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Deep Borehole Disposal Concept
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 ≤17” hole to 5 km

 Straightforward 
Construction

 Robust Isolation 
from Biosphere

 Conditions at Depth

 Low permeability

 Stable fluid density 
gradient

 Reducing fluid 
chemistry

 Old groundwater



Radioactive Waste Forms
 Waste Properties

 Thermal output

 Physical size

 Waste total volume

 Primary Waste Forms

 DOE-managed high-level waste

 Liquid reprocessing wastes:

– Borosilicate glass logs

– Cs-137/Sr-90 capsules

– Calcine powder
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2,000 Cs/Sr Capsules [≈3” diam.]Hanford tank farm



Radioactive Waste Volumes
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≈ 30% total curies of radioactivity at HanfordHLW = High-Level Waste
SNF = Spent Nuclear Fuel



Recent Events 

 Jan. 2012: Blue Ribbon Commission Report

 Oct. 2014: DOE Disposal Options
Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

1. Dispose all HLW & SNF in common repository

2. Dispose some DOE-managed HLW and SNF in separate mined repository

3. Dispose of smaller waste forms in deep boreholes

 March 24, 2015: Obama Memo
“In accordance with the [Nuclear Waste Policy] Act, I find the development of a repository for the disposal of 
high-level radioactive waste resulting from atomic energy defense activities only is required”

 Jan 2016: Request for Proposals (RFP) → DOE selects 1 team

 Battelle, Schlumberger, SolExperts in North Dakota

 Jan 2017: Second RFP, DOE selecting up to 5 teams
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Deep Borehole
Disposal Concept
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Deep Crystalline Drilling
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Site Location Years
Depth to 

Crystalline 
[km]

Total Depth 
[km]

Diam. at TD 
[inch]

Kola NW USSR 1970-1992 0 12.2 8½

Fenton Hill New Mexico 1975-1987 0.7
2.9, 3.1, 4.0, 

4.4
8¾, 9⅞

Urach SW Germany 1978-1992 1.6 4.4 5½

Gravberg
Central 
Sweden

1986-1987 0 6.6 6½

Cajon Pass
Southern
California

1987-1988 0.5 3.5 6¼

KTB SE Germany 1987-1994 0 4, 9.1 6, 6½

Soultz NE France 1995-2003 1.4 5.1, 5.1, 5.3 9⅝

CCSD E China 2001-2005 0 2, 5.2 6

SAFOD
Central 

California
2002-2007 0.8 2.2, 4 8½, 8¾

Basel Switzerland 2006 2.4 5 8½

1950s 1960s 1970s 1980s 2000s 2010s1990s

Deep Borehole Field Test
DBFT

(Beswick 2008)

Deep Borehole
Concept



Disposal Concept vs. Field Test
 Deep Borehole Disposal (DBD)

 Boreholes in crystalline rock to 5 km TD

 3 km basement / 2 km overburden

 1 km basement seal

 2 km disposal zone

 Single borehole or grid

 Deep Borehole Field Test (DBFT)
 Department of Energy – Office of Nuclear 

Energy (DOE-NE)

 FY 2017-2021 project

 Two boreholes to 5 km TD

 Science and engineering demonstration
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Siting: Depth to Basement + Hazards
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(Perry 2013)



Siting: Basement Structure
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Colors: Aeromagnetic data

Lines: Known basement faults

(Perry 2013) 
Data source (Sims et al. 2008)



Siting: Regional Stress State
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(Heidbach et al. 2008)



Siting: Geothermal
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Temperature Extrapolated to 4km depth

Geothermal Gradient

°C

(SMU Geothermal Laboratory 2004) 



Deep Borehole
Disposal
Performance
Assessment
Modeling
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Deep Borehole PA Models

 Performance Assessment (PA) 
Modeling
 Use standard reference: 

 geology 

 borehole design 

 Assume single boreholes Cs/Sr

 Assess long-term post-closure safety

 Thermal-hydrological-chemical 
processes simulated via PFLOTRAN
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(Freeze et al. 2016) SAND2016-10949R
Deep Borehole Disposal Safety Analysis



Deep Borehole PA Models
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(Freeze et al. 2016) SAND2016-10949R



Deep Borehole PA Models
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135Cs

(Freeze et al. 2016) SAND2016-10949R

Parameter Range Units

Bentonite k 10-20 – 10-16 m2

Cement k 10-20 – 10-16 m2

DRZ k 10-18 – 10-15 m2

WP τ 0.01 – 1.0 --

Bentonite ϕ 0.40 – 0.50 --

Cement ϕ 0.15 – 0.20 --

WP Breach Time 1 – 100 yr

Cs Kd bentonite 120 – 1000 L/kg

Sr Kd bentonite 50 – 3000 L/kg

Cs Kd crystalline 5 – 40 L/kg

Sr Kd crystalline 0.4 – 3 L/kg

Cs Kd DRZ 5 – 40 L/kg

Sr Kd DRZ 0.4 – 3 L/kg



Deep Borehole
Field Test: 2017-2021
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Deep Borehole Field Test (DBFT)
 Drill Two 5-km Boreholes

 Characterization Borehole (CB): 21.6 cm [8.5”] @ TD

 Field Test Borehole (FTB): 43.2 cm [17”]  @ TD

 Demonstrate Ability to: 

 Drill deep, wide, straight borehole safely (CB + FTB)

 Characterize basement  (CB)

 Test formations in situ (CB)

 Collect geochemical profiles (CB)

 Emplace/retrieve test packages (FTB)
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Characterization Borehole (CB)
 Medium-Diameter Borehole

 Within current drilling experience

 Testing/Sampling During Drilling

 Drilling mud logging (gas, liquid & solid)

 Core in crystalline section

 Testing/Sampling After Completion

 Packer tool via work-over rig

 At limits of current technology

 Demonstrate Ability to

 Perform in situ testing at high P & T

 Build evidence for old groundwater

Borehole designed to maximize 
likelihood of good samples
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(SNL 2016) SAND2016-9235R
DBFT Laboratory and Borehole Testing Strategy



Field Test Borehole (FTB)
 Large-Diameter Borehole

 Push envelope of drilling tech

 Casing Schedule
 Con�nuous 13 ⅜” pathway to TD

 Slotted & permanent in disposal interval

 Removable in seal and overburden 
intervals

 Demonstrate Ability to
 Emplace canisters

 Remove canisters

 Surface handling operations

Borehole designed to maximize 
emplacement safety
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(SNL 2016) SAND2016-10246 R
Deep Borehole Field Test Conceptual Design Report



Basement Conceptual Profiles
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1

2

3

4

5

Depth
[km]

Sources of Salinity
• Evaporite dissolution
• H2O-rock interactions
• Ancient seawater
• Fluid inclusions

Controls on Permeability
• Increasing confining stress
• Fracture zones
• Mineral precipitation
• Overpressure → hydrofracture

Geothermal Gradient
• Radioactive decay
• Regional heat flux

Sedimentary
Overburden
≤ 2 km

Crystalline
Basement
≥ 3 km

HigherLower



Observed Profiles
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Stober and Bucher (2007)DeMaio and Bates (2013)

Bulk Permeability Decreases with DepthSalinity Increases with Depth

Bulk Permeability Increases with Scale

Clauser (1992)

(Freeze et al. 2016) SAND2016-10949R

Lab matrix k (green)

Borehole k sparsely 
fractured (blue)

D
ep

th
 (k

m
)

Lab k gneiss &
amphibolie

Borehole k
gneiss

Regional k
metamorphism



Characterization Borehole (CB)
 Sampling During Driling

 Borehole Geophysics

 Flowing Borehole Salinity Log

 Sample-based Profiles

 Fluid density/temperature/major ions

 Pumped samples from high-k regions

 Samples from cores in low-k regions

 In Situ Testing-based Profiles

 Static formation pressure

 Formation hydraulic/transport properties

 In situ stress (hydrofrac + breakouts)
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(SNL 2016) SAND2016-9235R



CB Characterization During Drilling

 Mud logging (~continuous)

 Ion chromatograph (liquid)

 Gas chromatograph (gas)

 XRD/XRF rock flour (solids)

 Fluid sampling (each ~30 m)

 Mud before & after circulation

 Analytes

 Drilling mud tracer (iodine, fluorescein)

 C, S, N & stable water isotopes

 Drilling mud additive

 Advance Coring (5% → 150 m)

 Drilling parameters: 

 rate, WOB, rotation speed, drilling 
specific energy, etc.

24(SNL 2016) SAND2016-9235R



CB Testing After Drilling

 Flowing Fluid Electrical 
Conductivity  (FFEC) log

 Determine location of:

 Permeable zones

 Gaining zones

 Losing zones

 Focus in situ packer testing on:

 5 permeable zones

 Formation fluid samples collected 
at surface

 Estimate hydraulic properties

 5 low-permeability zones

 Estimate hydraulic properties

25

Sharma et al. 2016



In Situ Testing

 In Situ Packer Testing

 New hydromechanical dipole test: k(ppacker)

 Hydrologic Tests

 Static formation pressure

 Permeability / compressibility / skin

 Sampling in high k intervals

 Tracer Tests

 Single-well injection-withdrawal

 Hydraulic Fracturing Tests

 σh magnitude

 Estimate stress tensor via 

existing fractures
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Disturbed Rock Zone

Variably
Inflated
Packer

Injection
(+ pulse)

Withdrawal
(− pulse)

Fixed
Packers



Environmental Tracers in Samples
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 Vertical Profiles

 Noble gases (He, Ne, etc.)

 Stable water isotopes

 Oxygen; hydrogen

 Atmospheric radioisotope 
tracers (e.g., 81Kr, 129I, 36Cl)

 238U/234U ratios

 87Sr/86Sr ratios

 Estimate

 Water provenance

 Flow mechanisms/isolation
Minerals → pores → fractures
(evaluate the “leakiness”)

Fluid Sample Quality + Quantity will be a Focus!

Repeatability across driling, packer & core samples?

(After Kuhlman, 2015)



Characterization Differences
 DBFT Likely Different From:

 Oil/gas or mineral exploration (low perm., low porosity rocks)

 Geothermal exploration (low geothermal gradient)

 Shallow drilling/testing (high p, high σ, deep, breakouts)

 DBFT Characterization Approach

 Not exhaustive permeability characterization (scaling)

 Seeking geochemical evidence of system isolation

 Use “off-the-shelf” approaches when available

 DBFT Goals

 Drill straight large-diameter boreholes to 5 km depth

 Demonstrate sample collection (cores + formation fluid)

 Enough samples

 Low enough contamination level

 Demonstrate in situ testing at depth (3 to 5 km)

28

SA
N

D
20

10
-6

04
8



Summary
 Deep Borehole Disposal Concept

 Robust isolation from biosphere

 Seal/DRZ only pathway for release

 Simple construction (for few boreholes)

 Wide site availability

 Single-phase, diffusion dominated

 Geological issues?

 Drill elsewhere vs. Engineer away

 Deep Borehole Field Test (FY17-21)

 Drill two 5-km large-diameter boreholes 

 Demonstrate ability to 

 Characterize bedrock flow system (CB)

 Emplace/retrieve test packages (FTB)
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