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Abstract—The computing systems used by LHC experiments
has historically consisted of the federation of hundreds to thou-
sands of distributed resources, ranging from small to mid-size re-
source. In spite of the impressive scale of the existing distributed
computing solutions, the federation of small to mid-size resources
will be insufficient to meet projected future demands. This pa-
per is a case study of how the ATLAS experiment has embraced
Titan – a DOE leadership facility in conjunction with traditional
distributed high- throughput computing to reach sustained pro-
duction scales of approximately 52M core-hours a years. The
three main contributions of this paper are: (i) a critical eval-
uation of design and operational considerations to support the
sustained, scalable and production usage of Titan; (ii) a prelimi-
nary characterization of a next generation executor for PanDA to
support new workloads and advanced execution modes; and (iii)
early lessons for how current and future experimental and ob-
servational systems can be integrated with production supercom-
puters and other platforms in a general and extensible manner.

I. INTRODUCTION

The Large Hadron Collider (LHC) was created to explore

the fundamental properties of matter. Multiple experiments at

LHC have collected and distributed hundreds of petabytes of

data worldwide to hundreds of computer centers. Thousands

of physicists analyze petascale data volumes daily. The de-

tection of the Higgs Boson in 2013 speaks to the success of

the detector and experiment design, as well as the sophistica-

tion of computing systems devised to analyze the data, which

historically, consisted of the federation of hundreds to thou-

sands of distributed resources, ranging in scale from small to

mid-size resource [1].

The LHC workloads are comprised of tasks that are inde-

pendent of each other, however, the management of the dis-

tribution of workloads across many heterogeneous resources,

the effective utilization of resources and efficient execution

of workloads present non-trivial challenges. Many software

solutions have been developed in response to these chal-

lenges. The CMS experiment, devised a solution based around

the HTCondor [2] software ecosystem. The ATLAS [3] ex-

periment utilizes the Production and Distributed Analysis

(PanDA) workload management system [4] (WMS) for dis-

tributed data processing and analysis. The CMS and ATLAS

experiments utilize, arguably the largest academic production

grade distributed computing solutions, and have symbolized

the paradigm of high-throughput computing (HTC), i.e., the

effective execution of many independent tasks.

In spite of the impressive scale of the ATLAS distributed

computing system – in the number of tasks executed, the num-

ber of core hours utilized, and the number of distributed sites

utilized, demand for computing systems will soon significantly

outstrip current and projected supply. The data volumes that

will need analyzing in LHC-Run 3 (≈2022) and the high-

luminosity era (Run 4) will increase by factors of 10–100 com-

pared to the current phase (Run 2). There are multiple levels

at which this problem needs to be addressed: the utilization

of emerging parallel architectures (e.g., platforms); algorith-

mic and advances in analytical methods (e.g., use of Machine

Learning); and the ability to exploit different platforms (e.g.,

clouds and supercomputers).

This paper represents the experience of how the ATLAS ex-

periment has “broken free” of the traditional computational ap-

proach of high-throughput computing on distributed resources

to embrace new platforms, in particular high-performance

computers (HPC). Specifically, we discuss the experience of

integrating PanDA WMS with a US DOE leadership machine

(Titan) to reach sustained production scales of approximately

51M core-hours a year.

In doing so, we demonstrate how Titan is more efficiently

utilized by the mixing of small and short-lived tasks in back-

fill with regular payloads. Cycles otherwise unusable (or very

difficult to use) are used for science, thus increasing the

overall utilization on Titan without loss of overall quality-of-

service. The conventional mix of jobs at OLCF cannot be ef-

fectively backfilled because of size, duration, and scheduling

policies. Our approach is extensible to any HPC with “capabil-

ity scheduling” policies. We also investigate the use of a pilot-

abstraction based task execution runtime system to flexibly ex-

ecute ATLAS and other heterogeneous workloads (molecular

dynamics) using regular queues. As such, our approach pro-
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vides a general solution and investigation of the convergence

of HPC and HTC execution of workloads.

This work demonstrates a viable production route to deliv-

ering large amounts of computing resources to ATLAS and, in

the future, to other experimental and observational use cases.

This broadens the use of leadership computing while demon-

strating how distributed workflows can be integrated with lead-

ership resources, and effectively accommodating HTC and

HPC workloads simultaneously.

This paper also provides: (i) a critical evaluation of the many

design and operational considerations that have been taken to

support the sustained, scalable and production usage of Ti-

tan for historically high-throughput workloads, and (ii) early

lessons and guidance on designing the next generation of on-

line analytical platforms [5], so that experimental and obser-

vational systems can be integrated with production supercom-

puters in a general and extensible manner.

II. PANDA OVERVIEW

PanDA is a Workload Management System (WMS) de-

signed to support the execution of distributed workloads and

workflows via pilots [6]. Pilot-capable WMS enable high

throughput execution of tasks via multi-level scheduling while

supporting interoperability across multiple sites. This is partic-

ularly relevant for LHC experiments, where millions of tasks

are executed across multiple sites every month, analyzing and

producing petabytes of data.

The implementation of PanDA WMS consists of several in-

terconnected subsystems, communicating via dedicated API or

HTTP messaging, and implemented by one or more modules.

Databases are used to store stateful entities like tasks, jobs

and input/output data, and to store information about sites,

resources, logs, and accounting.

Currently, PanDA’s architecture has five main subsystems:

PanDA Server [7], AutoPyFactory [8], PanDA Pilot [9],

JEDI [10], and PanDA Monitoring [11]. Other subsystems

are used by some of ATLAS workflows but we do not dis-

cuss them as they are not relevant to an understanding of how

PanDA has been ported to supercomputers. For a full list of

subsystems see Ref. [12]. Fig. 1 shows a diagrammatic rep-

resentation of PanDA main subsystems, highlighting the ex-

ecution process of tasks while omitting monitoring details to

improve readability.

Users submit task descriptions to JEDI (Fig. 1:1) that stores

them into a queue implemented by a database (Fig. 1:2).

Tasks are partitioned into jobs of different size, depending on

both static and dynamic information about available resources

(Fig. 1:3). Jobs are bound to sites with resources that best

match jobs’ requirements, and submitted to the PanDA Server

for execution (Fig. 1:4).

Once submitted to the PanDA Server, jobs are stored by the

Task Buffer component into a global queue implemented as a

database (Fig. 1:5). When jobs are submitted directly to the

PanDA Server, the Brokerage component is used to bind jobs

to available sites, depending on static information about the

resources available for each site. Jobs submitted by JEDI are

already bound to sites so no further brokerage is needed.

Once jobs are bound to sites, the Brokerage module commu-

nicates to the Data Service module what data sets need to be

made available on what site (Fig. 1:6). The Data Service com-

municates these requirements to the ATLAS DDM (Fig. 1:7)

that, when needed, replicates data sets on the required sites

(Fig. 1:8).

Meanwhile, AutoPyFactory defines PanDA Pilots, submit-

ting them to a Condor-G agent (Fig. 1:9). Condor-G schedules

these pilots wrapped as jobs to the required sites (Fig. 1:10).

When a PanDA Pilot becomes available, it requests the Job

Dispatcher module of the PanDA Server for a job to execute

(Fig. 1:11). The Job Dispatcher interrogates the Task Buffer

module for a job that is bound to the site of that pilot and

ready to be executed. Task Buffer checks the global queue

(i.e., the PanDA DB) and, upon availability, returns a job to

the Job Dispatcher. The Job Dispatcher dispatches that job to

the PanDA Pilot (Fig. 1:12).

Each PanDA Pilot starts a monitoring process on receiving

a job and forks a subprocess to execute the job’s payload. In-

put data are transferred from the stage-in location (Fig. 1:13),

the job’s payload is executed (Fig. 1:14) and once completed,

output is transferred to the staging-out location (Fig. 1:15).

The Data Service module of the PanDA Server tracks and

collects the output generated by each job (Fig. 1:16), updat-

ing jobs’ attributes via the Task Buffer module (Fig. 1:17).

When the output of all the jobs of a task are retrieved, it is

made available to the user via PanDA Server. When a task is

submitted to JEDI, task is instead marked as done (Fig. 1:18)

and the result of its execution is made available to the user by

JEDI (Fig. 1:19).

III. DEPLOYING PANDA ON TITAN

The upcoming LHC Run 3 will require more resources than

the Worldwide LHC Computing Grid (WLCG) can provide.

Currently, PanDA WMS uses more than 600,000 cores at more

than 100 Grid sites, with an aggregated performance of 8

petaFLOPS. This capacity will be sufficient for the planned

analysis and data processing, but it will be insufficient for the

Monte Carlo production workflow and any extra activity. To

alleviate these challenges, ATLAS is expanding the current

computing model to include additional resources such as the

opportunistic use of supercomputers.

PanDA WMS has been designed to support distributed Grid

computing. Executing ATLAS workloads or workflows in-

volves concurrent and/or sequential runs of possibly large

number of jobs, each requiring minimal, if any parallelization

and no runtime communication. Thus, computing infrastruc-

ture like WLCG have been designed to aggregate large amount

of computing resources across multiple sites. While each site

may deploy MPI capabilities, usually these are not used to

perform distributed computations.

Currently, ATLAS workloads do not require fast intercon-

nects or specilized co-processors, but supercomputers tend not
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Fig. 1. PanDA WMS architecture. Numbers indicates the JEDI-based exe-
cution process described in §II. Several subsystems, components, and archi-
tectural and communication details are abstracted to improve clarity.

to reach 100% utilization due to the scheduling of jobs requir-

ing large amount of resources. This offers the possibility to

execute ATLAS-like workloads on supercomputers to increase

utilization and reducing the waste of available resources.

We developed a single-point solution to better understand

the problem space of enabling a WMS designed for HTC to

execute production workflows on resources designed to sup-

port HPC. The PanDA team developed a job broker to support

the execution of part of the ATLAS production Monte Carlo

workflow on Titan, a leadership-class supercomputer managed

by the Oak Ridge Leadership Computing Facility (OLCF).

A. Architectures, Interfaces and Workloads

Titan’s architecture, configuration and policies poses several

challenges to the deployment of PanDA. The default deploy-

ment model of PanDA Pilot is unfeasible on Titan: PanDA

Pilot is required to contact the Job Dispatcher of the PanDA

Server to pull jobs to execute, but this is not possible on

Titan because worker nodes do not offer outbound network

connectivity. Further, Titan does not support PanDA’s security

model based on certificates and virtual organizations, making

PanDA’s approach to identity management unfeasible. While

Titan’s data transfer nodes (DTNs) offer wide area network

data transfer, an integration with ATLAS DDM is beyond the

functional and administrative scope of the current prototyp-

ing phase. Finally, the specific characteristics of the execution

environment, especially the absence of local storage on the

worker nodes and modules tailored to Compute Node Linux,

require re-engineering of ATLAS application frameworks.

Currently, very few HEP applications can benefit from

Titan’s GPUs but some computationally-intensive and non

memory-intensive tasks of ATLAS workflows can be off-

loaded from the Grid to Titan. Further, when HEP tasks can

be partitioned into independent jobs, Titan worker nodes can

be used to execute up to 16 concurrent payloads, one per

each available core. Given these constraints and challenges,

the Monte Carlo detector simulation task is most suitable for

execution on Titan at the moment. This type of task is mostly

computational-intensive, requiring less than 2GB of RAM at

runtime and small input data. Detector simulation tasks in

ATLAS are performed via AthenaMP [13], the ATLAS soft-

ware framework integrating the GEANT4 detector simulation

toolkit [14]. These tasks account for ≈60% of all the jobs on

WLCG, making them a primary candidate for offloading.

Detector simulation is part of the ATLAS production Monte

Carlo (MC) workflow [15]. The MC workflow consists of four

main stages: event generation, detector simulation, digitization,

and reconstruction. Event generation creates sets of particle

four-momenta via different generators, e.g., PYTHIA, HER-

WIG, and many others. Geant4 simulates the ATLAS detector

and the interaction between the detector and particles. Each

interaction creates a so-called hit and all hits are collected and

passed on for digitalization, where hits are further processed

to mimic the readout of the detector. Finally, reconstruction

operates local pattern recognition, creating high-level objects

like particles and jets.

B. PanDA Broker

The lack of wide area network connectivity on Titan’s

worker nodes is the most relevant challenge for integrating

PanDA WMS and Titan. Without connectivity, Panda Pilots

cannot be scheduled on worker nodes because they would not

be able to communicate with PanDA Server and therefore pull

and execute jobs. This makes impossible to port PanDA Pi-

lot to Titan while maintaining the defining feature of the pi-

lot abstraction: decoupling resource acquisition from workload

execution via multi-stage scheduling.

The unavailability of pilots is a potential drawback when

executing distributed workloads like MC detector simulation.

Pilots are used to increase the throughput of distributed work-

loads: while pilots have to wait in the supercomputer’s queue,

once scheduled, they can pull and execute jobs independent

from the system’s queue. Jobs can be concurrently executed on

every core available to the pilot, and multiple generations of

concurrent executions can be performed until the pilot’s wall-

time is exhausted. This is particularly relevant for machines

like Titan where queue policies privilege parallel jobs on the

base of the number of worker nodes they request: the higher

the number of nodes, the shorter the amount of queue time

(modulo fair-share and allocation policies).
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The backfill optimization of Titan’s Moab scheduler allows

to avoid the overhead of queue wait times without using pi-

lot abstraction [16]. With this optimization, Moab starts low-

priority jobs when they do not delay higher priority jobs, in-

dependent of whether the low-priority jobs were queued after

the high-priority ones.

When the backfill optimization is enabled, users can inter-

rogate Moab about the number of worker nodes and walltime

that would be available to a low-priority job at that moment

in time. If a job is immediately submitted to Titan with that

number of worker nodes and walltime, chances are that Moab

will immediately schedule it, reducing its queue time to a min-

imum. In this paper, we call this number of worker nodes and

walltime an available ‘backfill slot’.

Compared to pilots, backfill has the disadvantage of lim-

iting the amount of resources that can be requested. Pilots

are normal jobs: they can request as many worker nodes and

walltime as a queue can offer. On the contrary, jobs sized ac-

cording to an available backfill slot depend on the number of

worker nodes and walltime that cannot be given to any other

job at that moment in time.

At any point in time, the size of an available backfill slot is

typically a small fraction of the total capacity of a resource.

Notwithstanding, given the size of Titan this translates into a

substantial capacity. Every year, about 10% of Titan’s capacity

remains unused [17], corresponding to an average of 30,000

unused cores (excluding GPU cores). This equals to roughly

5% of the overall capacity of WLCG.

Given the communication requirements of PanDA Pilots and

the unused capacity of Titan, PanDA pilot was repurposed to

serve as a job broker on the DTN nodes of Titan (Fig. 2). This

prototype called ‘PanDA Broker’ maintains the core modules

of PanDA Pilot and its stand-alone architecture. This imposes

functional trade-offs (e.g., single-threaded architecture, single

MPI PBS script submission) but allows for rapid adoption and

iterative optimization. PanDA Brokers are deployed on DTNs

because these nodes are part of the OLCF infrastructure and

can access Titan without RSA SecureID authentication. DTNs

are not part of Titan’s worker nodes and, therefore, are not

used to execute Titan’s jobs.

Currently, up to 20 PanDA Brokers operate within the ex-

isting ATLAS production software infrastructure, each sup-

porting the execution of MC detector simulations in 9 steps.

Each broker queries the PanDA Server for ATLAS jobs that

have been bound to Titan by JEDI (Fig. 2:1). Upon receiving

jobs descriptions, PanDA Broker pulls jobs’ input files from

BNL Data Center to the OLCF Lustre file system (Fig. 2:2).

PanDA Broker queries Titan’s Moab scheduler about the cur-

rent available backfill slot (Fig. 2:3) and creates an MPI script,

wrapping enough ATLAS jobs’ payload to fit the backfill slot.

PanDA Broker submits the MPI script to the Titan’s PBS batch

system via RADICAL-SAGA (Fig. 2:4).

Upon execution on the worker node(s) (Fig. 2:5), the MPI

script initializes and configures the execution environment

(Fig. 2:6), and executes one AthenaMP for each available

work node (Fig. 2:7). AthenaMP retrieves events from Lus-
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Fig. 2. PanDA Broker architecture as deployed on Titan. Numbers indicates
the execution process of a detector simulation job described in §III-B.

tre (Fig. 2:8) and spawns 1 Geant4 event simulation process

on each of the 16 available cores (Fig. 2:9). Upon completion

of each MPI script, PanDA Broker transfer the jobs’ output to

BNL (Fig. 2:10), and performs cleanup.

PanDA Broker implementation is resource specific but the

ATLAS team has ported it to other supercomputers, includ-

ing the HPC2 at the National Research Center “Kurchatov

Institute” (NRC-KI) [18], Edison/Cori at the National Energy

Research Scientific Computing Center (NERSC) [19], and Su-

perMUC at the Leibniz Supercomputing Centre (LRZ) [19].

IV. ANALYSIS AND DISCUSSION

Currently 20 instances of the PanDA Broker are deployed

on 4 DTNs, with 5 instances per DTN. Each broker submits

and manages the execution of 15 to 300 jobs, one job for each

Titan worker node, and a theoretical maximum concurrent use

of 96,000 cores. Since November 2015, PanDA Brokers have

operated only in backfill mode, without a defined time allo-

cation, and running at the lowest priority on Titan. Therefore,

ATLAS contributed to an increase of Titan’s utilization.

We evaluate the efficiency, scalability and reliability of the

deployment of PanDA WMS on Titan by characterizing the

behavior of both PanDA Broker and AthenaMP. We discuss

challenges and limitations of our approach at multiple levels

arising from the specifics of workload, middleware and meth-

ods. All the measurements were performed between January

2016 and February 2017, hereafter called ‘experiment time

window’.

A. Characterizing the PanDA Broker on Titan

We calculate the total amount of backfill availability over

a period of time by: (i) polling the available backfill slots at

regular intervals during that time window; (ii) converting the
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Fig. 3. Titan’s total backfill availability: CPU core-hours (gray) and CPU
core-hours used by ATLAS (blue). GPU core-hours unaccounted for as they
cannot be used by ATLAS. Efficiency of PanDA Brokers defined as percentage
of total Titan’s backfill availability used by ATLAS (Red labels).

number of worker nodes available and their walltime into core-

hours; (iii) summing the number of core-hours. We call this

number of core-hours ‘total backfill availability’.

Fig. 3 shows the total backfill availability on Titan (gray

bars) and the number of core-hours of that availability used

by ATLAS (blue bars) during the experiment time window.

ATLAS consumed a total of 51.4M core-hours, for an average

of ≈3.7M core-hours a month.

PanDA Brokers’ efficiency (Fig. 3, red labels) is defined

as the fraction (or percentage) of core-hours utilized by the

PanDA Brokers of Titan’s total backfill availability during the

experiment time window. The average efficiency was 18%,

with a minimum efficiency of 7.8% (May 2016) and a maxi-

mum efficiency of 30.9% (Feb. 2017, excluding the prelim-

inary results of March). The total backfill availability was

≈21.5M in April 2016, and 17.6M in February 2017. This

suggests that the efficiency is invariant of total backfill avail-

ability.

During the experiment time window, about 2.25M detector

simulation jobs were completed on Titan, for a total of 225M

events processed. This is equivalent to 0.9% of all the 250M

detector simulations performed by ATLAS in the same pe-

riod of time, and 3.5% of the 6.6B events processed by those

jobs. These figures confirms the relevance of supercomputers’

resource contribution to the LHC Run 2, especially when ac-

counting for the amount of unused total backfill availability

and the improvement of PanDA efficiency across the experi-

ment time window.

On February 2017, PanDA Brokers used almost twice as

much total backfill availability than in any other month (pre-

liminary results for March 2017 displayed in Fig. 3 confirm

this trend). No relevant code update was made during that pe-

riod and logs indicated that the brokers were able to perform

faster. This is likely due to hardware upgrades on the DTNs.

The absence of continuous monitoring of those nodes does

not allow to quantify bottlenecks but spot measurements of

their load indicate that a faster CPU and better networking

were likely responsible for the improved performance. Inves-

tigations showed an average CPU load of 3.6% on the up-

graded DTNs, as opposed to the “high” utilization reported

by OLCF for the previous DTNs. As such, further hardware

Fig. 4. 62555 measures of Backfill availability on Titan during the experiment
time window. Mean number of work nodes available 691; mean walltime
available 126 minutes.

upgrades seem unlikely to improve significantly the perfor-

mance of PanDA Brokers.

Every detector simulation executed on Titan process 100

events. This number of events is consistent with the physics

of the use case and with the average duration of backfill avail-

ability. The duration of a detector simulation is a function of

the number of events simulated but not all events take the same

time to be simulated. One event simulation takes from ≈2 to

≈40 minutes, with a mean of ≈14 minutes. Considering that

each worker node process up to 16 events concurrently, 100

events takes an average of 105 minutes to process. As such,

PanDA brokers do not use backfill availability with less than

105 minutes walltime.

Fig. 4 shows backfill availability on Titan as a function

of number of nodes and the time of their availability (i.e.,

walltime). We recorded these data by polling Titan’s Moab

scheduler at regular intervals during the experiment window

time. The mean number of nodes was 691, and their mean

walltime was 126 minutes. Detector simulations of 100 events,

enable to use down to 5/6 of the mean walltime of backfill

availability. As such, it offers a good compromise for PanDA

Broker efficiency.

PanDA Broker could fit the number of events to the walltime

of each available backfill slot on the base of the distributions

of the time taken by one event to be simulated. That specific

number of event could then be pulled from the PanDA Event

service [20] and given as input to one or more simulations.

Once packaged into the MPI script submitted to titan’s PBS

batch system, these simulations would better fit their available

backfill slot, contributing to increase the efficiency of PanDA

Brokers.

The transition from a homogeneous to a heterogeneous

number of events per detector simulation has implications for

the application layer. An even number of events across simu-

lations makes it easier to partition, track and package events

across simulations, especially when they are performed on

both the Grid and Titan. A homogeneous number of events

also helps to keep the size and duration of other stages of

the MC workflow (§III-A) more uniform. Further analysis is

needed to evaluate the trade offs between increased efficiency

of resource utilization and the complexity that would be in-

troduced at the application layer.
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Currently, each PanDA Broker creates, submits, and moni-

tors a single MPI PBS script at a time. This design is inherited

from PanDA Pilot where a single process is spawn at a time

to execute the payload. As a consequence, the utilization of a

larger portion of Titan’s total backfill availability depends on

the the number of concurrent PanDA Brokers instantiated on

the DTNs: When all the 20 PanDA Brokers have submitted a

MPI PBS script, further backfill availability cannot be used.

In August 2016, increasing the number of concurrent PanDA

brokers from 4 to 20 markedly improved efficiency (see Fig. 3)

but further research is ongoing to understand whether an even

greater number of brokers would yield even greater efficiency.

This research focuses on evaluating the overheads of input/out-

put files staging, including its impact on DTNs, and on an al-

ternative design of PanDA Broker that enables the concurrent

submission of multiple MPI scripts [19]. The understanding

will contribute to improving the efficiency of PanDA Brokers

beyond the 30% limit showed in Fig. 3.

The current design and architecture of the PanDA Broker

is proving to be as reliable as PanDA Pilot when used on the

WLCG. Between Jan 2016 and Feb 2017, the overall failure

rate of all the ATLAS detector simulation jobs was 14%, while

the failure rate of jobs submitted to Titan was a comparable

13.6%. PanDA Brokers were responsible for around the 19%

of the failures, compared to the 29% of failures produced by

the JobDispatcher module of the PanDA Server, and the 13%

failures produced by the Geant4 toolkit.

B. Characterizing the Detector Simulation on Titan

We use two main parameters to measure the performance

of the detector simulation jobs submitted to Titan: (i) the time

taken to setup AthenaMP; and (ii) the distribution of the time

taken by Geant4 to simulate a certain number of events.

AthenaMP has an initialization and configuration stage. At

initialization time, AthenaMP is assembled from a very large

set of shared libraries, depending on the type of payload that

will have to be computed. Once initialized, every algorithm

and service of AthenaMP is configured via Python scripts.

Both these operations result in read operations on the filesys-

tem shared between the worker nodes and the DTNs, including

the operations required to access small python scripts.

Initially, all the shared libraries and the python scripts of

AthenaMP were stored on the OLCF Spider 2 Lustre file sys-

tem. However, the I/O patterns of the initialization and con-

figuration stages degraded the performance of the filesystem.

This was addressed by moving the AthenaMP distribution to

a read-only NFS directory, shared among Titan’s DTNs and

worker nodes. NFS eliminated the problem of metadata con-

tention, improving metadata read performance from a worse

case scenario of 6,300s on Lustre to ≈225s on NFS. While

these figures are specific to OLCF and Titan, reengineering of

AthenaMP could improve startup time on every platform.

Once initialized and configured, AthenaMP is used to ex-

ecute 16 concurrent Geant4 simulators on a Titan’s worker

node. Geant4 requires to read events descriptions from a

filesystem and simulate them as they would happen within

the ATLAS detector. We characterized both the compute per-

formance of the simulation and the impact of acquiring event

descriptions on the filesystem.

The AMD Opteron 6274 CPU used on Titan has 16 cores,

divided into 8 compute units. Each compute units has 1 float-

ing point (FP) scheduler shared between 2 cores. When us-

ing 16 cores for FP-intensive calculations, each pair of cores

competes for a single FP scheduler. This creates the overhead

shown in Fig. 5: the mean runtime per event for 8 concur-

rent simulations computing 50 events is 10.8 minutes, while

for 16 simulations is 14.25 minutes (consistent with the mea-

sured distribution of the duration of event simulation). Despite

an inefficiency of almost 30%, Titan’s allocation policy based

on number of worker nodes used instead of number of cores

does not justify the use of 1/2 of the cores available.

Fig. 5. Distributions of the time taken to simulate one event when placing
2 simulations (h1) or 1 simulation (h2) per Titan’s CPU. 2 simulation use 16
cores per node, 1 simulation 8. 50 Events; 1 Titan worker nodes; 16 work
threads per node; 100 events per node.

A performance analysis of Titan’s AMD CPUs for detector

simulations also helps to compare Titan and Grid site perfor-

mance. Usually, Grid sites expose resources with heteroge-

neous CPU architectures and 8 (virtual) cores, while Titan’s

offer an homogeneous 16 cores architecture. We used the rate

of events processes per minute as a measure of the efficiency

of executing the same detector simulation on Titan or Grid

sites. Comparisons of the efficiencies of Titan to the BNL

and SIGNET Grid sites, normalized for 8 cores, show that

the effective performance per-core at Titan is ≈0.57 event per

minute, roughly 1/2 of BNL and 1/3 of SIGNET.

The differences in performance between Titan and the BNL

and SIGNET Grid sites are due to the FP scheduler compe-

tition but mainly to the availability of newer processors. The

heterogeneity of the Grid sites’ CPUs explain the higher per-

formance variance we observed compared to the performance

consistency we measured on Titan. This difference in perfor-

mance is compensated by the amount of resources available

on Titan (capable of executing up to 30%/year of the ATLAS

detector simulations) and by the lack of further resources avail-

able to WLCG. Also, it should be noted that Titan is at the

end of its life-cycle and that Summit, Titan’s successor, will

offer cutting-edge performances.

We studied the impact of acquiring event descriptions on

Lustre by analyzing 1,175 jobs ran on the week of 10/25/2016,

for a total of 174 hours. Table I shows the overall statistical

breakdown of the observed file I/O. ATLAS used between 1

and 300 worker nodes, and 35 on average. 75% of the jobs run
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by ATLAS consumed less than 25 nodes and 92% less than

100. During the 174 hours of data collection, 6.75 ATLAS

jobs were executed on average per hour, each job running for

an average of 1.74 hours. Every job read less than 250 GB

and wrote less than 75 GB of data and, on average, each job

read 20 GB and wrote 6 GB of data.

ATLAS jobs are read heavy: On average, the amount of data

read per worker node is less than 400 MB, while the amount

of data written is less than 170 MB. Distributions of read and

written data are different: The read operation distribution per

job shows a long tail, ranging from 12.5 GB to 250 GB, while

the written amount of data has a very narrow distribution.

The metadata I/O breakdown shows that ATLAS jobs yield

23 file open() operations per second (not including file stat()
operations) and 5 file close() operations per second, with sim-

ilar distributions. On average, the maximum number of file

open() operations per job is ≈170/s and the maximum num-

ber of file close() operations is ≈39/s. For the 1,175 ATLAS

jobs observed, the total number of file open() operations is

172,089,760 and the total number of file close() operations is

40,132,992. The difference between these two values is under

investigation: a possible explanation is that ATLAS jobs don’t

call a file close() operation for every file open() issued.

Overall, the average time taken to read events from input

files stored on Lustre is 1,320, comparable to the time taken

to read the file required by assembling AthenaMP from NFS.

Preliminary investigation shows that this time could be reduced

to 40 seconds by loading the event descriptions into the RAM

disk available on each worker node. Events descriptions could

be transferred from Lustre to the RAM disk while configuring

and initializing AthenaMP, almost halving the time currently

required by initiating a Geant4 simulation.

V. PANDA: THE NEXT GENERATION EXECUTOR

As explained in §III, PanDA Broker was designed to maxi-

mize code reutilization of PanDA Pilot. This allowed for rapid

adoption and incremental optimization while enabling the par-

allel development of a more general solution for executing

ATALS workloads on HPC resources.

The lack of pilot capabilities in PanDA Broker impacts both

the efficiency and the flexibility of PanDA’s execution process.

Pilots could improve efficiency by increasing throughput and

enabling greater backfill utilization. Further, pilots would make

it easier to support heterogeneous workloads.

The absence of pilots makes the scheduling of multiple gen-

erations of workload on the same PBS job impossible: once

a statically defined number of detector simulations are pack-

aged into a PBS job and this job is queued on Titan, no further

simulations can be added to that job. New simulations have to

be packaged into a new PBS job that needs to be submitted

to Titan based upon backfill and PanDA Brokers availability.

The support of multiple generations of workload would en-

able more efficient use of the backfill availability walltime.

Currently, when a set of simulations ends, the PBS job also

ends, independent of whether more wall-time would still be

available. With a pilot, additional simulations could be ex-

ecuted to utilize all the available wall-time, while avoiding

further job packaging and submission overheads.

Multiple generations would also relax two assumptions of

the current execution model: knowing the number of sim-

ulations before submitting the MPI script, and having a

fixed number of events per simulation (currently 100). Pi-

lots would enable the scheduling of simulations independently

from whether they were available at the moment of submit-

ting the pilot. Further, simulations with a varying number of

events could be scheduled on a pilot, depending on the amount

of remaining walltime and the distribution of execution time

per event, as shown in §III-B, Fig. 5. These capabilities would

increase the efficiency of the PanDA Broker when there is a

large difference between the number of cores and walltime.

Pilots can offer a payload-independent scheduling interface

while hiding the mechanics of coordination and communica-

tion among multiple worker nodes. This could eliminate the

need for packaging payload into MPI scripts within the bro-

ker, greatly simplifying the submission process. This simpli-

fication would also enable the submission of different types

of payload, without having to develop a specific PBS script

for each payload. The submission process would also be MPI-

independent, as MPI is used for coordination among multiple

worker nodes, not by the payload.

A. Implementation

The implementation of pilot capabilities within the PanDA

Broker require quantification of the effective benefits that it

could yield and, on the base of this analysis, a dedicated engi-

neering effort. We developed a prototype of a pilot system ca-

pable of executing on Titan to study experimentally the quan-

titative and qualitative benefits that it could bring to PanDA.

We called this prototype Next Generation Executor (NGE).

NGE is a runtime system to execute heterogeneous and dy-

namically determined tasks that constitute workloads. Fig. 6

illustrates its current architecture as deployed on Titan: the

two management modules (Pilot and Unit) represent a simpli-

fied version of the PanDA Broker while the agent module is

the pilot submitted to Titan and executed on its worker nodes.

The communication between PanDA Broker and Server is ab-

stracted away as it is not immediately useful to evaluate the

performance and capabilities of a pilot on Titan.

NGE exposes an API to describe workloads (Fig. 6, green

squares) and pilots (Fig. 6, red circles), and to instantiate a

PilotManager and a UnitManager. The PilotManager submits

pilots to Titan’s PBS batch system via SAGA API (Fig. 6,

dash arrow). Once scheduled, the Pilot Agent is bootstrapped

on a MOM node and the Agent’s Executors on worker nodes.

The UnitManager and the Pilot Agent communicate via a

database instantiated on a DTN so as to be reachable by both

modules. The UnitManager schedules units to the Agent’s

Scheduler (Fig. 6, solid arrow) and the Agent’s Scheduler

schedules the units on one or more Agent’s Executor.

The Pilot Agent uses the Open Run-Time Environment

(ORTE) for communication and coordination of the execu-
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Num. Nodes Duration (s) Read (GB) Written (GB) GB Read/nodes GB Written/nodes open() close()
Min 1 1,932 0.01 0.03 0.00037 0.02485 1,368 349
Max 300 7,452 241.06 71.71 0.81670 0.23903 1,260,185 294,908
Average 35.66 6,280.82 20.36 6.87 0.38354 0.16794 146,459.37 34,155.74
Std. Dev. 55.33 520.99 43.90 12.33 0.19379 0.03376 231,346.55 53,799.08

TABLE I
THE STATISTICAL BREAKDOWN OF THE I/O IMPACT OF 1,175 JOBS ATLAS EXECUTED AT OLCF FOR THE WEEK OF 10/25/16

Fig. 6. NGE Architecture: The PilotManager and UnitManager reside on
a DTN while the Pilot Agent is executed on a worker node. Color coding:
gray for entities external to NGE; white for APIs; purple for NGE’s modules;
green for pilots; yellow for module’s components.

tion of units. This environment is a critical component of the

OpenMPI implementation [21]. ORTE is able to minimize the

system overhead while submitting tasks by avoiding filesystem

bottlenecks and race conditions with network sockets.

B. Experiments

We designed experiments to characterize the performance of

the NGE on Titan, with an emphasis on understanding its over-

head and thus the cost of introducing new functionalities. We

perform three groups of experiments in which we investigate

the weak scalability, weak scalability with multiple generation,

and strong scalability of the NGE.

Each experiment entails executing multiple instances of

AthenaMP to simulate a pre-determined number of events.

All the experiments have been performed by configuring

AthenaMP to use all the 16 cores of Titan’s worker nodes.

We measured the execution time of the pilots and of

AthenaMP within them, collecting timestamps at all stages

of the execution. Experiments were performed by submitting

pilots to Titan’s batch queue. The turnaround time of an indi-

vidual run is determined by queue waiting times. Since we are

interested only in the performances of the NGE, we removed

queue time from our statistics.
1) Weak scalability: In this experiment we run as many

AthenaMP instances (hereafter referred to as tasks) as the

number of nodes controlled by the pilot. Each AthenaMP sim-

ulates 100 events, requiring ∼ 4200 seconds on average.

Tasks do not wait within the Agent’s queue since one node

is available to each AthenaMP instance. Task execution over-

heads result primarily from three factors: (i) the initial boot-

strapping of the pilot on the nodes; (ii) the UnitManager’s

dispatching of units (tasks) to the agent; and (iii) time for the

Agent to bootstrap all the tasks on the nodes.

We tested pilots with 250, 500, 1000 and 2000 worker nodes

and 2 hours walltime. The time duration is determined by
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Fig. 7. Weak scalability: average pilot duration, average duration of one
AthenaMP execution, and pilot’s overhead as a function of pilot sizes (200,
500, 1000 and 2000 nodes).

the Titan’s walltime policy. Fig. 7 depicts the average pilot

duration, the average execution time of AthenaMP, and the

pilot overhead as function of the pilot size.

We observe that, despite some fluctuations due to external

factors (e.g., Titan’s shared filesystem and the shared database

used by the NGE), the average execution time of AthenaMP

ranges between 4500 and 4800 seconds. We also observe that

in all the cases the gap between AthenaMP execution times

and the pilot durations is minimal, although it slightly in-

creases with the pilot size. We notice that NGE’s overhead

grows linearly with the number of units.

2) Weak scalability with multiple generation: The NGE

provides an important new capability of submitting multiple

generations of tasks to the same pilot. In order to investigate

the cost of doing so, we performed a variant of the weak

scalability experiments. This stresses the pilot’s components,

as new tasks are scheduled for execution on the Agent while

other tasks are still running.

In these experiments, we run five AthenaMP instances per

node. As these experiments are designed to investigate the

overhead of scheduling and bootstraping of AthenaMP in-

stances, the number of events simulated by each AthenaMP

task was reduced to sixteen such that the running time of each

AthenaMP was ≈1,200 seconds on average. This experiment

design choice does not affect the objectives or accuracy of the

experiments, but allows us to scale experiments to large node

counts by conserving project allocation.

We ran pilots with 256, 512, 1024 and 2048 worker nodes

and 3 hours walltime. Fig. 8 depicts the average pilot duration,

the average execution time of five generations of AthenaMP,

and the corresponding overhead. The difference between the

two durations is more marked than in the previous experi-

ments. Despite this, we notice that the growth of the overhead
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Fig. 9. Strong scalability: Average pilot duration, average duration of se-
quential AthenaMP executions, and pilot’s overhead for pilots with 256, 512,
1024 and 2048 nodes.

is consistent with the increment of the number of tasks per

node for pilots with 256, 512 and 1024 worker nodes, and

less than linear for the pilot with 2048 worker nodes.

3) Strong scalability: We investigate strong scalability by

running the same number of tasks for different pilot sizes. We

used 2048 AthenaMP instances and pilots with 256, 512, 1024

and 2048 nodes. Thus, the number of AthenaMP instances

per node (i.e., generations) is eight for the smallest pilot (256

nodes), one for the largest pilot (2048 nodes), and with the

number of generations of AthenaMP decreasing with the pilot

size. These experiments are designed to investigate whether

pilot overhead is affected by the degree of concurrency within

the pilot and/or the number of tasks. Each AthenaMP instance

simulates sixteen events as in the previous experiment.

Fig. 9 shows the average pilot duration and the average ex-

ecution time of possibly sequential AthenaMP instances. We

notice that the difference between the pilot duration and the

AthenaMP execution times is almost constant for all the pi-

lot sizes, although the overall duration of the pilot decreases

linearly with the pilot size.

VI. RELATED WORK

Several pilot-enabled WMS were developed for the LHC

experiments: AliEn [22] for ALICE; DIRAC [23] for LHCb;

GlideinWMS [24] for CMS; and PanDA [25] for ATLAS.

These systems implement similar design and architectural

principles: centralization of task and resource management,

and of monitoring and accounting; distribution of task execu-

tion across multiple sites; unification of the application inter-

face; hiding of resource heterogeneity; and collection of static

and sometimes dynamic information about resources.

AliEn, DIRAC, GlideinWMS and PanDA all share a sim-

ilar design with two types of components: the management

ones facing the application layer and centralizing the capa-

bilities required to acquire tasks’ descriptions and matching

them to resource capabilities; and resource components used

to acquire compute and data resources and information about

their capabilities. Architecturally, the management components

include one or more queue and a scheduler that coordinates

with the resource modules via push/pull protocols. All resource

components include middleware-specific APIs to request for

resources, and a pilot capable of pulling tasks from the man-

agement modules and executing them on its resources.

AliEn, DIRAC, GlideinWMS and PanDA also have similar

implementations. These WMS were initially implemented to

use Grid resources using the Condor software ecosystem [2].

Accordingly, all LHC WMS implemented Grid-like authenti-

cation and authorization systems and adopted a computational

model based on distributing a large amount of single/few-cores

tasks across hundreds of sites.

All LHC experiments produce and process large amounts

of data from actual collisions in the accelerator and from their

simulations. Dedicated, multi-tiered data systems have been

built to store, replicate, and distributed these data. All LHC

WMS interface with these systems to move data to the sites

where related compute tasks are executed or to schedule com-

pute tasks where (large amount of) data are already stored.

It is interesting to note that most WMS developed to sup-

port LHC experiments are gradually evolving towards inte-

grating HPC resources, though none have reached sustained

operational usage at the scales that PanDA has achieved for

ATLAS on Titan.

VII. CONCLUSION

The deployment of PanDA Broker on Titan enabled dis-

tributed computing on a leadership-class HPC machine at un-

precedented scale. In the past 13 months, PanDA WMS has

consumed almost 52M core-hours on Titan, simulating 3.5%

of the total number of detector events of the ATLAS produc-

tion Monte Carlo workflow. We described the implementation

and execution process of PanDA WMS (§II) and PanDA Bro-

ker (§III), showing how they support and enable distributed

computing at this scale on Titan, a leadership-class HPC ma-

chine managed by OCLF.

We characterized the efficiency, scalability and reliability

of both PanDA Broker and AthenaMP as deployed on Ti-

tan (§III). Our characterization highlighted the strengths and

limitations of the current design and implementation: PanDA

Brokers enable the sustained execution of millions of sim-

ulations per week but further work is required to optimize

its efficiency and reliability (§IV-A). PanDA Brokers support

the concurrent execution of multiple AthenaMP instances, en-

abling each AthenaMP to perform the concurrent execution
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of up to 16 Geant4 simulators. Nonetheless, our characteri-

zation showed how improving I/O performance could reduce

overheads (§IV-B), increasing the overall utilization of Titan’s

backfill availability. We introduced PanDA’s next generation

executor for HPC systems, characterized its ability to support

multi-generation workloads and analyzed its scaling behavior.

Performance tests on the next generation executor demonstrate

linear strong and weak scalability over several orders of mag-

nitude of task and node counts. Qualitatively, it enables the

high-performance execution of new workloads and advanced

execution modes of traditional workloads.

HEP was amongst the first, if not the first experimental com-

munity to realize the importance of using WMS to manage

their computational campaign(s). As computing becomes in-

creasingly critical for a range of experiments, the experience

foreshadows the importance of WMS for other experiments

(such as SKA, LSST etc.). These experiments will have their

own workload characteristics, resources types and federation

constraints, as well metrics of performance. The experience

captured in this paper should be useful for designing WMS

for computational campaigns and will provide a baseline to

evaluate the relative merits of different approaches.

The 52M core hours used by ATLAS, via PanDA, is over

2% of the total utilization on Titan over the same period, bring-

ing the time-averaged utilization of Titan to be consistently

upwards of 90%. Given that the average utilization of most

other leadership class machines is less (e.g., NSF’s flagship

Blue Waters the average utilization fluctuates between 60–

80% (see XDMoD[26])) there is ample headroom for similar

approaches elsewhere. These unprecedented efficiency gains

aside, this work is just a starting point towards more effective

operational models for future leadership and online analytical

platforms [5]. These platforms will have to support ever in-

creasing complex workloads with varying models for dynamic

resource federation.
Acknowledgements: This work is funded by Award number DE-

SC0016280 from the Office of Advanced Scientific Computing Research
within the Department of Energy. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Labo-
ratory, which is supported by the Office of Science of the U.S.Department
of Energy under Contract No. DE- AC05-00OR22725.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing
infrastructure. Amsterdam, Netherlands: Elsevier, 2003.

[2] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[3] G. Aad et al., “The ATLAS experiment at the CERN large hadron col-
lider,” JINST, vol. 3, p. S08003, 2008.

[4] T. Maeno, “Overview of ATLAS PanDA workload management,” J.
Phys.: Conf. Ser, vol. 331, no. 7, p. 072024, 2011.

[5] A. N. L. Argonne National Laboratory. (2017) Future online analysis
platform: Building a research roadmap for future science platforms.
[Online]. Available: https://press3.mcs.anl.gov/futureplatform/

[6] M. Turilli, M. Santcroos, and S. Jha, “A comprehensive perspective on
pilot-jobs,” ACM Computing Surveys (accepted, in press), arXiv preprint
arXiv:1508.04180v3, 2017.

[7] T. Maeno, K. De, T. Wenaus, P. Nilsson, G. Stewart, R. Walker,
A. Stradling, J. Caballero, M. Potekhin, D. Smith et al., “Overview
of ATLAS PanDA workload management,” in J. Phys.: Conf. Ser., vol.
331, 2011, p. 072024.

[8] J. Caballero, J. Hover, P. Love, and G. Stewart, “AutoPyFactory: a scal-
able flexible pilot factory implementation,” in J. Phys.: Conf. Ser., vol.
396, 2012, p. 032016.

[9] P. Nilsson, J. Caballero, K. De, T. Maeno, A. Stradling, T. Wenaus,
A. Collaboration et al., “The ATLAS PanDA pilot in operation,” in J.
Phys.: Conf. Ser., vol. 331, 2011, p. 062040.

[10] M. Borodin, K. De, J. Garcia, D. Golubkov, A. Klimentov, T. Maeno,
A. Vaniachine et al., “Scaling up ATLAS production system for the
LHC run 2 and beyond: project ProdSys2,” in J. Phys.: Conf. Ser., vol.
664, 2015, p. 062005.

[11] A. Klimentov, P. Nevski, M. Potekhin, and T. Wenaus, “The ATLAS
PanDA monitoring system and its evolution,” in J. Phys.: Conf. Ser.,
vol. 331, 2011, p. 072058.

[12] A. P. Team. (2017) The PanDA production and distributed analysis
system. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/PanDA/
PanDA

[13] G. Aad, B. Abbott, J. Abdallah, A. Abdelalim, A. Abdesselam, O. Abdi-
nov, B. Abi, M. Abolins, H. Abramowicz, H. Abreu et al., “The ATLAS
simulation infrastructure,” The European Physical Journal C, vol. 70,
no. 3, pp. 823–874, 2010.

[14] S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo,
P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., “GEANT4—a
simulation toolkit,” Nuclear instruments and methods in physics research
section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, vol. 506, no. 3, pp. 250–303, 2003.

[15] A. Rimoldi, A. Dell’Acqua, A. di Simone, M. Gallas, A. Nairz,
J. Boudreau, V. Tsulaia, and D. Costanzo, “Atlas detector simulation:
Status and outlook,” in Astroparticle, Particle and Space Physics, De-
tectors and Medical Physics Applications, vol. 1, 2006, pp. 551–555.

[16] I. Adaptive Computing Enterprises. (2014) Maui sched-
uler administrator’s guide: Backfill. [Online]. Available: http:
//docs.adaptivecomputing.com/maui/8.2backfill.php

[17] A. D. Barker, D. E. Bernholdt, A. S. Bland, J. D. Gary, J. J. Hack,
S. T. McNally, J. H. Rogers, B. Smith, T. Straatsma, S. R. Sukumar,
K. G. Thach, S. Tichenor, S. S. Vazhkudai, and J. C. Wells, “High
performance computing facility operational assessment 2015: Oak ridge
leadership computing facility,” Oak Ridge National Laboratory (ORNL),
Oak Ridge, TN (United States). Oak Ridge Leadership Computing
Facility (OLCF), Tech. Rep. ORNL/SPR–2016/110, Mar 2016. [Online].
Available: http://www.osti.gov/scitech/servlets/purl/1324094

[18] A. Belyaev, A. Berezhnaya, L. Betev, P. Buncic, K. De, D. Drizhuk,
A. Klimentov, Y. Lazin, I. Lyalin, R. Mashinistov et al., “Integration of
russian tier-1 grid center with high performance computers at NRC-KI
for LHC experiments and beyond HENP,” in J. Phys.: Conf. Ser., vol.
664, 2015, p. 092018.

[19] F. H. Barreiro Megino, S. Padolski, D. Oleynik, T. Maeno, S. Panitkin,
K. De, T. Wenaus, A. Klimentov, and P. Nilsson, “PanDA for ATLAS
distributed computing in the next decade,” The ATLAS collaboration,
Tech. Rep. ATL-COM-SOFT-2016-049, 2016.

[20] P. Calafiura, K. De, W. Guan, T. Maeno, P. Nilsson, D. Oleynik, S. Pan-
itkin, V. Tsulaia, P. Van Gemmeren, and T. Wenaus, “The ATLAS event
service: A new approach to event processing,” in J. Phys.: Conf. Ser.,
vol. 664, 2015, p. 062065.

[21] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and
G. E. Fagg, “The open run-time environment (OpenRTE): A transparent
multi-cluster environment for high-performance computing,” in Proc.
12th European PVM/MPI Users’ Group Meeting, 2005, pp. 225–232.

[22] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, F. Furano, A. Grigoras,
C. Grigoras, P. Mendez-Lorenzo, A. J. Peters, and P. Saiz, “The ALICE
workload management system: Status before the real data taking,” J.
Phys.: Conf. Ser., vol. 219, p. 062004. 6p, 2010.

[23] S. Paterson, J. Closier, and t. L. D. Team, “Performance of combined
production and analysis WMS in DIRAC,” J. Phys.: Conf. Ser., vol. 219,
no. 7, p. 072015, 2010.

[24] I. Sfiligoi, “glideinwms—a generic pilot-based workload management
system,” in J. Phys.: Conf. Ser., vol. 119, 2008, p. 062044.

[25] T. Maeno, K. De, A. Klimentov, P. Nilsson, D. Oleynik, S. Panitkin,
A. Petrosyan, J. Schovancova, A. Vaniachine, T. Wenaus et al., “Evo-
lution of the ATLAS PanDA workload management system for exas-
cale computational science,” in J. Phys.: Conf. Ser., vol. 513, 2014, p.
032062.

[26] X. B. Waters. (2017) Xdmod - blue waters. [Online]. Available: http:
//xdmod.ncsa.illinois.edu/\#tg usage:statistic Jobs none utilization

304304


