Grid	Large	Eddy	Simulation	of	Flow	over	an	Airfoil.”	Inproceedings.	In	
Annual	Research	Briefs,	161–73.	{NASA}	Ames	/	Stanford	University.	

———.	1999.	“A	Stabilized	Finite	Element	Method	for	Computing	Turbulence.”	Article.	Comp.	Meth.	
Appl.	Mech.	Engng.	174:	299–317.	

Jansen,	K	E,	C	H	Whiting,	and	G	M	Hulbert.	1999.	“A	Generalized-$α$	Method	for	Integrating	the	Filtered	
{N}avier-{S}tokes	Equations	with	a	Stabilized	Finite	Element	Method.”	Article.	Comp.	Meth.	Appl.	
Mech.	Engng.	190:	305–19.	

Karanam,	A	K,	K	E	Jansen,	and	C	H	Whiting.	2008.	“Geometry	Based	Pre-Processor	for	Parallel	Fluid	
Dynamic	Simulations	Using	a	Hierarchical	Basis.”	Article.	Engineering	with	Computers	24	(1).	
Springer:	17–26.	

Kim,	H	J,	C	A	Figueroa,	T	J	R	Hughes,	K	E	Jansen,	and	C	A	Taylor.	2009.	“Augmented	Lagrangian	Method	
for	Constraining	the	Shape	of	Velocity	Profiles	at	Outlet	Boundaries	for	Three-Dimensional	Finite	
Element	Simulations	of	Blood	Flow.”	Article.	Comput.	Methods	Appl.	Mech.	Engrg.	198	(45–46):	
3551–66.	

Kim,	J,	P	Moin,	and	R	Moser.	1987.	“Turbulence	Statistics	in	Fully	Developed	Channel	Flow	at	Low	
{R}eynolds	Number.”	Article.	Journal	of	Fluid	Mechanics	177:	133.	

Kundu,	Pijush	K.,	and	Ira	M.	Cohen.	2012.	Fluid	Mechanics.	Academic	Press	4th	Ed.	doi:10.1016/B978-0-
12-405935-1.18001-3.	

Lab,	Argonne	National.	n.d.	“Https://www.alcf.anl.gov/projects/extreme-Scale-Unstructured-Adaptive-

	 25	

Cfd-Multiphase-Flow-Aerodynamic-Flow-Control.”	Misc.	

———.	2010.	“Https://www.alcf.anl.gov/projects/petascale-Adaptive-Cfd.”	Misc.	

———.	2013.	“Https://www.alcf.anl.gov/projects/adaptive-Detached-Eddy-Simulation-Vertical-Tail-
Active-Flow-Control.”	Misc.	

———.	2015.	“Https://www.alcf.anl.gov/projects/adaptive-Detached-Eddy-Simulation-High-Lift-Wing-
Active-Flow-Control.”	Misc.	

———.	2016.	“Https://www.alcf.anl.gov/projects/adaptive-Detached-Eddy-Simulation-High-Lift-Wing-
Active-Flow-Control-1.”	Misc.	

Liu,	N,	J	Fu,	C	D	Carothers,	O	Sahni,	K	E	Jansen,	and	M	S	Shephard.	2010.	“Massively	Parallel	I/O	for	
Partitioned	Solver	Systems.”	Article.	Parallel	Processing	Letters	20	(4).	World	Scientific	Publishing:	
377–95.	

Mahesh,	K,	G	Constantinescu,	and	P	Moin.	2004.	“A	Numerical	Method	for	Large-Eddy	Simulation	in	
Complex	Geometries.”	Article.	Journal	of	Computational	Physics	197	(1).	Elsevier:	215–40.	

Maldonado,	V,	J	Farnsworth,	W	Gressick,	and	M	Amitay.	2010.	“Active	Control	of	Flow	Separation	and	
Structural	Vibrations	of	Wind	Turbine	Blades.”	Article.	Wind	Energy	13	(2–3).	Wiley	Online	Library:	
221–37.	

Mansour,	N,	and	A	Wray.	1994.	“Decay	of	Isotropic	Turbuelnce	and	Low	Reynolds	Number.”	Article.	
Physics	of	Fluids	\bf	6(2):	808–14.	

Mishra,	A	V,	and	I	A	Bolotnov.	2015.	“DNS	of	Turbulent	Flow	with	Hemispherical	Wall	Roughness.”	
Article.	Journal	of	Turbulence	16	(3):	225–49.	

Moreland,	Kenneth.	2011.	“The	ParaView	Tutorial.”	Sandia	National	Laboratories.	

Morinishi,	Y,	T	S	Lund,	O	V	Vasilyev,	and	P	Moin.	1998.	“Fully	Conservative	Higher	Order	Finite	
Difference	Schemes	for	Incompressible	Flow.”	Article.	Journal	of	Computational	Physics	143	(1):	
90–124.	

Moser,	R	D,	J	Kim,	and	N	N	Mansour.	1999.	“Direct	Numerical	Simulation	of	Turbulent	Channel	Flow	up	
to	$\mbox{Re}_{τ}=590$.”	Article.	Physics	of	Fluids	11:	943–45.	

Mueller,	J,	O	Sahni,	X	Li,	K	E	Jansen,	M	S	Shephard,	and	C	A	Taylor.	2005.	“Anisotropic	Adaptive	Finite	
Element	Method	for	Modeling	Blood	Flow.”	Article.	Computer	Methods	in	Biomechanics	and	
Biomedical	Engineering	8	(5):	295–305.	

Muppidi,	S,	and	K	Mahesh.	2005.	“Study	of	Trajectories	of	Jets	in	Crossflow	Using	Direct	Numerical	
Simulations.”	Article.	Journal	of	Fluid	Mechanics	530.	Cambridge	Univ	Press:	81–100.	

Nagrath,	S,	K	E	Jansen,	and	R	T	Lahey.	2005.	“Three	Dimensional	Simulation	of	Incompressible	Two	
Phase	Flows	Using	a	Stabilized	Finite	Element	Method	and	the	Level	Set	Approach.”	Article.	Comp.	
Meth.	Appl.	Mech.	Engng.	194	(42–44):	4565–87.	

Nagrath,	Sunitha,	Kenneth	Jansen,	Richard	T.	Lahey,	and	Iskander	Akhatov.	2006.	“Hydrodynamic	
Simulation	of	Air	Bubble	Implosion	Using	a	Level	Set	Approach.”	Journal	of	Computational	Physics	

	 26	

215	(1):	98–132.	

Ovcharenko,	Aleksandr,	Kedar	C	Chitale,	Onkar	Sahni,	Kenneth	E	Jansen,	and	Mark	S	Shephard.	2013.	
“Parallel	Adaptive	Boundary	Layer	Meshing	for	CFD	Analysis.”	Inproceedings.	In	Proceedings	of	the	
21st	International	Meshing	Roundtable,	edited	by	Xiangmin	Jiao	and	Jean-Christophe	Weill,	437–
55.	Springer	Berlin	Heidelberg.	doi:10.1007/978-3-642-33573-0_26.	

Ozturan,	C,	H	L	de	Cougny,	M	S	Shephard,	and	J	E	Flaherty.	1994.	“Parallel	Adaptive	Mesh	Refinement	
and	Redistributed	on	Distributed	Memory	Machines.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	
119:	123–27.	

ParaView.	2009.	“Http://www.paraview.org.”	Misc.	

Pope,	S	B.	2000.	Turbulent	Flows.	Book.	Cambridge	University	Press.	

Rasquin,	M,	P	Marion,	V	Vishwanath,	B	Matthews,	M	Hereld,	K	Jansen,	R	Loy,	et	al.	2011.	“Electronic	
Poster:	Co-Visualization	of	Full	Data	and	in	Situ	Data	Extracts	from	Unstructured	Grid	Cfd	at	160k	
Cores.”	Inproceedings.	In	Proceedings	of	the	2011	Companion	on	High	Performance	Computing	
Networking,	Storage	and	Analysis	Companion,	103–4.	SC	’11	Companion.	New	York,	NY,	USA:	ACM.	
doi:10.1145/2148600.2148653.	

Rasquin,	M,	C	Smith,	K	Chitale,	S	Seol,	B	A	Matthews,	J	L	Martin,	O	Sahni,	R	M	Loy,	M	S	Shephard,	and	K	
E	Jansen.	2014.	“Scalable	Fully	Implicit	Finite	Element	Flow	Solver	with	Application	to	High-Fidelity	
Flow	Control	Simulations	on	a	Realistic	Wing	Design.”	Article.	Computing	in	Science	and	
Engineering	16	(6):	13–21.	

Rathay,	N,	M	Rasquin,	J	A	Farnsworth,	K	E	Jansen,	and	M	Amitay.	2016.	“Interaction	of	a	Synthetic	Jet	
Actuator	with	a	Severely	Separated	Crossflow.”	Article.	Submitted	to	Journal	of	Fluid	Mechanics.	
Cambridge	Univ	Press.	

Rodriguez,	J	M,	O	Sahni,	R	T	Lahey	Jr.,	and	K	E	Jansen.	2013.	“A	Parallel	Adaptive	Mesh	Method	for	the	
Numerical	Simulation	of	Multiphase	Flows.”	Article.	Computers	and	Fluids	87:	115–31.	

Saad,	Y,	and	M	H	Schultz.	1986.	“{GMRES}:	{A}	Generalized	Minimal	Residual	Algorithm	for	Solving	
Nonsymmetric	Linear	Systems.”	Article.	{SIAM}	Journal	of	Scientific	and	Statistical	Computing	7:	
856–69.	

Sahni,	O,	K	E	Jansen,	M	S	Shephard,	C	A	Taylor,	and	M	W	Beall.	2008.	“Adaptive	Boundary	Layer	Meshing	
for	Viscous	Flow	Simulations.”	Article.	Engng.	with	Comp.	24	(3):	267–85.	

Sahni,	O,	K	E	Jansen,	C	A	Taylor,	and	M	S	Shephard.	2009.	“Automated	Adaptive	Cardiovascular	Flow	
Simulations.”	Article.	Engng.	with	Comp.	25	(1):	25–36.	

Sahni,	O,	J	Mueller,	K	E	Jansen,	M	S	Shephard,	and	C	A	Taylor.	2006.	“Efficient	Anisotropic	Adaptive	
Discretization	of	Cardiovascular	System.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	195	(41–43):	
5634–55.	

Sahni,	O,	J	Wood,	K	E	Jansen,	and	M	Amitay.	2011.	“Three-Dimensional	Interactions	between	a	Finite-
Span	Synthetic	Jet	and	a	Crossflow.”	Article.	Journal	of	Fluid	Mechanics	671.	Cambridge	Univ	Press:	
254–87.	

	 27	

Seol,	E	S.	20055.	“FMDB:	Flexible	Distributed	Mesh	Database	for	Parallel	Automated	Adaptive	Analysis.”	
Phdthesis,	Troy,	New	York:	Rensselaer	Polytechnic	Institute.	

Seol,	E	S,	and	M	S	Shephard.	2006.	“Efficient	Distributed	Mesh	Data	Structure	for	Parallel	Automated	
Adaptive	Analysis.”	Article.	Engineering	with	Computers	22	(3–4):	197–213.	

Seol,	Seegyoung,	Cameron	W	Smith,	Daniel	A	Ibanez,	and	Mark	S	Shephard.	2012.	“A	Parallel	
Unstructured	Mesh	Infrastructure.”	Inproceedings.	In	High	Performance	Computing,	Networking,	
Storage	and	Analysis	(SCC),	2012	SC	Companion:,	1124–32.	doi:10.1109/SC.Companion.2012.135.	

Shakib,	F,	T	J	R	Hughes,	and	Z	Johan.	1989.	“A	Multi-Element	Group	Preconditioned	{GMRES}	Algorithm	
for	Nonsymmetric	Systems	Arising	in	Finite	Element	Analysis.”	Article.	Comp.	Meth.	Appl.	Mech.	
Engng.	75:	415–56.	

Shephard,	M	S,	K	E	Jansen,	O	Sahni,	and	L	A	Diachin.	2007.	“Parallel	Adaptive	Simulations	on	
Unstructured	Meshes.”	Article.	Journal	of	Physics:	Conference	Series	78–012053:	12053.	

Shur,	Mikhail	L,	Philippe	R	Spalart,	Mikhail	Kh	Strelets,	and	Andrey	K	Travin.	2008.	“A	Hybrid	RANS-LES	
Approach	with	Delayed-DES	and	Wall-Modelled	LES	Capabilities.”	Article.	International	Journal	of	
Heat	and	Fluid	Flow	29	(6).	Elsevier:	1638–49.	

Smith,	Cameron	W,	Michel	Rasquin,	Dan	Ibanez,	Kenneth	E	Jansen,	and	Mark	S	Shephard.	2016.	
“Improving	Unstructured	Mesh	Partitions	for	Multiple	Criteria	Using	Mesh	Adjacencies.”	Article.	
SIAM	Journal	on	Scientific	Computing	In	Review.	

Smith,	Cameron	W,	Michel	Rasquin,	Dan	Ibanez,	Mark	S	Shephard,	and	Kenneth	E	Jansen.	2015.	
“Partition	Improvement	to	Accelerate	Extreme	Scale	CFD.”	Article.	SIAM	Journal	on	Scientific	
Computing	in	prepara.	

Smith,	Cameron	W,	Steven	Tran,	Onkar	Sahni,	Farhad	Behafarid,	Mark	S	Shephard,	and	Raminderjeet	
Singh.	2015.	“Enabling	HPC	Simulation	Workflows	for	Complex	Industrial	Flow	Problems.”	
Inproceedings.	In	Proceedings	of	the	2015	XSEDE	Conference:	Scientific	Advancements	Enabled	by	
Enhanced	Cyberinfrastructure,	41.	

Spalart,	P	R.	2001.	“Young	Person’s	Guide	to	Detached-Eddy	Simulation	Grids.”	Techreport.	

Spalart,	P	R,	W	H	Jou,	M	Stretlets,	and	S	R	Allmaras.	1997a.	“Comments	on	the	Feasibility	of	{LES}	for	
Wings	and	on	a	Hybrid	{RANS/LES}	Approach.”	Inproceedings.	In	Advances	in	DNS/LES,	137–47.	
Columbus.	

———.	1997b.	“Comments	on	the	Feasibility	of	LES	for	Wings	and	on	the	Hybrid	RANS/LES	Approach.”	
Inproceedings.	In	Advances	in	{DNS/LES},	edited	by	C	Liu	and	Z	Liu.	Columbus,	Ohio:	Greyden	Press.	

Spalart,	Philippe	R.	2009.	“Detached-Eddy	Simulation.”	Article.	Annual	Review	of	Fluid	Mechanics	41.	
Annual	Reviews:	181–202.	

Sridharan,	Srinivas,	James	Dinan,	and	Dhiraj	D	Kalamkar.	2014.	“Enabling	Efficient	Multithreaded	MPI	
Communication	through	a	Library-Based	Implementation	of	MPI	Endpoints.”	Inproceedings.	In	
High	Performance	Computing,	Networking,	Storage	and	Analysis,	SC14:	International	Conference	
for,	487–98.	

	 28	

Taylor,	C	A,	T	J	R	Hughes,	and	C	K	Zarins.	1998.	“Finite	Element	Modeling	of	Blood	Flow	in	Arteries.”	
Article.	Comp.	Meth.	Appl.	Mech.	Engng.	158:	155–96.	

Vaccaro,	J	C,	Y	Elimelech,	Y	Chen,	O	Sahni,	K	E	Jansen,	and	M	Amitay.	2014.	“Experimental	and	
Numerical	Investigation	on	the	Flow	Field	within	a	Compact	Inlet	Duct.”	Article.	International	
Journal	of	Heat	and	Fluid	Flow	44:	478–88.	

———.	2015.	“Experimental	and	Numerical	Investigation	on	Steady	Blowing	Flow	Control	within	a	
Compact	Inlet	Duct.”	Article.	International	Journal	of	Heat	and	Fluid	Flow	54:	143–52.	

Vaccaro,	J	C,	J	D	Vasile,	J	Olles,	O	Sahni,	K	E	Jansen,	and	M	Amitay.	2009.	“Active	Control	of	Inlet	Ducts.”	
Article.	Int.	J.	of	Flow	Control	1:	133–54.	

Various.	n.d.	“Http://www.mcs.anl.gov/research/projects/codes/.”	Unpublished.	

Vignon-Clementel,	I,	A	Figueroa,	K	E	Jansen,	and	C	A	Taylor.	2006.	“Outflow	Boundary	Conditions	for	
Three-Dimensional	Finite	Element	Modeling	of	Blood	Flow	and	Pressure	in	Arteries.”	Article.	Comp.	
Meth.	Appl.	Mech.	Engng.	195:	3776–96.	

Vishwanath,	Venkatram,	Mark	Hereld,	and	Michael	E.	Papka.	2011.	“Toward	Simulation-Time	Data	
Analysis	and	I/O	Acceleration	on	Leadership-Class	Systems.”	In	1st	IEEE	Symposium	on	Large-Scale	
Data	Analysis	and	Visualization	2011,	LDAV	2011	-	Proceedings,	9–14.	
doi:10.1109/LDAV.2011.6092178.	

web	page,	Intel	Software	Development	Emulator.	2015.	“Https://software.intel.com/en-
Us/articles/intel-Software-Development-Emulator/.”	Misc.	

White,	Frank	M.	2000.	“Viscous	Fluid	Flow	Viscous.”	New	York	Second:	413.	
http://books.google.com/books?hl=en&lr=&id=fem3OFFC6RQC&oi=fnd&pg=P
R11&dq=Viscous+fluid+flow&ots=67iPEejRkC&sig=aPAA9FhpFiXwpYi2p83yK8Gaep
A.	

Whiting,	C	H,	and	K	E	Jansen.	2001.	“A	Stabilized	Finite	Element	Method	for	the	Incompressible	{N}avier-
{S}tokes	Equations	Using	a	Hierarchical	Basis.”	Article.	International	Journal	of	Numerical	Methods	
in	Fluids	35:	93–116.	

Whiting,	C	H,	K	E	Jansen,	and	S	Dey.	2003.	“Hierarchical	Basis	in	Stabilized	Finite	Element	Methods	for	
Compressible	Flows.”	Article.	Comp.	Meth.	Appl.	Mech.	Engng.	192	(47–48):	5167–85.	

Wilcox,	David	C.	1998.	Turbulence	Modeling	for	{CFD}.	Book.	La	Canada,	CA:	{DCW}	Industries.	

Wood,	J,	O	Sahni,	K	Jansen,	and	M	Amitay.	2009.	“Experimental	and	Numerical	Investigation	of	Active	
Control	of	3-D	Flows.”	Article.	AIAA	Paper	2009-4279.	

Zhou,	M,	O	Sahni,	H	J	Kim,	C	A	Figueroa,	C	A	Taylor,	M	S	Shephard,	and	K	E	Jansen.	2010.	“Cardiovascular	
Flow	Simulation	at	Extreme	Scale.”	Article.	Computational	Mechanics.	

Zhou,	M,	O	Sahni,	T	Xie,	M	S	Shephard,	and	K	E	Jansen.	n.d.	“Unstructured	Mesh	Partition	Improvement	
for	Implicit	Finite	Element	at	Extreme	Scale.”	Article.	Journal	of	Supercomputing	59	(3).	
Netherlands:	1218–28.	http://dx.doi.org/10.1007/s11227-010-0521-0.	

Zhou,	M,	T	Xie,	S	Seol,	M	S	Shephard,	O	Sahni,	and	K	E	Jansen.	2012.	“Tools	to	Support	Mesh	Adaptation	

	 29	

on	Massively	Parallel	Computers.”	Article.	Engineering	with	Computers	28	(3):	287–301.	

Zhu,	Xiaomin,	Junchao	Zhang,	Kazutomo	Yoshii,	Shigang	Li,	Yunquan	Zhang,	and	Pavan	Balaji.	2015.	
“Analyzing	MPI-3.0	Process-Level	Shared	Memory:	A	Case	Study	with	Stencil	Computations.”	
Article.	2015	15th	IEEE/ACM	International	Symposium	on	Cluster,	Cloud	&	Grid	Computing,	1099.	

	

Figure	Captions	

	

Figure	1:	Geometric	model	of	a	high	lift	wing/fuselage	configuration.	

	 30	

	

Figure	2:	Plot	of	side	force	with	and	without	flow	control.	Experiment	shown	in	dashed	lines.		Detached	
eddy	simulation	(CFD)	predictions	with	2	levels	of	adaptivity	show	excellent	agreement	with	the	
experiment	and	grid	independence.		

	

Figure	3:	Synthetic	jets	apply	flow	periodic	flow.		By	averaging	like	phases	(phase-averaging)	the	
coherent	structures	produced	by	the	jets	are	revealed	and	excellent	agreement	between	the	CFD	(right)	
and	the	experiment	(left)	are	observed.	

	 31	

	

Figure	4:	Isosurface	of	instantaneous	value	of	Q	(measure	of	vorticity	or	rotational	features	of	the	flow)	
colored	by	speed.	

	

	 32	

Figure	5:	Strong	scaling	of	equation	formation,	equation	solution	and	total	solver	on	Theta	using	a	10	
billion	element	mesh.	Scaling	perfect	to	2Ki	nodes,	128Ki	cores	with	76k	elements-per-core.		Only	slight	
degradation	(0.82)	at	3Ki	nodes,	192Ki	cores,	and	51k	elements-per-core.	

	

	

Figure	6:	Strong	scaling	of	equation	formation,	equation	solution	and	total	solver	on	Theta	using	a	80	
billion	element	mesh.	Scaling	perfect	to	full	machine	3Ki	nodes,	92Ki	cores.	Still	performing	well	in	

	 33	

MCDRAM	with	1.2	million	elements-per-core	due	to	efficient	element	blocking.	

	

Figure	7:	Scaling	of	PHASTA	on	Mira	BG/Q	with	1,	2	and	4	processes	per	core	on	a	92-billion	element	
mesh.	

	

Figure	8:	Classical	a	posteriori	visualization	workflow.	

	 34	

	

Figure	9:	In-situ	visualization	workflow	with	transfer	of	raw	or	filtered	data	from	the	compute	resource	to	the	visualization	
cluster.	

	

Figure	10:	In	situ	visualization	workflow	with	generation	of	flow	pictures	in	batch	mode.

	

