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Abstract—Cloud computing has been integrated into many
areas of production and received a great amount of attention from
both government and private industry. Despite its popularity,
cloud technologies are still not well understood and numerous
areas are open for research and development. One critical area
that has not received significant attention in the security domain
of cloud computing is digital forensics and incident response.
In this paper we address the challenges in those domains by
introducing a novel approach using virtual machine introspection
to provide intelligence, introspection, and modification of VM
state in cloud systems. The focus of this research paper provides:
(1) the context for security in cloud and the challenges introduced
by conducting digital forensics in the cloud; (2) new opportunities
that exist to meet these challenges in the Cloud through virtual
machine introspection, to include correlation with network data
and active state modification, and (3) use-cases and experiment
results for our techniques under the guise of Cloud forensics.

Index Terms—cloud computing, virtual machine, virtual ma-
chine introspection, digital forensics, incident response

I. INTRODUCTION

The Cloud has been leveraged for many applications by
many different industries. Despite its popularity, cloud tech-
nologies are still not well understood and are open for re-
search and development [15][17]. The security implications
of cloud computing is a critical topic requiring additional
research. From a forensic perspective, numerous questions
arise on how to analyze the Cloud using traditional digital
forensics techniques [16][20]. For instance, during a traditional
digital forensic examination, all files on the storage media are
examined along with the entire file system structure. However,
this is not a practical model for cloud infrastructure, as the
elasticity and ephemerality of pooled storage make pinpointing
data blocks cumbersome. This difficulty is exacerbated in
networked systems by the scale with which computing re-
sources are spread over diverse administrative and geopolitical
domains. Cloud is able to combine numerous heterogeneous
resources (hardware platforms, storage back ends, file systems)
that may be geographically distributed. The idiosyncrasies
in cloud have caused a paradigm shift in digital forensics;
however, tools and techniques still do not exist to help forensic
practitioners cope with these issues. And while many research
areas enumerate these challenges, open literature has not made
significant headway to address the issues them or provide
solutions.

John W. Young
Marymount Unversity
Arlington VA USA
jyoung @marymount.edu

Our approach proposes a new view to the issue through
the use of virtual machine introspection. Section II provides
a foundational background on cloud computing, digital foren-
sics, and incident response. Section III covers the challenges
that arise for forensics for cloud environments. Section IV
describes our methodology and approach to addressing those
challenges. Section V describes our hypervisor-based intro-
spection tool for cloud forensics. Our experimental analysis
for our introspection tool is highlighted in Section VI, while
Section VII concludes this paper and suggests future work.

II. BACKGROUND
A. Cloud Computing

The National Institute for Standards and Technology (NIST)
defines cloud computing as “a model for enabling ubiquitous,
convenient, on demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction” [6]. A few businesses have emerged as leaders
as cloud computing has become increasingly mature and
available. Amazon, Google and Microsoft have demonstrated
support through the promotion, encouragement, adoption, and
leadership of cloud computing, building a foundation for
recent paradigm shifts. The paradigm will continue to evolve
as the Cloud becomes more pervasive.

The promise of cloud computing has spurred entrepreneurial
development of cloud services. The services provided by these
businesses are generally divided into three categories:

o Software as a Service (SaaS)
o Platform as a Service (PaaS)
o Infrastructure as a Service (IaaS)

With both SaaS and PaaS, cloud providers often have tight
control of the execution environments, as the applications that
users access are limited in the number of configurable options.
The focus of the studies in this paper is on the infrastructure
component, IaaS. There are several laaS platforms (e.g., Open-
Stack, OpenShift, EC2) as well as providers in both private
and public settings. IaaS provides users with the most freedom
of configuration for their virtual environments, comparable to
what they would have in their own enterprises. However, just



as in traditional networks, IaaS is not immune to malicious
actors that take advantage of poor security policies, weak
credentialing, and multitenancy. While the rapid elasticity of
IaaS provides the most bang for the buck’, the ephemeral
nature of data in the cloud does not lend itself well to
forensic investigation following compromises, breaches and
attacks. Still, companies and government sectors have made
it part of their long-term strategic plans to leverage cloud
technologies for their infrastructures [3]. As cloud computing,
and specifically TaaS, become more ubiquitous, it becomes
more imperative to address the challenges described in the
following sections.

B. Digital Forensics and Incident Response

There have been many inquiries into the ability of forensic
practitioners to conduct the science of digital forensics in
cloud-based infrastructure and the ability for the current tools
and techniques of digital forensics to operate in the cloud. The
Cloud infrastructure - with its distributed processing, storage,
and resources - can be extremely complex because storage
capacities can grow geometrically. Before understanding the
applicability of current digital forensics practices to the Cloud,
we must construct a common understanding of digital foren-
sics.

Informally, digital forensics is defined as “the collection of
techniques and tools used to find evidence in a computer.” It is
often considered a science due to its systematic, technological
approach toward inspecting a computer system and its con-
tents. Its aim is to locate and preserve electronic evidence for
use in criminal investigations. Digital forensic investigations
require a level of expertise and rigorous methodology that
exceed standard data collection and preservation routinely
performed by system administration personnel.

Digital forensics, as a scientific discipline, is concerned
with the collection, analysis and interpretation of digital data
connected to a computer security incident, as well crimes that
involves a digital device that may store electronic information.
Practitioners have attempted to provide some formalization to
the field by defining a five-phase process:

1) Identification of an incident from its source(s) and
determine its type.
2) Acquisition of evidence from various sources.
3) Preservation of the state of evidential data.
4) Analysis of evidential data, reconstructing fragments and
drawing conclusions.
5) Reporting of results and conclusions about the evidence.
This standard unifies many of the previous forensic pro-
tocols and provides an abstraction to the process that is not
focused on a particular tool or technology, nor is bound to a
specific class of cyber-crimes. During a forensic examination,
all files (e.g., storage, log files), memory, and external media
are examined along with the entire file system structure to
locate forensic artifacts. However, each of the phases provides
unique challenges and opportunities for investigators as cases
and artifacts are situated in the Cloud. Numerous papers have
discussed the challenges to current hard-disk-based forensics

approaches [10][9]. To date, the predominantly focus has been
on challenges and solutions in in the network forensics sub-
discipline (which focuses on forensics of network traffic, rather
than hard disk forensics). There is a gap in the ability to
conduct the preservation and analysis of hard-disk forensics
in the cloud. Efforts have been made [8], but do not address
the area and do not provide a significant improvement or
methodology in this area.

We claim that there is some overlap in the goals and ap-
proaches in conducting digital forensics and incident response.
National Institute and Standard Technology (NIST) [2] defines
incident handling as a lifecycle that includes incident response,
includes preparation, detection/analysis, containment, eradica-
tion and recovery. The authors of [1] describe that incident
management includes responding to an incident (cyber), vul-
nerability and artifact handling, and other related services.

There are many parallels between the steps in incident
handling and the forensics phases of the incident response life
cycle. With the focus on creating forensic artifacts that are
actionable, there are limited tools, methods and approaches
that enable the collection and preservation of forensic evidence
in the Cloud. Both approaches and disciplines face similar
challenges in the need to interact with the system in a trans-
parent, non-intrusive fashion. In order to contain, collect and
analyze evidence, both areas are demanding that advancements
and tools be written to aid in their approaches.

III. CLOUD FORENSICS CHALLENGES

Some of the most attractive benefits for cloud computing
involve a subscriber’s ability to receive services from a broker
or provider, and expand their requirements at scale; the burden
of scaling is placed on the broker or provider and becomes
transparent to the user. Coupled with this is the economic perk
that subscribers need only pay for what they use (i.e., a pay-
as-you-go), forgoing the operations and maintenance costs that
would normally accompany an on-premises data center.

However, incorporating cloud infrastructure into a com-
pany’s network may alter its threat surface and appear contrary
to security and privacy controls implemented for boundary
protection. Cloud computing presents the risk of shared com-
puting resources among multiple tenants on the same physical
hardware; there is a need to have strict software isolation in
order to prevent one tenant’s software from compromising
another tenant. For IaaS, a lack of proper virtual machine
(VM) separation severely elevates this risk. For data protec-
tion, providers and administrators must ensure only authorized
users have access to their data, and that their data is protected
at rest, then sufficiently isolated and permanently erased during
data sanitization. When security incidents occur in violation
of risk-reduction controls, the challenges involved in the cloud
incident response and forensics begin to manifest [19].

The notion and risk of acquisition changes within virtu-
alized environments. Without physical queues and devices,
it may no longer be feasible to physically protect against
contamination of the machine through a “write-blocker.” In
traditional networks, the analyst physically removes the drive



to create a bit-to-bit image of the device. In the cloud,
analysts may be bound to the network that the VM is on.
As a consequence, investigations are more dependent on the
surrounding infrastructure than physical machines.

The elasticity of cloud relies on the dynamic allocation
of physical resources [19]; difficulty arises if the geographic
location of an examiner is drastically removed from one or
many servers involved in an incident. What if the analyst
is attempting acquisition from the device when the physical
network interface card goes down? If the analysts must now
remove the drives, they must acquire the entire device in
order to acquire the specific image that they were looking for,
increasing processing time. Additionally, there are legal im-
plications with regard to other data which may be tangentially
acquired (intentionally or incidentally).

The notion of forensically sound images is also a challenge,
paricularly source images. Will the service provider have
to store the image/backup on their system until the case is
resolved to ensure image integrity/attribution? Or, will a hash
of the VM compared to the other VM be enough to satisfy
the requirement of producing the source evidence in the court?
Such circumstances will leave the analyst dependent on the
backup strategies of the service provider, which may vary from
cloud to cloud, and may not always be viable.

The identification of possible roadblocks in conducting
cloud forensics is a daunting task. The authors of [7] effec-
tively categorize those challenges into nine major groups:

1) Architecture: diversity, complexity, provenance, multite-

nancy, data segregation.

2) Data collection: data integrity, data recovery, data loca-

tion, imaging.

3) Analysis: correlation, reconstruction, time sync, logs,

metadata, timelines.

4) Anti-forensics: obfuscation, data hiding, malware.

5) Incident first responders: trustworthiness of cloud

providers, response time, reconstruction.

6) Role management: data owners, identity management,

users, access control.

7) Legal: jurisdiction, laws, SLA, contracts, subpoenas,

international cooperation, privacy, ethics.

8) Standards: operating procedures, interoperability, test-

ing, validation.

9) Training: forensic investigators, cloud providers, quali-

fication, certification.

The first four groups are the most technology dependent;
what is troublesome regarding the groups is the dependence
on media and/or disk-based forensic analysis. The identifica-
tion, collection and preservation of physical media to capture
incident evidence and artifacts in a cloud environment are
difficult and sometimes impossible. These shortcomings are
promulgated by varying cloud providers, improper identifica-
tion of cloud user accounts, gaining assistance from cloud
staff, system understanding, volume of data and noise, data
location, privacy issues (multitenant data), and encryption.

To alleviate some of the issues of media, disk, data tem-
porality, location and ownership in the Cloud infrastructure,

providers leverage logging to detail the events that occur in
their domains. These logs are normally comprised of: (1)
audit logs that may correlate services to operating systems, (2)
security logs that may attempt to connect users to broad ac-
tions, and (3) application logs that highlight cloud application
activity. However, these logs often suffer from the semantic-
gap problem due to the lack visibility into the VM, where the
events take place. The common denominator in any IaaS-based
environment is the hypervisor. Is the our belief that many of
the deficiencies with cloud forensics may be addressed by
tapping the hypervisor for VM introspection (VMI); that is,
uncovering forensic artifacts at the virtual machine manager
(VMM) layer. While the “use of logs in hypervisors is not
well understood and presents a significant challenge to cloud
forensics™ [7], it is our conjecture that such logging may be
the successful path forward. This is the core of our research,
and is outlined in the following sections.

IV. METHODOLOGY AND APPROACH

As systems and devices become virtualized and deployed
in the cloud, the hypervisor becomes an increasingly ap-
propriate place to collect performance data, system state,
system landscape, function calls, transaction traces, and other
characteristics. We propose a method by which an intro-
spection application may be coupled with a hypervisor, in
order to “reach into” the VM with minimal intrusiveness to
collect data critical to the reconstruction of events, files, and
operations. Such a capability is required to take advantage of
the hypervisor as an instrumentation platform and to integrate
that data with more traditional collection mechanisms.

The concept of a VM serviced by a lightweight hypervisor
is a relatively new paradigm for forensic practitioners. Tradi-
tional forensic techniques, based on assumptions that the file-
system was directly interacting with the hardware through an
abstraction, afforded the forensic practitioner the assumption
that there was nothing controlling the application below the
file-system. This is not the case when using virtualized tech-
nologies. Hypervisors may have the ability to covertly monitor,
introspect and interact with the guest in a transparent fashion.
As mentioned in previous sections, the problems of storage
and collection of actionable data are exhausting.

The current challenge is most hypervisors do not expose a
useful application programming interface (API) at a sufficient
level to do transparent, fine-grained and customizable intro-
spection. Scalable VM instrumentation and introspection at an
in-depth level requires fast handling of events, as well as direct
access to VM state. Furthermore, deep introspection benefits
greatly from the ability to gather data from the hardware
during the VM’s exit to the hypervisor. All of this requires
identical access to the system as the hypervisor itself; improper
use of this ability could easily cause system instability. It is
for this reason we believe that the hypervisor developers have
been hesitant to grant this much control through their APIs.

However, our approach leverages other means to collect and
monitor the guests in a targeted fashion.



A. Virtual Machine Introspection

Virtual machine introspection (VMI) is a technique used to
monitor the runtime state of a system-level virtual machine.
The runtime state can be may include processor registers,
memory, disk, network, and any other hardware-level events
[13]. A review of research literature and current VMI tech-
nologies exposed a number of limitations and trade-offs in
VMI approaches [11][5][12][8], including: the use of in-guest
agents; kernel to user space transitions (dramatically slowing
down processing); VMI tool pre-configuration requirements;
hypervisor version lock-in or source code patching; reliance
on operating system (OS) symbols; limited processor features
due to hypervisor (even if the hardware could do more).

To address these constraints, a VMI tool was envisioned
to provide the cloud forensic capabilities while having as
few of these limitations as possible. The Kernel-based Virtual
Machine Introspection (KVMi) tool was developed for the
Kernel-based Virtual Machine (KVM) hypervisor on Intel’s
x86 architecture [4]. To meet performance, scoping and use-
case demands, the follow tenets were applied to KVMi:

« Shall not require in-guest agents.

o Shall work with any recent version of KVM.

o Shall work with any version of Windows starting with
Windows 7 64-bit, including newer versions such as
Windows 10 64-bit while still having the ability to find
and track basic Windows artifacts

« Shall not require OS symbol files.

« Shall be able to fully handle VM-exits, bypassing execu-
tion of KVM if necessary, to facilitate new features KVM
may not support.

o Shall be compilable/loadable on a running system with
standard build tools.

KVMi is implemented as a single loadable kernel module
for Linux. It begins by locating the kvm and kvm_intel kernel
modules in kernel-space memory. Upon finding them, it hooks
code in KVM’s exit handler, redirecting execution into its own
exit handler. When KVMi encounters a new VM, it determines
its operating system and adds the system of interest to a set for
further introspection. VMs then run until an operation within
the guest causes them to VM-exit, which then passes control
to KVMi’s VM-exit handler routine, providing the foundation
to understand the dynamic behavior of actors within the
virtual machine, introspect without introducing artifacts into
the running system, and allow full control over guest system.

Each VM of interest is dynamically analyzed to determine
offsets of key structures in memory. This is done in multiple
ways, including walking exports of portable executable (PE)
files, disassembling code, and simple recognition of data in
relation to other objects. It also utilizes VM exits for things like
control-register access, model specific register (MSR) access,
CPUID, and timer related exits. KVMi also keeps track of
each virtual CPU separately, and links them to their respective
VM. For breakpoints, it uses permissions in Intel’s extended-
page-tables (EPT) to trap on read, write, or execution on
arbitrary sized chunks of memory. It leverages the monitor-

trap-flag (MTF) bit for single stepping. KVMi produces log-
based output through ring buffered character devices on the
host’s device file system - and may receive select input through
this method as well.

To support forensic analysis of incidents on and from guests,
KVMi provides:

o Reconstruction of dynamic linked libraries and drivers
(lists as well as full reconstructions out of memory)

« File reconstruction

e Guest process lists (includes parsing the PE files of all
modules loaded in each process to find functions of
interest)

o Guest system call logging

o Guest operating system function calls and parameters

o Memory access

Since KVMi has the ability to make modifications to
the guest system, such as hiding or changing guest files in
memory, or redirecting execution, an administrator may run
arbitrary code in the kernel or user space processes directly
from the hypervisor without any in-guest agent or user logged
in. Such a capability may be used to support live, forensic data
collection.

B. The Hypervisor Kernel and Inline Introspection

Most hypervisor platforms allow some interaction through
an APIL. They can range from simple things like querying the
power status of VMs, to more complex things like viewing
or modifying register state inside a guest. In all cases, a
considerable amount of overhead is incurred. The APIs for
hypervisors like Xen or VMware require ring switches and
transfers between the hypervisor and a special VM (Dom0O or
secure virtual machine (SVM) respectively). This effectively
separates the actual hypervisor kernel from bugs in the VMI
code; however, it also causes any introspection data to travel
far from the hypervisor kernel before it reaches the VMI code.
Additionally, it enables hypervisor authors to decide what data
is relevant to the VMI code. This separation is advantageous
for the hypervisor, but at best neutral for the VMI code, and
only if it is able to get all the data that it needs. The VMI code
can request additional information, but this requires even more
context switching, and is still limited to what the hypervisor
will allow it to request. The VMI code will not be running
in VMX root mode and thus does not have the ability to use
virtual machine extensions directly. In some cases, APIs to do
certain tasks don’t exist, and thus the only way to do some
types of introspection is to patch or hook the KVM kernel
code and obtain VMX root privileges. For example, it is not
possible to ask KVM to enable the MTF (monitor trap flag)
functionality of Intel hardware virtualization to single-step a
guest.

Actions such as extracting large buffers of data from fre-
quently used system calls or other functions require consider-
able overhead to process, and thus must be handled in the most
efficient manner. When a guest VM-exits to the hypervisor,
it is in a suspended state on the CPU core which has exited.
When the hypervisor takes too long to do its processing during



the exit, a noticeable lag can be seen by users in the guest
VM. Since KVMi hooks KVM to gain execution in VMX
root mode, it is also running in this window during the VM-
exit. KVMi has two interfaces for users to interact with, a set
of character devices, and a sysfs tree. In both cases, the data
given to the user is stored inside a kernel buffer. When the data
is captured by KVMi, it performs a copy from the VM’s buffer
into the kernel buffer and immediately lets the guest resume.
No other communication takes place during the exit. With both
character device and sysfs interfaces, the user requests the data
at his or her leisure, and it is copied to them outside of VMX
root mode. No ring switching or VM transitions occur other
than the one required VM-exit and VM-enter (which would
have happened even without the hooking). With this method,
KVMi is able to move data from the VM to the host with
minimal overhead.

V. VM INTROSPECTION AND MONITORING IN THE CLOUD
A. Needs and Requirements for the Cloud in using KVMi

With the advent of cloud computing and virtualization,
special care needs to be taken by the data center, cloud
service provider, and the cloud architect to ensure the tenant’s
(intellectual) property is secure. Cloud computing changes the
relationship between the computer hardware and the operating
system that manages and controls it. Focusing on the added
virtual layer is not enough. With the KVMi we can look at
the hypervisor and ways to more tightly secure it.

1) Personnel Security: Today with companies, governments
and organizations choose to host services and store informa-
tion on the cloud (both public and private), the physical access
to their digital property will be inevitably lost. Because of
this risk, the possibility of data being exposed to attack is
higher. The biggest threat to sensitive data will possibly come
from individuals or groups inside the data center. Therefore
it should be put on the cloud services provider to secure the
system, software and data through background checks of data
center personnel. Access to the KVMi application should also
be restricted and controlled based on detailed roles of the
individual.

2) System Security: The cloud service providers should also
perform suspicious activities monitoring to eliminate unautho-
rized or nefarious access to the virtual systems. Although, this
type of monitoring is an important security feature of KVMi,
it can also be a means of full access to the virtual systems
of the cloud. Another key to mitigating mishandling of the
KVMi or the cloud is to insure the logical cloud stores are
segregated and the data is isolated thoroughly.

B. Impetus for KVMi in the Cloud

The notion of the virtual machine sitting on top of a
lightweight hypervisor is a relatively new paradigm for foren-
sic practitioners. However, it is a near-ubiquitous certainty
for most TaaS infrastructures. Traditional forensic techniques,
based on assumptions that the file-system was directly inter-
acting with the hardware through an abstraction, afforded the
forensic practitioner the assumption that there was nothing

controlling the application below the file-system. This is not
the case when using virtualized technologies. Hypervisors
have the ability to transparently monitor, introspect and inter-
act with the guest in a non-intrusive fashion. There are four key
areas that monitoring and collecting data from the hypervisor
would assist in alleviating:

First is the need to process entire large storage pools used
by the IaaS infrastructure. Storage solutions in the cloud are
varied. To support a variety of formats, e.g., Fiber Chanel,
Ethernet iSCSI, and a variety of file system types, raw data can
be petabytes in size. The VMs often exist in some “shardded”
(striped) fashion on the file system. Current forensic tools are
unable to collect data from a large data volume in a timely
fashion, nor can the companies who host these services afford
to take the storage system offline in order to gather forensically
sound evidence from the underlying file systems. If one were
to move processing to the hypervisor to gather all the file
system artifacts - then all the 1O is decoded, saved and archived
before being written to the distributed file system.

Second, the ephemerality of the guests and of cloud com-
puting is a challenging problem, raising many issues regarding
the lifetime of a particular device. The lifetime is no longer
years or months, but rather it is weeks at best. Storage issues
are one of the greatest challenges of cloud computing; as
demand for resources increases, the cloud provider’s ability
to store all of a particular user’s information for weeks, or
even months, becomes economically unfeasible. As space is
reclaimed, forensic evidence is lost. As an alternative, an
emerging enterprise trend is to have users use transient clients
and to store user profiles at a separate location. But, as virtual
machines are cleaned and reimaged, all potential for evidence
residing on the original virtual machine is lost. Some IaaS
cloud platforms such as OpenStack and Amazon EC2 have
mapping knowledge of where guests are deployed. Given
that information, it is possible to do targeted collection by
the hypervisor, making it possible to collect artifacts from a
guest while it is still running. It is possible to get information
regarding file I/O, memory, processes, network connections as
well as traceability of the actions on the system.

The third area is the elasticity of the collection methods
and processing of the data. By collecting data from individual
hosts, the approach scales with the cloud. No longer does
forensic analysis or artifact collection focus on a single host;
every host that may have information can assist in the collec-
tion and processing of the forensic artifacts.

Fourth is forensic collection and time correlation of the
guest artifacts make it hard to prove the provenance of the
artifacts. By collecting the artifacts from the hypervisor, it
is possible to independently verify all the logs, access and
interactions from the guest and create a forensic timeline of
the event that is grounded with a trusted time source.

C. Fusion with Networking Views of Cloud Space

In the domain of computer networking, virtual switching
was devised a means to support networking of virtual machines
on a single compute node, or host. A virtual switch is



essentially a kernel process executed on the host, often in
collusion with a hypervisor, to provide virtual interfaces (Eth-
ernet segments) to virtual machines and switching/forwarding
logic between interfaces. The applications derived from virtual
switching can be as simple as bridges, performing layer-2
forwarding operations, or as complex as multilayer forwarding
and routing functions and protocols, as well as supporting
newer approaches to networking, such as software-defined
networking and network function virtualization.

The authors of [14, ANON] describe a method for conduct-
ing networking monitoring at the application layer, to provide
greater visibility and correlation of network traffic to VMI.
Their solution is implemented in C-code for the open-source
virtual switch, Open vSwitch. Traffic classification leverages
several libraries, provided through a continuously updated cat-
alog of thousands ("2500) of plugins and signatures covering
human-initiated and IoT protocols/applications. Metadata is
extracted for HTTP (request, servers, URIs, MIME types),
DNS (hosts, queries, servers), SMTP (mailfrom, header), Ker-
beros (login, server), LDAP (hostname), with goals to include
OSPF and BGP data.

Output from classification and metadata extraction are out-
put to agnostically-formatted log files that may then be in-
gested by security information and event management (SIEM)
systems and/or logging/analysis engines. These data are cor-
related against log data output from the KVMi character
devices may be ingested by an analytic engine to provide a
rich set of analytics. When coupled with network-based data
introspection, a full view of historical and current state of VMs
and their interactions with other entities (either in the cloud
ecosystem or external) may be captured and inspected. A high
level diagram depicting a notional infrastructure for KVMi and
network forensic tools in a cloud and analytic environment is
shown in Fig. 1. The architecture is fluid and agnostic to be
supported on one or many compute host servers of varying
architectures.
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Fig. 1: KVMi/Network Forensics Architecture.

VI. EXPERIMENTS AND ANALYSIS

To evaluate the efficacy and applicability of the KVMi
tool for cloud forensics, we identified three areas or use-
cases for experimentation and analysis. The first involves
the reconstruction of files placed or executed on targeting
machines, to be used as forensic evidence. The second involves
monitoring and gathering intelligence for attacks in progress,
to include network traffic. The final experiment involves the
ability to collect general VMI and network data for historical
purposes, in a multitenant environment. The results of the use-
case testing elucidate the strengths and weaknesses in each
situations, and possible means for improvement. The testing
environment was comprised of the following hardware and
software elements:

e Supermicro servers

« 264GB RAM

e 32 CPUs (Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz)
o Ubuntu 14.04.02 LTS (kernel 3.13.0-57)

« KVM/QEMU 2.3.50

A. Use Case 1: VM as a Platform for Attackers

The purpose of this experiment is to verify the extrac-
tion of various forensic artifacts from the system without
adversely affecting the guest and without guest detection of the
introspection. The underlying concept addresses intellectual
property theft, child pornography, etc.

1) Experiment Method: A light weight agent was created
that could download files to the guest through a web interface,
and then saved them to disk. This would mimic a variety
of content being shared (such as child pornographic images,
sensitive proprietary information, etc.); typical of what would
be transferred and accessed through the Cloud. To conduct
the experiment, the same file was used for download in
experiments consisting of 1, 10 and 25 virtual machines on
a single host. Time ticks were counted during each of the
downloads to identify time differences between baseline (that
is, without KVMi extracting the file) and with the KVMi sysfs
functionality enabled.

2) Results: As mentioned in the description of KVMi, the
KVMi kernel module is attached to the KVM hypervisor;
hence, its existence is not visible from inside the guest (unlike
agent-based solutions). Thus, the only indicator of visibility
from inside the guest might be through timing analysis. For
the experiment of concurrently downloading a pdf file with
1, 10 and 25 VMs on a host, the time in millions of CPU
ticks for the download are show in the box plots below. Each
download was run 30 times on each VM instance.

As can be seen in the plots in Fig. 2, there is negligible
difference in the time ticks between the downloads (growing
more consistent with the greater number of samples). Also, it
should be noted that the sysfs process was also able to extract
the file before it reaches the disk encryption process for NTFS;
md5Ssums were also taken to show the pdf extracted was the
same downloaded.
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Fig. 2: sysfs Evaluation Results.

B. Use Case 2: VM used as an Exploited Endpoint

The purpose of this experiment is to help identify anomalous
guest processes or to identify “stealthy” malware (process
hiding techniques). These are both techniques that could be
used by a malicious user’s attempt to hide their actions
through covert means. The process information would then
be correlated to network traffic supporting C2-like operations.
The underlying concept here represents a typical drive-by-
download attack against a VM to include exploitation and
pivoting.

1) Experiment Method: A user on a VM would visit a
“malicious” website, that would then exploit a browser vulner-
ability, providing the attacker privileged control of the virtual
machine. At this time, the attack would then pivot to other
machines in the network, using metasploit to gain passwords.

2) Results: This particular experiment makes use of KVMi
to introspect on guest VMs, and network forensic tools (as
described above) to correlate guest data to network data.
The results of the experiment largely focus on log data to
navigate the attack in realtime and identify the actions done
on the target VM. By logging the cloud compute host, virtual
machine name/ID, and IP addresses, the VM in multitenancy
can be quickly identified. KVMi includes data pulled form
Windows APIs, with parameters. The collection of guess and
network data address the semantic-gap problem of pulling
context from the guest to the host.

To start the experiment, an administrator logs into a VM
(.82) and adds a share using domain admin credentials. He
then visits a phishing website hosted on the attacker’s machine
(“attack.com”, .2). This is shown in a network forensic log of
Fig. 3 as a DNS request to the DNS/domain controller server
at .66.

1460340185, dpi_log,path=base.ip.udp.dns,srcipd_______ |.66,dstip=[—___ 1.82,ud

p_pert_src=53,udp_port_dst=54799,bytes=396,packets=5 metadata="query:attacker.com,
name:attacker.com, addr:[—].2"

blue3 /tmp/flow_ogs/dpilog log dpi_log

Fig. 3: URL Observation.

The attacker compromises the VM (.82) using a Silverlight
Exploit through a XAP file and runs a bind meterpreter on
port 2222 (Fig. 4).

1460340189, dpi_log,path=base.ip.tcp.http.silverlight srcip_______ 1.2 dstip=[_].
182, tcp_port_src=8080, tcp_port_dst=49211,bytes=149385,packets=193 metadata="
mime-type:application/x-silverlight-2"

blue3 stmp/flow_logs/dpilog log dpi_log

Fig. 4: Silverlight Exploitation.

The attacker then starts a new process, notepad.exe, and
migrates to the process so if the user closes iexplore.exe it
won’t close the meterpreter session (Fig. 5).

1460340194.,32, kvmi_newproc,host_pid=60f0,vpid=11,eproc_hva=7f4306e68b30, peb_hva=7f
42ccc48000, peb64=7efdf000, peb32=7efde000, cr3=13fd7000, pid=840,won64=1,name="notepa
d.exe"

blue3 ftmp/kvmi_logs/kvmi_newproc lkvmi_newproc

Fig. 5: notepad.exe Migration.

The attacker then uploads a binary and executes it. The
binary is seen in Fig. 6, and also from the guest to the host
for further inspection.

1460340204 .11, kvmi_apihooks  host_pid=60f0,vpid=11,function="notepad.exe:ntdll.dll:
NtCreateFile(PHANDLE:399e7h8, '\??\C:\Users\win7\Desktop\binary.exe')"

blue3 Jtp/kvmi_logs/kvmi_apihooks kvmi_apihooks

Fig. 6: binary.exe File Upload.

The attacker then exfils a file from the compromised VM’s
desktop to the attacker machine, we see this process started
by a walk of the directory tree in Fig. 7.

1460340205.11, kvmi_apihooks, host_pid=60f0,vpid=11,function="explorer.exe:ntdll.dll
:NtCreateFile(PHANDLE:3c4db28, '\?7\C:\Users\win7\Desktop'}"

bluez Jtmp/kvmi_logs/kvmi_apihooks kvmi_apihooks

Fig. 7: Directory Tree Walk.

The attacker then collects the local SAM hashes on the
machine and passwords located in memory (kerberos, msv,
and ssp passwords). As this information is transferred back to



the attacker machine, high entropy URIs are seen in the DPI
log (Fig. 8) over a meterpreter bound port 2222.

1460340316, dpi_log,path=base.ip.tcp.http,srcip= 82, dstip= .2,tcp
_port_src=49215,tcp_port_dst=2222,bytes=12739,packets=76,metadata="full-uri:/_1BiZn
ZvZkH4atlor2L9s0P7EAFbHFOI_4HNTAWJPFKXLtndc73EVTnRKPRxhcd_2hU2dIsoFt_T7b-tMI-0Q7ers
DA7-0W87dEGBFBHeiqdPARMI/ , server:attacker.com”

blue3 Jtmp/flow_logs/dpilog log dpi_log

Fig. 8: High Entropy URIL

Using the new found credentials, the attacker logs into the
domain controller (DC) (.66). On the DC the attacker again
collects passwords and domain password hashes. Hashed URIs
are shown traversing port 2222 from the AD to the Attacker
server, as well as exfil communication from the AD to the
attacker over port 3333 (Fig. 9).

1460340265.7, flow_log,event=delete_flow,dpid=9a-7b-ad-72-91-45,v1lan=100,srcip=[]
[ 166,dstip____ 1.2, nwproto=6, srcport=3333, dstport=36857,duration=13, pack
et_count=63,byte_count=23010

bluez /tmp/flow_ogs/flowlog.log flow_log

Fig. 9: Pivot Connection.

C. Use case 3: Using Cloud as a Relay

The final use-case examines the situation wherein an
internet-connected node might be used a listening-post or a
botnet drone waiting C2 commands. The underlying concept
involves a targeted VM that is conscripted, running both
legitimate and non-legitimate traffic/services.

1) Experiment Method: Several connections from the VM
are made, combing both normal applications and malicious
applications (as denoted by the experimenters).

2) Results: Using the KVMi sockets monitoring feature,
the VM making connections and the endpoints (IPs) to which
connections are made can be identified. What’s novel is the
binding of the network connection to the requesting appli-
cation. As can be seen in Fig. 10, the VM (host process id
0xC27) can be seen making connections to IP .33 over port
80, with the process iexplorer.exe (Internet Explorer).

S—

BIND:0.0.0.0:0"
function="CONNECT : NN . 33:89"

.exe, function="BIND:0.0.0.0:0"

BIND:0.0.0.0:0"

Fig. 10: KVMi Socket Logging.

VII. CONCLUSIONS AND FUTURE WORK

There are several challenges that arise when conducting
digital forensics and incident response in the Cloud. In our
paper, we have discussed the challenges, current shortcomings,
and proposed a unique approach and tools to meet those
challenges. While we have made headway in developing our
methodology and technology, there are still difficult problems
and areas for improvement we’re pursuing, such as: (1) extend-
ing KVMi for other platforms and various operating systems;

(2) furthering KVMi’s capability to make on-the-fly modifi-
cations to guest execution, such targeted encryption key ex-
traction, or making certain suspicious actions trigger enhanced
introspection; (3) further decouple KVMi from KVM, in both
its memory accessing ability, and general execution. We are
also in discussion with commercial hypervisor companies to
extend the KVMi capability to their hypervisors.

Another avenue we’re pursing is extending KVMi for gen-
eral cloud security requirements. Since the hypervisor is the
means through which cloud is managed, IT security profes-
sionals are concerned it may be leveraged as a vector to present
attacks or unauthorized access to the virtual systems. Since
KVMi is decoupled from the hypervisor, we are interested in
using KVMi to detect, stifle or block attacks.
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